Science.gov

Sample records for aerodynamic heating facility

  1. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  2. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  3. Aerodynamic heating in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Reddy, C. Subba

    1993-01-01

    Aerodynamic heating in hypersonic space vehicles is an important factor to be considered in their design. Therefore the designers of such vehicles need reliable heat transfer data in this respect for a successful design. Such data is usually produced by testing the models of hypersonic surfaces in wind tunnels. Most of the hypersonic test facilities at present are conventional blow-down tunnels whose run times are of the order of several seconds. The surface temperatures on such models are obtained using standard techniques such as thin-film resistance gages, thin-skin transient calorimeter gages and coaxial thermocouple or video acquisition systems such as phosphor thermography and infrared thermography. The data are usually reduced assuming that the model behaves like a semi-infinite solid (SIS) with constant properties and that heat transfer is by one-dimensional conduction only. This simplifying assumption may be valid in cases where models are thick, run-times short, and thermal diffusivities small. In many instances, however, when these conditions are not met, the assumption may lead to significant errors in the heat transfer results. The purpose of the present paper is to investigate this aspect. Specifically, the objectives are as follows: (1) to determine the limiting conditions under which a model can be considered a semi-infinite body; (2) to estimate the extent of errors involved in the reduction of the data if the models violate the assumption; and (3) to come up with correlation factors which when multiplied by the results obtained under the SIS assumption will provide the results under the actual conditions.

  4. Experimental Facilities and Modelling for Rarefied Aerodynamics

    DTIC Science & Technology

    2011-01-01

    aerodynamic forces and moments that act on an object moving in the gas . The aerodynamics of rarefied gases also investigates the flow of gases in...Originally, theoretical models for rarefied gas flows were developed in the frame of the molecular kinetic theory. Thus the first self-consistent descriptions...method [7-11]. 3.0 EXPERIMENTAL FACILITIES FOR RAREFIED FLOWS 3.1 Overview Rarefied - gas (vacuum) wind tunnel is a wind tunnel operating at low pressures

  5. Turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Daniels, W. A.

    1992-01-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  6. Booster aerodynamic heating: Test support

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Reardon, J. E.; Fuller, C. E.

    1974-01-01

    Several technical areas were encompassed in providing support for booster thermal environment test work. These areas included: (1) cavity flow heating, (2) rarefied flow heating, and (3) impulse operated model research and testing. Cavity flow heating problems were studied with respect to the proposed altitude control motors for the space shuttle. Available literature on this subject was reviewed and analytical predictive methods were summarized for use in planning testing work. Rarefied flow heating data was reviewed and correlated. The study showed the importance of considering rarefied flow conditions in launch thermal environment prediction. Impulse operated model research and testing was conducted to provide a basis for understanding and designing such models for booster thermal environment testing.

  7. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  8. Hypervelocity Free-Flight Aerodynamic Facility (HFFAF)

    NASA Video Gallery

    The HFFAF is the only aeroballistic range the nation currently capable of testing in gases other than air and at sub-atmospheric pressures. It is used primarily to study the aerodynamics, Aerotherm...

  9. Coupled flow, thermal and structural analysis of aerodynamically heated panels

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Dechaumphai, Pramote

    1986-01-01

    A finite element approach to coupling flow, thermal and structural analyses of aerodynamically heated panels is presented. The Navier-Stokes equations for laminar compressible flow are solved together with the energy equation and quasi-static structural equations of the panel. Interactions between the flow, panel heat transfer and deformations are studied for thin stainless steel panels aerodynamically heated by Mach 6.6 flow.

  10. Numerical aerodynamic simulation facility preliminary study: Executive study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.

  11. CFD Modeling of Launch Vehicle Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.

    2011-01-01

    The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications

  12. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.

    1979-01-01

    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  13. Numerical aerodynamic simulation facility preliminary study, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.

  14. Aerodynamic Heating and Deceleration During Entry into Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Aerodynamic Heating and Deceleration During Entry into Planetary Atmospheres. Dr. Chapman's lecture examines the physics behind spacecraft entry into planetary atmospheres. He explains how scientists determine if a planet has an atmosphere and how scientists can compute deceleration when the atmospheric conditions are unknown. Symbols and equations used for calculations for aerodynamic heating and deceleration are provided. He also explains heat transfer in bodies approaching an atmosphere, deceleration, and the use of ablation in protecting spacecraft from high temperatures during atmospheric entry. [Entire movie available on DVD from CASI as Doc ID 20070030962. Contact help@sti.nasa.gov

  15. Numerical aerodynamic simulation facility. Preliminary study extension

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The production of an optimized design of key elements of the candidate facility was the primary objective of this report. This was accomplished by effort in the following tasks: (1) to further develop, optimize and describe the function description of the custom hardware; (2) to delineate trade off areas between performance, reliability, availability, serviceability, and programmability; (3) to develop metrics and models for validation of the candidate systems performance; (4) to conduct a functional simulation of the system design; (5) to perform a reliability analysis of the system design; and (6) to develop the software specifications to include a user level high level programming language, a correspondence between the programming language and instruction set and outline the operation system requirements.

  16. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  17. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  18. Hypersonic aerodynamics test facility using the external propulsion accelerator

    NASA Technical Reports Server (NTRS)

    Rom, J.; Lewis, M.; Gupta, A.; Sabean, J.

    1995-01-01

    The use of the External propulsion Accelerator (EPA) for launching models of hypersonic aerodynamic configurations into an instrumented ballistic range is discussed. The aerodynamic model is encased inside an axisymmetric projectile designed to be accelerated to high speed in the EPA. Accelerator lengths required to achieve hypersonic speeds are estimated to vary from 10 meters for Mach 7, 40 meters for Mach 10, 150 meters for Mach 15, and 700 meters for Mach 30, assuming a limit of 50,000 g's acceleration. For a model span of 10 cm to 25 cm, the launch tube diameters are 40 cm and 100 cm, respectively. Using this EPA launcher will enable exact simulation of hypersonic flight in ground facilities where both the gas composition and pressure can be controlled in the ballistic range.

  19. Feasibility study for a numerical aerodynamic simulation facility: Summary

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1979-01-01

    The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.

  20. Fluid-thermal-structural study of aerodynamically heated leading edges

    NASA Technical Reports Server (NTRS)

    Deuchamphai, Pramote; Thornton, Earl A.; Wieting, Allan R.

    1988-01-01

    A finite element approach for integrated fluid-thermal-structural analysis of aerodynamically heated leading edges is presented. The Navier-Stokes equations for high speed compressible flow, the energy equation, and the quasi-static equilibrium equations for the leading edge are solved using a single finite element approach in one integrated, vectorized computer program called LIFTS. The fluid-thermal-structural coupling is studied for Mach 6.47 flow over a 3-in diam cylinder for which the flow behavior and the aerothermal loads are calibrated by experimental data. Issues of the thermal-structural response are studied for hydrogen-cooled, super thermal conducting leading edges subjected to intense aerodynamic heating.

  1. Numerical aerodynamic simulation facility feasibility study, executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.

  2. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  3. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  4. The variation of heat transfer coefficient, adiabatic effectiveness and aerodynamic loss with film cooling hole shape.

    PubMed

    Sargison, J E; Guo, S M; Oldfield, M L; Rawlinson, A J

    2001-05-01

    The heat transfer coefficient and adiabatic effectiveness of cylindrical, fan shaped holes and a slot are presented for the region zero to 50 diameters downstream of the holes. Narrow-band liquid crystals were used on a heated flat plate with heated air coolant. These parameters have been measured in a steady state, low speed facility at engine representative Reynolds number based on hole diameter and pressure difference ratio (ideal momentum flux ratio). The aerodynamic loss due to each of the film cooling geometries has been measured using a traverse of the boundary layer far downstream of the film cooling holes. Compared to the cylindrical holes, the fan shaped hole case showed an improvement in the uniformity of cooling downstream of the holes and in the level of laterally averaged film cooling effectiveness. The fan effectiveness approached the slot level and both the fan and cylindrical hole cases show lower heat transfer coefficients than the slot and non film cooled cases based on the laterally averaged results. The drawback to the fan shaped hole was that the aerodynamic loss was significantly higher than both the slot and cylindrical hole values due to inefficient diffusion in the hole exit expansion.

  5. Aerodynamic Heat-Power Engine Operating on a Closed Cycle

    NASA Technical Reports Server (NTRS)

    Ackeret, J.; Keller, D. C.

    1942-01-01

    Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.

  6. Aerodynamic Test Facility Requirements for Defence R&D to 2000 and Beyond.

    DTIC Science & Technology

    1982-09-01

    limited to the next two decades because it was considered that projections into the next century were too uncertain. It should be noted however that new...basic source of aircraft aerodynamic data and will remain so until well into the next century . b. Adequate test facilities and the body of aerodynamic...the Department of Defence of the USA, which has much closer contact with aircraft manufacturers than we have, supports an impressive independent test

  7. Introductory remarks. [fluid mechanics research for the National Transonic Facility: theoretical aerodynamics

    NASA Technical Reports Server (NTRS)

    Gessow, A.

    1977-01-01

    Suggested fluid mechanics research to be conducted in the National Transonic Facility include: wind tunnel calibration; flat plate skin friction, flow visualization and measurement techniques; leading edge separation; high angle of attack separation; shock-boundary layer interaction; submarine shapes; low speed studies of cylinder normal to flow; and wall interference effects. These theoretical aerodynamic investigations will provide empirical inputs or validation data for computational aerodynamics, and increase the usefulness of existing wind tunnels.

  8. Feasibility study for a numerical aerodynamic simulation facility. Volume 2: Hardware specifications/descriptions

    NASA Technical Reports Server (NTRS)

    Green, F. M.; Resnick, D. R.

    1979-01-01

    An FMP (Flow Model Processor) was designed for use in the Numerical Aerodynamic Simulation Facility (NASF). The NASF was developed to simulate fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The facility is applicable to studying aerodynamic and aircraft body designs. The following general topics are discussed in this volume: (1) FMP functional computer specifications; (2) FMP instruction specification; (3) standard product system components; (4) loosely coupled network (LCN) specifications/description; and (5) three appendices: performance of trunk allocation contention elimination (trace) method, LCN channel protocol and proposed LCN unified second level protocol.

  9. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  10. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  11. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  12. Low-perigee aerodynamic heating during orbital flight of an atmosphere Explorer

    NASA Technical Reports Server (NTRS)

    Caruso, P. S., Jr.; Naegeli, C. R.

    1976-01-01

    An extensive, low-perigee orbital aerodynamic heating study was undertaken in support of the Atmosphere Explorer-C Temperature Alarm. State of the art of low-density, high-speed flows, some models of the earth's atmosphere, external flow-field definition, thermodynamic and transport properties of atmospheric gases, the accommodation coefficient orbital thermal environment, and correlation of theory and measurements are discussed. Aerodynamic heating rates are determined for eight selected orbits by means of a reduced, analytical model verified by both ground test and flight data. These heating rates are compared with classical free-molecule and first-order collision regime values.

  13. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  14. Aerodynamic heating to representative SRB and ET protuberances

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Lapointe, J. K.

    1979-01-01

    Heating data and data scaling methods which can be used on representative solid rocket booster and external tank (ET) protuberances are described. Topics covered include (1) ET geometry and heating points; (2) interference heating test data (51A); (3) heat transfer data from tests FH-15 and FH-16; (4) individual protuberance data; and (5) interference heating of paint data from test IH-42. A set of drawings of the ET moldline and protuberances is included.

  15. Theoretical and empirical low perigee aerodynamic heating during orbital flight of an atmosphere explorer

    NASA Technical Reports Server (NTRS)

    Caruso, P. S., Jr.; Naegeli, C. R.

    1976-01-01

    This document presents the results of an extensive, low perigee, orbital aerodynamic heating study undertaken in support of the Atmosphere Explorer-C Temperature Alarm. Based upon in-flight orbital temperature data from the Temperature Alarm tungsten resistance wire thermometer, aerodynamic heating rates have been determined for eight selected orbits by means of a reduced thermal analytical model verified by both ground test and flight data. These heating rates are compared with the classical free molecular and first order collision regime values. It has been concluded that, for engineering purposes, the aerodynamic heating rate of atmospheric gases at perigee altitudes between 170 and 135 km on pure tungsten wire is 30 to 60% of the value set by the classical free molecular limit. Relative to the more usual orbital thermal input attributable to direct solar radiation, the aerodynamic heating rate at the lowest altitude attempted with the spacecraft despun (135 km) is the equivalent of about 1.2 solar constants incident on a tungsten wire with a solar absorptivity of 0.85.

  16. Enhancement of the CAVE computer code. [aerodynamic heating package for nose cones and scramjet engine sidewalls

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.; Burk, H. O.

    1983-01-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  17. A Visual Technique for Determining Qualitative Aerodynamic Heating Rates on Complex Configurations

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin

    1960-01-01

    An experimental investigation was conducted at a test-section Mach number of 4.95 and a stagnation temperature of 400 F to evaluate a visual technique for obtaining qualitative aerodynamic heat-transfer data on complex configurations.This technique utilized a temperature-sensetive paint indicated that this technique was satisfactory for determining qualitative heat-transfer rates on various bodies, some of which exhibited complex flow patterns. The results obtained have been found useful to guide the instrumentation of quantitative heat-transfer models, to supplement quantitative heat-transfer measurements, and to make preliminary heat-transfer studies for new configurations.

  18. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    NASA Astrophysics Data System (ADS)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a

  19. SRB ascent aerodynamic heating design criteria reduction study, volume 2

    NASA Technical Reports Server (NTRS)

    Crain, W. K.; Frost, C. L.; Engel, C. D.

    1989-01-01

    Data are presented for the wind tunnel interference heating factor data base, the timewise tabulated ascent design environments, and the timewise plotted environments comparing the REMTECH results to the Rockwell RI-IVBC-3 results.

  20. An engineering aerodynamic heating method for hypersonic flow

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Dejarnette, Fred R.

    1992-01-01

    A capability to calculate surface heating rates has been incorporated in an approximate three-dimensional inviscid technique. Surface streamlines are calculated from the inviscid solution, and the axisymmetric analog is then used along with a set of approximate convective-heating equations to compute the surface heat transfer. The method is applied to blunted axisymmetric and three-dimensional ellipsoidal cones at angle of attack for the laminar flow of a perfect gas. The method is also applicable to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes (NS) and viscous shock-layer (VSL) equations. The new technique represents a significant improvement over current engineering aerothermal methods with only a modest increase in computational effort.

  1. An Engineering Aerodynamic Heating Method for Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; DeJarnette, Fred R.

    1992-01-01

    A capability to calculate surface heating rates has been incorporated in an approximate three-dimensional inviscid technique. Surface streamlines are calculated from the inviscid solution, and the axisymmetric analog is then used along with a set of approximate convective-heating equations to compute the surface heat transfer. The method is applied to blunted axisymmetric and three-dimensional ellipsoidal cones at angle of attack for the laminar flow of a perfect gas. The method is also applicable to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes (NS) and viscous shock-layer (VSL) equations. The new technique represents a significant improvement over current engineering aerothermal methods with only a modest increase in computational effort.

  2. Aerodynamic and base heating studies on space shuttle configurations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Heating rate and pressure measurements were obtained on a 25-O space shuttle model in a vacuum chamber. Correlation data on windward laminar and turbulent boundary layers and leeside surfaces of the space shuttle orbiter are included.

  3. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Je-Chin Han; Schobeiri, M.T.

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  4. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Han, Je-Chin; Schobeiri, M.T.

    1995-12-31

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  5. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  6. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  7. Sensible heat flux of oil palm plantation: Comparing Aerodynamic and Penman-Monteith Methods

    NASA Astrophysics Data System (ADS)

    Amri Komarudin, Nurul; June, Tania; Meijide, Ana

    2017-01-01

    Oil Palm (Elaeis guinensis Jacq) has a unique morphological characteristics, in particular it has a uniform canopy. As the plant become older, its canopy coverage will completely cover the surface and influence characteristics of its microclimate. Sensible heat flux estimation of oil palm plantation could be used to identify the contribution of oil palm in reducing or increasing heat to its surrounding environment. Determination of heat flux from oil palm plantation was conducted using two methods, Aerodynamic and Penman-Monteith. The result shows that the two methods have similar diurnal pattern. The sensible heat flux peaks in the afternoon, both for two and twelve years oil palm plantations. Sensible heat flux of young plantation is affected by atmospheric stability (stable, unstable and neutral), and is higher than that of older plantation, with mean values of 0.52 W/m2 (stable), 43.53 W/m2 (unstable), 0.63 W/m2 (neutral), with standard deviation of 0.50, 28.75 and 0.46 respectively. Sensible heat flux estimated by Penman-Monteith method in both young and older plantation was higher than the value determined by Aerodynamic method with respective value of 0.77 W/m2 (stable), 45.13 W/m2 (unstable) and 0.63 W/m2 (neutral) and 0.34 W/m2 (stable), 35.82 W/m2 (unstable) and 0.71 W/m2 (neutral).

  8. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  9. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  10. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  11. Aerodynamic and heat transfer aspects of tip and casing treatments used for turbine tip leakage control

    NASA Astrophysics Data System (ADS)

    Gumusel, Baris

    Axial flow turbine stages are usually designed with a gap between the tips of the rotating blades and a stationary outer casing. The presence of a strong pressure gradient across this gap drives flow from the pressure side of the blade to the suction side. This leakage flow creates a significant amount of energy loss of working fluid in the turbine stage. In a modern gas turbine engine the outer casing of the high-pressure turbine is also exposed to a combination of high flow temperatures and heat transfer coefficients. The casing is consequently subjected to high levels of convective heat transfer, a situation that is aggravated by flow unsteadiness caused by periodic blade-passing events. An experimental investigation of the aerodynamic and heat transfer effect of tip and casing treatments used in turbine tip leakage control was conducted in a large scale, low speed, rotating research turbine facility. The effects of casing treatments were investigated by measuring the total pressure field at the exit of the rotor using a high frequency response total pressure probe. A smooth wall as a baseline case was also investigated. The test cases presented include results of casing treatments with varying dimensions for tip gap height of t/h=2.5%. The results of the rotor exit total pressure indicate that the casing treatment significantly reduced the leakage mass flow rate and the momentum deficit in the core of the tip vortex. The reductions obtained in the tip vortex size and strength influenced the tip-side passage vortex and other typical core flow characteristics in the passage. Casing treatments with the highest ridge height was the most effective in reducing the total pressure loss in the leakage flow of the test blades. This was observed at a radius near the core of the tip vortex. It appears that casing treatments with the highest ridge height is also the most effective from a global point of view, as shown by the passage averaged pressure coefficient obtained in

  12. Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2012-01-01

    The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.

  13. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  14. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  15. A method of infrared imaging missile's aerodynamic heating modeling and simulations

    NASA Astrophysics Data System (ADS)

    Cao, Chunqin; Xiang, Jingbo; Zhang, Xiaoyang; Wang, Weiqiang

    2013-09-01

    The infrared (IR) imaging missile's dome will be heated when fly at high speed in the atmosphere because of the friction of the air flow blocking. The detector's performance will be decline if the dome surface is heated to a certain temperature. In this paper, we find a right way to evaluate the aerothermal effects in the imaging and information processing algorithm. Which have three steps including the aerothermal radiation calculation, quantization and image reconstruction. Firstly, the aerothermal radiation is calculated by using a combination of both methods of theoretical analysis and experiment data. Secondly, the relationship between aerothermal radiation and IR images background mean gray and noise can be calculated through the analysis of the experiment data. At last, we can rebuild an aerodynamic heating effect of infrared images fusion with target and decoy, which can be used for virtual prototyping platform missile trajectory simulation. It can be found that the above constructed images have good agreements with the actual image according to comparison between the simulation data and experiment data. It is an economic method that can solve the lab aerodynamic heating simulation and modeling problems.

  16. Preliminary Measurements From A New Flat Plate Facility For Aerodynamic Research

    SciTech Connect

    D. M. McEligot; D. W. Nigg; E. J. Walsh; D. Hernon; M.R.D. Davies

    2005-03-01

    This paper details the design and preliminary measurements used in the characterisation of a new flat plate research facility. The facility is designed specifically to aid in the understanding of entropy generation throughout the boundary layer with special attention given to non-equilibrium flows. Hot-wire measurements were obtained downstream of two turbulence generating grids. The turbulence intensity, integral and dissipation length scale ranges measured are 1.6%-7%, 5mm-17mm and 0.7mm-7mm, respectively. These values compared well to existing correlations. The flow downstream of both grids was found to be homogenous and isotropic. Flow visualisation is employed to determine aerodynamic parameters such as flow 2-dimensionality and the effect of the flap angle on preventing separation at the leading edge. The flow was found to be 2-dimensional over all measurement planes. The non-dimensional pressure distribution of a modern turbine blade suction surface is simulated on the flat plate through the use of a variable upper wall. The Reynolds number range based on wetted plate length and inlet velocity is 70,000-4,000,000.

  17. DSMC method on aerodynamic heating and temperature characteristic of hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Bao, Xingdong; Mao, Hongxia; Dong, Yanbing

    2016-10-01

    Aerodynamic heating is one of important factors affecting hypersonic aircraft design. The Direct Simulation Monte Carlo method (DSMC) has evolved years into a powerful numerical technique for the computation of complex, non-equilibrium gas flows. In atmospheric target, non-equilibrium conditions occur at high altitude and in regions of flow fields with small length scales. In this paper, the theoretical basis of the DSMC technique is discussed. In addition, the methods used in DSMC are described for simulation of high temperature, real gas effects and gas-surface interactions. Combined with the solution of heat transfer in material, heat-flux distribution and temperature distribution of the different shape structures was calculated in rarefied conditions.

  18. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  19. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  20. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  1. Investigation of Aerodynamics Scale Effects for a Generic Fighter Configuration in the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Wahls, R. A.; Owens, L. R.; Burner, A. B.; Graves, S. S.; Luckring, J. M.

    2003-01-01

    Two wind tunnel tests of a generic fighter configuration have been completed in the National Transonic Facility. The primary purpose of the tests was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The tests included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: 1) Fuselage / Wing, 2) Fuselage / Wing / Centerline Vertical Tail / Horizontal Tail, and 3) Fuselage / Wing / Trailing-Edge Extension / Twin Vertical Tails. Reynolds number effects on the lateral-directional aerodynamic characteristics are presented herein, along with longitudinal data demonstrating the effects of fixing the boundary layer transition location for low Reynolds number conditions. In addition, an improved model videogrammetry system and results are discussed.

  2. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses.

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1973-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN IV for an IBM 360/91 computer.

  3. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1972-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN 4 for an IBM 360/91 computer.

  4. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  5. A Heated Tube Facility for Rocket Coolant Channel Research

    NASA Technical Reports Server (NTRS)

    Green, James M.; Pease, Gary M.; Meyer, Michael L.

    1995-01-01

    The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

  6. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    NASA Astrophysics Data System (ADS)

    Srinath, S.; Reddy, K. P. J.

    2015-02-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.

  7. Static and dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    This work-in-progress presentation describes an ongoing research activity at the NASA Langley Research Center to develop analytical methods for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. The objectives of this research include application of aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating- namely flutter suppression and ride quality improvement. For this study, a generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons and all-moveable fins to be used for active control purposes. The active control systems would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence.

  8. Non-equilibrium stagnation region aerodynamic heating of hypersonic glide vehicles

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Cibrian, R.

    1974-01-01

    A simple method of predicting aerodynamic heating and corresponding radiation equilibrium surface temperature-time histories for critical locations on space shuttle orbiter-type vehicles is presented. The method is based on a generalization of correlation equations developed earlier by Rosner for predicting the energy transfer and radiation equilibrium temperatures of surfaces with arbitrary catalytic activity and total hemispheric emittance. Recently obtained experimental data for O and N atom recombination probabilities on candidate material surfaces above 1000 K are used to assess nonequilibrium effects for a range of nose radii and a specific space shuttle re-entry trajectory. It is concluded that low catalytic activity will be especially important in locations of large effective nose radii by both increasing oxidation-resistant coating lifetime and reducing energy transfer into the vehicle.

  9. Thermal stress analysis of space shuttle orbiter subjected to reentry aerodynamic heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fields, Roger A.

    1987-01-01

    A structural performance and resizing (SPAR) finite-element computer program and NASA structural analysis (NASTRAN) finite-element computer programs were used in the thermal stress analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. A SPAR structural model was set up for the entire left wing of the orbiter, and NASTRAN structural models were set up for: (1) a wing segment located at midspan of the orbiter left wing, and (2) a fuselage segment located at midfuselage. The thermal stress distributions in the orbiter structure were obtained and the critical high thermal stress regions were identified. It was found that the thermal stresses induced in the orbiter structure during reentry were relatively low. The thermal stress predictions from the whole wing model were considered to be more accurate than those from the wing segment model because the former accounts for temperature and stress effects throughout the entire wing.

  10. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  11. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  12. Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance

    NASA Technical Reports Server (NTRS)

    Allen, Julian H

    1957-01-01

    An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.

  13. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  14. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations

    NASA Astrophysics Data System (ADS)

    Qin, Qihao; Xu, Jinglei; Guo, Shuai

    2017-03-01

    When flying at hypersonic speeds, the spiked blunt body is constantly subjected to severe aerodynamic heating. To illustrate the thermal response of different configurations and the relevant flow field variation, a loosely-coupled fluid-thermal analysis is performed in this paper. The Mesh-based parallel Code Coupling Interface (MpCCI) is adopted to implement the data exchange between the fluid solver and the thermal solver. The results indicate that increases in spike diameter and length will result in a sharp decline of the wall temperature along the spike, and the overall heat flux is remarkably reduced to less than 300 W/cm2 with the aerodome mounted at the spike tip. Moreover, the presence and evolution of small vortices within the recirculation zone are observed and proved to be induced by the stagnation effect of reattachment points on the spike. In addition, the drag coefficient of the configuration with a doubled spike length presents a maximum drop of 4.59% due to the elevated wall temperature. And the growing difference of the drag coefficient is further increased during the accelerating process.

  15. Aerodynamic heating environment definition/thermal protection system selection for the HL-20

    NASA Astrophysics Data System (ADS)

    Wurster, K. E.; Stone, H. W.

    1993-09-01

    Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.

  16. Aerodynamic heating environment definition/thermal protection system selection for the HL-20

    NASA Technical Reports Server (NTRS)

    Wurster, K. E.; Stone, H. W.

    1993-01-01

    Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.

  17. Enhanced capability of the Combustion-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Rock, Kenneth E.; Andrews, Earl H.; Eggers, James M.

    1991-01-01

    The Combustion-Heated Scramjet Test Facility (CHSTF) is described together with its modifications. The expanded simulation capabilities of the facility are documented. Nozzle exit surveys and tunnel calibration information are presented. It is noted that these modifications included a new heat-sink nickel liner heater, a new Mach 4.7 nozzle, and a new 70-ft vacuum sphere exhaust system. It is found that the facility in the air ejector mode of operation performed similarly to that prior to the addition of the vacuum sphere ducting.

  18. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  19. A study of aerodynamic heating distributions on a tip-fin controller installed on a Space Shuttle Orbiter model

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1982-01-01

    The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.

  20. An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1980-01-01

    The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.

  1. Gradient Heating Facility. Experiment cartridges. Description and general specifications

    NASA Technical Reports Server (NTRS)

    Breton, J.

    1982-01-01

    Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.

  2. Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.

    1998-01-01

    Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.

  3. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  4. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  5. Report of the panel on theoretical aerodynamics. [for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.; Carter, J. E.

    1977-01-01

    Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.

  6. Geothermal heating facilities for Frontier Inn, Susanville, California

    NASA Astrophysics Data System (ADS)

    1982-03-01

    A 38 unit motel composed of six major sections (coffee shop, A frame units, apartments, back units, two story units and office) was built over a number of years and exhibits widely varying types of construction. Space heating is provided by primarily electric resistance equipment with some propane use. Domestic hot water is provided primarily by propane with some electric resistance. The coffee shop uses fuel oil for both space and domestic hot water heating. A geothermal district heating system is being installed. Although the motel site is not located in the area of construction activity, it is expected that the pipeline will be extended. The potential of retrofitting the existing heating facilities at the inn to geothermal is studied.

  7. Effects of Cross-Sectional Shape, Solidity, and Distribution of Heat-Transfer Coefficient on the Torsional Stiffness of Thin Wings Subjected to Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Thomson, Robert G.

    1959-01-01

    A study has been made of the effects of varying the shape, solidity, and heat-transfer coefficient of thin wings with regard to their influence on the torsional-stiffness reduction induced by aerodynamic heating. The variations in airfoil shape include blunting, flattening, and combined blunting and flattening of a solid wing of symmetrical double-wedge cross section. Hollow double-wedge wings of constant skin thickness with and without internal webs also are considered. The effects of heat-transfer coefficients appropriate for laminar and turbulent flow are investigated in addition to a step transition along the chord from a lower to a higher constant value of heat-transfer coefficient. From the results given it is concluded that the flattening of a solid double wedge decreases the reduction in torsional stiffness while slight degrees of blunting increase the loss. The influence of chordwise variations in heat-transfer coefficient due to turbulent and laminar boundary-layer flow on the torsional stiffness of solid wings is negligible. The effect of a step transition in heat-transfer coefficient along the chord of a solid wing can, however, become appreciable. The torsional-stiffness reduction of multiweb and hollow double-wedge wings is substantially less than that calculated for a solid wing subjected to the same heating conditions.

  8. Experimental Study of Convective Heating on the Back Face and Payload of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berry, Scott A.; Hollingsworth, Kevin E.; Wright, Sheila A.

    2017-01-01

    A wind tunnel test program has been conducted to define convective heating environments on the back-face of a Hypersonic Inflatable Aerodynamic Decelerator aeroshell. Wind tunnel testing was conducted at Mach 6 and Mach 10 at unit Reynolds numbers from 0.5×10(exp 6)/ft to 3.9×10(exp 6)/ft on a 6.3088 in diameter aeroshell model. Global heating data were obtained through phosphor thermography on the aeroshell back face, as well as on the payload and the aeroshell front face. For all test conditions, laminar flow was produced on the aeroshell front face, while the separated wake shear layer and aeroshell back-face boundary layer were transitional or turbulent. Along the leeward centerline of the aeroshell back face and payload centerbody, heating levels increased with both free stream Reynolds number and angle of attack. The Reynolds number dependency was due to increasing strength of wake turbulence with Reynolds number. The angle-of-attack dependency was due to movement of the wake-vortex reattachment point on the aeroshell back face. The maximum heating levels on the aeroshell back face and payload were approximately 5% to 6%, respectively, of the aeroshell front-face stagnation point. To allow for extrapolation of the ground test data to flight conditions, the back face and payload heating levels were correlated as a function of aeroshell front-face peak momentum thickness Reynolds numbers.

  9. Transonic Semispan Aerodynamic Testing of the Hybrid Wing Body with Over Wing Nacelles in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Hooker, John R.; Wick, Andrew; Plumley, Ryan W.; Zeune, Cale H.; Ol, Michael V.; DeMoss, Joshua A.

    2017-01-01

    A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.

  10. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: Experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  11. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  12. Longitudinal aerodynamic characteristics of a subsonic, energy-efficient transport configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Gloss, Blair B.

    1989-01-01

    The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.

  13. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  14. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    SciTech Connect

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  15. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  16. A longitudinal aerodynamic data repeatability study for a commercial transport model test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.; Adcock, J. B.; Witkowski, D. P.; Wright, F. L.

    1995-01-01

    A high Reynolds number investigation of a commercial transport model was conducted in the National Transonic Facility (NTF) at Langley Research Center. This investigation was part of a cooperative effort to test a 0.03-scale model of a Boeing 767 airplane in the NTF over a Mach number range of 0.70 to 0.86 and a Reynolds number range of 2.38 to 40.0 x 10(exp 6) based on the mean aerodynamic chord. One of several specific objectives of the current investigation was to evaluate the level of data repeatability attainable in the NTF. Data repeatability studies were performed at a Mach number of 0.80 with Reynolds numbers of 2.38, 4.45, and 40.0 x 10(exp 6) and also at a Mach number of 0.70 with a Reynolds number of 40.0 x 10(exp 6). Many test procedures and data corrections are addressed in this report, but the data presented do not include corrections for wall interference, model support interference, or model aeroelastic effects. Application of corrections for these three effects would not affect the results of this study because the corrections are systematic in nature and are more appropriately classified as sources of bias error. The repeatability of the longitudinal stability-axis force and moment data has been accessed. Coefficients of lift, drag, and pitching moment are shown to repeat well within the pretest goals of plus or minus 0.005, plus or minus 0.0001, and plus or minus 0.001, respectively, at a 95-percent confidence level over both short- and near-term periods.

  17. Heat barrier for use in a nuclear reactor facility

    DOEpatents

    Keegan, Charles P.

    1988-01-01

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  18. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    Modifications .............................. 16 2.2.2 Explicit Grid Modifications .............................. 19 2.3 Latent Heat of Fusion ...equations are utilized more accurately The user may now input latent heat of fusion for melting materials and BRLASCC will account for this energy during...contact resistance to the finite-difference conduction equations, (3) improved in-depth modeling by inclusion of latent heat of fusion , (4) increased

  19. High Reynolds number and turbulence effects on aerodynamics and heat transfer in a turbine cascade

    NASA Technical Reports Server (NTRS)

    Yeh, Frederick C.; Hippensteele, Steven A.; Vanfossen, G. James; Poinsatte, Philip E.; Ameri, Ali

    1993-01-01

    Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.5 x 10 exp 6 and a range of turbulence intensities from 1.8 to about 15 percent. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range of Reynolds numbers encountered in the Space Shuttle main engine (SSME) turbopump turbines. Specifically, the study aimed to determine (1) the effect of Reynolds number on heat transfer, (2) the effect of upstream turbulence on heat transfer and pressure distribution, and (3) the relationship between heat transfer at high Reynolds numbers and the current data base. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparison of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.

  20. LOVEL: a low-velocity aerodynamic heating code for flat-plates, wedges, and cones

    SciTech Connect

    Thornton, A.L.

    1981-12-01

    The LOVEL computer program calculates the boundary-layer edge conditions for subsonic and supersonic flow over flat-plate, wedge, and cone geometries for freestream Mach conditions (M/sub infinity/ < 3. Cold-wall heat-transfer calculations use reference temperature correlations based on boundary-layer edge Mach number to compute fluid properties. The first part of this report describes the theory used in the computation of the cold-wall heat-transfer rates; the second part describes in detail the input/output format for the LOVEL computer program. Outputs include freestream conditions, boundary-layer edge conditions, cold-wall heat-transfer rates, plots of heating rates, and punched-card output for use in ablation and in-depth transient heat-conduction computer codes.

  1. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  2. Dry-heat Depyrogenation Ovens for Pharmaceutical Compounding Facilities.

    PubMed

    Weller, Tom; Kragseth, Rolf; Dullinger, Roger; Illum, Henrik; Perry, Alan

    2015-01-01

    Sterilization kills microorganisms in compounded preparations, on the implements used to prepare them, and on the vessels that contain them, but depyrogenation incinerates the remaining debris and renders the treated tool, container, or meditation pyrogen free. Depyrogenation is thus an essential step in the preparation of sterile compounds, and the pharmacist who dispenses those formulations is directly responsible for ensuring their safety, potency, and purity. Dry heat provided by a depyrogenation oven or tunnel is the pharmaceutical gold standard for ensuring the elimination of pyrogens. In this report, we describe several depyrogenation ovens that are compliant with Current Good Manufacturing Practice standards and are appropriate for use in aseptic-compounding facilities that meet the guidelines set forth in United States Pharmacopela Chapter <797>.

  3. Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1978-01-01

    An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.

  4. Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1976-01-01

    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

  5. Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence

    NASA Technical Reports Server (NTRS)

    Ames, Forrest E.

    1994-01-01

    A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower

  6. Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles

    NASA Technical Reports Server (NTRS)

    DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)

    2001-01-01

    Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.

  7. Aerodynamic heating to the gaps and surfaces of simulated reusable-surface-insulation tile arrays in turbulent flow at Mach 6.6

    NASA Technical Reports Server (NTRS)

    Weinstein, I.; Avery, D. E.; Chapman, A. J.

    1975-01-01

    An experimental investigation was made on a simulated reusable-surface-insulation tile array in a turbulent boundary layer to determine aerodynamic-heating distributions representative of those expected on the surface of the shuttle orbiter during earth entry due to the presence of longitudinal and transverse surface gaps. The tests were conducted in an 8-foot high-temperature structures tunnel in a test medium of methane-air combustion products at a nominal Mach number of 6.6 and over a free-stream Reynolds number range from 2,000,000 to 4,900,000 per meter (600,000 to 1,500,000 per foot). The results were used to assess the aerodynamic heating effects produced by parameters that include gap width, boundary-layer displacement thickness, in-line and staggered tile arrangement, and tile protrusion.

  8. Testing, analysis, and code verification of aerodynamics and heat transfer related to turbomachinery

    NASA Technical Reports Server (NTRS)

    King, Paul I.

    1991-01-01

    Discussed here are the writing of a data acquisition code and the installation and testing of new pressure and temperature instrumentation to be used in the testing and evaluation of miniature heat flux sensors. A brief summary of the problem which led to the need for these tests is presented as well as a proposed data acquisition program and the results of investigations of two measurement systems, the Omega OM-900 temperature sensing system and the Scani-Valve Hyscan pressure measurement system.

  9. Development of superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.

  10. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    NASA Technical Reports Server (NTRS)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  11. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  12. Aerodynamic Mixing Downstream from Line Source of Heat in High-intensity Sound Field

    NASA Technical Reports Server (NTRS)

    Mickelson, William R; Baldwin, Lionel V

    1956-01-01

    Theory and measurement showed that the heat wake downstream from a line source is displaced by a transverse standing sound wave in a manner similar to a flag waving in a harmonic mode. With a 147 db, 104 cps standing wave, time-mean temperatures were reduced by an order of magnitude except near the displacement-pattern nodal points. The theory showed that a 161 db, 520 cps standing wave considerably increased the mixing in both the time-mean and instantaneous senses.

  13. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model, volume 1

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.

  14. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  15. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Heat transfer tests of the NASA-MSC space shuttle configuration at the Langley Research Center Mach 8 Variable Density Facility

    NASA Technical Reports Server (NTRS)

    Connor, L. E.; Sparks, V. W.; Bhadsavle, A. G.

    1971-01-01

    The experimental investigations performed on the NASA-Manned Spacecraft Center Space Shuttle orbiter and booster configurations at a Mach 8 variable density facility are presented. The test program was a series of aerothermodynamic wind tunnel tests that were run over a range of angles of attack, yaw angles, and Reynolds numbers. Objectives of the test program were to obtain heat transfer data over the NASA-Manned Spacecraft Center Space Shuttle orbiter, booster, and launch configurations for a range of angles of attack from - 20 to + 30 deg, yaw angles of 0 and + or - 6 deg, and Reynolds numbers of 0.6, 2.0, and 3.7 x one million. The phase-change coating technique was used to obtain heat transfer data. Information received from these tests will be instrumental in performing thermal protection systems studies and vehicle aerodynamic design.

  17. Aerodynamic Heating and Fatigue

    NASA Technical Reports Server (NTRS)

    Kroll, Wilhelmina D.

    1959-01-01

    A review of the physical condition's under which future airplanes will operate has been made and the necessity for considering fatigue in the design has been established. A survey of the literature shows what phases of elevated-temperature fatigue have been investigated. Other studies that would yield data of particular interest to the designer of aircraft structures are indicated.

  18. Measurements of Aerodynamic Heat Transfer and Boundary-Layer Transition on a 10 deg Cone in Free Flight at Supersonic Mach Numbers up to 5.9

    NASA Technical Reports Server (NTRS)

    Rumsey, Charles B.; Lee, Dorothy B.

    1961-01-01

    Measurements of aerodynamic heat transfer have been made at six stations on the 40-inch-long 10 deg. total-angle conical nose of a rocket- propelled model which was flight tested at Mach numbers up to 5.9. are presented for a range of local Mach number just outside the bound- ary layer on the cone from 1.57 to 5.50, and a range of local Reynolds number from 6.6 x 10(exp 6) to 55.2 x 10(exp 6) based on length from the nose tip.

  19. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  20. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  1. Preliminary numerical studies of an experimental facility for heat removal in natural circulation

    NASA Astrophysics Data System (ADS)

    Bertani, C.; De Salve, M.; Caramello, M.; Falcone, N.; Bersano, A.; Panella, B.

    2017-01-01

    In recent years particular attention has been dedicated to passive safety systems for heat removal in nuclear power plants. Passive safety systems can achieve a high level of safety, as they carry out their mission relying solely on physical principles like natural circulation, without any need of operators or energy sources. To qualify these systems and components experimental activities are necessary to study and to understand the governing physical phenomena. The present paper shows the design of an experimental facility to be installed in the laboratories of the Energy Department of Politecnico di Torino. The facility is inspired by the decay heat removal system for ALFRED reactor and comprehends a heated bayonet tube and a heat sink for the heat removal (a heat exchanger inside a pool). The thermal power is in the order of 1 kW. A RELAP5-3D model of the facility has been developed and sensitivity analyses were performed to highlight the geometry of the heat exchanger, the final heat sink, and the mass of water inside the loop. The results of this phase serve to understand the physical limits of the facility, to demonstrate a preliminary feasibility and to optimize the geometry for the desired operating conditions.

  2. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  3. Studies of Plasma Instability Processes Excited by Ground Based High Power HF ("Heating") Facilities

    DTIC Science & Technology

    2001-04-01

    by ground based high power HF (’ heating ’) facilities 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Alexander...Prescribed by ANSI Std. Z39-18 Grant SPC 00-4010 Final Report STUDIES OF PLASMA INSTABILITY PROCESSES EXCITED BY GROUND BASED HIGH POWER HF (" HEATING ...growing field of ionospheric HF heating . The main new results can be summarized as following: 1. Two sets of observations of suprathermal electrons

  4. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.

  5. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  6. Aerodynamic Heating and the Deflection of Drops by an Obstacle in an Air Stream in Relation to Aircraft Icing

    DTIC Science & Technology

    1940-10-01

    this document, please feel free to contact our Directorate of User Services at [703] 767-9066/9068 or DSN 427-9066/9068. Do Not Return This Document...tho lower prossure In order to obtain a comparison of the tost results with thoery , the temperature rises across the boundary layer were computed...not experience the moat severe lcla?; conditions, which occur at atmospheric tem- peratures only a few degrees below froozlns* Aerodynamic

  7. Design of Water-Drip Cooling Facilities for Heat Treatment of Mill Rollers

    NASA Astrophysics Data System (ADS)

    Yudin, Yu. V.; Maisuradze, M. V.; Anufriev, N. P.

    2013-07-01

    Water-drip cooling devices based on centrifugal jet atomizers are studied experimentally. Their main operating characteristics such as the irrigation density, the uniformity of the distribution of irrigation over the cooled surface, the dependence of the heat transfer factor on the surface temperature, etc. are determined. The effect of the design and production parameters of the quenching facilities on their operating characteristics and mode of cooling of large steel articles is considered for mill rollers as an example. The results of the tests are used to design cooling facilities and heat treatment processes for mill rollers with the use of water-drip quenching.

  8. The performance optimization of a gas turbine cogeneration/heat pump facility with thermal storage

    SciTech Connect

    Spakovsky, M.R. von; Curti, V.; Batato, M.

    1995-01-01

    With the push for greater energy conservation, the need for heating and/or power production is being filled by cogeneration facilities. Thus, the search for the best performance at the least cost for such multipurpose plants is made much more difficult by the fact that such facilities must meet differing goals or demands. Such a facility exists at the Ecole Polytechnique Federale de Lausanne (EPFL) and has been studied in order to find the optimum modes of operation as a function of time for variations in both the heating and electrical demands this facility must meet. The results of this study are presented here. The plant itself provides heat and electricity for both the EPFL and the University of Lausanne and is projected to supply electricity to the exterior utility grid provided it can be shown to be economically viable. The plant`s primary components include two gas turbines, a heat recovery system, two heat pumps, a set of heat storage tanks, and both medium and low-temperature district heating networks. In order to find the optimum mode of operation, a mixed-integer linear programming approach was used, which balances the competing costs of operation and minimizes these costs subject to the operational constraints placed on the system. The effects of both the cost of the fuel and the costs of electricity sold and bought on the best performance of the system are evaluated. In addition, the important features of the modeling process are discussed, in particular the heat storage tanks, which complicate the optimization of the series of steady-state models used to model the overall quasi-steady-state behavior of the system.

  9. Shellfish mariculture facility which employs passive solar heating and heat pump systems. Performance and cost analysis study. Final report

    SciTech Connect

    Zoto, G.A.; Krabach, M.H.

    1984-06-01

    This report incorporates operations data such as clam growth rates, clam biomass buildup, water volume, and algal food requirements compiled while developing a year-round production schedule for production of hard clam seed. The facility includes a passive solar hatchery and heat pump. Three major areas which affect development of energy-efficient mariculture are addressed: biological operation parameters, energy requirements, and system economics. (LEW)

  10. Heat stress and inadequate sanitary facilities at workplaces - an occupational health concern for women?

    PubMed

    Venugopal, Vidhya; Rekha, Shanmugam; Manikandan, Krishnamoorthy; Latha, Perumal Kamalakkannan; Vennila, Viswanathan; Ganesan, Nalini; Kumaravel, Perumal; Chinnadurai, Stephen Jeremiah

    2016-01-01

    Background Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. Objective The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. Design A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014-2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT), sweat rate (SwR), and urine specific gravity (USG) were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Results Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C) during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=-2.3879, p=0.0192), inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ (2)=4.03, p=0.0444), and prevalence of genitourinary issues (χ (2)=42.92, p=0.0005×10(-7)) reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. Conclusions The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the need of the hour

  11. Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women?

    PubMed Central

    Venugopal, Vidhya; Rekha, Shanmugam; Manikandan, Krishnamoorthy; Latha, Perumal Kamalakkannan; Vennila, Viswanathan; Ganesan, Nalini; Kumaravel, Perumal; Chinnadurai, Stephen Jeremiah

    2016-01-01

    Background Health concerns unique to women are growing with the large number of women venturing into different trades that expose them to hot working environments and inadequate sanitation facilities, common in many Indian workplaces. Objective The study was carried out to investigate the health implications of exposures to hot work environments and inadequate sanitation facilities at their workplaces for women workers. Design A cross-sectional study was conducted with 312 women workers in three occupational sectors in 2014–2015. Quantitative data on heat exposures and physiological heat strain indicators such as core body temperature (CBT), sweat rate (SwR), and urine specific gravity (USG) were collected. A structured questionnaire captured workers perceptions about health impacts of heat stress and inadequate sanitary facilities at the workplace. Results Workplace heat exposures exceeded the threshold limit value for safe manual work for 71% women (Avg. wet bulb globe temperature=30°C±2.3°C) during the study period. Eighty-seven percent of the 200 women who had inadequate/no toilets at their workplaces reported experiencing genitourinary problems periodically. Above normal CBT, SwR, and USG in about 10% women workers indicated heat strain and moderate dehydration that corroborated well with their perceptions. Observed significant associations between high-heat exposures and SwR (t=−2.3879, p=0.0192), inadequate toilet facilities and self-reported adverse heat-related health symptoms (χ2=4.03, p=0.0444), and prevalence of genitourinary issues (χ2=42.92, p=0.0005×10−7) reemphasize that heat is a risk and lack of sanitation facilities is a major health concern for women workers. Conclusions The preliminary evidence suggests that health of women workers is at risk due to occupational heat exposures and inadequate sanitation facilities at many Indian workplaces. Intervention through strong labor policies with gender sensitivity is the need of the hour to

  12. Geothermal greenhouse heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    NASA Astrophysics Data System (ADS)

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the nursing home, the present site was selected primarily on the basis of its geothermal resource. This resource currently provides space and domestic hot water heating for the nursing home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the nursing home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the nursing home.

  13. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Drying, blending, packaging, and heat treatment rooms and facilities. 590.548 Section 590.548 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG...

  14. Numerical Study of a Three Dimensional Interaction between two bow Shock Waves and the Aerodynamic Heating on a Wedge Shaped Nose Cone

    NASA Astrophysics Data System (ADS)

    Wu, N.; Wang, J. H.; Shen, L.

    2017-03-01

    This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.

  15. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 2: Heat transfer data tabulation. 15 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.

  16. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  17. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  18. A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at High Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Allen, H. Julian; Eggers, A. J., Jr.

    1953-01-01

    A simplified analysis is made of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds. It is found that, in general, the gravity force is negligible compared to the aerodynamic drag force and, hence, that the trajectory is essentially a straight line. A constant drag coefficient and an exponential variation of density with altitude are assumed and generalized curves for the variation of missile speed and deceleration with altitude are obtained. A curious finding is that the maximum deceleration is independent of physical characteristics of a missile (e.g., mass, size, and drag coefficient) and is determined only by entry speed and flight-path angle, provided this deceleration occurs before impact. This provision is satisfied by missiles presently of more usual interest.

  19. Predicted thermal response of a cryogenic fuel tank exposed to simulated aerodynamic heating profiles with different cryogens and fill levels

    NASA Technical Reports Server (NTRS)

    Hanna, Gregory J.; Stephens, Craig A.

    1991-01-01

    A two dimensional finite difference thermal model was developed to predict the effects of heating profile, fill level, and cryogen type prior to experimental testing the Generic Research Cryogenic Tank (GRCT). These numerical predictions will assist in defining test scenarios, sensor locations, and venting requirements for the GRCT experimental tests. Boiloff rates, tank-wall and fluid temperatures, and wall heat fluxes were determined for 20 computational test cases. The test cases spanned three discrete fill levels and three heating profiles for hydrogen and nitrogen.

  20. PERF - A new approach to the experimental study of radiative aerodynamic heating and radiative blockage by ablation products

    NASA Technical Reports Server (NTRS)

    Walberg, G.

    1974-01-01

    The present work describes a facility designed to validate the various aspects of radiative flow field theory, including the absorption of shock layer radiation by ablation products. The facility is capable of producing radiation with a spectrum similar to that of an entry vehicle shock layer and is designed to allow measurements at vacuum ultraviolet wavelengths where the most significant absorption by ablation products is predicted to occur. The design concept of the facility is presented along with results of theoretical analyses carried out to assess its research potential. Experimental data obtained during tests that simulated earth and Venusian entry and in which simulated ablation products were injected into the stagnation region flow field are discussed.

  1. Measurement and calculation of end wall heat transfer and aerodynamics on a nozzle guide vane in annular cascade

    NASA Astrophysics Data System (ADS)

    Harvey, N. W.; Jones, T. V.

    1990-06-01

    Detailed measurements of surface static pressures and heat transfer rates on the aerofoil and hub end wall of an annular nozzle guide vane (in the absence of a downstream rotor) are presented. Heat transfer rates have been measured using thin film gages in an annular cascade in the Pyestock Isentropic Light Piston Casccade. Test Mach numbers, Reynolds numbers and cascade geometry are fully representative of engine conditions. The results of 3D calculations of surface Mach number and 2D calculations of aerofoil heat transfer are presented and compared with the measurements. A new method of calculating end wall heat transfer using the axisymmetric analogue for three-dimensional boundary layers is described in detail. The method uses a 3D Euler solver to calculate the inviscid surface streamlines along which heat transfer coefficients are calculated. The metric coefficient which describes the lateral convergence or divergence of the streamlines is used to include three-dimensional effects in the calculation. The calculated heat transfer rates compare well with the measured values. Reference is made to surface flow visualization in the interpretation of the results.

  2. Three-Dimensional Unsteady Simulation of Aerodynamics and Heat Transfer in a Modern High Pressure Turbine Stage

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali

    2009-01-01

    Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  3. Transonic turbine blade cascade testing facility

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Camperchioli, William P.; Lopez, Isaac

    1992-01-01

    NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.

  4. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. A unique high heat flux facility for testing hypersonic engine components

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Gladden, Herbert J.

    1990-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding high thermal loads expected during hypersonic flights. Consequently, there is a need for experimental facilities capable of providing a high heat flux environment for testing compound concepts and verifying analyses. A hydrogen/oxygen rocket engine was developed to provide a high enthalpy/high heat flux environment for component evaluation. This Hot Gas Facility is capable of providing heat fluxes ranging from 200 (on flat surfaces) up to 8000 Btu per sq ft per sec (at a leading edge stagnation point). Gas temperatures up to 5500 R can be attained as well as Reynolds numbers up to 360,000 per ft. Test articles such as cowl leading edges, transpiration-cooled seals, fuel injectors, and cooled panel concepts can be evaluated with gaseous hydrogen as coolant. This facility and its configuration and test capabilities are discussed. Results from flow characterization experiments are also shown and their implications considered.

  6. Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report

    SciTech Connect

    Schoenmackers, R.

    1988-11-01

    This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

  7. Aerodynamic control in compressible flow using microwave driven discharges

    NASA Astrophysics Data System (ADS)

    McAndrew, Brendan

    A new aerodynamic control scheme based on heating of the free stream flow is developed. The design, construction, and operation of a unique small scale wind tunnel to perform experiments involving this control scheme is detailed. Free stream heating is achieved by means of microwave driven discharges, and the resulting flow perturbations are used to alter the pressure distribution around a model in the flow. The experimental facility is also designed to allow the injection of an electron beam into the free stream for control of the discharge. Appropriate models for the fluid flow and discharge physics are developed, and comparisons of calculations based on those models are made with experimental results. The calculations have also been used to explore trends in parameters beyond the range possible in the experiments. The results of this work have been (1) the development of an operating facility capable of supporting free stream heat addition experiments in supersonic flow, (2) the development of a compatible instrumented model designed to make lift and drag measurements in a low pressure, high electrical noise environment, (3) a theoretical model to predict the change in breakdown threshold in the presence of an electron beam or other source of ionization, and (4) successful demonstration of aerodynamic control using free stream heat addition.

  8. Measurement of frost characteristics on heat exchanger fins. Part 1: Test facility and instrumentation

    SciTech Connect

    Thomas, L.; Chen, H.; Besant, R.W.

    1999-07-01

    A special test facility was developed to characterize frost growing on heat exchanger fins where the cold surfaces and the air supply conditions were similar to those experienced in freezers, i.e., cold surface temperatures ranging from {minus}35 C to {minus}40 C, air supply temperatures from {minus}10 C to {minus}20 C, and 80% to 100% relative humidity (RH). This test facility included a test section with removable fins to measure the frost height and mass concentration. Frost height on heat exchanger fins was measured using a new automated laser scanning system to measure the height of frost and its distribution on selected fins. The increase in air pressure loss resulting from frost growth on the fins was measured directly in the test loop. The frost mass accumulation distribution was measured for each test using special pre-etched fins that could be easily subdivided and weighed. The total heat rate was measured using a heat flux meter. These frost-measuring instruments were calibrated and the uncertainty of each is stated.

  9. Chaff Aerodynamics

    DTIC Science & Technology

    1975-11-01

    further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for

  10. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    SciTech Connect

    Not Available

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

  11. Effect of dynamic and thermal prehistory on aerodynamic characteristics and heat transfer behind a sudden expansion in a round tube

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Bogatko, T. V.

    2017-03-01

    The results of a numerical study of the influence of the thicknesses of dynamic and thermal boundary layers on turbulent separation and heat transfer in a tube with sudden expansion are presented. The first part of this work studies the influence of the thickness of the dynamic boundary layer, which was varied by changing the length of the stabilization area within the maximal extent possible: from zero to half of the tube diameter. In the second part of the study, the flow before separation was hydrodynamically stabilized and the thermal layer before the expansion could simultaneously change its thickness from 0 to D1/2. The Reynolds number was varied in the range of {Re}_{{{{D}}1 }} = 6.7 \\cdot 103 {{to}} 1.33 \\cdot 105, and the degree of tube expansion remained constant at ER = ( D 2/ D 1)2 = 1.78. A significant effect of the thickness of the separated boundary layer on both dynamic and thermal characteristics of the flow is shown. In particular, it was found out that with an increase in the thickness of the boundary layer the recirculation zone increases and the maximal Nusselt number decreases. It was determined that the growth of the heat layer thickness does not affect the hydrodynamic characteristics of the flow after separation but does lead to a reduction of heat transfer intensity in the separation area and removal of the coordinates of maximal heat transfer from the point of tube expansion. The generalizing dependence for the maximal Nusselt number at various thermal layer thicknesses is given. Comparison with experimental data confirmed the main trends in the behavior of heat and mass transfer processes in separated flows behind a step with different thermal prehistories.

  12. Teflon probing for the flow characterization of arc-heated wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Gulli, Stefano; Ground, Cody; Crisanti, Matthew; Maddalena, Luca

    2014-02-01

    The experimental flow characterization of the arc-heated wind tunnel of the University of Texas at Arlington is investigated in this work using ablative Teflon probes in combination with total pressure measurements. A parallel analytical work, focused on the dimensional analysis of the ablation process, has been conducted with the purpose of improving existing semi-empirical correlations for the heat blockage due to the mass injection inside the boundary layer. A control volume analysis at the receding surface of the specimens is used to calculate the wall heat transfer for a non-ablating probe by including the blockage effect. The new correlations, obtained for the convective blockage, show an improvement of the correlation coefficient of 110 % with respect to those available in literature, once a new blowing parameter containing the stagnation pressure is introduced. A correlation developed by NASA during the Round-Robin program, which relates the Teflon mass loss rate to the total pressure and cold-wall heat flux measured experimentally, is also used to predict the wall heat transfer referred to the ablation temperature of Teflon. For both approaches, a simplified stagnation point convective heat transfer equation allows the average stagnation enthalpy to be calculated. Several locations downstream of the nozzle exit have been surveyed, and selected points of the facility's performance map have been used for the experimental campaign. The results show that both approaches provide similar results in terms of stagnation heat flux and enthalpy prediction with uncertainties comparable to those provided by standard intrusive heat flux probes ( δ q max < 25 %). The analysis of the Teflon's ablated surface does not reveal significant flow non-uniformities, and a 1.14 heat flux enhancement factor due to the shock-shock interaction is detectable at x = 3.5 in. from the nozzle exit plane. The results show the use of ablative probes for the flow characterization of arc

  13. High Enthalpy Studies of Capsule Heating in an Expansion Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Holden, Michael

    2012-01-01

    Measurements were made on an Orion heat shield model to demonstrate the capability of the new LENS-XX expansion tunnel facility to make high quality measurements of heat transfer distributions at flow velocities from 3 km/s (h(sub 0) = 5 MJ/kg) to 8.4 km/s (h(sub 0) = 36 MJ/kg). Thirty-nine heat transfer gauges, including both thin-film and thermocouple instruments, as well as four pressure gauges, and high-speed Schlieren were used to assess the aerothermal environment on the capsule heat shield. Only results from laminar boundary layer runs are reported. A major finding of this test series is that the high enthalpy, low-density flows displayed surface heating behavior that is observed to be consistent with some finite-rate recombination process occurring on the surface of the model. It is too early to speculate on the nature of the mechanism, but the response of the gages on the surface seems generally repeatable and consistent for a range of conditions. This result is an important milestone in developing and proving a capability to make measurements in a ground test environment and extrapolate them to flight for conditions with extreme non-equilibrium effects. Additionally, no significant, isolated stagnation point augmentation ("bump") was observed in the tests in this facility. Cases at higher Reynolds number seemed to show the greatest amount of overall increase in heating on the windward side of the model, which may in part be due to small-scale particulate.

  14. Development and performance of a large-scale, transonic turbine blade cascade facility for aerodynamic studies of merging coolant-mainstream flows

    NASA Astrophysics Data System (ADS)

    Al-Sayeh, Amjad Isaaf

    1998-11-01

    A new, large scale, linear cascade facility of turbine blades has been developed for the experimental exploration of the aerodynamic aspects of film cooling technology. Primary interest is in the mixing of the ejected coolant with the mainstream, at both subsonic and supersonic mainstream Mach numbers at the cascade exit. In order to achieve a spatial resolution adequate for the exploration of details on the scale of the coolant ejection holes, the cascade dimensions were maximized, within the limitations of the air supply system. The cascade contains four blades (three passages) with 14.05 cm axial chord, 17.56 cm span and a design total turning angle of 130.6 degrees. Exit Mach numbers range from 0.6 to 1.5 and Reynolds numbers from 0.5 to 1.5 million. The air supply system capacity allows run times up to five minutes at maximum flow rates. A coolant supply system has been built to deliver mixtures of SFsb6 and air to simulate coolant/mainstream density ratios up to 2. The cascade contains several novel features. A full-perimeter bleed slot upstream of the blades is used to remove the approach boundary layer from all four walls, to improve the degree of two-dimensionality. The exit flow is bounded by two adjustable tailboards that are hinged at the trailing edges and actuated to set the exit flow direction according to the imposed pressure ratio. The boards are perforated and subjected to mass removal near the blades, to minimize the undesirable reflection of shocks and expansion waves. A probe actuator is incorporated that allows continuous positioning of probes in the exhaust stream, in both the streamwise and pitchwise directions. Diagnostic methods include extensive surface pressure taps on the approach and exhaust ducts and on the blade surfaces. The large size permitted as many as 19 taps on the trailing edge itself. Shadowgraph and schlieren are available. A three-prong wake probe has been constructed to simultaneously measure total and static pressures

  15. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    EPA Pesticide Factsheets

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  16. Measurements of Aerodynamic Heat Transfer and Boundary-Layer Transition on a 15 deg. Cone in Free Flight at Supersonic Mach Numbers up to 5.2

    NASA Technical Reports Server (NTRS)

    Rumsey, Charles B.; Lee, Dorothy B.

    1961-01-01

    Measurements of aerodynamic heat transfer have been made at several stations on the 15 deg total-angle conical nose of a rocket-propelled model in free flight at Mach numbers up to 5.2. Data are presented for a range of local Mach number just outside the boundary layer from 1.40 to 4.65 and a range of local Reynolds number from 3.8 x 10(exp 6) to 46.5 x 10(exp 6), based on length from the nose tip to a measurement station. Laminar, transitional, and turbulent heat-transfer coefficients were measured. The laminar data were in agreement with laminar theory for cones, and the turbulent data agreed well with turbulent theory for cones using Reynolds number based on length from the nose tip. At a nearly constant ratio of wall to local static temperature of 1.2 the Reynolds number of transition increased from 14 x 10(exp 6) to 30 x 10(exp 6) as Mach number increased from 1.4 to 2.9 and then decreased to 17 x 10(exp 6) as Mach number increased to 3.7. At Mach numbers near 3.5, transition Reynolds numbers appeared to be independent of skin temperature at skin temperatures very cold with respect to adiabatic wall temperature. The transition Reynolds number was 17.7 x 10(exp 6) at a condition of Mach number and ratio of wall to local static temperature near that for which three-dimensional disturbance theory has been evaluated and has predicted laminar boundary-layer stability to very high Reynolds numbers (approximately 10(exp 12)).

  17. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  18. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat

  19. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  20. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    NASA Technical Reports Server (NTRS)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  1. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    NASA Astrophysics Data System (ADS)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5⿿10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  2. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  3. New methods to detect particle velocity and mass flux in arc-heated ablation/erosion facilities

    NASA Technical Reports Server (NTRS)

    Brayton, D. B.; Bomar, B. W.; Seibel, B. L.; Elrod, P. D.

    1980-01-01

    Arc-heated flow facilities with injected particles are used to simulate the erosive and ablative/erosive environments encountered by spacecraft re-entry through fog, clouds, thermo-nuclear explosions, etc. Two newly developed particle diagnostic techniques used to calibrate these facilities are discussed. One technique measures particle velocity and is based on the detection of thermal radiation and/or chemiluminescence from the hot seed particles in a model ablation/erosion facility. The second technique measures a local particle rate, which is proportional to local particle mass flux, in a dust erosion facility by photodetecting and counting the interruptions of a focused laser beam by individual particles.

  4. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  5. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  6. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting.

  7. Recent Enhancements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W.; Underwood, P.

    2003-01-01

    The National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the restoration of reliability and improved performance of the heat exchanger systems resulting in the expansion of the NTF air operations envelope. Additionally, results are presented from a continued effort to reduce model dynamics through the use of a new stiffer balance and sting

  8. Aerodynamic and Related Hydrodynamic Studies Using Water Facilities, Symposium of the Fluid Dynamics Panel Held in Monterey, California on 20-23 October 1986.

    DTIC Science & Technology

    1987-06-01

    U AD199 35 cŗMi~( P sL I -a - 132122 11111 L25 gift ALo AD-A199 357 AGARD-CR-4 13 AGARD CONFERENCE PROCEEDINGS No.413 Aerodynamic and Related...Ihydrodynamique des navires ct ses relations avec I’arodynamique. - *•r t.- ’ 2 e U-. color Distrution/ p ,.,,5: , DTXUC rop.oluct-’ A Ir911b1l1it Coede...Nov. 1982, Anno l-N.3. 6. Hagen, G. H. L., "On the Motion of Water in Narrow Cylindrical Tubes" (In German), Poggendorfs Annalen, Vol. 46, 1839, p . 423

  9. Active Control of Aerodynamic Noise Sources

    NASA Technical Reports Server (NTRS)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  10. An evaluation of analog and numerical techniques for unsteady heat transfer measurement with thin-film gauges in transient facilities

    NASA Technical Reports Server (NTRS)

    George, William K.; Rae, William J.; Woodward, Scott H.

    1991-01-01

    The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.

  11. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  12. Design of a Polar-Drive, Alpha-Heating Platform for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Marozas, J. A.; Delettrez, J. A.; McKenty, P. W.; Skupsky, S.; Cao, D.; Chenhall, J.; Moses, G.

    2014-10-01

    Polar drive (PD) allows one to conduct direct-drive-ignition experiments at the National Ignition Facility (NIF) while the facility is configured for x-ray drive. A PD-ignition design has previously been developed. A new, robust PD design has been developed with the goal of achieving alpha-heating and deuterium-tritium yields in excess of 1016 neutrons at the NIF with the final optics and direct-drive cryogenic target positioner intended for subsequent PD-ignition experiments. This design uses a higher fuel adiabat, which precludes scaling to ignition but results in greater stability and experimental control, minimizing fuel-shell mix during the deceleration phase of the implosion. The new design also incorporates the effects of cross-beam energy transfer and nonlocal electron transport. This platform will make it possible to test radiation-hydrodynamic codes in preparation for PD-ignition experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  14. Diagnostic development in precise opacity measurement of radiatively heated Al plasma on Shenguang II laser facility

    SciTech Connect

    Zhao Yang; Yang Jiamin; Zhang Jiyan; Liu Jinsong; Yuan Xiao; Jin Fengtao

    2009-04-15

    Simultaneous measurements of the self-emission spectrum, the backlighting source spectrum, and the transmission spectrum in one shot, which reduce the experimental uncertainties from shot-to-shot fluctuation, are essential for precise opacity experiments. In order to achieve precise absorption spectrum of Al plasmas, a special half sample sandwich target was designed and short backlighter was used to provide time- and space-resolving diagnostics on the Shenguang II high power laser facility. In the measurement, a cylindrical cavity with CH foam baffles was used to provide a clean x-ray radiation environment for sample heating. The x-ray source spectrum, the transmission spectrum, and the self-emission spectrum of the soft x-ray heated Al sample were recorded in one shot with a penta-erythritol tetrakis (hydroxymethy) methane C(CH{sub 2}OH){sub 4} (PET) crystal spectrometer by using the point-projection method. Experimental results have been compared with the calculation results of a detailed level accounting opacity code.

  15. Evaluation of the effectiveness of ceiling fans for reducing heating requirements in Army facilities. Final report

    SciTech Connect

    Augustine, L.J.

    1989-01-01

    Many claims have been made for ceiling fans as energy-saving devices. Fans destratify the air in a building; that is, they reduce the temperature differences between floor and ceiling. Depending on outside conditions, this can reduce heat loss. To quantify the effectiveness of fans during the heating season, USA-CERL, funded through a Facilities Engineering Applications Program (formerly FTAT) project, collected vertical thermal stratification measurements in Army buildings that had been equipped with ceiling fans. The buildings were located at Fort Carson, CO and Fort McClellan, AL. By analyzing how much the key building temperatures (ceiling, floor, and mean indoor) changed when ceiling fans were used, the USA-CERL engineers estimated the energy savings associated with fans. The results showed that, in general, the buildings with the greatest initial stratification showed the greatest savings. In addition, the degree of thermal stratification was determined to be a linear function of outside air temperature. However, more research is needed to determine the relationship between stratification and building characteristics. Thus, the degree of stratification in a building and possible factors affecting it should be evaluated carefully before installing ceiling fans.

  16. Initial high-power testing of the ATF (Advanced Toroidal Facility) ECH (electron cyclotron heating) system

    SciTech Connect

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO/sub 2/ mode absorbers, two 90/sup 0/ miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE/sub 02/ mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE/sub 01/, 82.6% TE/sub 02/, 2.5% TE/sub 03/, and 1.9% TE/sub 04/. 4 refs.

  17. Cold-air annular-cascade investigation of aerodynamic performance of cooled turbine vanes. 1: Facility description and base (solid) vane performance

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Mclallin, K. L.

    1974-01-01

    The aerodynamic performance of a solid vane was experimentally determined in a full-annular cascade, where three-dimensional effects could be obtained. This vane was of the same size and profile as the cooled vanes to be subsequently tested. The vanes were tested over a pressure ratio range that corresponded to mean-radius ideal aftermixed critical velocity ratios of 0.71 to 0.89. Overall vane aftermixed efficiencies were obtained over this range of critical velocity ratios and compared with results from a four-vane annular-sector cascade. The variation in vane aftermixed conditions and vane aftermixed efficiency with radius were also obtained and compared with design values. Vane surface static-pressure distributions were measured and compared with theory and with the results obtained in the four-vane cascade.

  18. Cold-air annular-cascade investigation of aerodynamic performance of core-engine-cooled turbine vanes. 1: Solid-vane performance and facility description

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Mclallin, K. L.

    1975-01-01

    The aerodynamic performance of a solid (uncooled) version of a core engine cooled stator vane was experimentally determined in a full-annular cascade, where three-dimensional effects could be obtained. The solid vane, which serves as a basis for comparison with subsequent cooled tests, was tested over a range of aftermixed critical velocity ratios of 0.57 to 0.90. Overall vane aftermixed efficiencies were obtained over this critical velocity ratio range and compared with results from a two-dimensional cascade. The variation in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained and compared with design values. Vane surface static-pressure distributions were also measured and compared with theoretical results.

  19. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  20. Aerodynamics at NASA JSC

    NASA Technical Reports Server (NTRS)

    Vicker, Darby

    2006-01-01

    A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.

  1. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  2. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  3. ELF/VLF emissions generated in the ionosphere by heating facilities - a new tool for ionospheric and magnetospheric research

    SciTech Connect

    Kotik, D.S.

    1994-12-01

    A brief summary of ELF/VLF generation experiments using the SURA heating facility is presented. The possibilities of applications of the measured ionospherically generated low frequency signal parameters for diagnosing the physical phenomena in the ionosphere and the magnetosphere are discussed.

  4. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  5. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  6. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  7. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  8. Stand alone computer system to aid the development of Mirror Fusion Test Facility rf heating systems

    SciTech Connect

    Thomas, R.A.

    1983-12-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase.

  9. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10), freestream ratio of specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow, was observed along the entire windward centerline up to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned front laminar to transitional turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  10. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  11. Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF

    NASA Technical Reports Server (NTRS)

    Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.

    2014-01-01

    The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the

  12. Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986

    SciTech Connect

    Not Available

    1986-01-01

    This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

  13. Results of tests of the SRB aft skirt heat shield curtain in the MSFC Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1982-01-01

    During the first two space shuttle flights the aft skirt heat shield curtain performed well during ascent but failed during reentry. This exposed the inside of the skirt and its subsystems to reentry heating. The resulting exposure damaged various expensive systems items and therefore a curtain reassessment is required. As a part of this reassessment, tests were conducted in the MSFC Hot Gas Facility (HGF). The purposes of these tests were to determine if the curtain would fail in a manner similar to that in flight and to demonstrate that meaningful tests of the curtain can be conducted in the HGF.

  14. Particulate generation during disruption simulation on the SIRENS high heat flux facility

    NASA Astrophysics Data System (ADS)

    Sharpe, John Phillip

    2000-12-01

    Successful implementation of advanced electrical power generation technology into the global marketplace requires at least two fundamental ideals: cost effectiveness and the guarantee of public safety. One general area of concern for fusion devices is the production of particulate, often referred to as dust or aerosol, from material exposed to high energy density fusion plasma. This dust may be radiologically activated and/or chemically toxic, and, if released to the environment, could become a hazard to the public. The goal of this investigation was to provide insight into the production and transport of particulate generated during the event of extreme heat loads to surfaces directly exposed to high energy density plasma. A step towards achieving this goal was an experiment campaign carried out with the S&barbelow;urface I&barbelow;nteṞaction E&barbelow;xperiment at Ṉorth Carolina S&barbelow;tate (SIRENS), a facility used for high heat flux experiments. These experiments involved exposing various materials, including copper, stainless steel 316, tungsten, aluminum, graphite (carbon), and mixtures of carbon and metals, to the high energy density plasma of the SIRENS source section. Comparison of simulation results with experiment observations provides an understanding of the physical mechanisms forming the particulate and indicates if mechanisms other than those in the model were present in the experiment. Key results from this comparison were: the predicted amount of mass mobilized from the source section was generally much lower than that measured, the calculated and measured particle count median diameters were similar at various locations in the expansion chamber, and the measured standard deviations were larger than those predicted by the model. These results implicate that other mechanisms (e.g., mobilization of melted material) in addition to ablation were responsible for mass removal in the source section, a large number of the measured particles were

  15. Topical report: Natural convection shutdown heat removal test facility (NSTF) evaluation for generating additional reactor cavity cooling system (RCCS) data.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division

    2005-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong

  16. An analysis of water-to-air heat pump systems for use in government facilities

    NASA Astrophysics Data System (ADS)

    Fretzs, R. G.

    1980-09-01

    Energy consumption is an important issue for government managers. Examined in this thesis is one source of potential energy savings: a method of heating and cooling buildings. Water-to-air heat pumps are analyzed and cost comparisons to conventional heating/cooling systems (gas, fuel oil, electric resistance, and air-to-air heat pumps) are made. The theory of heat pump technology is presented to show how water source heat pumps achieve improved efficiencies over conventional systems. Sources of and disposal of water to support the systems are discussed. Cost comparisons are presented based on computer simulations and fuel cost graphs. Twenty-one percent of U.S. energy consumption is used to heat and cool buildings. Water-to-air heat pumps provide a 30-50 percent savings over other systems. Therefore, a potential 10 percent savings in total energy consumption exists through the use of water source heat pumps.

  17. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  18. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  19. Aerodynamic characteristics of a large-scale semispan model with a swept wing and an augmented jet flap with hypermixing nozzles. [Ames 40- by 80-Foot Wind Tunnel and Static Test Facility

    NASA Technical Reports Server (NTRS)

    Aiken, T. N.; Falarski, M. D.; Koenin, D. G.

    1979-01-01

    The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.

  20. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  1. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    EPA Pesticide Factsheets

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  2. Aerodynamic pressure and heating-rate distributions in tile gaps around chine regions with pressure gradients at a Mach number of 6.6

    NASA Technical Reports Server (NTRS)

    Hunt, L. Roane; Notestine, Kristopher K.

    1990-01-01

    Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.

  3. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  4. The spectral forms of the stimulated electromagnetic emission near the 3-rd electron gyroharmonic at the SPEAR heating facility

    NASA Astrophysics Data System (ADS)

    Yurik, Roman; Tereshchenko, Evgeny; Baddeley, Lisa

    The results of the stimulated electromagnetic emission (SEE) observations of the final heating campaign with the SPEAR (Space Plasma Exploration by Active Radar) heating facility are reported. The presented observations were carried out in November 2013 on the Spitsbergen archipelago. The SEE observations were undertaken using the Polar Geophysical Institute (PGI) HF-interferometer, situated about 30~km from SPEAR at the geophysical observatory in Barensburg. The HF interferometer was modified such that it was possible to measure the polarization parameters of the received signal. The observatory also contains additional diagnostic equipment, such as magnetometers and receiving station of the RTU PGI KSC RAS, which were also utilized during the campaign. As a result of the observations the spectral forms of steady-state stimulated electromagnetic emission were obtained when the SPEAR heating facility operate in the frequency range from 4.14 MHz to 4.26 MHz (about 0.1 off the electron gyro frequency) under the day-time conditions. Lisa Baddeley’s research is supported by the Research Council of Norway/CoE under contract 223252/F50. SPEAR is supported by the Norwegian Research Council (grant 191628). The authors acknowledge Russian Foundation for Basic Research (Grant No. 13-05-12005-OFI-M) for financial support and participants of the heating campaign.

  5. Twenty-five years of aerodynamic research with IR imaging: A survey

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.

    1991-01-01

    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure.

  6. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  7. Aerodynamic performance of centrifugal compressors

    SciTech Connect

    Sayyed, S.

    1981-12-01

    Saving money with an efficient pipeline system design depends on accurately predicting compressor performance and ensuring that it meets the manufacturer's guaranteed levels. When shop testing with the actual gas is impractical, an aerodynamic test can ascertain compressor efficiency, but the accuracy and consistency of data acquisition in such tests is critical. Low test-pressure levels necessitate accounting for the effects of Reynolds number and heat transfer. Moreover, the compressor user and manufacturer must agree on the magnitude of the corrections to be applied to the test data.

  8. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO2, with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJheat per tCO2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  9. A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux for PFCs

    SciTech Connect

    Boyd, Ronald D. Sr.; Cofie, Penrose; Li Qingyuan; Ekhlassi, Ali A

    2002-01-15

    In the development of plasma-facing components for fusion reactors and high-heat-flux heat sinks (or components) for electronic applications, the components are usually subjected to a peripherally nonuniform heat flux. Even if the applied heat flux is uniform in the axial direction (which is unlikely), both intuition and recent investigations have clearly shown that both the local heat flux and the eventual critical heat flux (CHF) in this three-dimensional (3-D) case will differ significantly from similar quantities found in the voluminous body of data for uniformly heated flow channels. Although this latter case has been used in the past as an estimate for the former case, more study has become necessary to examine the 3-D temperature and heat flux distributions and related CHF. Work thus far has shown that the nonuniform peripheral heat flux condition enhances CHF in some cases.To avoid the excess costs associated with using electron or ion beams to produce the nonuniform heat flux, a new facility was developed that will allow 3-D conjugate heat transfer measurements and two-dimensional, local subcooled flow boiling heat flux and related CHF measurements.The configurations under study for this work consist of (a) a nonuniformly heated cylinder-like test section with a circular coolant channel bored through the center and (b) a monoblock that is a square cross-section parallelepiped with a circular drilled flow channel along the channel centerline. The theoretical or ideal cylinder-like test section would be a circular cylinder with half (-90 to 90 deg) of its outside boundary subjected to a uniform heat flux and the remaining half insulated. For the monoblock, a uniform heat flux is applied to one of the outside surfaces, and the remaining surfaces are insulated. The outside diameter of the cylinder-like test section is 30.0 mm, and its length is 200.0 mm. The monoblock square is 30.0 mm long. The inside diameter of the flow channel for both types of test

  10. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  11. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  12. EPA Honors 2015 Energy Star Combined Heat and Power Winners / Facilities in Maine, N.J., Texas recognized for emission reductions

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) is recognizing three facilities with the Energy Star Combined Heat and Power (CHP) Award for superior performance of their CHP systems. High-efficiency CHP technology reduces emissions of c

  13. Specialized computer architectures for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  14. Iced-airfoil aerodynamics

    NASA Astrophysics Data System (ADS)

    Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.

    2005-07-01

    Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.

  15. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  16. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  17. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  18. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  19. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  20. Trim angle measurements in free-flight facilities

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.; Venkatapathy, Ethiraj

    1991-01-01

    The aerodynamic cofficients and trim angle for an aerobrake at Mach 9.2 and 11.8 were found using a combination of experiment and computation. Free-flight tests were performed at NASA Ames Research Center's Hypervelocity Free-Flight Aerodynamic Facility, and the forebody pressure distribution was calculated using a three-dimensional Navier-Stokes code with an effective specific heat ratio. Using the computed drag, lift, and moments to prescribe the number of terms in the aerodynamic coefficient expansions and to specify the values of the higher order terms, the experimental aerodynamic coefficients and trim angle were found using a six-degree-of-freedom, weighted, least-squares analysis. The experimental and computed aerodynamic coefficients and trim angles are in good agreement. The trim angle obtained from the free-flight tests, 14.7 deg, differs from the design trim angle, 17 deg, and from the Langley wind tunnel results, 12 deg in air and 17 deg in CF4. These differences are attributable to real-gas effects.

  1. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  2. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  3. Numerical modeling of the aerodynamics, heat exchange, and combustion of a polydisperse ensemble of coke-ash particles in ascending axisymmetric two-phase flow

    SciTech Connect

    B.B. Rokhman

    2009-07-15

    A two-dimensional stationary model of motion, heat and mass exchange, and chemical reaction of polydisperse coke and ash particles in ascending gas-suspension flow has been constructed with allowance for the turbulent and pseudo turbulent mechanisms of transfer in the dispersed phase. The system of equations that describes motion and heat transfer in the solid phase has been closed at the level of the equations for the second moments of velocity and temperature pulsations, whereas the momentum equations of the carrying medium have been closed using the equation for turbulent gas energy, which allows for the influence of the particles and heterogeneous reactions.

  4. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  5. Scalability of the natural convection shutdown heat removal test facility (NSTF) data to VHTR/NGNP RCCS designs.

    SciTech Connect

    Vilim, R .B.; Feldman, E. E.; Nuclear Engineering Division

    2007-08-07

    Passive safety in the Very High Temperature Reactor (VHTR) is strongly dependent on the thermal performance of the Reactor Cavity Cooling System (RCCS). Scaled experiments performed in the Natural Shutdown Test Facility (NSTF) are to provide data for assessing and/or improving computer code models for RCCS phenomena. Design studies and safety analyses that are to support licensing of the VHTR will rely on these models to achieve a high degree of certainty in predicted design heat removal rate. To guide in the selection and development of an appropriate set of experiments a scaling analysis has been performed for the air-cooled RCCS option. The goals were to (1) determine the phenomena that dominate the behavior of the RCCS, (2) determine the general conditions that must be met so that these phenomena and their relative importance are preserved in the experiments, (3) identify constraints specific to the NSTF that potentially might prevent exact similitude, and (4) then to indicate how the experiments can be scaled to prevent distortions in the phenomena of interest. The phenomena identified as important to RCCS operation were also the subject of a recent PIRT study. That work and the present work collectively indicate that the main phenomena influencing RCCS heat removal capability are (1) radiation heat transport from the vessel to the air ducts, (2) the integral effects of momentum and heat transfer in the air duct, (3) buoyancy at the wall inside the air duct giving rise to mixed convection, and (4) multidimensional effects inside the air duct caused by non-uniform circumferential heat flux and non-circular geometry.

  6. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  7. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  8. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  9. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  10. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  11. Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the Sura heating facility

    NASA Astrophysics Data System (ADS)

    Andreeva, E. S.; Frolov, V. L.; Kunitsyn, V. E.; Kryukovskii, A. S.; Lukin, D. S.; Nazarenko, M. O.; Padokhin, A. M.

    2016-06-01

    We present the results of the radiotomographic imaging of the artificial ionospheric disturbances obtained in the recent experiments on the modification of the midlatitude ionosphere by powerful HF radiowaves carried out at the Sura heater. Radio transmissions from low orbital PARUS beacon satellites recorded at the specially installed network of three receiving sites were used for the remote sensing of the heated ionosphere. We discuss the possibility to generate acoustic-gravity waves (AGWs) with special regimes of ionospheric heating (with the square wave modulation of the effective radiated power at the frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere at ionospheric heights during several hours) and present radiotomographic images of the spatial structure of the disturbed volume of the ionosphere corresponding to the directivity pattern of the heater, as well as the spatial structure of the wave-like disturbances, which are possibly heating-induced AGWs, diverging from the heated area of the ionosphere. We also studied the HF propagation of the pumping wave through the reconstructed disturbed ionosphere above the Sura heater, showing the presence of heater-created, field-aligned irregularities that effectively serve as "artificial radio windows."

  12. Geothermal potential for heating and cooling facilities, San Bernardino Valley College, San Bernardino, California

    SciTech Connect

    Gemeinhardt, M.A.; Tharaldson, L.C.

    1981-07-01

    The potential for converting to geothermal heating at the campus of San Bernardino Valley College is considered. Also considered is the possibility of using well water for water cooled condenser cooling of air conditioning equipment. To provide water supply a production well, water distribution system and an injection well would be installed for each system.

  13. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    SciTech Connect

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  14. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various

  15. A Wind-Tunnel Investigation to Determine the Effect of Various Head Designs on the Aerodynamic Characteristics in Pitch of the Army Ordnance Corps T205 3.5-Inch Heat Rocket

    NASA Technical Reports Server (NTRS)

    Morrison, William D., Jr.; Kuhn, Richard E.

    1952-01-01

    The aerodynamic characteristics in pitch of the Army Ordnance Corps T205 3.5-inch HEAT rocket with various head designs and one fin modification have been determined at velocities of 500, 700 and 900 feet per second in the Langley high-speed 7- by 10-foot tunnel. The results presented are those of the full-scale model. Comparison of results obtained at 500 feet per second shows, in general, that for changes on the forward portion of the head the missile configurations having the greatest stability - most rearward center-of-loads location - were those having the highest drag. However, very limited comparisons indicate that the shape of the rear position of the head may be an important factor in reducing the drag and increasing the restoring moments. Generally, large increases in drag were noted for the various head designs with an increase in Mach number from 0.62 to 0.82. Pitching-moment-curve slopes increased with Mach number on all models except those having reasonably well-faired forward sections. These models showed a decrease in stability with increases in Mach number.

  16. Geothermal-heating facilities for Carson Elementary School and Wind River Middle School

    SciTech Connect

    Not Available

    1982-02-01

    Carson Elementary School and Wind River Middle School are located in Carson, Washington, adjacent to the Wind River. Both schools are operated by the Stevenson-Carson School District. Carson Elementary, comprised of 49,000 square feet, was constructed in several phases beginning in 1951. The construction is variable, but is characterized by large expanses of single glass and uninsulated masonry areas. An oil fired steam boiler supplies a variety of terminal equipment. Wind River Middle School was built in 1972 and, as a result, exhibits much greater insulation levels. The 38,000 square foot structure is heated entirely by an electric resistance terminal reheat system. Carson Hot Springs Resort, located approximately one half mile from the schools, exhibits temperatures of 124/sup 0/F. In addition, geological work is in progress to better define the local geothermal resource. The feasibility of geothermal use at the school for space heating purposes is examined.

  17. Heat treatment of nuclear reactor pump part in integrated furnace facility

    SciTech Connect

    Not Available

    1983-08-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators.

  18. A Field Investigation and Facility Review of Eight Modular Starved-Air Heat Recovery Incinerator Systems.

    DTIC Science & Technology

    1984-10-01

    automatic feeder and York-Shipley waste heat boiler. Design Capacity: 1,000 lb/hr (each incinerator) Fuel Characteristics: Main feedstock : s...Manufacturing wastes from automobile components--plastic, fiber, trim, cardboard, and wood waste (hardboard, particle board, and plywood). Secondary feedstock ...Actual Capacity: 1,400 lb/hr Fuel Characteristics: Main feedstock * Industrial plant waste from the Glass Works, including wooden pallets, cardboard

  19. Compendium of NASA Langley reports on hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

    1987-01-01

    Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

  20. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  1. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  2. Local Aerodynamic Heat Transfer and Boundary-Layer Transition on Roughened Sphere-Ellipsoid Bodies at Mach Number 3.0

    NASA Technical Reports Server (NTRS)

    Deveikis, William D.; Walker, Robert W.

    1961-01-01

    A wind-tunnel investigation was made to determine heat-transfer distributions on three steel sphere-ellipsoid bodies with surface roughnesses of 5, 100, and 200 microinches. Tests were conducted in the Langley 9- by 6-foot thermal structures tunnel at a Mach number of 3.0, free-stream Reynolds numbers (based on model spherical diameter) of 4.25 x 10(exp 6) and 2.76 x l0(exp 6), and at a stagnation temperature of 650 F. Pressure distributions were obtained also on a fourth model. The results indicated that the combination of surface roughness and boundary-layer cooling tended to promote early transition and nullify the advantages attributable to the blunt shape of the model for reducing local temperatures. Good correlation between experimental heating rates and those calculated from laminar theory was achieved up to the start of boundary-layer transition. The correlation also was good with the values predicted by turbulent theory for surface stations downstream from the 45 deg. station.

  3. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  4. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  5. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis

    2005-02-01

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called "HPR-1".

  6. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  7. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Volume 3: Heat transfer data tabulation 65 percent axial spacing

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Blair, M. F.; Joslyn, H. D.

    1986-01-01

    This is Volume 3 - Heat Transfer Data Tabulation (65 percent Axial Spacing) of a combined experimental and analytical program which was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approximately 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators.

  8. 1998 Calibration of the Mach 4.7 and Mach 6 Arc-Heated Scramjet Test Facility Nozzles

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Irby, Richard G.; Auslender, Aaron H.; Rock, Kenneth E.

    2004-01-01

    A calibration of the Arc-Heated Scramjet Test Facility (AHSTF) Mach 4.7 and Mach 6 nozzles was performed in 1998. For each nozzle, three different typical facility operating test points were selected for calibration. Each survey consisted of measurements, at 340 separate locations across the 11 inch square nozzle exit plane, of pitot pressure, static pressure, and total temperature. Measurement density was higher (4/inch) in the boundary layer near the nozzle wall than in the core nozzle flow (1/inch). The results generated for each of these calibration surveys were contour plots at the nozzle exit plane of the measured and calculated flow properties which completely defined the thermodynamic state of the nozzle exit flow. An area integration of the mass flux at the nozzle exit for each survey was compared to the AHSTF mass flow meter results to provide an indication of the overall quality of the calibration performed. The percent difference between the integrated nozzle exit mass flow and the flow meter ranged from 0.0 to 1.3 percent for the six surveys. Finally, a comparison of this 1998 calibration was made with the 1986 calibration. Differences of less than 10 percent were found within the nozzle core flow while in the boundary layer differences on the order of 20 percent were quite common.

  9. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  10. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  11. Numerical computation of aerodynamics and heat transfer in a turbine cascade and a turn-around duct using advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1993-01-01

    The objective of this research is to develop turbulence models to predict the flow and heat transfer fields dominated by the curvature effect such as those encountered in turbine cascades and turn-around ducts. A Navier-Stokes code has been developed using an explicit Runge-Kutta method with a two layer k-epsilon/ARSM (Algebraic Reynolds Stress Model), Chien's Low Reynolds Number (LRN) k-epsilon model and Coakley's LRN q-omega model. The near wall pressure strain correlation term was included in the ARSM. The formulation is applied to Favre-averaged N-S equations and no thin-layer approximations are made in either the mean flow or turbulence transport equations. Anisotropic scaling of artificial dissipation terms was used. Locally variable timestep was also used to improve convergence. Detailed comparisons were made between computations and data measured in a turbine cascade by Arts et al. at Von Karman Institute. The surface pressure distributions and wake profiles were predicted well by all the models. The blade heat transfer is predicted well by k-epsilon/ARSM model, as well as the k-epsilon model. It's found that the onset of boundary layer transition on both surfaces is highly dependent upon the level of local freestream turbulence intensity, which is strongly influenced by the streamline curvature. Detailed computation of the flow in the turn around duct has been carried out and validated against the data by Monson as well as Sandborn. The computed results at various streamwise locations both on the concave and convex sides are compared with flow and turbulence data including the separation zone on the inner well. The k-epsilon/ARSM model yielded relatively better results than the two-equation turbulence models. A detailed assessment of the turbulence models has been made with regard to their applicability to curved flows.

  12. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  13. Incremental Aerodynamic Coefficient Database for the USA2

    NASA Technical Reports Server (NTRS)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  14. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  15. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  16. Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1988-01-01

    In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

  17. Aerodynamic design of the National Rotor Testbed.

    SciTech Connect

    Kelley, Christopher Lee

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  18. DEVELOPMENT OF A MULTI-LOOP FLOW AND HEAT TRANSFER FACILITY FOR ADVANCED NUCLEAR REACTOR THERMAL HYDRAULIC AND HYBRID ENERGY SYSTEM STUDIES

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-09-01

    A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ~450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code ve

  19. Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method

    NASA Astrophysics Data System (ADS)

    Raza, Waseem; Khan, Azam; Alam, Umair; Muneer, M.; Bahnemann, D.

    2016-03-01

    In this paper, a new Bi2O3 based photocatalyst doped with varying concentration of Nb and Mn metal ion was fabricated by conventional heat treatment method and their photocatalytic activity was investigated. The prepared material was characterized by X-ray diffraction (XRD), UV-Visible Spectroscopy, Fourier transform infrared (FTIR) and Scanning Electron Microscopic (SEM) techniques. The XRD analysis of synthesized photocatalyst was found to exhibit characteristic peaks of well crystallized monoclinic α-Bi2O3. The XRD pattern of pure and metal doped Bi2O3 were found to more or less similar. The crystallite size of doped materials were smaller than pure Bi2O3 and size decreases with increasing dopant concentration from 0.5 to 2.0% for Nb & 1.0-3.0% for Mn and remains almost constant at higher dopant concentration. The SEM analysis clearly indicate the formation of nanorod like morphologies. The UV-Vis absorption spectra of synthesized nanorods revealed that the absorption edge shift towards longer wavelength on doping with Nb and Mn metal ions which is beneficial for absorbing more visible light in the solar spectrum. The prepared doped Bi2O3 nanorod showed the excellent photocatalytic activity for degradation of selected organic pollutants, such as Methylene Blue (MB) and Rodaamime B (RhB) under visible light source. The higher activity of doped Bi2O3 nanorod may be attributed to absorption of more visible light leading to generation of higher photogenerated electron hole pairs and efficient separation of photoinduced charge carrier to inhibit the recombination rate.

  20. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  1. Advanced acoustic and aerodynamic 20-inch fan program

    NASA Technical Reports Server (NTRS)

    Erwin, J. R.; Heldenbrand, R. W.

    1977-01-01

    The aerodynamic analyses, mechanical analyses, and stress tests of a 20-inch diameter advanced fan design intended for acoustic investigation by NASA-LeRC are discussed. A high tip speed transonic fan rotor was scaled directly to 20.0 inches (0.508 m) from a 28.74-inch (0.73-m) diameter rotor. A new stator was designed and fabricated for the fan and incorporated with a test rig housing and adapter hardware for installation in the NASA-LeRC Jet Noise Facility for acoustic evaluation. The stator was designed to allow mounting at three axial locations, and the fan, housing, and adapters are reversible so that either the inlet or the exhaust ends of the assembly face the open room of the test facility. Excellent aerodynamic performance is predicted, and a low noise signature is expected since the unique aerodynamic design features of this fan are directly conductive to producing minimum sound power.

  2. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  3. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  4. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2012-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition

  5. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  6. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  7. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  8. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  9. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  10. Aerodynamic Leidenfrost effect

    NASA Astrophysics Data System (ADS)

    Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David

    2016-12-01

    When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.

  11. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  12. A Quantitative Study of the Viability of Greywater Heat Recovery (GWHR): GWHR Implemented in Barracks and Dining Facilities

    DTIC Science & Technology

    2011-06-01

    exchanger segment; (reference 2) ................................................................. 29 B3 Fluting heat exchanger; (reference 2... Fluting heat exchanger; (reference 2). Table B2. Pros and cons of integrated heat exchangers. Advantages Disadvantages Constant water flow

  13. Inertial Confinement Fusion alpha-heating signatures in prompt gamma-ray measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Church, Jennifer; Herrmann, Hans; Cerjan, Charlie; Sayre, Daniel; Carpenter, Arthur; Liebman, Judy; Stoeffl, Wolfgang; Kim, Yongho

    2015-11-01

    Prompt gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) supply vital diagnostic information, such as the peak burn time, burn width, and total neutron yield, from prompt DT-fusion gamma-ray emission during high convergence implosion experiments. Additionally, the stagnated cold shell density distribution may be inferred from the time-integrated, calibrated 12C (n,n' γ) signal, thus providing estimates of remaining ablator carbon areal density. Furthermore, simulations suggest that alpha heating signatures might be accessible using more highly resolved temporal gamma-ray emission. Correlation of these signatures with time-dependent neutron emission will constrain the implosion dynamics immediately prior to thermonuclear burn. Measurement of these gamma-ray signatures will be discussed along with updates on our work toward inferred total DT yield and 12C areal density. This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344, LLNL-ABS-670282.

  14. Computational and theoretical investigation of Mars's atmospheric impact on the descent module "Exomars-2018" under aerodynamic deceleration

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2016-12-01

    Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.

  15. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  16. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  17. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  18. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  19. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  20. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  1. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  2. Prediction of Aerodynamic Loading

    DTIC Science & Technology

    1977-02-01

    predictable even with knowledge of the motion and the quasi- steady aerodynamic coefficients . It sems likely that the unsteady boundary-layer...build up, which are explainable 41 terams of the stability coefficients . More research is needed on the former type of undemanded manoeuvre. In some...drag 81, 82... B5 body sections I. kg lift St strdke 1M kg m pitching moment N kg normal force T kg axial force a 0 angle of attack Coefficie its: CD, cD

  3. Use of Sandia's Central Receiver Test Facility as a high-intensity heat source for testing missile nose-cone (Radome) radar systems

    SciTech Connect

    Porter, D.R.

    1981-09-01

    A series of tests at Sandia's Central Receiver Test Facility in support of the US Navy's SM-2 Blk 2 Radome Improvement Program is described. The CRTF was the source of high-intensity solar radiation for testing onboard radar-tracking systems under heating conditions intended to simulate those that occur in supersonic flight. Also discussed are the hardware used and the software developed at the CRTF.

  4. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  5. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  6. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  7. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  8. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  9. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  10. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  11. Aerodynamic results of a separation effects test conducted in the AEDC 40 by 40 inch tunnel A facility on the Rockwell International launch configuration 3 (model-OTS) integrated vehicle (IA13), volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II

    1975-01-01

    Experimental aerodynamic investigations were conducted from July 5 through July 17, 1973, on a 0.01 scale model. The AEDC captive trajectory system was utilized in conjunction with the tunnel primary sector to obtain grid-type data for external tank abort from the orbiter, and for nominal separation of one solid rocket booster from the orbiter-tank combination. Booster separation was investigated with and without separation motors plume simulation. The plumes were generated by eight M sub j = 2.15 nozzles using a 1500 psia cold air supply. Free stream data were obtained for all models (orbiter, tank, orbiter-tank, and right-hand booster) to provide baselines for evaluation of proximity effects.

  12. Aerodynamic study of H-II Orbiting Plane, HOPE

    NASA Astrophysics Data System (ADS)

    Akimoto, Toshio; Ito, Tetsuichi; Suzuki, Norio; Hozumi, Kokuichi; Sakakibara, Seizou; Kawamoto, Iwao

    NASDA's HOPE will be launched by an H-II vehicle and inserted into 250-km altitude orbit; after four days in orbit either conducting experiments or Space Station rendezvous and docking missions, HOPE will deorbit and automatically land on a runway. An account is given of the results of a study of the aerodynamics of the HOPE vehicle which was conducted in cooperation with Japan's NAL. Wind tunnel test results show that the double-delta planform must have long wingtip fins in order to possess positive static directional stability at low speed, as well as the requisite viscous-interaction parameter effects at hypersonic speeds and better aerodynamic heating distribution.

  13. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  14. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  15. Payload vehicle aerodynamic reentry analysis

    NASA Astrophysics Data System (ADS)

    Tong, Donald

    An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

  16. CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS. Topical report.

    SciTech Connect

    Tzanos, C. P.; Nuclear Engineering Division

    2007-05-16

    The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The USDOE has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convective Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS.

  17. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  18. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the building systems, Federal agencies must— (a) Operate heating and cooling systems in the most... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What heating and cooling... and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  19. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the building systems, Federal agencies must— (a) Operate heating and cooling systems in the most... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What heating and cooling... and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  20. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the building systems, Federal agencies must— (a) Operate heating and cooling systems in the most... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What heating and cooling... and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  1. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the building systems, Federal agencies must— (a) Operate heating and cooling systems in the most... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What heating and cooling... and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  2. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the building systems, Federal agencies must— (a) Operate heating and cooling systems in the most... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What heating and cooling... and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  3. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  4. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  5. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  6. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  7. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  8. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  9. Heat deposition rate measurements using a graphite quasi-adiabatic calorimeter and thermoluminescent dosimeters in a fusion environment of the LOTUS facility

    SciTech Connect

    Joneja, O.P.; Rosselet, M.; Luethi, A.; Ligou, J.; Anand, R.P.; Buchillier, T.

    1995-11-01

    Heat deposition rate measurements are made by an extremely sensitive quasi-adiabatic graphite calorimeter and thermoluminescent dosimeters (TLDs) in the fusion environment of the LOTUS facility. The reproducibility of these measurements is found to be better than 1% for a dose rate more than 60 cGy/min and better than 3.8% for dose rates in the range of 6 to 60 cGy/min. The heating rates are found to vary linearly with neutron source strength. The calculation to experiment (C/E) for the bare calorimeter is found to be 1.05, whereas inside the graphite block, C/E varies from 1.11 to 1.32. These measurements are analyzed by the MCNP Monte Carlo neutron and photon transport code using the BMCCS2, PHOTXS2, and EL2 cross-section libraries. The influence of wall-returned neutrons and gammas is found to be negligible. A detailed data treatment is done with the TLD outputs to arrive at the gamma heating component at different locations in the graphite by employing the Burlin theory. The gamma production is found to be well represented in the calculations. On the other hand, measured and calculated net nuclear heating in the graphite differ considerably. A downward revision of the neutron kerma factor would be desirable. 23 refs., 8 figs., 4 tabs.

  10. Heat transfer results and operational characteristics of the NASA Lewis Research Center Hot Section Cascade Test Facility

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

    1985-01-01

    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5x10(6) to 2.5x10(6) based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage filmcooled vanes for the initial series of research tests.

  11. Heat transfer results and operational characteristics of the NASA Lewis Research Center hot section cascade test facility

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

    1985-01-01

    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5 x 1 million to 2.5 x 1 million based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage film cooled vanes for the initial series of research tests.

  12. Retrofit experience on two major WTE facilities in the UK using heat recovery economizers and dry scrubbing

    SciTech Connect

    Heap, B.M.; Finnis, P.J.

    1997-12-31

    The paper examines the decision making philosophy in choosing dry scrubbing technology for the flue gas cleaning process for the 4 plants upgraded, particularly for the two largest facilities at Coventry and Edmonton, London. At both these facilities the additional energy recovery possible from the adoption of totally dry scrubbing technology in place of the recognized BATNEEC of spray tower with lime slurry scrubbing, became a major decision influencing factor. The extent of work involved in bringing an existing facility into conformity with the new emissions to air legislation is detailed, and clearly demonstrates that this work is not simply an end of pipe solution, but entails the integration of several different modern technologies. Difficulties encountered during 2 years installation on a continuously operating waste disposal facility, without disruption to waste processing, energy recovery, production or revenue are highlighted, and the importance of a true project partnership between the client and the supplier. Emissions testing results are documented, clearly demonstrating that totally dry scrubbing technology for the treatment of incineration flue gases is more than capable of attaining the necessary maximum emission limits and maximizing the potential energy recovery from the waste in a manner which corresponds to declared Governmental policy. The lessons learned in the UK can be directly applied to the North American retrofit market

  13. Aerodynamics of advanced axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  14. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  15. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    SciTech Connect

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  16. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  17. Arcjets for Aerodynamic and Materials Testing: Flow Characterization

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Fletcher, Doug; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Potential use of Arcjets as a hypersonic ground test facility for aerodynamic testing of future space vehicles is examined. Since high fidelity simulation of flight freestream conditions is a basic requirement for any useful ground test facility, it is imperative that the Arcjet flow field be thoroughly investigated in a systematic and orderly manner. At the same time we must know how and to what extent an inaccurate simulation of the flight freestream will effect the test data. The paper after discussing these two topics, describes various experimental techniques for Arcjet flow characterization. Results from an on-going Arcjet flow characterization program are also presented.

  18. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  19. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  20. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    SciTech Connect

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply to Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item. 'Best

  1. Subsonic Aerodynamic Research Laboratory

    DTIC Science & Technology

    1992-08-01

    A. Annual Technology Management Review Records 7 Appendix B. Facility Sketches 31 Appendix C. SARL Contracts 38 Appendix D. SARL Proposal 44 Appendix...section to protect workers from laser light when the LV system was being used. F. On site Contractors- Technology /Scientific Services Inc. (T/SSI): Gary...Glen Williams). 3. The following Appendices A-G Appendix A Annual Technology Managment Review Records 7 . TECHNOLOGY MANAGEMENT REVIEW RECORD I. RI

  2. Summary of channel catfish and rainbow trout production at the Gallatin Waste Heat Aquaculture Facility, 1979-1980

    SciTech Connect

    Collins, C.M.; Schweinforth, R.L.; Burton, G.L.

    1984-02-01

    These studies have indicated that channel catfish and rainbow trout can be intensively cultured in concrete raceways using waste heat effluent water from the Gallatin Steam Plant. Optimum production was attained, especially with channel catfish, when desirable water temperatures and proper environmental conditions occurred. High density culture is possible during the winter and early spring months.

  3. Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS.

    SciTech Connect

    Tzanos, C. P.

    2007-05-16

    The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel

  4. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  5. Aerodynamic levitation : an approach to microgravity.

    SciTech Connect

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  6. Special opportunities in helicopter aerodynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1983-01-01

    Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.

  7. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  8. Plasma heating and generation of energetic ions with novel three-ion ICRF scenarios on Alcator C-Mod and JET tokamak facilities

    NASA Astrophysics Data System (ADS)

    Kazakov, Yevgen

    2016-10-01

    This talk will report the first experimental results of novel three-ion ICRF scenarios (two or more majority ion species and one minority) for plasma heating and generating energetic ions in fusion facilities. The key feature of these scenarios is strong absorption of RF power possible at lower concentrations of minority ions than in two-ion plasmas. Effective plasma heating by injecting a small amount of 3He ions into H-D plasma mixtures with nH /ne 70 % has been successfully demonstrated in Alcator C-Mod and JET tokamaks. In C-Mod, efficient plasma heating was observed for 3He concentrations from 0.4-2%. During the discharges, a strong increase in Alfvén eigenmode activity was found to coincide with the addition of 3He to the H-D plasmas. Even lower 3He concentrations ( 0.2 %) were utilized in recent JET experiments. The potential of the D-(3He) -H scenario for plasma heating and generating MeV-range ions in JET plasmas was confirmed by a set of independent measurements, including stabilization of sawteeth, characteristic γ-ray emission, fast-ion loss detector. Furthermore, toroidal Alfvén eigenmodes with a range of toroidal mode numbers n were detected, which is another indication for the presence of significant population of high-energy 3He ions in a plasma. The discussed mechanism of resonant wave-particle interaction opens up various unexplored opportunities for ICRF system, including new scenarios for plasma heating. Three-ion ICRF scenarios are also relevant for the experimental programme of ITER. The possibility of using intrinsic 9Be impurities as the minority (instead of 3He) was suggested for heating bulk ions in D-T plasmas of JET and ITER, as well as heating trace amounts of 3He and 4He ions in H majority plasmas of ITER. The latest results and simulation comparisons will be presented. On behalf of Alcator C-Mod Team (MIT-PSFC, US) and JET Contributors (Culham, UK). Work supported by the US DOE (C-Mod DE-FC02-99ER54512 and SciDAC DE-FC02-01ER54648

  9. Fellowships in Hypersonic Aerodynamics.

    DTIC Science & Technology

    1988-02-01

    the radial (r) direction, n is the grid and y is the ratio of specific heats, point index in the axial direction, and j is the grid point index in the... radial direction. To A2. General 4xisymmetric Flow Field obtain a stable solution, the downstream marching * is limited by the CFL criterion For an...In this technique, the flow C. Streamline Tracing field of interest is discretized into a network of grid points in the axial (z) and radial (r

  10. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  11. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    NASA Astrophysics Data System (ADS)

    Sun, Quan; Cheng, Bangqin; Li, Yinghong; Cui, Wei; Jin, Di; Li, Jun

    2013-11-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.

  12. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  13. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  14. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  15. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  16. Feedback Control for Aerodynamics (Preprint)

    DTIC Science & Technology

    2006-09-01

    AFRL-VA-WP-TP-2006-348 FEEDBACK CONTROL FOR AERODYNAMICS (PREPRINT) R. Chris Camphouse, Seddik M. Djouadi, and James H. Myatt...CONSTRUCTION FOR THE DESIGN OF BOUNDARY FEEDBACK CONTROLS FROM REDUCED ORDER MODELS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 0601102F 5d. PROJECT NUMBER...

  17. A simulator investigation of the influence of engine response characteristics on the approach and landing for an externally blown flap aircraft. Part 2: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Robinson, G. H.

    1973-01-01

    An analysis of the influence of engine response characteristics on the approach and landing of an externally blown flap aircraft was conducted using flight simulator facilities. The configuration of the aerodynamic model is described. The aerodynamic characteristics as a function of angle of attack, thrust coefficient, and flap deflection are presented in tabular form and as graphs.

  18. The 8.4 MW Modulator/Regulator Power Systems for the Electron Cyclotron Heating Facility Upgrade at DIII-D

    SciTech Connect

    S.G.E. Pronko; D.S. Baggest

    1999-12-01

    Over the next three years the DIII-D National Fusion Facility at General Atomics will upgrade its electron cyclotron heating (ECH) capability from the present 3 MW at 110 GHz to 10 MW of injected microwave power. There will be ten gyrotron tubes supplied by five 8.4 MW modulator/regulator (M/R) power systems. The project has gained considerable leverage from the acquisition of surplus hardware from the MFTF program that was conducted at LLNL in the early 1980s. One of these systems had been refurbished and converted for use as an ECH power supply earlier. The experience gained and the lessons learned from operating that system have proved valuable in guiding the engineering of the new systems. This paper provides an overview of the power system design and a report on the present status of the project.

  19. Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at the High Frequency Active Auroral Research Program heating facility

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny N.; Shindin, Alexey V.; Grach, Savely M.; Milikh, Gennady M.; Mishin, Evgeny V.; Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Michael J.

    2016-07-01

    We report on the features of the F region plasma perturbations during HF heating experiments at the High Frequency Active Auroral Research Program facility in March-April 2011 and May-June 2014. The diagnostics included multifrequency Doppler (phase) sounding (MDS) and stimulated electromagnetic emission (SEE). The results concern modification of the electron density profile near the reflection and upper hybrid heights, as well as correlation of the density modification with temporal behavior of narrow continuum, downshifted maximum, and broad continuum SEE spectral features. We reveal also a new SEE spectral feature which appears in the SEE spectra for the pump frequency f0 near the third and fourth electron gyroharmonics. It is located in the SEE spectrum well below the pump wave frequency, f - f0 -(40-220) kHz, occupies a wide frequency range till 100-150 kHz, and is termed the broad downshifted emission.

  20. An experimental investigation of clocking effects on turbine aerodynamics using a modern 3-D one and one-half stage high pressure turbine for code verification and flow model development

    NASA Astrophysics Data System (ADS)

    Haldeman, Charles Waldo, IV

    2003-10-01

    This research uses a modern 1 and 1/2 stage high-pressure (HP) turbine operating at the proper design corrected speed, pressure ratio, and gas to metal temperature ratio to generate a detailed data set containing aerodynamic, heat-transfer and aero-performance information. The data was generated using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF), which is a short-duration shock tunnel facility. The research program utilizes an uncooled turbine stage for which all three airfoils are heavily instrumented at multiple spans and on the HPV and LPV endwalls and HPB platform and tips. Heat-flux and pressure data are obtained using the traditional shock-tube and blowdown facility operational modes. Detailed examination show that the aerodynamic (pressure) data obtained in the blowdown mode is the same as obtained in the shock-tube mode when the corrected conditions are matched. Various experimental conditions and configurations were performed, including LPV clocking positions, off-design corrected speed conditions, pressure ratio changes, and Reynolds number changes. The main research for this dissertation is concentrated on the LPV clocking experiments, where the LPV was clocked relative to the HPV at several different passage locations and at different Reynolds numbers. Various methods were used to evaluate the effect of clocking on both the aeroperformance (efficiency) and aerodynamics (pressure loading) on the LPV, including time-resolved measurements, time-averaged measurements and stage performance measurements. A general improvement in overall efficiency of approximately 2% is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average pressures are highest on the LPV, and the time-resolved data both in the time domain and frequency domain show the least amount of variation. The gain in aeroperformance is obtained by integrating over the entire airfoil as the three

  1. Nuclear Heating Measurement in Critical Facilities and Experimental Validation of Code and Libraries - An Application to Prompt and Delayed γ Nuclear Data Needs

    NASA Astrophysics Data System (ADS)

    Blaise, P.; Di Salvo, J.; Vaglio-Gaudard, C.; Bernard, D.; Amharrak, H.; Lemaire, M.; Ravaux, S.

    Energy from prompt and delayed gammas in actual and future nuclear systems are more and more taken into account into design studies as they play an important role in the assessment of performance and safety concerns. Their incomplete knowledge (both prompt and delayed) require to take conservative design margins on local dimensioning parameters, thus reducing the awaited performances or flexibility of these facilities, with costs that are far from being negligible. The local energy photon deposit must be accurately known for Generation-III (Gen-III), Generation-IV (Gen-IV) or the new MTR Jules Horowitz Reactor (JHR). The last 2 decades has seen the realization, in Zero Power Reactors (ZPR), of several programs partially devoted to γ-heating measurements. Experimental programs were and are still conducted in different Cadarache facilities such as MASURCA (for SFR), and later in MINERVE and EOLE (for JHR and Gen-III reactors). The adequacy of the γ-heating calculation was compared to experimental data using thermo-luminescent (TL) detectors and γ-fission chambers. Inconsistencies in C/E and associated uncertainties led to improvement of both libraries and experimental techniques. For these last one, characterization for TL and optically stimulated (OSL) detectors (calibration, individual response), and Monte Carlo calculation of charge repartition in those detectors and their environment were carefully checked and optimized. This step enabled to reduce the associated experimental uncertainty by a factor of 2 (8% at 2σ). Nevertheless, interpretation of integral experiment with updated calculation schemes and improved experimental techniques still tend to prove that there are some nuclei for which there are missing or erroneous data, mainly in structural and absorbing materials. New integral and differential measurements are needed to guide new evaluation efforts, which could benefit from consolidated theoretical and experimental modeling techniques.

  2. Rudolf Hermann, wind tunnels and aerodynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  3. Aerodynamic performance of an annular classical airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  4. Nonlinear sensitivity and uncertainty analysis in support of the blowdown heat transfer program. [Test 177 at Thermal-Hydraulic Test Facility

    SciTech Connect

    Ronen, Y.; Bjerke, M.A.; Cacuci, D.G.; Barhen, J.

    1980-11-01

    A nonlinear uncertainty analysis methodology based on the use of first and second order sensitivity coefficients is presented. As a practical demonstration, an uncertainty analysis of several responses of interest is performed for Test 177, which is part of a series of tests conducted at the Thermal-Hydraulic Test Facility (THTF) of the ORNL Engineering Technology Division Pressurized Water Reactor-Blowdown Heat Transfer (PWR-BDHT) program. These space- and time-dependent responses are: mass flow rate, temperature, pressure, density, enthalpy, and water qualtiy - in several volumetric regions of the experimental facility. The analysis shows that, over parts of the transient, the responses behave as linear functions of the input parameters; in these cases, their standard deviations are of the same order of magnitude as those of the input parameters. Otherwise, the responses exhibit nonlinearities and their standard deviations are considerably larger. The analysis also shows that the degree of nonlinearity of the responses is highly dependent on their volumetric locations.

  5. Ion cyclotron resonance heating (ICRH) start-up antenna for the mirror fusion test facility (MFTF-B)

    SciTech Connect

    McCarville, T.M.; Romesser, T.E.

    1985-10-02

    The purpose of the ICRH start-up antenna on MFTF-B is to heat the plasma and control the ion distribution as the density increases during start-up. The antenna, consisting of two center fed half turn loops phased 180/sup 0/ apart, has been designed for 1 MW of input power, with a goal of coupling 400 kW into the ions. To vary the heating frequency relative to the local ion cyclotron frequency, the antenna is tunable over a range from 7.5 to 12.5 MHz. The thermal requirements common to low duty cycle ICRH antennas are especially severe for the MFTF-B antenna. The stress requirements are also unique, deriving from the possibility of seismic activity or JxB forces if the magnets unexpectedly quench. Considerable attention has been paid to contact control at high current bolt-up joints, and arranging geometries so as to minimize the possibility of voltage breakdown.

  6. Experimental aerodynamic heating to simulated space shuttle tiles in laminar and turbulent boundary layers with variable flow angles at a nominal Mach number of 7. M.S. Thesis - George Washington Univ., Nov. 1983

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1985-01-01

    The heat transfer to simulated shuttle thermal protection system tiles was investigated experimentally by using a highly instrumented metallic thin wall tile arranged with other metal tiles in a staggered tile array. Cold wall heating rate data for laminar and turbulent flow were obtained in the Langley 8 foot high Temperature Tunnel at a nominal Mach number of 7, a nominal total temperature of 3300R, a free stream unit Reynolds number from 3.4 x 10 sup 5 to 2.2 10 sup 6 per foot, and a free stream dynamic pressure from 2.1 to 9.0 psia. Experimental data are presented to illustrate the effects of flow angularity and gap width on both local peak heating and overall heating loads. For the conditions of the present study, the results show that localized and total heating are sensitive to changes in flow angle only for the test conditions of turbulent boundary layer flow with high kinetic energy and that a flow angle from 30 deg to 50 deg will minimize the local heating.

  7. Navier-Stokes simulations of Orbiter aerodynamic characteristics including pitch trim and bodyflap

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James; Gnoffo, Peter A.; Greene, Francis A.

    1994-01-01

    An analysis of the longitudinal aerodynamics of the shuttle orbiter in the hypersonic flight regime is made through the use of computational fluid dynamics. Particular attention is given to establishing the cause of the 'pitching moment anomaly,' which occurred on the orbiter's first flight, and to computing the aerodynamics of a complete orbiter configuration at flight conditions. Data from ground-based facilities as well as orbiter flight data are used to validate the computed results. Analysis shows that the pitching moment anomaly is a real-gas chemistry effect that was not simulated in ground-based facilities, which used air as a test gas. Computed flight aerodynamics for the orbiter are within 5% of the measured flight values and trim bodyflap deflections are predicted to within 10%.

  8. Control of helicopter rotorblade aerodynamics

    NASA Technical Reports Server (NTRS)

    Fabunmi, James A.

    1991-01-01

    The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.

  9. [Observation on the air-borne bacteria and ammonia (NS3) gas in laboratory animal facility with rotary heat exchanger].

    PubMed

    Obara, T; Matsuyama, M; Fujita, S; Yamauchi, C

    1979-01-01

    The number of air-borne bacteria in air ducts and barrierred laboratory animal rooms with the so-called econovent rotary heat exchanger, were checked monthly during a year by the pin-hole sumpler method for air ducts and Koch method for animal rooms. Also, concentration of ammonia was checked with the same samples by gas impinger. No significantly difference in number of air-borne bacteria was seen between before and after passing the econovent. Those passing through HEPA filter was not detected. There were more air-borne bacteria in animal rooms, outside locker room and shower room than in the corridor, utensil storage, inside locker room and pass box. No ammonia were detected in the outdoor, but exhaust air duct after passing the econovent contained very small amount of ammonia. On the other hand, high concentration of ammonia were preserved in the supplying air duct, exhaust air duct and mice and rats rooms, about 86% of ammonia in exhaust air duct returned back into the supplying air duct. No influences on reproduction in mice and rats were recognized.

  10. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    SciTech Connect

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.; Roche, A.; Masson-Fauchier, M.; Bosq, J. C.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well as neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)

  11. Simulating Magneto-Aerodynamic Actuator

    DTIC Science & Technology

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  12. Nonaxisymmetric Body Supersonic, Aerodynamic Prediction

    DTIC Science & Technology

    1987-08-01

    wing - tail configuration are compared in Figure 27. CN comparisons are good. C. is a sensitive computation for xcp close to x’. 7.2...Analytical and Experimental Supersonic Aerodynamic Characteristics of a Forward Control Missile , AIAA Paper No. 81-0398, AIAA 19th Aerospace Sciences...body diameter. The next computational example is for a body- wing - tail configuration from Reference 32 A body-alone comparison has been made earlier in

  13. Aerodynamics of Supersonic Lifting Bodies

    DTIC Science & Technology

    1981-02-01

    verso of front cover. 19 Y WOROS (Continue on rt.’,;erso side i recessary and identily by block number) Theoretical Aerodynamics Lifting Bodies Wind ...waverider solution, developed from the supersonic wedge flow solution, is then i Fused to fashion vertLcal stabilizer-likh control surfaces. Wind ...served as Project Engineers ror thE wind tunnel work. Important contributions were also made bv: Mr. iis±ung Miin; Lee, -M. Beom-Soo Kim, Mtr. Martin Weeks

  14. Unsteady Aerodynamic Phenomena in Turbomachines

    DTIC Science & Technology

    1990-02-01

    The first part of a systematic variation of important parameters shows their influence on the aerodynamic forces and moments coefficients . 2-2...real physical phenomena. Besides, for reasons of stability it in necessary to introduce an additional damping coefficient , which depends on the... coefficients for the "Fourth Standard Configu- ration No. 4" /10/, using a mesh with 51 x 17 points (Fig. I). This grid represents a typical section of

  15. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  16. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  17. Loading and heating of a large flat plate at Mach 7 in the Langley 8-foot high-temperature structures tunnel

    NASA Technical Reports Server (NTRS)

    Deveikis, W. D.; Hunt, L. R.

    1973-01-01

    Surface pressure and cold-wall heating rate distributions (wall-temperature to total-temperature ratio approximately 0.2) were obtained on a large, flat calibration panel at a nominal Mach number of 7 in an 8-foot high-temperature structures tunnel. Panel dimensions were 42.5 by 60.0 in. Test objectives were: (1) to map available flat-plate loading and heating provided by the facility and (2) to determine effectiveness of leading-edge bluntness, boundary-layer trips, and aerodynamic fences in generating a uniform, streamwise turbulent flow field over the test surface of a flat-sided panel holder.

  18. Aerodynamic Tests of the Space Launch System for Database Development

    NASA Technical Reports Server (NTRS)

    Pritchett, Victor E.; Mayle, Melody N.; Blevins, John A.; Crosby, William A.; Purinton, David C.

    2014-01-01

    The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations.

  19. Aerodynamic braking of high speed ground transportation vehicles.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.; Marko, W. J.

    1973-01-01

    The drag effectiveness of aerodynamic brakes arranged in series on a train-like vehicle was investigated. Fixed- and moving-model testing techniques were used in order to determine the importance of proper vehicle-ground interference simulation. Fixed-model tests were carried out on a sting-mounted model: alone; with a fixed ground plane; and in proximity to an image model. Moving-model tests were conducted in a vertical slide-wire facility with and without a ground plane. Results from investigations of one brake configuration are presented which show the effect of the number of brakes in the set and of spacing between brakes.

  20. Unsteady aerodynamics and gust response in compressors and turbines

    SciTech Connect

    Manwaring, S.R.; Wisler, D.C. . GE Aircraft Engines)

    1993-10-01

    A comprehensive series of experiments and analyses was performed on compressor and turbine blading to evaluate the ability of current, practical, engineering/analysis models to predict unsteady aerodynamic loading of modern gas turbine blading. This is part of an ongoing effort to improve methods for preventing blading failure. The experiments were conducted in low-speed research facilities capable of simulating the relevant aerodynamic features of turbomachinery. Unsteady loading on compressor and turbine blading was generated by upstream wakes and, additionally for compressors, by a rotating inlet distortion. Fast-response hot-wire anemometry and pressure transducers embedded in the airfoil surfaces were used to determine the aerodynamic gusts and resulting unsteady pressure responses acting on the airfoils. This is the first time that gust response measurements for turbines have been reported in the literature. Several different analyses were used to predict the unsteady component of the blade loading: (1) a classical flat-plate analysis, (2) a two-dimensional linearized flow analysis with a frozen gust model, (3) a two-dimensional linearized flow analysis with a distorted gust model, (4) a two-dimensional linearized Euler analysis, and (5) a two-dimensional nonlinear Euler analysis. Also for the first time, a detailed comparison of these analyses methods is made and the importance of properly accounting for both vortical and potential disturbances is demonstrated. The predictions are compared with experiment and their abilities assessed to help guide designers in using these prediction schemes.

  1. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  2. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31

    In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the water tanks. The limited simulation of heat transfer in cavities presented in Section 4.0, strongly underscores the need of experimental work to validate CFD codes, and heat transfer correlations for system codes, and to support the analysis and design of the RCCS. Based on the conclusions of the scaling analysis, a schematic that illustrates key attributes of the experiment system is shown in Fig. 4. This system contains the same physical elements as the PBMR RCCS, plus additional equipment to facilitate data gathering to support code validation. In particular, the prototype consists of a series of oval standpipes surrounding the reactor vessel to provide cooling of the reactor cavity during both normal and off

  3. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  4. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  5. Results of an investigation of the space shuttle integrated vehicle aerodynamic heating characteristics obtained using the 0.0175-scale model 60-OTS in AEDC tunnel A during tests IH41 and IH41A

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    A thin skin thermocouple test was conducted to obtain heat-transfer data on the space shuttle integrated vehicle during the ascent phase of the flight profile. The test model was the 0.0175-scale thin skin thermocouple model (60-OTS) of the Rockwell International vehicle 5 configuration. The test was conducted at nominal Mach numbers of 2.5, 3.5, 4.5, and 5.5, and a free stream unit Reynolds number of 5 million per ft. Heat transfer data were obtained for angles of attack of 0, + or - 5, and 10 deg and yaw angles of 0, 3, and 6 deg. The integrated vehicle model was tested with the external tank configured with both a smooth ogive nose and an ogive nose with a spherical nose tip (nipple nose). The remainder of the test was conducted with the external tank installed alone in the tunnel.

  6. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  7. HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.

    2010-01-01

    The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been

  8. Experimental techniques for three-axes load cells used at the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    1985-01-01

    The necessary information for an aerodynamic investigation requiring load cell force measurements at the National Full-Scale Aerodynamics Complex (NFAC) is provided. Included are details of the Ames 40x80 three component load cells; typical model/load cell installation geometries; transducer signal conditioning; a description of the Ames Standard Computations Wind Tunnel Data Reduction Program for Load Cells Forces and Moments (SCELLS), and the inputs required for SCELLS. The Outdoor Aerodynamic Facilities Complex (OARF), a facility within the NFAC where three axes load cells serve as the primary balance system, is used as an example for many of the techniques, but the information applies equally well to other static and wind tunnel facilities that make use of load cell balances.

  9. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    NASA Astrophysics Data System (ADS)

    Popovic, Svetozar

    2006-10-01

    Successful application of gas discharges in aerodynamics requires their efficient generation, sustaining and control at supersonic or hypersonic flow conditions. Wall-free plasma formations that meet the requirements may then act as time-controlled and space-localized actuators to modify the flow. Potential candidates for this challenging task are plasmas contained in open or linear-cavity microwave field structures. We present and discuss direct observations of aerodynamic effects activated or modified by wall-free discharges. Further, we compare two generic types of wall-free discharges. First group, applicable for inlet-type structures, consists of a periodic series of microwave-induced plasmoids generated in a linear cavity, using the outgoing wave from a microwave antenna and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to the standing-wave pattern. The plasmoids are enhanced by an ``effective focusing'' in the near field of the antenna (Fresnel region) as a result of diffraction effects and mode structure. Second group, applicable to supersonic and hypersonic boundary layers, are the surface microwave discharges enhanced by a structure of Hertz dipoles. Standard microwave discharge phenomenology, such as microwave breakdown, mode structure and plasma parameters, is revisited to present a quantitative interpretation of the observed effects. Special attention is given to complex phenomena specific to flow-plasma interaction (double electric layers, ionization waves, instabilities), which provide the physical basis for localized heating in the aerodynamic flow.

  10. Multi-Disciplinary Computational Aerodynamics

    DTIC Science & Technology

    2016-01-01

    However, as the DSV is shed and propagates along the wing it induces sudden and difficult to predict variations in aerodynamic forces and pitching ...circulation build- up around the airfoil. The pitching moment is also shifted to a lower value due to rotation- induced camber effects. Beyond a critical...on vortex breakdown,” AIAA J., Vol. 12, No. 5, 1974, pp. 602–607. 66Visbal, M. R., “Onset of vortex breakdown about a pitching delta wing ,” AIAA J

  11. Simulation of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.

    1991-01-01

    The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

  12. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  13. Atomic fluorescence study of high temperature aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  14. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czechoslovakia

    USGS Publications Warehouse

    Chao, E.C.T.

    1964-01-01

    A Czechoslovakian tektite or moldavite shows clear, indirect evidence of aerodynamic ablation. This large tektite has the shape of a teardrop, with a strongly convex, deeply corroded, but clearly identifiable front and a planoconvex, relatively smooth, posterior surface. In spite of much erosion and corrosion, demarcation of the posterior and the anterior part of the specimen (the keel) is clearly preserved locally. This specimen provides the first tangible evidence that moldavites entered the atmosphere cold, probably at a velocity exceeding 5 kilometers per second; the result was selective heating of the anterior face and perhaps ablation during the second melting. This provides evidence of the extraterrestial origin of moldavites.

  15. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  16. A new technique for aerodynamic noise calculation

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Pope, D. S.

    1992-01-01

    A novel method for the numerical analysis of aerodynamic noise generation is presented. The method involves first solving for the time-dependent incompressible flow for the given geometry. This fully nonlinear method that is tailored to extract the relevant acoustic fluctuations seems to be an efficient approach to the numerical analysis of aerodynamic noise generation.

  17. Aerodynamics of Sounding-Rocket Geometries

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1982-01-01

    Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

  18. Aerodynamic seal assemblies for turbo-machinery

    DOEpatents

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  19. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  20. Aerodynamics of the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2005-06-23

    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.

  1. Perching aerodynamics and trajectory optimization

    NASA Astrophysics Data System (ADS)

    Wickenheiser, Adam; Garcia, Ephrahim

    2007-04-01

    Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.

  2. The isentropic light piston annular cascade facil ity at RAE Pyestock

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.

    1985-09-01

    An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.

  3. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  4. Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  5. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  6. ORNL rod-bundle heat-transfer test data. Volume 6. Thermal-hydraulic test facility experimental data report for test 3. 05. 5B - double-ended cold-leg break simulation

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.

    1982-05-18

    Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  7. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of

  8. Overview of Selected Measurement Techniques for Aerodynamics Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is. therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a around-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  9. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  10. Advanced Gradient Heating Facility (AGHF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.

  11. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  12. Investigation of aerodynamic characteristics of a hypersonic flow around bodies of revolution with a permeable tip

    NASA Astrophysics Data System (ADS)

    Sidnyaev, N. I.

    2007-03-01

    Results of experimental investigations of aerodynamic characteristics of models of high-velocity flying vehicles consisting of a combination of a blunt cone, a cylinder, and a conical tail fin are presented. The model forebody is cooled by porous blowing. The choice of such a configuration is determined by the necessity of optimizing the arrangement of high-velocity flying vehicles on the launcher and their aerodynamic characteristics under conditions of intense surface mass transfer (decrease in drag and heat transfer and increase in static and dynamic stability).

  13. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  14. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  15. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  16. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  17. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  18. Design considerations of the national transonic facility

    NASA Technical Reports Server (NTRS)

    Baals, D. D.

    1976-01-01

    The inability of existing wind tunnels to provide aerodynamic test data at transonic speeds and flight Reynolds numbers was examined. The proposed transonic facility is a high Reynolds number transonic wind tunnel designed to meet the research and development needs of industry, and the scientific community. The facility employs the cryogenic approach to achieve high transonic Reynolds numbers at acceptable model loads and tunnel power. By using temperature as a test variable, a unique capability to separate scale effects from model aeroelastic effects is provided. The performance envelope of the facility is shown to provide a ten fold increase in transonic Reynolds number capability compared to currently available facilities.

  19. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  20. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  1. System for determining aerodynamic imbalance

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B. (Inventor); Cheung, Benny K. (Inventor)

    1994-01-01

    A system is provided for determining tracking error in a propeller or rotor driven aircraft by determining differences in the aerodynamic loading on the propeller or rotor blades of the aircraft. The system includes a microphone disposed relative to the blades during the rotation thereof so as to receive separate pressure pulses produced by each of the blades during the passage thereof by the microphone. A low pass filter filters the output signal produced by the microphone, the low pass filter having an upper cut-off frequency set below the frequency at which the blades pass by the microphone. A sensor produces an output signal after each complete revolution of the blades, and a recording display device displays the outputs of the low pass filter and sensor so as to enable evaluation of the relative magnitudes of the pressure pulses produced by passage of the blades by the microphone during each complete revolution of the blades.

  2. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  3. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  5. Aerodynamic Evidence Pertaining to the Entry of Tektites into the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R.; Larson, Howard K.; Anderson, Lewis A.

    1962-01-01

    Evidence is presented which shows that the Australian and Java tektites entered the earth's atmosphere and experienced ablation by severe aerodynamic heating in hypervelocity flight. The laboratory experiments on hypervelocity ablation have reproduced ring-wave flow ridges and coiled circumferential flanges like those found on certain of these tektites. Systematic striae distortions exhibited in a thin layer beneath the front surface of australites also are reproduced in the laboratory ablation experiments, and are shown to correspond to the calculated distortions for aerodynamic ablation of a glass. About 98 percent of Australian tektites represent aerodynamically stable configurations during the ablative portion of an entry trajectory. Certain meteorites exhibit surface features similar to those on tektites.

  6. Some aspects of the aerodynamics of separating strap-ons

    NASA Astrophysics Data System (ADS)

    Biswas, K. K.; Krishnan, C. G.

    1994-11-01

    An aerodynamics model for analyzing strap-on separation is proposed. This model comprises both interference aerodynamics and free-body aerodynamics. The interference aerodynamics is primarily due to the close proximity of core and strap-ons. The free-body aerodynamics is solely due to the body geometry of the strap-ons. Using this aerodynamic model, the dynamics of separating strap-ons has been simulated in a six-degree-of-freedom mode to determine if a collision occurs. This aerodynamic model is very handy for various off-design studies relating to separating strap-ons.

  7. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  8. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Shafer, Mary F.

    1993-01-01

    Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.

  9. Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  10. Navier-Stokes simulations of the Shuttle Orbiter aerodynamic characteristics with emphasis on pitch trim and bodyflap

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.; Greene, Francis A.

    1993-01-01

    An analysis of the longitudinal aerodynamics of the Shuttle Orbiter in the hypersonic flight regime is made through the use of computational fluid dynamics (CFD). Particular attention is given to establishing the cause of the 'pitching moment anomaly' which occurred on the Orbiter's first flight and to computing the aerodynamics of a complete Orbiter configuration at flight conditions. Data from ground based facilities as well as Orbiter flight data are used to validate the computed results. Analysis shows that the 'pitching moment anomaly' is a real gas chemistry effect which cannot be simulated in ground-based facilities. Computed flight aerodynamics for the Orbiter are within 5 percent of the measured flight values and trim bodyflap deflections are predicted to within 10 percent.

  11. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  12. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  13. Study of N2 CARS spectra of a coal-fired flow facility

    NASA Astrophysics Data System (ADS)

    Singh, Jagdish P.; Yueh, Fang-Yu

    1993-07-01

    A comparative study of N2 CARS spectra was performed at a coal-fired flow facility diffuser and aerodynamic duct. Spectra recorded at the diffuser have atypical feature near V = 1-2 N2 CARS vibrational transition. Atypical feature intensity decreases in the aerodynamic duct spectra. N2 CARS spectra at the aerodynamic duct show the laser-produced C2 absorption around the fundamental band. The CARS inferred temperature at the diffuser is estimated to be +/- 100 K where as at the aerodynamic duct it is +/- 250 K. The error in the inferred temperature with different interference in the CARS spectrum was also studied.

  14. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  15. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  16. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  17. Vertical Landing Aerodynamics of Reusable Rocket Vehicle

    NASA Astrophysics Data System (ADS)

    Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi

    The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.

  18. Aerodynamics of a rolling airframe missile

    NASA Astrophysics Data System (ADS)

    Tisserand, L. E.

    1981-05-01

    For guidance-related reasons, there is considerable interest in rolling missiles having single-plane steering capability. To aid the aerodynamic design of these airframes, a unique investigation into the aerodynamics of a rolling, steering missile has been carried out. It represents the first known attempt to measure in a wind tunnel the aerodynamic forces and moments that act on a spinning body-canard-tail configuration that exercises canard steering in phase with body roll position. Measurements were made with the model spinning at steady-state roll rates ranging from 15 to 40 Hz over an angle-of-attack range up to about 16 deg. This short, exploratory investigation has demonstrated that a better understanding and a more complete definition of the aerodynamics of rolling, steering vehicles can be developed by way of simulative wind-tunnel testing.

  19. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  20. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  1. Steady incompressible variable thickness shear layer aerodynamics

    NASA Technical Reports Server (NTRS)

    Chi, M. R.

    1976-01-01

    A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

  2. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  3. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  4. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  5. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  6. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  7. FLPP IXV Re-Entry Vehicle, Hypersonic Aerodynamics Characterisation

    NASA Astrophysics Data System (ADS)

    Tran, Ph.; Dormieux, M.; Fontaine, J.; Gülhan, A.; Tribot, J.-P.; Binetti, P.; Walloschek, T.

    2009-01-01

    The general objective of the IXV project (Intermediate eXperimental Vehicle), led by NGL Prime in the framework of the ESA FLPP programme (Future Launchers Preparatory Programme), is to improve European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration, and scientific applications. One of the key objectives and challenges of the IXV project is the vehicle re-entry guidance and control demonstration which requires an accurate determination of the aerodynamic characteristics. This paper deals with all the aerodynamic characterization in the hypersonic flow regime. Wind tunnel tests (WTT) and CFD matrices have been defined in order to provide good coverage of the foreseen flight domain, account for uncertainties, and exploit the synergy between experimental and computational activity. WTT have been performed in DLR-H2K (M=6 and 8.7) and ONERA-S4Ma (M=10) facilities, gathering forces and moment data, as well as pressure in key areas. Consistency of the two campaigns results will be addressed. These results have highlighted some flow peculiarities in the deflected flap region. Comparisons with CFD show good agreement with ground experimental results. For flight conditions, real gas and viscous effects play a significant role in the trim conditions that only CFD can currently address; this identification was supported by different partners involved in the project (CFS engineering, DLR, CIRA, and the University of Rome) providing a valuable description of key flow phenomena affecting aerodynamic characteristics. Moreover, at high altitude, limited DSMC computations have been performed for bridging function correction.

  8. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  9. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, M. E.; Cameron, C. P.; Ghanbari, C. M.

    1992-11-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm(sup 2) that is uniform over a 15-cm diameter with a total beam power of over 5 MW(sub t). The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m (times) 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm(sup 2) over and delivers a 6-mm diameter and total power of 16 kW(sub t). A second furnace produces flux levels up to 1000 W/cm(sup 2) over a 4 cm diameter and total power of 60 kW(sub t). Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm(sup 2) over a 2.5 cm diameter and total power of 75 kW(sub t). High-speed shutters have been used to produce square pulses.

  10. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 1: Aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Norton, J. M.; Tari, U.; Weber, R. M.

    1979-01-01

    A quasi three dimensional design system and multiple-circular-arc airfoil sections were used to design a fan rotor. An axisymmetric intrablade flow field calculation modeled the shroud of an isolated splitter and radial distribution. The structural analysis indicates that the design is satisfactory for evaluation of aerodynamic performance of the fan stage in a test facility.

  11. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  12. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  13. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  14. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    for Measuring Flow Fields ....... .57 Chapter 4. Basic Equations of Flow Fields....................73 Chapter 5. Momentum and Potential Energy Equations...jets" for short. With air flow, fuel injection and ignition, one gets combustion which throws out heat energy and increases air flow. High pressure... energy can be produced by each square meter of volume, for each hour, for each atmosphere of pressure is called "heat emission stngth" or I. The I value

  15. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  16. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  17. Parachute Aerodynamics From Video Data

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

    2005-01-01

    A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

  18. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  19. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  20. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2004-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  1. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  2. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  3. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  4. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  5. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  6. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  7. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  8. Studies of Plasma Instabilities Excited by Ground-Based High Power HF (Heating) Facilities and of X and Gamma Ray Emission in Runaway Breakdown Processes

    DTIC Science & Technology

    2006-08-01

    latitude ( HAARP , TROMSO) and mid latitude (SURA) facilities [1]. The very strong and fully reproducible plasma perturbations in ionosphere are observed...beam propagating along magnetic field (θ = 0), in this case factor κs ≈ 1. As an a example we will consider now the HAARP facility. The ERP for HAARP ...as a function of fre- quency f0 is presented in the Table 1. ISTC 2236p 12 Table 1 ERP as function of wave frequency for HAARP (2001) f0 (MHz

  9. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  10. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  11. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  12. Automated Wing Twist And Bending Measurements Under Aerodynamic Load

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Martinson, S. D.

    1996-01-01

    An automated system to measure the change in wing twist and bending under aerodynamic load in a wind tunnel is described. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. The measurement technique has been used successfully at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley Research Center. The advantages and limitations (including targeting) of the technique are discussed. A major consideration in the development was that use of the technique must not appreciably reduce wind tunnel productivity.

  13. A laser velocimeter system for large-scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Orloff, K. L.; Snyder, P. K.

    1984-01-01

    A unique laser velocimeter was developed that is capable of sensing two orthogonal velocity components from a variable remote distance of 2.6 to 10 m for use in the 40- by 80-Foot and 80- by 120-Foot Wind Tunnels and the Outdoor Aerodynamic Research Facility at Ames Research Center. The system hardware, positioning instrumentation, and data acquisition equipment are described in detail; system capabilities and limitations are discussed; and expressions for systematic and statistical accuracy are developed. Direct and coupled laboratory measurements taken with the system are compared with measurements taken with a laser velocimeter of higher spatial resolution, and sample data taken in the open circuit exhaust flow of a 1/50-scale model of the 80- by 120-Foot Wind Tunnel are presented.

  14. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  15. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  16. Experimental investigation of hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Intrieri, Peter F.

    1988-01-01

    An extensive series of ballistic range tests were conducted at the Ames Research Center to determine precisely the aerodynamic characteristics of the Galileo entry probe vehicle. Figures and tables are presented which summarize the results of these ballistic range tests. Drag data were obtained for both a nonablated and a hypothesized ablated Galileo configuration at Mach numbers from about 0.7 to 14 and at Reynolds numbers from 1000 to 4 million. The tests were conducted in air and the experimental results were compared with available Pioneer Venus data since these two configurations are similar in geometry. The nonablated Galileo configuration was also tested with two different center-of-gravity positions to obtain values of pitching-moment-curve slope which could be used in determining values of lift and center-of-pressure location for this configuration. The results indicate that the drag characteristics of the Galileo probe are qualitatively similar to that of Pioneer Venus, however, the drag of the nonablated Galileo is about 3 percent lower at the higher Mach numbers and as much as 5 percent greater at transonic Mach numbers of about 1.0 to 1.5. Also, the drag of the hypothesized ablated configuration is about 3 percent lower than that of the nonablated configuration at the higher Mach numbers but about the same at the lower Mach numbers. Additional tests are required at Reynolds numbers of 1000, 500, and 250 to determine if the dramatic rise in drag coefficient measured for Pioneer Venus at these low Reynolds numbers also occurs for Galileo, as might be expected.

  17. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Peraire, J.

    1990-01-01

    Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.

  18. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.

    1991-01-01

    This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.

  19. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  20. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  1. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3. 07. 9 - steady-state film boiling in upflow

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  2. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  3. A new facility to study three dimensional viscous flow and rotor-stator interaction in turbines

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Camci, C.; Halliwell, I.

    1989-01-01

    A description of the Axial Flow Turbine Research Facility (AFTRF) being built at the Turbomachinery Laboratory of the Pennsylvania State University is presented. The purpose of the research to be performed in this facility is to obtain a better understanding of the rotor/stator interaction, three dimensional viscous flow field in nozzle and rotor blade passages, spanwise mixing and losses in these blade rows, transport of wake through rotor passage, and unsteady aerodynamics and heat transfer of rotor blade row. The experimental results will directly feed and support the analytical and the computational tool development. This large scale low speed facility is heavily instrumented with pressure and temperature probes and has provision for flow visualization and laser Doppler anemometer measurement. The facility design permits extensive use of the high frequency response instrumentation on the stationary vanes and more importantly on the rotating blades. Furthermore it facilitates detailed nozzle wake, rotor wake, and boundary layer surveys. The large size of the rig also has the advantage of operating at Reynolds numbers representative of the engine environment.

  4. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  5. Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule

    NASA Astrophysics Data System (ADS)

    Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi

    The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.

  6. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  7. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  8. Bat flight generates complex aerodynamic tracks.

    PubMed

    Hedenström, A; Johansson, L C; Wolf, M; von Busse, R; Winter, Y; Spedding, G R

    2007-05-11

    The flapping flight of animals generates an aerodynamic footprint as a time-varying vortex wake in which the rate of momentum change represents the aerodynamic force. We showed that the wakes of a small bat species differ from those of birds in some important respects. In our bats, each wing generated its own vortex loop. Also, at moderate and high flight speeds, the circulation on the outer (hand) wing and the arm wing differed in sign during the upstroke, resulting in negative lift on the hand wing and positive lift on the arm wing. Our interpretations of the unsteady aerodynamic performance and function of membranous-winged, flapping flight should change modeling strategies for the study of equivalent natural and engineered flying devices.

  9. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  10. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  11. Aerodynamics of sounding rockets at supersonic speeds

    NASA Astrophysics Data System (ADS)

    Vira, N. R.

    This dissertation presents a practical and low cost method of computing the aerodynamic characteristics of vehicles such as sounding rockets, high speed bombs, projectiles and guided missiles in supersonic flight. The vehicle configuration consists of a slender axisymmetric body with a conical or ogive noise, cylinders, shoulders and boattails, if any, and have sets of two, three or four fins. Geometry of the fin cross section can be single wedge, double wedge, modified single wedge or modified double wedge. First the aerodynamics of the fins and the body are analyzed separately; then fin body and fore and aft fin interferences are accounted for when they are combined to form the total vehicle. Results and formulas documented in this work are the basis of the supersonic portion of the Theoretical Aerodynamic Derivatives (TAD) computer program operating at the NASA Goddard Space Flight Center.

  12. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.

  13. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  14. Status of Nozzle Aerodynamic Technology at MSFC

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Smith, Bud; Owens, Zachary

    2002-01-01

    This viewgraph presentation provides information on the status of nozzle aerodynamic technology at MSFC (Marshall Space Flight Center). The objectives of this presentation were to provide insight into MSFC in-house nozzle aerodynamic technology, design, analysis, and testing. Under CDDF (Center Director's Discretionary Fund), 'Altitude Compensating Nozzle Technology', are the following tasks: Development of in-house ACN (Altitude Compensating Nozzle) aerodynamic design capability; Building in-house experience for all aspects of ACN via End-to-End Nozzle Test Program; Obtaining Experimental Data for Annular Aerospike: Thrust eta, TVC (thrust vector control) capability and surface pressures. To support selection/optimization of future Launch Vehicle propulsion we needed a parametric design and performance tool for ACN. We chose to start with the ACN Aerospike Nozzles.

  15. Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

  16. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  17. Aerodynamic thermal simulation system. Part 1: Radiant array (instruction manual)

    NASA Technical Reports Server (NTRS)

    Kitchar, A. F.; Steuffen, R. L.

    1973-01-01

    An aerodynamic thermal simulation system (ATSS) is presented. The construction of the system, the maintenance, set up, and operations are reported. System description of the radiant array is given along with the array subsystems modular heating unit, adjustable stanchion frame, cooling water system, and the gaseous nitrogen cooling system. The array configuration procedure outlines the set up and the start up. Maintenance procedures involve both lamp maintenance and reflector maintenance along with weather protection. Drawing codes are included. Descriptions of the 36 zone ATSS controls are also given. Each zone is an independent closed loop temperature control circuit. Procedures are presented for starting and stopping the system. The DATA-TRAK programmer and its operation, instruction manuals for the temperature controller and the power regulator and discriptions of peripheral equipment are discussed.

  18. Aerodynamic Analysis of Tektites and Their Parent Bodies

    NASA Technical Reports Server (NTRS)

    Adams, E. W.; Huffaker, R. M.

    1962-01-01

    Experiment and analysis indicate that the button-type australites were derived from glassy spheres which entered or re-entered the atmosphere as cold solid bodies; in case of average-size specimens, the entry direction was nearly horizontal and the entry speed between 6.5 and 11.2 km/sec. Terrestrial origin of such spheres is impossible because of extremely high deceleration rates at low altitudes. The limited extension of the strewn fields rules out extraterrestrial origin of clusters of such spheres because of stability considerations for clusters in space. However, tektites may have been released as liquid droplets from glassy parent bodies ablating in the atmosphere of the earth. The australites then have skipped together with the parent body in order to re-enter as cold spheres. Terrestrial origin of a parent body would require an extremely violent natural event. Ablation analysis shows that fusion of opaque siliceous stone into glass by aerodynamic heating is impossible.

  19. Aerodynamic investigations of a disc-wing

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin

    2017-01-01

    The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.

  20. Aerodynamics of the upper surface blow flap

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III

    1972-01-01

    The results of some preliminary wind-tunnel investigations made to provide fundamental aerodynamic information on the upper surface blown jet-flap concept incorporating high-bypass-ratio turbofan engines are summarized. The results of the investigation have shown the concept to have aerodynamic performance generally similar to that of other externally blown high-lift systems. A few of the more critical problems associated with this concept have been identified and preliminary solutions to some of these problems have been found. These results have proven to be sufficiently encouraging to warrant continuation of fundamental research efforts on the concept.

  1. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1975-01-01

    After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

  2. Rarefied Transitional Bridging of Blunt Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Blanchard, R. C.; Moss, J. N.

    1998-01-01

    The bridging procedures discussed provide an accurate engineering method for predicting rarefied transitional aerodynamics of spherically-blunted cone entry vehicles. The single-point procedure offers a way to improve the bridging procedures while minimizing the computational effort. However, the accuracy of these procedures ultimately depends on accurate knowledge of the aerodynamics in the free-molecular and continuum limits. The excellent agreement shown for DSMC predictions and bridging relations with the Viking flight data in transitional regime enhance the coincidence in these procedures.

  3. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  4. Transpiration effects in perforated plate aerodynamics

    NASA Astrophysics Data System (ADS)

    Szwaba, R.; Ochrymiuk, T.

    2016-10-01

    Perforated walls find a wide use as a method of flow control and effusive cooling. Experimental investigations of the gas flow past perforated plate with microholes (110μm) were carried out. The wide range of pressure at the inlet were investigated. Two distinguishable flow regimes were obtained: laminar and turbulent regime.The results are in good agreement with theory, simulations and experiments on large scale perforated plates and compressible flows in microtubules. Formulation of the transpiration law was associated with the porous plate aerodynamics properties. Using a model of transpiration flow the “aerodynamic porosity” could be determined for microholes.

  5. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  6. Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1992-01-01

    The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

  7. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  8. Cooled Ceramic Composite Panel Tested Successfully in Rocket Combustion Facility

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2003-01-01

    Regeneratively cooled ceramic matrix composite (CMC) structures are being considered for use along the walls of the hot-flow paths of rocket-based or turbine-based combined-cycle propulsion systems. They offer the combined benefits of substantial weight savings, higher operating temperatures, and reduced coolant requirements in comparison to components designed with traditional metals. These cooled structures, which use the fuel as the coolant, require materials that can survive aggressive thermal, mechanical, acoustic, and aerodynamic loads while acting as heat exchangers, which can improve the efficiency of the engine. A team effort between the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and various industrial partners has led to the design, development, and fabrication of several types of regeneratively cooled panels. The concepts for these panels range from ultra-lightweight designs that rely only on CMC tubes for coolant containment to more maintainable designs that incorporate metal coolant containment tubes to allow for the rapid assembly or disassembly of the heat exchanger. One of the cooled panels based on an all-CMC design was successfully tested in the rocket combustion facility at Glenn. Testing of the remaining four panels is underway.

  9. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  10. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor Hugo

    Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness

  11. Heating systems to maximise efficiency.

    PubMed

    House, Jeff

    2013-09-01

    Jeff House, marketing and applications manager, Baxi Commercial, identifies some of the heating options available to the operators of healthcare facilities, and highlights practical examples of successful applications.

  12. 9 CFR 3.76 - Indoor housing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Indoor housing facilities. 3.76... Transportation of Nonhuman Primates 2 Facilities and Operating Standards § 3.76 Indoor housing facilities. (a) Heating, cooling, and temperature. Indoor housing facilities must be sufficiently heated and cooled...

  13. 9 CFR 3.76 - Indoor housing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Indoor housing facilities. 3.76... Transportation of Nonhuman Primates 2 Facilities and Operating Standards § 3.76 Indoor housing facilities. (a) Heating, cooling, and temperature. Indoor housing facilities must be sufficiently heated and cooled...

  14. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary aerodynamic surfaces. 25.445... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence...

  15. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  16. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    integrating digital cameras. Initially, modifications were made to the existing FilmScanner program to make it compatible with Vidar scanners that do...Station, and digital camera connected via Ethernet to a computer was built to serve as a development platform. The existing RangeController program was...help significantly reduce human intervention, which will decrease the required range time for testing. 15. SUBJECT TERMS TEF, AEF, range digitization

  17. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  18. Heating rate measurements over 30 deg and 40 deg (half angle) blunt cones in air and helium in the Langley expansion tube facility

    NASA Technical Reports Server (NTRS)

    Reddy, N. M.

    1980-01-01

    Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.

  19. X-33 Computational Aeroheating/Aerodynamic Predictions and Comparisons With Experimental Data

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Thompson, Richard A.; Berry, Scott A.; Horvath, Thomas J.; Murphy, Kelly J.; Nowak, Robert J.; Alter, Stephen J.

    2003-01-01

    This report details a computational fluid dynamics study conducted in support of the phase II development of the X-33 vehicle. Aerodynamic and aeroheating predictions were generated for the X-33 vehicle at both flight and wind-tunnel test conditions using two finite-volume, Navier-Stokes solvers. Aerodynamic computations were performed at Mach 6 and Mach 10 wind-tunnel conditions for angles of attack from 10 to 50 with body-flap deflections of 0 to 20. Additional aerodynamic computations were performed over a parametric range of free-stream conditions at Mach numbers of 4 to 10 and angles of attack from 10 to 50. Laminar and turbulent wind-tunnel aeroheating computations were performed at Mach 6 for angles of attack of 20 to 40 with body-flap deflections of 0 to 20. Aeroheating computations were performed at four flight conditions with Mach numbers of 6.6 to 8.9 and angles of attack of 10 to 40. Surface heating and pressure distributions, surface streamlines, flow field information, and aerodynamic coefficients from these computations are presented, and comparisons are made with wind-tunnel data.

  20. Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2001-01-01

    Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.