Sample records for aerodynamic interface plane

  1. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  2. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by secondary flow structures. Unlike the baseline, these secondary flow structures produced downwash along the centerline. The formation of such structures was caused by the core flow stagnating on the lower surface near the aerodynamic interface plane. Using the two-dimensional steady jet resulted in an increase in the spanwise flow within the inlet and a reduction in the energy content of the 350 Hz shedding frequency. Unsteady forcing did not show much improvement over steady forcing for this configuration. A spanwise varying control jet and a hybrid Coanda jet / vortex generator jets were tested to reduce the three-dimensionality of the flow field. It was found that anytime the flow control method suppressed separation along the centerline, counter-rotating vortices existed in the lower corners of the aerodynamic interface plane.

  3. The Influence of Hoop Diameter on Aerodynamic Performance of O-Ring Paper Plane

    NASA Astrophysics Data System (ADS)

    Ismail, N. I.; Sharudin, Hazim; Talib, R. J.; Hassan, A. A.; Yusoff, H.

    2018-05-01

    The O-ring paper plane can be categorized as one of the Micro Air Vehicle (MAV) based on their characteristics and size. However, the aerodynamics performance of the O-ring paper plane was not fully discovered by previous researchers due to its aerodynamics complexity and various hoop diameters. Thus, the objective of this research is to study the influence of hoop diameters towards the aerodynamics performance of O-ring paper plane. In this works, three types of O-ring paper plane known as Design 1, 2 and 3 with different hoop diameter were initially developed by using the ANSYS-Design Modeler. All the design was analyzed based on aerodynamic simulations works executed on ANSYS-CFX solver. The results suggested that Design 3 (with larger hoop size) produced better CL, CLmax and AoAstall magnitude compared to other design. In fact, O-ring paper plane with larger hoop size configurations showed potential in providing at least 5.2% and 5.9% better performance in stability (ΔCM/ΔCL) and aerodynamic efficiency (CL/CDmax), respectively. Despite the advantages found in lift performances, however, O-ring paper plane with larger hoop size configurations slightly suffered from larger drag increment (CDincrement) compared to smaller hoop size configurations. Based on these results, it can be presumed that O-Ring paper plane with larger hoop sizes contributed into better lift, stability and aerodynamic efficiency performances but slightly suffered from larger drag penalty.

  4. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B

    NASA Technical Reports Server (NTRS)

    Frederick, Michael; Ratnayake, Nalin

    2011-01-01

    The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.

  5. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in cleaninlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled time-marching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  6. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  7. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.; Emanuel, George

    1989-01-01

    The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.

  8. Results of low speed wind tunnel tests on a .0405 scale model Rockwell Space Shuttle Orbiter tested both in free air and in the presence of a ground plane (OA16)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Cameron, B. W.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a .0405 scale representation of the space shuttle orbiter in a 7.75 x 11 foot low speed wind tunnel during the time period March 21, to April 17, 1973. The primary test objectives were to investigate both the aerodynamic and propulsion effects of various air breathing engine systems in free air and in the presence of the ground. The free air portion of this test investigated the aerodynamic effects of engine nacelle number, nacelle grouping, and nacelle location. For this testing the model was sting mounted on a six component internal strain gage balance entering through the model base. The ground plane portion of the aerodynamic test investigated the same nacelle effects at ground plane locations of full scale W.P. = 239.9, 209.3, 158.9, 108.5, and 7.78 in. At the conclusion of the aerodynamic test period the propulsion effects of various nacelle locations and freestream orientations in the presence of the ground were investigated.

  9. IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works

    NASA Technical Reports Server (NTRS)

    Davis, Zach S.; Park, M. A.

    2017-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.

  10. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  11. User interface concerns

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  12. A General Interface Method for Aeroelastic Analysis of Aircraft

    NASA Technical Reports Server (NTRS)

    Tzong, T.; Chen, H. H.; Chang, K. C.; Wu, T.; Cebeci, T.

    1996-01-01

    The aeroelastic analysis of an aircraft requires an accurate and efficient procedure to couple aerodynamics and structures. The procedure needs an interface method to bridge the gap between the aerodynamic and structural models in order to transform loads and displacements. Such an interface method is described in this report. This interface method transforms loads computed by any aerodynamic code to a structural finite element (FE) model and converts the displacements from the FE model to the aerodynamic model. The approach is based on FE technology in which virtual work is employed to transform the aerodynamic pressures into FE nodal forces. The displacements at the FE nodes are then converted back to aerodynamic grid points on the aircraft surface through the reciprocal theorem in structural engineering. The method allows both high and crude fidelities of both models and does not require an intermediate modeling. In addition, the method performs the conversion of loads and displacements directly between individual aerodynamic grid point and its corresponding structural finite element and, hence, is very efficient for large aircraft models. This report also describes the application of this aero-structure interface method to a simple wing and an MD-90 wing. The results show that the aeroelastic effect is very important. For the simple wing, both linear and nonlinear approaches are used. In the linear approach, the deformation of the structural model is considered small, and the loads from the deformed aerodynamic model are applied to the original geometry of the structure. In the nonlinear approach, the geometry of the structure and its stiffness matrix are updated in every iteration and the increments of loads from the previous iteration are applied to the new structural geometry in order to compute the displacement increments. Additional studies to apply the aero-structure interaction procedure to more complicated geometry will be conducted in the second phase of the present contract.

  13. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  14. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  15. Aerodynamic Simulation of Indoor Flight

    ERIC Educational Resources Information Center

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  16. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  17. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  18. Mitigation of Engine Inlet Distortion Through Adjoint-Based Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    The adjoint-based design capability in FUN3D is extended to allow efficient gradient- based optimization and design of concepts with highly integrated aero-propulsive systems. A circumferential distortion calculation, along with the derivatives needed to perform adjoint-based design, have been implemented in FUN3D. This newly implemented distortion calculation can be used not only for design but also to drive the existing mesh adaptation process and reduce the error associated with the fan distortion calculation. The design capability is demonstrated by the shape optimization of an in-house aircraft concept equipped with an aft fuselage propulsor. The optimization objective is the minimization of flow distortion at the aerodynamic interface plane of this aft fuselage propulsor.

  19. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  20. AirShow 1.0 CFD Software Users' Guide

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  1. Structural/aerodynamic Blade Analyzer (SAB) User's Guide, Version 1.0

    NASA Technical Reports Server (NTRS)

    Morel, M. R.

    1994-01-01

    The structural/aerodynamic blade (SAB) analyzer provides an automated tool for the static-deflection analysis of turbomachinery blades with aerodynamic and rotational loads. A structural code calculates a deflected blade shape using aerodynamic loads input. An aerodynamic solver computes aerodynamic loads using deflected blade shape input. The two programs are iterated automatically until deflections converge. Currently, SAB version 1.0 is interfaced with MSC/NASTRAN to perform the structural analysis and PROP3D to perform the aerodynamic analysis. This document serves as a guide for the operation of the SAB system with specific emphasis on its use at NASA Lewis Research Center (LeRC). This guide consists of six chapters: an introduction which gives a summary of SAB; SAB's methodology, component files, links, and interfaces; input/output file structure; setup and execution of the SAB files on the Cray computers; hints and tips to advise the user; and an example problem demonstrating the SAB process. In addition, four appendices are presented to define the different computer programs used within the SAB analyzer and describe the required input decks.

  2. The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models

    NASA Technical Reports Server (NTRS)

    Hill, Melissa A.; Jackson, E. Bruce

    2007-01-01

    It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.

  3. Aerodynamic braking of high speed ground transportation vehicles.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.; Marko, W. J.

    1973-01-01

    The drag effectiveness of aerodynamic brakes arranged in series on a train-like vehicle was investigated. Fixed- and moving-model testing techniques were used in order to determine the importance of proper vehicle-ground interference simulation. Fixed-model tests were carried out on a sting-mounted model: alone; with a fixed ground plane; and in proximity to an image model. Moving-model tests were conducted in a vertical slide-wire facility with and without a ground plane. Results from investigations of one brake configuration are presented which show the effect of the number of brakes in the set and of spacing between brakes.

  4. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    USDA-ARS?s Scientific Manuscript database

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  5. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  6. Application of the scalar and vector potentials to the aerodynamics of jets

    NASA Technical Reports Server (NTRS)

    Russell, H. L.; Skifstad, J. G.

    1973-01-01

    The applicability of a method based on the Stokes potentials (vector and scalar potentials) to computations associated with the aerodynamics of jets was examined. The aerodynamic field near the nozzle could be represented and that the influence of a nonuniform velocity profile at the nozzle exit plane could be determined. Also computations were made for an axisymmetric jet exhausting into a quiescient atmosphere. The velocity at the axis of the jet, and the location of the half-velocity points along the jet yield accurate aerodynamic field computations. Inconsistencies among the different theoretical characterizations of jet flowfields are shown.

  7. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  8. Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Hoadley, Sherwood Tiffany

    1991-01-01

    The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.

  9. Measured Aerodynamic Interaction of Two Tiltrotors

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  10. Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Byrd, Paul F

    1951-01-01

    The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.

  11. Aerodynamic Characteristics of Three Deep-Stepped Planing-Tail Flying-Boat Hulls

    NASA Technical Reports Server (NTRS)

    Riebe, John M.; Naeseth, Rodger L.

    1947-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull.

  12. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  13. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  14. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  15. Determination of Shed Ice Particle Size Using High Speed Digital Imaging

    NASA Technical Reports Server (NTRS)

    Broughton, Howard; Owens, Jay; Sims, James J.; Bond, Thomas H.

    1996-01-01

    A full scale model of an aircraft engine inlet was tested at NASA Lewis Research Center's Icing Research Tunnel. Simulated natural ice sheds from the engine inlet lip were studied using high speed digital image acquisition and image analysis. Strategic camera placement integrated at the model design phase allowed the study of ice accretion on the inlet lip and the resulting shed ice particles at the aerodynamic interface plane at the rear of the inlet prior to engine ingestion. The resulting digital images were analyzed using commercial and proprietary software to determine the size of the ice particles that could potentially be ingested by the engine during a natural shedding event. A methodology was developed to calibrate the imaging system and insure consistent and accurate measurements of the ice particles for a wide range of icing conditions.

  16. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  17. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  18. Wind-Tunnel Tests of a Portion of a PV-2 Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1945-01-01

    A portion of a PV-2 helicopter rotor blade has been tested in the 6- by 6-foot test section of the Langley stability tunnel to determine if the aerodynamic characteristics were seriously affected by cross flow or fabric distortion. The outer portion of the blade was tested as a reflection plane model pivoted about the tunnel wall to obtain various angles of cross flow over the blade. Because the tunnel wall acts as a plane of sytry, the measured aerodynamic characteristics correspond to those of an airfoil having various angles of sweepforward and sweepback. Tests were made with the vents on the lower surface open and also with the vents sealed and the internal pressure held at -20 inches of water producing an internal pressure coefficient of -1.059. The change in contour resulting from the range of internal pressures used had very little effect on the aerodynamic characteristics of the blade. The test methods were considered to simulate inadequately the flow conditions over the rotor blade because the effects of cross flow were limited to conditions corresponding to sweep of the blade. The results indicated that this type of cross flow had only minor effects on the aerodynamic characteristics of the blade. It is believed, therefore, that future tests to determine the effects on the aerodynamic characteristics of cross flow should utilize complete rotors.

  19. Generalization of the subsonic kernel function in the s-plane, with applications to flutter analysis

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.; Desmarais, R. N.

    1984-01-01

    A generalized subsonic unsteady aerodynamic kernel function, valid for both growing and decaying oscillatory motions, is developed and applied in a modified flutter analysis computer program to solve the boundaries of constant damping ratio as well as the flutter boundary. Rates of change of damping ratios with respect to dynamic pressure near flutter are substantially lower from the generalized-kernel-function calculations than from the conventional velocity-damping (V-g) calculation. A rational function approximation for aerodynamic forces used in control theory for s-plane analysis gave rather good agreement with kernel-function results, except for strongly damped motion at combinations of high (subsonic) Mach number and reduced frequency.

  20. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  1. Five-parameter crystallographic characteristics of the interfaces formed during ferrite to austenite transformation in a duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Haghdadi, N.; Cizek, P.; Hodgson, P. D.; Tari, V.; Rohrer, G. S.; Beladi, H.

    2018-05-01

    The crystallography of interfaces in a duplex stainless steel having an equiaxed microstructure produced through the ferrite to austenite diffusive phase transformation has been studied. The five-parameter interface character distribution revealed a high anisotropy in habit planes for the austenite-ferrite and austenite-austenite interfaces for different lattice misorientations. The austenite and ferrite habit planes largely terminated on (1 1 1) and (1 1 0) planes, respectively, for the austenite-ferrite interfaces associated with Kurdjumov-Sachs (K-S) and Nishiyama-Wasserman (N-W) orientation relationships. This was mostly attributed to the crystallographic preference associated with the phase transformation. For the austenite-ferrite interfaces with orientation relationships which are neither K-S nor N-W, both austenite and ferrite habit planes had (1 1 1) orientations. Σ3 twin boundaries comprised the majority of austenite-austenite interfaces, mostly showing a pure twist character and terminating on (1 1 1) planes due to the minimum energy configuration. The second highest populated austenite-austenite boundary was Σ9, which tended to have grain boundary planes in the tilt zone due to the geometrical constraints. Furthermore, the intervariant crystallographic plane distribution associated with the K-S orientation relationship displayed a general tendency for the austenite habit planes to terminate with the (1 1 1) orientation, mainly due to the crystallographic preference associated with the phase transformation.

  2. After 40 Years Why Hasn’t the Computer Replaced the Wind Tunnel?

    DTIC Science & Technology

    2010-09-01

    transform the aerodynamic design process. Many of his CFD projections have been exceeded over the last 30 years. (He was forecasting breakthroughs only...frequently found late in the development cycle for a flight system usually occur at the interface of major subsystems (e.g., aerodynamically induced...the causative relations between aerodynamic shapes and vehicle performance. The tools also allow relatively rapid evaluation of changes to the design

  3. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  4. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    PubMed

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  5. Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae

    PubMed Central

    Von Busse, Rhea; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2012-01-01

    Summary The morphology and kinematics of a flying animal determines the resulting aerodynamic lift through the regulation of the speed of the air moving across the wing, the wing area and the lift coefficient. We studied the detailed three-dimensional wingbeat kinematics of the bat, Leptonycteris yerbabuenae, flying in a wind tunnel over a range of flight speeds (0–7 m/s), to determine how factors affecting the lift production vary across flight speed and within wingbeats. We found that the wing area, the angle of attack and the camber, which are determinants of the lift production, decreased with increasing speed. The camber is controlled by multiple mechanisms along the span, including the deflection of the leg relative to the body, the bending of the fifth digit, the deflection of the leading edge flap and the upward bending of the wing tip. All these measures vary throughout the wing beat suggesting active or aeroelastic control. The downstroke Strouhal number, Std, is kept relatively constant, suggesting that favorable flow characteristics are maintained during the downstroke, across the range of speeds studied. The Std is kept constant through changes in the stroke plane, from a strongly inclined stroke plane at low speeds to a more vertical stroke plane at high speeds. The mean angular velocity of the wing correlates with the aerodynamic performance and shows a minimum at the speed of maximum lift to drag ratio, suggesting a simple way to determine the optimal speed from kinematics alone. Taken together our results show the high degree of adjustments that the bats employ to fine tune the aerodynamics of the wings and the correlation between kinematics and aerodynamic performance. PMID:23259057

  6. The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron

    NASA Astrophysics Data System (ADS)

    Xu, Mingqin; Wang, Lu; Lu, Wenquan; Zeng, Long; Nadendla, Hari-Babu; Wang, Yun; Li, Jun; Hu, Qiaodan; Xia, Mingxu; Li, Jianguo

    2018-03-01

    The nucleation potency of iron oxides was verified experimentally through nucleation undercooling of liquid iron using aerodynamic levitation technology for minimized container contaminations. Steady undercooling values were subsequently obtained from multiple melting and freezing thermal cycles, with the average undercooling values of 223 K ± 3 K and 75 K ± 6 K (223 °C ± 3 °C and 75 °C ± 6 °C) for FeO-contained liquid and Fe3O4-contained liquid, respectively. The statistical results showed a negligible difference in the sizes and numbers of particles between FeO and Fe3O4 particles, indicating that the nucleation potency difference is attributed to the nature of nucleants rather than particle size or numbers. Furthermore, high-resolution transmission electron microscopy analysis showed that the potential nucleation interfaces can be assumed as { 1 1 0}_{{δ {{-Fe}}}} //( 0 0\\bar{2})_{FeO} and { 1 1 2}_{{δ {{-Fe}}}} //(\\bar{2} 0 2 )_{{{Fe}3 {O}4 }} , based on the detected exposed crystal planes of the oxide particles. Both the interfaces have relatively large values of lattice misfit, consistent with the experimentally measured undercooling based on Turnbull's lattice matching theory.

  7. Space-Time Interface-Tracking Computations with Contact Between Solid Surfaces

    DTIC Science & Technology

    2014-04-01

    parachute FSI [70, 72, 73, 75, 53, 55, 46, 51, 57], flapping-wing aerodynamics [48, 50], and wind - turbine rotor and tower aerodynamics [61]. It can...48, 50], and wind - turbine rotor and tower aerodynamics with the blades passing the tower 18 4 close [61]. As mentioned in [16], one of course...9] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E. Tezduyar. 3D simulation of wind turbine rotors at

  8. Investigation to Study the Aerodynamic Ship Wake Turbulence Generated by a DD963 Destroyer.

    DTIC Science & Technology

    1979-10-01

    development of aircraft control systems and aerodynamics and ship interfacing hardware. The DD 963 had previously been designated as the smallest non...P AD-AOA3 663 BOEING VERTOL CO PHILADELPHIA PA F/6 20/4 INVESTI6ATION To STUDY THE AERODYNAMIC SHIP WAKE TURBULENCE GEN-ETCIU) OCT 79 T S GARNETT...16s9o * PHILADELPHIA. PENNSYLVANIA 10142 4 April 1980 8-1162-6192 Naval Air Development Center Warminster, Pennsylvania 18974 Attention: Code 6053

  9. The aerodynamics of the sinonasal interface: the nose takes wing-a paradigm shift for our time.

    PubMed

    Gungor, Anil A

    2013-04-01

    Ventilation of and gas exchange between the nose and the paranasal sinuses are believed to occur by convection and diffusion based on experiments that neglect the effects of physiological respiration and aerodynamic forces at the sinonasal interface (SNI). Based on these experiments, the exchange of gas is presumed to be slow, and principally dependent on gas concentration and diameter, number, and location of ostia. In 12 healthy adult volunteers, real-time sinus nitric oxide measurements were obtained with catheters placed through natural ostia during respiratory maneuvers. The nose is a masterful collection of aerodynamic foils and channels designed to accomplish powered sinonasal gas exchange and ventilation within a few seconds during each inspiration. The new perspective on the functional anatomy of the SNI demands a paradigm shift that is followed by physiological, medical, and surgical implications and a radical change in our perception and understanding. © 2013 ARS-AAOA, LLC.

  10. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  11. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.

  12. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  13. An experimental investigation of gapwise periodicity and unsteady aerodynamic response in an oscillating cascade. Volume 2: Data report. Part 2: Mode 2 data

    NASA Technical Reports Server (NTRS)

    Carta, F. O.

    1981-01-01

    Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge.

  14. Calculation of subsonic and supersonic steady and unsteady aerodynamic forces using velocity potential aerodynamic elements

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Yoo, Y. S.

    1976-01-01

    Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

  15. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  16. Close to real life. [solving for transonic flow about lifting airfoils using supercomputers

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Bailey, F. Ron

    1988-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

  17. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  18. Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno; Demasi, Luciano

    2016-11-01

    Diamond Wings, Strut- and Truss-Braced Wings, Box Wings, and PrandtlPlane, the so-called "JoinedWings", represent a dramatic departure from traditional configurations. Joined Wings are characterized by a structurally overconstrained layout which significantly increases the design space with multiple load paths and numerous solutions not available in classical wing systems. A tight link between the different disciplines (aerodynamics, flight mechanics, aeroelasticity, etc.) makes a Multidisciplinary Design and Optimization approach a necessity from the early design stages. Researchers showed potential in terms of aerodynamic efficiency, reduction of emissions and superior performances, strongly supporting the technical advantages of Joined Wings. This review will present these studies, with particular focus on the United States joined-wing SensorCraft, Strut- and Truss- Braced Wings, Box Wings and PrandtlPlane.

  19. Aerodynamic Characteristics of a Refined Deep-Step Planing-Tail Flying-Boat Hull with Various Forebody and Afterbody Shapes

    NASA Technical Reports Server (NTRS)

    Riebe, John M; Naeseth, Rodger L

    1953-01-01

    An investigation was made in the Langley 300 mph 7-by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes. For comparison, tests were made on a streamline body simulating the fuselage of a modern transport airplane. The results of the tests, which include the interference effects of a 21-percent-thick support wing, indicated that for corresponding configurations the hull models incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the hull models incorporating a forebody with a length-beam ratio of 5. Longitudinal and lateral stability was generally about the same for all hull models tested and about the same as that of a conventional hull.

  20. An overview of aeroelasticity studies for the National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  1. Composite Elastic Skins for Shape-Changing Structures

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.; Schlecht, Robin W.

    2007-01-01

    Composite elastic skins having tailorable mechanical properties have been invented for covering shape-changing ( morphable ) structures. These skins are intended especially for use on advanced aircraft that change shapes in order to assume different aerodynamic properties. Many of the proposals for aircraft that could perform large aerodynamic shape changes require flexible skins that could follow shape changes of internal structures driven by actuators. Examples of such shape changes can include growth or shrinkage of bumps, conformal changes in wing planforms, cambers, twists, and bending of integrated leading- and trailing-edge flaps. Prior to this invention, there was no way of providing smooth aerodynamic surfaces capable of large deflections while maintaining smoothness and sufficient rigidity. Although latex rubber, silicone rubber, and similar conventional materials can be made into smooth coverings, they are not suitable for this purpose because, in order to impart required stiffness against out-of-plane bending, it would be necessary to make the coverings excessively thick, thereby necessitating the use of impractically large actuation forces. The basic idea of the invention is that of smoothly wrapping an underlying variable structure with a smooth skin that can be stretched or otherwise warped with low actuation force in one or both in-plane direction(s) and is relatively stiff against out-of-plane bending. It is envisioned that a skin according to the invention could be stretched as much as 20 percent in a desired direction. Because this basic idea admits of numerous variations, the following description is necessarily oversimplified for the sake of brevity.

  2. An experimental investigation of gapwise periodicity and unsteady aerodynamic response in an oscillating cascade. 1: Experimental and theoretical results. [turbine blades

    NASA Technical Reports Server (NTRS)

    Carta, F. O.

    1982-01-01

    Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. Results from the unsteady Verdon/Caspar theory for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results are: (1) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested; (2) the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades; and (3) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.

  3. Interface stresses in fiber-reinforced materials with regular fiber arrangements

    NASA Astrophysics Data System (ADS)

    Mueller, W. H.; Schmauder, S.

    The theory of linear elasticity is used here to analyze the stresses inside and at the surface of fiber-reinforced composites. Plane strain, plane stress, and generalized plane strain are analyzed using the shell model and the BHE model and are numerically studied using finite element analysis. Interface stresses are shown to depend weakly on Poisson's ratio. For equal values of the ratio, generalized plane strain and plane strain results are identical. For small volume fractions up to 40 vol pct of fibers, the shell and the BHE models predict the interface stresses very well over a wide range of elastic mismatches and for different fiber arrangements. At higher volume fractions the stresses are influenced by interactions with neighboring fibers. Introducing an external pressure into the shell model allows the prediction of interface stresses in real composite with isolated or regularly arranged fibers.

  4. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  5. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap

    NASA Astrophysics Data System (ADS)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong

    2017-10-01

    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  6. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  7. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  8. Longitudinal Stability and Control Characteristics as Determined by the Rocket-model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-aspect-ratio Wing Having Trailing-edge Flap Controls for a Mach Number Range of 0.7 to 1.

    NASA Technical Reports Server (NTRS)

    Baber, Hal T , Jr; Moul, Martin T

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  9. Longitudinal Stability and Control Characteristics as Determined by the Rocket-Model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-Aspect-Ratio Wing Having Trailing-Edge Flap Controls for a Mach Number Range of 0.7 to 1.8

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Moul, M. T.

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  10. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  11. An experimental investigation of gapwise periodicity and unsteady aerodynamic response in an oscillating cascade. Volume 2: Data report. Part 1: Text and mode 1 data

    NASA Technical Reports Server (NTRS)

    Carta, F. O.

    1981-01-01

    Tests were conducted a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blade along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The tests were conducted for all 96 combinations 2 mean camberline incidence angles 2 pitching amplitudes 3 reduced frequencies and 8 interblade phase angles. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and particularly, the aerodynamic damping coefficient. Data obtained during the test program, reproduced from the printout of the data reduction program are complied. A further description of the contents of this report is found in the text that follows.

  12. Evaluation of aero Commander propeller acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1978-01-01

    Acoustic data are analyzed from a series of ground tests performed on an Aero Commander propeller-driven aircraft with an array of microphones flush-mounted on one side of the fuselage. The analyses were concerned with the propeller blade passage noise during static operation at several different engine speeds and included calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones. The results indicate that the pressure field impinging on the fuselage represents primarily aerodynamic (near field) effects in the plane of the propeller at all frequencies. Forward and aft of the propeller plane aerodynamic effects still dominate the pressure field at frequencies below 200 Hz; but at higher frequencies, the pressure field is due to acoustic propagation from an equivalent center located about 0.15 to 0.30 blade diameters inboard from the propeller hub.

  13. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  14. NASA R and T aerospace plane vehicles: Progress and plans

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.

    1985-01-01

    Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.

  15. Aerodynamic Characteristics of a Refined Deep-step Planing-tail Flying-boat Hull with Various Forebody and Afterbody Shapes

    NASA Technical Reports Server (NTRS)

    Riebe, John M; Naeseth, Rodger L

    1952-01-01

    An investigation was made in the Langley 300-mph 7- by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes and, for comparison, a streamline body simulating the fuselage of a modern transport airplane. The results of the tests indicated that the configurations incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the configurations incorporating a forebody with length-beam ratio of 5. The lowest minimum drag coefficients, which were considerably less than that of a conventional hull and slightly less than that of a streamline body, were obtained on the length-beam-ratio-7 forebody, alone and with round center boom. Drag coefficients and longitudinal- and lateral-stability parameters presented include the interference of a 21-percent-thick support wing.

  16. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    NASA Technical Reports Server (NTRS)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  17. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    NASA Astrophysics Data System (ADS)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  18. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  19. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  20. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  1. Towards Real-Time Pilot-in-the-Loop Simulation of Rotorcraft With Fully-Coupled CFD Solutions of Rotor / Terrain Interactions

    NASA Astrophysics Data System (ADS)

    Oruc, Ilker

    This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).

  2. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J. M.

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less

  3. Energy-Based Design of Reconfigurable Micro Air Vehicle (MAV) Flight Structures

    DTIC Science & Technology

    2014-02-01

    plate bending element derived herein. The purpose of the six degree-of-freedom model was to accommodate in-plane and out-of-plane aerodynamic loading...combinations. The FE model was validated and the MATLAB implementation was verified with classical beam and plate solutions. A compliance minimization...formulation was not found among the finite element literature. Therefore a formulation of such a bending element was derived using classic Kirchoff plate

  4. The interference aerodynamics caused by the wing elasticity during store separation

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Zheng-yin, Ye

    2016-04-01

    Air-launch-to-orbit is the technology that has stores carried aloft and launched the store from the plane to the orbit. The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered is simulated numerically. And the interactive aerodynamic forces are analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Because of the effect of the interference aerodynamics, the roll angle response and pitch angle response increase. When the store is mounted under the wingtip, the additional aerodynamics caused by the wingtip vortex is obvious, which accelerate the divergence of the lateral force and the lateral-directional attitude angle of the store. This study supports some beneficial conclusions to the engineering application of the air-launch-to-orbit.

  5. Blade mistuning coupled with shaft flexibility effects in rotor aeroelasticity

    NASA Technical Reports Server (NTRS)

    Khader, Naim; Loewy, Robert G.

    1989-01-01

    The effect of bladed-disk polar dissymmetry, resulting from variations in mass from one blade to another, on aeroelastic stability boundaries for a fan stage is presented. In addition to both in-plane and out-of-plane deformations of the bladed-disk, bending of the supporting shaft in two planes is considered, and the resulting Coriolis forces and gyroscopic moments are included in the analysis. A quasi-steady aerodynamics approach is combined with the Lagrangian method to develop the governing equations of motion for the flexible bladed-disk-shaft assembly. Calculations are performed for an actual fan stage.

  6. Application Program Interface for the Orion Aerodynamics Database

    NASA Technical Reports Server (NTRS)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduced

  7. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  8. Out-of-plane aerodynamic forces on slender ogive-nosed cylinders

    NASA Astrophysics Data System (ADS)

    Lacey, M. R.

    An ogive-nosed cylinder with a nose fineness of 3 and a body length equal to 12 diameters, has been tested at a constant crossflow Reynolds' number of 85000 and constant crossflow Mach number of 0.1 in the angle of incidence range 0° - 90°, A method of force measurement has been devised to determine the magnitude of the aerodynamic forces on the ogive cylinder and a statistical analysis was developed to predict its accuracy for any model configuration. It was found generally that the results of static loading tests lay well within the stipulated accuracy limits. The out-of-plane forest and moments measured generally agreed well with published data and predictions based on experimental results. Similar agreement was obtained for in-plane forces and moments. The results for the effect of model roll-orientation on the out-of-plane force indicated the existence of two distinct states of asymmetry in the wake, with an absence of any intermediate states. The out-of-plane forces showed no correlation with the position of model nose imperfections, supporting the findings of previous experimenters. Reducing the length of the cylindrical body section of the model served first to reduce the out-of-plane force but subsequently produced a recovery in its magnitude with further shortening. These results agreed well with the prediction method selected. Increased free stream turbulence tended to have less effect on the distribution of the out-of-plane force than previously reported; no flow unsteadiness was observed and no change in direction of roce was recorded. Increased nose tip radius generally reduced the out- of plane force and considerable directional instability was observed. This reduction was, however, not true for all incidence angles. The directional instability was due probably to the removal of the nose tip imperfections, resulting in an inability of the wake to establish a preferred direction of asymmetry throughout the range of incidence.

  9. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  10. High- T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Castro, D.; Cantoni, C.; Ridolfi, F.

    2015-09-28

    At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low T c. We report the occurrence of high T c superconductivity in the bilayer CaCuO 2/SrTiO 3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO 2/SrTiO 3 interface must be realized between the Ca plane of CaCuO 2 and the TiO 2 plane of SrTiO 3. Only inmore » this case can oxygen ions be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO 2 planes. In addition, a detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 1–2 CaCuO 2 unit cells close to the interface with SrTiO 3. The results obtained for the CaCuO 2/SrTiO 3 interface can be extended to multilayered high T c cuprates, contributing to explaining the dependence of T c on the number of CuO 2 planes in these systems.« less

  11. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  12. Radiation patterns of interfacial dipole antennas

    NASA Technical Reports Server (NTRS)

    Engheta, N.; Papas, C. H.; Elachi, C.

    1982-01-01

    The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.

  13. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  14. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  15. The aerodynamic cost of flight in bats--comparing theory with measurement

    NASA Astrophysics Data System (ADS)

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Breuer, Kenneth S.

    2012-11-01

    Aerodynamic theory has long been used to predict the aerodynamic power required for animal flight. However, even though the actuator disk model does not account for the flapping motion of a wing, it is used for lack of any better model. The question remains: how close are these predictions to reality? We designed a study to compare predicted aerodynamic power to measured power from the kinetic energy contained in the wake shed behind a bat flying in a wind tunnel. A high-accuracy displaced light-sheet stereo PIV system was used in the Trefftz plane to capture the wake behind four bats flown over a range of flight speeds (1-6m/s). The total power in the wake was computed from the wake vorticity and these estimates were compared with the power predicted using Pennycuick's model for bird flight as well as estimates derived from measurements of the metabolic cost of flight, previously acquired from the same individuals.

  16. Aerodynamic roughness: A simple and alternative metric to detect the seasonality of canopy structure using flux-tower data

    NASA Astrophysics Data System (ADS)

    Chu, H.; Baldocchi, D. D.

    2017-12-01

    FLUXNET - the global network of eddy covariance tower sites provides valuable datasets of the direct and in situ measurements of fluxes and ancillary variables that are used across different disciplines and applications. Aerodynamic roughness (i.e., roughness length, zero plane displacement height) are one of the potential parameters that can be derived from flux-tower data and are crucial for the applications of land surface models and flux footprint models. As aerodynamic roughness are tightly associated with canopy structures (e.g., canopy height, leaf area), such parameters could potentially serve as an alternative metric for detecting the change of canopy structure (e.g., change of leaf areas in deciduous ecosystems). This study proposes a simple approach for deriving aerodynamic roughness from flux-tower data, and tests their suitability and robustness in detecting the seasonality of canopy structure. We run tests across a broad range of deciduous forests, and compare the seasonality derived from aerodynamic roughness (i.e., starting and ending dates of leaf-on period and peak-foliage period) against those obtained from remote sensing or in situ leaf area measurements. Our findings show aerodynamic roughness generally captures the timing of changes of leaf areas in deciduous forests. Yet, caution needs to be exercised while interpreting the absolute values of the roughness estimates.

  17. Transient aerodynamic characteristics of vans during the accelerated overtaking process

    NASA Astrophysics Data System (ADS)

    Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li

    2018-04-01

    This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.

  18. Aerodynamic Characteristics of the 30mm XM788E1 and XM789 projectiles

    DTIC Science & Technology

    1982-10-01

    successfully predicted the effect of a cubic Magnus moment on the damping rates by means of an amplitude-plane analysis. However, the amplitude-plane...technique becomes cumbersome for a projectile with both Magnus and pitch-dariping moment non-linearities. The effects of changi,,y epi- cyclic...show the existence of a slow arm limit- cycle yaw at high subsonic speeds, and a limit-epicycle yaw at lower subsonic speeds. The effect of the limit

  19. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  20. Minimum fuel trajectory for the aerospace-plane

    NASA Technical Reports Server (NTRS)

    Breakwell, John V.; Golan, Oded; Sauvageot, Anne

    1990-01-01

    An overall trajectory for a single-stage-to-orbit vehicle with an initial weight of 234 tons is calculated, and four different propulsion models including turbojet, ramjet, scramjet, and rocket are considered. First, the atmospheric flight in the thicker atmosphere is discussed with emphasis on trajectory optimization, optimization problem, aerodynamic problem, propulsion model, and initial conditions. The performance of turbojet and ramjet-scramjet engines is analyzed; and then the flight to orbit is assessed from the optimization point of view. It is shown that roll modulation saves little during the trajectory, and the combined application of airbreathing propulsion and aerodynamic lift is suggested.

  1. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade at Low Inlet Turbulence

    NASA Technical Reports Server (NTRS)

    Flegel-McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements obtained in a transonic linear cascade were used to assess the impact of large incidence angle and Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D section of a variable-speed power-turbine (VSPT) rotor blade. Steady-state data were obtained for ten incidence angles ranging from +15.8 deg to -51.0 deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×10(exp 5) to 2.12×10(exp 6). Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8 deg and -36.7 deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures. Tests were conducted in the NASA Glenn Transonic Turbine Blade Cascade Facility. The measurements reflect strong secondary flows associated with the high aerodynamic loading levels at large positive incidence angles and an increase in loss levels with decreasing Reynolds number. The secondary flows decrease with negative incidence as the blade becomes unloaded. Transitional flow is admitted in this low inlet turbulence dataset, making it a challenging CFD test case. The dataset will be used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range. deg

  2. Analytical observations on the aerodynamics of a delta wing with leading edge flaps

    NASA Technical Reports Server (NTRS)

    Oh, S.; Tavella, D.

    1986-01-01

    The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

  3. Aerodynamic seals for rotary machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include amore » secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.« less

  4. Sensitivity analysis of a wing aeroelastic response

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.

    1991-01-01

    A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.

  5. A time accurate prediction of the viscous flow in a turbine stage including a rotor in motion

    NASA Astrophysics Data System (ADS)

    Shavalikul, Akamol

    In this current study, the flow field in the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was simulated. This study examined four sets of simulations. The first two sets are for an individual NGV and for an individual rotor. The last two sets use a multiple reference frames approach for a complete turbine stage with two different interface models: a steady circumferential average approach called a mixing plane model, and a time accurate flow simulation approach called a sliding mesh model. The NGV passage flow field was simulated using a three-dimensional Reynolds Averaged Navier-Stokes finite volume solver (RANS) with a standard kappa -- epsilon turbulence model. The mean flow distributions on the NGV surfaces and endwall surfaces were computed. The numerical solutions indicate that two passage vortices begin to be observed approximately at the mid axial chord of the NGV suction surface. The first vortex is a casing passage vortex which occurs at the corner formed by the NGV suction surface and the casing. This vortex is created by the interaction of the passage flow and the radially inward flow, while the second vortex, the hub passage vortex, is observed near the hub. These two vortices become stronger towards the NGV trailing edge. By comparing the results from the X/Cx = 1.025 plane and the X/Cx = 1.09 plane, it can be concluded that the NGV wake decays rapidly within a short axial distance downstream of the NGV. For the rotor, a set of simulations was carried out to examine the flow fields associated with different pressure side tip extension configurations, which are designed to reduce the tip leakage flow. The simulation results show that significant reductions in tip leakage mass flow rate and aerodynamic loss reduction are possible by using suitable tip platform extensions located near the pressure side corner of the blade tip. The computations used realistic turbine rotor inlet flow conditions in a linear cascade arrangement in the relative frame of reference; the boundary conditions for the computations were obtained from inlet flow measurements performed in the AFTRF. A complete turbine stage, including an NGV and a rotor row was simulated using the RANS solver with the SST kappa -- o turbulence model, with two different computational models for the interface between the rotating component and the stationary component. The first interface model, the circumferentially averaged mixing plane model, was solved for a fixed position of the rotor blades relative to the NGV in the stationary frame of reference. The information transferred between the NGV and rotor domains is obtained by averaging across the entire interface. The quasi-steady state flow characteristics of the AFTRF can be obtained from this interface model. After the model was validated with the existing experimental data, this model was not only used to investigate the flow characteristics in the turbine stage but also the effects of using pressure side rotor tip extensions. The tip leakage flow fields simulated from this model and from the linear cascade model show similar trends. More detailed understanding of unsteady characteristics of a turbine flow field can be obtained using the second type of interface model, the time accurate sliding mesh model. The potential flow interactions, wake characteristics, their effects on secondary flow formation, and the wake mixing process in a rotor passage were examined using this model. Furthermore, turbine stage efficiency and effects of tip clearance height on the turbine stage efficiency were also investigated. A comparison between the results from the circumferential average model and the time accurate flow model results is presented. It was found that the circumferential average model cannot accurately simulate flow interaction characteristics on the interface plane between the NGV trailing edge and the rotor leading edge. However, the circumferential average model does give accurate flow characteristics in the NGV domain and the rotor domain with less computational time and computer memory requirements. In contrast, the time accurate flow simulation can predict all unsteady flow characteristics occurring in the turbine stage, but with high computational resource requirements. (Abstract shortened by UMI.)

  6. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  7. First principles study of α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Shang, Jia-Xiang; Wang, Fu-He; Zhang, Yue

    2013-07-01

    The α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces with six orientation relationships are studied by using the first-principle density functional theory. The calculated results indicate that the Ti3Al(0 0 0 1) surface has a higher surface energy (1.964 J/m2) and larger surface relaxations, compared with the γ-TiAl(1 1 1) surface. For the γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interface structures, the work of separation along Ti3Al(0 0 0 1) cleavage plane is larger than that along TiAl(1 1 1) plane. In the interface region, the bonding strengths between Ti3Al layers and between TiAl layers are smaller than those along Ti3Al(0 0 0 1) plane and TiAl(1 1 1) plane in the bulk materials, respectively. The heterogeneous interface would be the weak link in the material, and the bonding strength of interface depends on the weaker one of the two phases. The bonding characteristics of interface are analyzed by the electron local function.

  8. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  9. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  10. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2012-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition

  11. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  12. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE PAGES

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...

    2017-12-02

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  13. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  14. Plane Evanescent Waves and Interface Waves

    NASA Astrophysics Data System (ADS)

    Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.

    The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.

  15. Anti-plane eigenstrain problem of an inclusion of arbitrary shape in an anisotropic bimaterial with a semi-infinite interface crack

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2018-02-01

    We consider an Eshelby inclusion of arbitrary shape with uniform anti-plane eigenstrains embedded in one of two bonded dissimilar anisotropic half planes containing a semi-infinite interface crack situated along the negative real axis. Using two consecutive conformal mappings, the upper and lower halves of the physical plane are first mapped onto two separate quarters of the image plane. The corresponding boundary value problem is then analyzed in this image plane rather than in the original physical plane. Corresponding analytic functions in all three phases of the composite are derived via the construction of an auxiliary function and repeated application of analytic continuation across the real and imaginary axes in the image plane. As a result, the local stress intensity factor is then obtained explicitly. Perhaps most interestingly, we find that the satisfaction of a particular condition makes the inclusion (stress) invisible to the crack.

  16. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Okunishi, E.; Nishiura, T.; Kawano, H.; Inamura, T.; S., Ii; Hara, T.

    2012-06-01

    Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a ? B19‧ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a ? B19‧ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the ⟨011⟩B19‧ type II and/or ? B19‧ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the ? B19‧ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis.

  17. A new apparatus for testing the delayed mechanical behaviour of interfaces: The Shearing Interfaces Creep box (SInC box)

    NASA Astrophysics Data System (ADS)

    Stavropoulou, Eleni; Briffaut, Matthieu; Dufour, Frédéric; Camps, Guillaume; Boulon, Marc

    2017-06-01

    A new experimental apparatus is presented for testing the time-dependent behaviour of interfaces, including in particular interfaces of geomaterials, under constant loading. This apparatus allows the application of two orthogonal loads normal and tangential to the mean plane of the interface, as well as the measurement of the axial and tangential relative displacements. The sample is moulded inside two half shear boxes and the system is designed in such a way that the shear force is applied along the mean plane of the interface. Some preliminary testing was carried out on a clay rock/concrete interface, under a controlled temperature environment. Preliminary results are presented, showing the evolution of the delayed displacements.

  18. Shaft flexibility effects on the forced response of a bladed-disk assembly

    NASA Technical Reports Server (NTRS)

    Khader, N.; Loewy, R. G.

    1990-01-01

    A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.

  19. An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells

    DOE PAGES

    Diot, Steven; François, Marianne M.

    2015-10-22

    In this study, we are interested in an interface reconstruction method for 3D arbitrary convex cells that could be used in multi-material flow simulations for instance. We assume that the interface is represented by a plane whose normal vector is known and we focus on the volume-matching step that consists in finding the plane constant so that it splits the cell according to a given volume fraction. We follow the same approach as in the recent authors' publication for 2D arbitrary convex cells in planar and axisymmetrical geometries, namely we derive an analytical formula for the volume of the specificmore » prismatoids obtained when decomposing the cell using the planes that are parallel to the interface and passing through all the cell nodes. This formula is used to bracket the interface plane constant such that the volume-matching problem is rewritten in a single prismatoid in which the same formula is used to find the final solution. Finally, the proposed method is tested against an important number of reproducible configurations and shown to be at least five times faster.« less

  20. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  1. High Reynolds Number Investigation of a Flush-Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.

  2. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  3. Hypersonic CFD applications at NASA Langley using CFL3D and CFL3DE

    NASA Technical Reports Server (NTRS)

    Richardson, Pamela F.

    1989-01-01

    The CFL3D/CFL3DE CFD codes and the industrial use status of the codes are outlined. Comparison of grid density, pressure, heat transfer, and aerodynamic coefficience are presented. Future plans related to the National Aerospace Plane Program are briefly outlined.

  4. Optimal multiple-pass aeroassisted plane change

    NASA Technical Reports Server (NTRS)

    Vinh, Nguyen X.; Ma, Der-Ming

    1990-01-01

    This paper presents the exact dimensionless equation of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes several passages through the atmosphere near the perigee of its orbit. While the orbit is slowly contracting, aerodynamic maneuver is performed to obtain the maximum plane change. Several plots were presented to show the optimal variations of the lift coefficient and the bank angle and the various elements of the orbit.

  5. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  6. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  7. Simulation of 3-D viscous compressible flow in multistage turbomachinery by finite element methods

    NASA Astrophysics Data System (ADS)

    Sleiman, Mohamad

    1999-11-01

    The flow in a multistage turbomachinery blade row is compressible, viscous, and unsteady. Complex flow features such as boundary layers, wake migration from upstream blade rows, shocks, tip leakage jets, and vortices interact together as the flow convects through the stages. These interactions contribute significantly to the aerodynamic losses of the system and degrade the performance of the machine. The unsteadiness also leads to blade vibration and a shortening of its life. It is therefore difficult to optimize the design of a blade row, whether aerodynamically or structurally, in isolation, without accounting for the effects of the upstream and downstream rows. The effects of axial spacing, blade count, clocking (relative position of follow-up rotors with respect to wakes shed by upstream ones), and levels of unsteadiness may have a significance on performance and durability. In this Thesis, finite element formulations for the simulation of multistage turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes equations for three-dimensional steady or unsteady, viscous, compressible, turbulent flows. Three methodologies are presented and compared. First, a steady multistage analysis using a a-mixing- plane model has been implemented and has been validated against engine data. For axial machines, it has been found that the mixing plane simulation methods match very well the experimental data. However, the results for a centrifugal stage, consisting of an impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency with engine performance data, indicating that the mixing plane method has been found to be inappropriate for centrifugal machines. Following these findings, a more complete unsteady multistage model has been devised for a configuration with equal number of rotor and stator blades (equal pitches). Non-matching grids are used at the rotor-stator interface and an implicit interpolation procedure devised to ensure continuity of fluxes across. This permits the rotor and stator equations to be solved in a fully- coupled manner, allowing larger time steps in attaining a time-periodic solution. This equal pitch approach has been validated on the complex geometry of a centrifugal stage. Finally, for a stage configuration with unequal pitches, the time-inclined method, developed by Giles (1991) for 2-D viscous compressible flow, has been extended to 3-D and formulated in terms of the physical solution vector U, rather than Q, a non-physical one. The method has been evaluated for unsteady flow through a rotor blade passage of the power turbine of a turboprop.

  8. Phonon-interface scattering in multilayer graphene on an amorphous support

    PubMed Central

    Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li

    2013-01-01

    The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656

  9. General image method in a plane-layered elastostatic medium

    NASA Technical Reports Server (NTRS)

    Fares, N.; Li, V. C.

    1988-01-01

    The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.

  10. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    PubMed

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  11. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  12. Damping behavior of nano-fibrous composites with viscous interface in anti-plane shear

    NASA Astrophysics Data System (ADS)

    Wang, Xu

    2017-06-01

    By using the composite cylinder assemblage model, we derive an explicit expression of the specific damping capacity of nano-fibrous composite with viscous interface when subjected to time-harmonic anti-plane shear loads. The fiber and the matrix are first endowed with separate and distinct Gurtin-Murdoch surface elasticities, and rate-dependent sliding occurs on the fiber-matrix interface. Our analysis indicates that the effective damping of the composite depends on five dimensionless parameters: the fiber volume fraction, the stiffness ratio, two parameters arising from surface elasticity and one parameter due to interface sliding.

  13. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    NASA Astrophysics Data System (ADS)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  14. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  15. Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Kristy, Michael H.

    1995-01-01

    A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.

  16. Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.

    1990-01-01

    The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.

  17. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement

    PubMed Central

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Voigt, Christian C.; Breuer, Kenneth S.

    2014-01-01

    Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3–7 m s−1). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick's and Rayner's models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency—the ratio of aerodynamic power output to metabolic power input—varied from 5.9% to 9.8% for the same individuals, changing with flight speed. PMID:24718450

  18. Film riding seal assembly for turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidkar, Rahul Anil; Giametta, Andrew Paul; Gibson, Nathan Evan McCurdy

    2016-06-07

    An aerodynamic seal assembly for a rotary machine includes multiple sealing segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward load-bearing section and an aft load-bearing section configured to generate an aerodynamic force between the shoe plate and the rotor. The shoe plate includes at least one labyrinth teeth facing the rotor and positioned between the forward load-bearing section and the aft load-bearing section. The sealing segment also includes at least one spring connected to a pedestal located about midway of an axial length of the shoemore » plate and to a stator interface element. Further, the sealing segment includes a rigid segmented secondary seal attached to the stator interface element at one first end and in contact with the pedestal of the shoe plate at one second end.« less

  19. A workstation based simulator for teaching compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.

  20. The crystallography of hydride formation in zirconium: II. the δ → ɛ transformation

    NASA Astrophysics Data System (ADS)

    Cassidy, M. P.; Wayman, C. M.

    1980-12-01

    The phenomenological crystallographic theory of martensitic transformations has been applied to the transformation from δ (fcc) to ɛ (fct) zirconium hydride, using published lattice parameters. The habit plane, orientation relationship, lattice invariant shear, and interface characteristics were determined by transmission electron microscopy and diffraction. The shape strain was observed by interference microscopy. Good agreement between the predictions of the theory and the measured crystallography was obtained. The predicted and observed lattice invariant shear was twinning on 101. These twins which are found within alternating bands of hydride variants produce a herringbone morphology, and the bands produce a roof gable type of surface relief. For a given plate, the measured habit plane, twin plane, unique Bain contraction axis, and orientation relationship were mutually consistent with the respective predictions for a single variant. The magnitude of the lattice invariant shear was in excellent agreement with the predicted value. The interfaces separating the e hydride bands were found to be of two types, which alternated, often filling an entire grain. One of these, termed a spear interface, was found to be a twin plane, across which the twinned regions of the two bands “matched-up”. The other, termed an impingement interface, was found to have twin regions which did not “match-up”. This morphology can be explained as a pair of ɛ-hydride plates which share a spear interface. When two growing spears impinge, the resulting impingement interface is of the second type.

  1. SOFIA Closed- and Open-Door Aerodynamic Analyses

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen; Frederick, Mike; Smith, Mark

    2012-01-01

    Work to evaluate the aerodynamic characteristics and the cavity acoustic environment of the SOFIA (Stratospheric Observatory for Infrared Astronomy) airplane has been completed. The airplane has been evaluated in its closed-door configuration, as well as several open-door configurations. Work performed included: acoustic analysis tool development, cavity acoustic evaluation, stability and control parameter estimation, air data calibration, and external flow evaluation. Qualitative airflow data were obtained during the closed- and open-door flights using tufts on the aft portion of the fuselage. Video was taken from a chase plane. This video was analyzed for various flight conditions, and general flow descriptions of the aft fuselage of the 747SP were developed for the different closed and open door configurations.

  2. Imaging the in-plane distribution of helium precipitates at a Cu/V interface

    DOE PAGES

    Chen, Di; Li, Nan; Yuryev, Dina; ...

    2017-02-15

    Here, we describe a transmission electron microscopy investigation of the distribution of helium precipitates within the plane of an interface between Cu and V. Statistical analysis of precipitate locations reveals a weak tendency for interfacial precipitates to align alongmore » $$\\langle$$110$$\\rangle$$-type crystallographic directions within the Cu layer. Comparison of these findings with helium-free Cu/V interfaces suggests that the precipitates may be aggregating preferentially along atomic-size steps in the interface created by threading dislocations in the Cu layer. Our observations also suggest that some precipitates may be aggregating along intersections between interfacial misfit dislocations.« less

  3. Disorder-controlled superconductivity at YBa2Cu3O7/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Barriocanal, J.; Perez-Muñoz, A. M.; Sefrioui, Z.; Arias, D.; Varela, M.; Leon, C.; Pennycook, S. J.; Santamaria, J.

    2013-06-01

    We examine the effect of interface disorder in suppressing superconductivity in coherently grown ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intracell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  4. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  5. Electron Solvation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Bezel, I.; Gaffney, K. J.; Garrett-Roe, S.; Liu, S. H.; Szymanski, P.; Harris, C. B.

    2002-08-01

    Ultrafast two-photon photoemission has been used to study electron solvation at two-dimensional metal/polar-adsorbate interfaces. The molecular motion that causes the excess electron solvation is manifested as a dynamic shift in the electronic energy. Although the initially excited electron is delocalized in the plane of the interface, interactions with the adsorbate can lead to its localization. A method for determining the spatial extent of the localized electron in the plane of the interface has been developed. This spatial extent was measured to be on the order of a single adsorbate molecule.

  6. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and calculated the generalized aerodynamic forces, eigenvalues, and response amplitudes. The eigenvalues determine the flutter frequency and damping. As a test case, the flutter of a helical fan was calculated with LINFLUX and compared with calculations from TURBO-AE, a nonlinear time domain code, and from ASTROP2, a code based on linear unsteady aerodynamics.

  7. Breakdown between bare electrodes with an oil-paper interface

    NASA Astrophysics Data System (ADS)

    Kelley, E. F.; Hebner, R. E., Jr.

    1980-06-01

    Measurements of the location of electrical breakdown in a composite insulating system were made. For these measurements a paper sample was mounted so that it connected the two electrodes. Electrode structures ranging from plane-plane to sphere-sphere were used. The electrode paper system was tested in oil in an attempt to determine the properties of an oil paper interface. The data indicated that in a carefully prepared system the breakdown will not necessarily occur at the interface. In addition, it was found that the breakdown voltages were not significantly lower for those breakdowns which occurred at the interface than for those which did not. It was noted that if the paper interface was not dried or if many gaseous voids were left in or on the paper, the breakdown will regularly occur at the interface and at a lower voltage.

  8. Shear-Sensitive Liquid Crystal Coating Method Applied Through Transparent Test Surfaces

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.

    1999-01-01

    Research conducted at NASA Ames Research Center has shown that the color-change response of a shear-sensitive liquid crystal coating (SSLCC) to aerodynamic shear depends on both the magnitude of the local shear vector and its direction relative to the observer's in-plane line of sight. In conventional applications, the surface of the SSLCC exposed to aerodynamic shear is illuminated with white light from the normal direction and observed from an oblique above-plane view angle of order 30 deg. In this top-light/top-view mode, shear vectors with components directed away from the observer cause the SSLCC to exhibit color-change responses. At any surface point, the maximum color change (measured from the no-shear red or orange color) always occurs when the local vector is aligned with, and directed away from, the observer. The magnitude of the color change at this vector-observer-aligned orientation scales directly with shear stress magnitude. Conversely, any surface point exposed to a shear vector with a component directed toward the observer exhibits a non-color-change response, always characterized by a rusty-red or brown color, independent of both shear magnitude and direction. These unique, highly directional color-change responses of SSLCCs to aerodynamic shear allow for the full-surface visualization and measurement of continuous shear stress vector distributions. The objective of the present research was to investigate application of the SSLCC method through a transparent test surface. In this new back-light/back-view mode, the exposed surface of the SSLCC would be subjected to aerodynamic shear stress while the contact surface between the SSLCC and the solid, transparent wall would be illuminated and viewed in the same geometrical arrangement as applied in conventional applications. It was unknown at the outset whether or not color-change responses would be observable from the contact surface of the SSLCC, and, if seen, how these color-change responses might relate to those observed in standard practice.

  9. A Basic Experiment on the Aerodynamics of Sniffing

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; Kester, Douglas A.

    1999-11-01

    Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)

  10. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  11. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  12. Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis

    NASA Technical Reports Server (NTRS)

    Miele, Angelo; Lee, W. Y.; Wu, G. D.

    1990-01-01

    The optimization of the trajectories of an aerospace plane is discussed. This is a hypervelocity vehicle capable of achieving orbital speed, while taking off horizontally. The vehicle is propelled by four types of engines: turbojet engines for flight at subsonic speeds/low supersonic speeds; ramjet engines for flight at moderate supersonic speeds/low hypersonic speeds; scramjet engines for flight at hypersonic speeds; and rocket engines for flight at near-orbital speeds. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied under the following assumptions: the turbojet portion of the trajectory has been completed; the aerospace plane is controlled via the angle of attack and the power setting; the aerodynamic model is the generic hypersonic aerodynamics model example (GHAME). Concerning the engine model, three options are considered: (EM1), a ramjet/scramjet combination in which the scramjet specific impulse tends to a nearly-constant value at large Mach numbers; (EM2), a ramjet/scramjet combination in which the scramjet specific impulse decreases monotonically at large Mach numbers; and (EM3), a ramjet/scramjet/rocket combination in which, owing to stagnation temperature limitations, the scramjet operates only at M approx. less than 15; at higher Mach numbers, the scramjet is shut off and the aerospace plane is driven only by the rocket engines. Under the above assumptions, four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (P1) minimization of the weight of fuel consumed; (P2) minimization of the peak dynamic pressure; (P3) minimization of the peak heating rate; and (P4) minimization of the peak tangential acceleration.

  13. Wing motion measurement and aerodynamics of hovering true hoverflies.

    PubMed

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  14. Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe

    2018-06-01

    A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.

  15. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  16. Interface Defect States and Charge Transport Properties in Low-Cost Photovoltaic Devices made from Scalable Deposition Methods

    NASA Astrophysics Data System (ADS)

    Marin, Andrew; Munoz-Rojas, David; Iza, Diana; Gershon, Talia; MacManus-Driscoll, Judith

    2011-03-01

    In-plane (parallel to the substrate) polymer diffusion at and near interfaces has significant implications for polymeric surfactants used in tertiary oil recovery, exfoliation of clay sheets in polymer nano-composites, and several other high technology applications. Here, we report a study on the in-plane diffusion of whole polymer chains confined between interfaces using fluorescence recovery after photobleaching. Adapted from quantitative biology, FRAP provides a platform to independently study the effect of temperature, molecular weight, and film thickness on in-plane diffusion of polymers confined between interfaces. Fluorescently labeled polymers were synthesized, spin coated onto quartz substrates and the self-diffusion coefficient was measured by irreversibly photobleaching fluorophores in a pre-defined pattern and monitoring recovery of fluorescence over time. Preliminary results indicate that for thick films the diffusion coefficient is consistent with bulk values. The authors would like to thank the Gates-Cambridge Trust and the International Copper Association.

  17. Stress-free end problem in layered materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1977-01-01

    In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.

  18. Interface crack in a nonhomogeneous elastic medium

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1988-01-01

    The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.

  19. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    NASA Technical Reports Server (NTRS)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.

  20. Thermal conductivity of III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less

  1. Analysis of oscillatory motion of a light airplane at high values of lift coefficient

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1983-01-01

    A modified stepwise regression is applied to flight data from a light research air-plane operating at high angles at attack. The well-known phenomenon referred to as buckling or porpoising is analyzed and modeled using both power series and spline expansions of the aerodynamic force and moment coefficients associated with the longitudinal equations of motion.

  2. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  3. Crack growth in bonded elastic half planes

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1975-01-01

    Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.

  4. Giant slip lengths of a simple fluid at vibrating solid interfaces

    NASA Astrophysics Data System (ADS)

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  5. Giant slip lengths of a simple fluid at vibrating solid interfaces.

    PubMed

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  6. Flight of the dragonflies and damselflies.

    PubMed

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.

  7. Flight of the dragonflies and damselflies

    PubMed Central

    Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-01-01

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528779

  8. Formulation of the linear model from the nonlinear simulation for the F18 HARV

    NASA Technical Reports Server (NTRS)

    Hall, Charles E., Jr.

    1991-01-01

    The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.

  9. Aspects and applications of patched grid calculations

    NASA Technical Reports Server (NTRS)

    Walters, R. W.; Switzer, G. F.; Thomas, J. L.

    1986-01-01

    Patched grid calculations within the framework of an implicit, flux-vector split upwind/relaxation algorithm for the Euler equations are presented. The effect of a metric-discontinuous interface on the convergence rate of the algorithm is discussed along with the spatial accuracy of the solution and the effect of curvature along an interface. Results are presented and discussed for the free-stream problem, shock reflection problem, supersonic inlet with a 5 degree ramp, aerodynamically choked inlet, and three-dimensional analytic forebody.

  10. Uncovering a new quasi-2D CuO2 plane between the YBa2Cu3O7 and CeO2 buffer layer of coated conductors

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng

    2018-01-01

    We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.

  11. An Interactive Educational Tool for Compressible Aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.

  12. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  13. Estimation of Vegetation Aerodynamic Roughness of Natural Regions Using Frontal Area Density Determined from Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Crago, Richard

    1994-01-01

    Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.

  14. Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading

    NASA Astrophysics Data System (ADS)

    Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.

    1992-08-01

    The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.

  15. Releasable locking mechanisms

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)

    2005-01-01

    In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.

  16. Releasable Locking Mechanisms

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)

    2005-01-01

    In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.

  17. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  18. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.

  19. Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

    PubMed Central

    Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.

    2013-01-01

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310

  20. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

    PubMed

    Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie

    2013-11-26

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.

  1. Interface spins in polycrystalline FeMn/Fe bilayers with small exchange bias

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.

    2018-04-01

    The magnetic moments at the interface between ferromagnetic and antiferromagnetic layers play a central role in exchange biased systems, but their behavior is still not completely understood. In this work, the FeMn/Fe interface in polycrystalline thin films has been studied using conversion electron Mössbauer spectroscopy (CEMS), magneto-optic Kerr effect (MOKE) and micromagnetic simulations. Samples were prepared with 57Fe layers at two distinct depths in order to probe the interface and bulk behaviors. At the equilibrium, the interface moments are randomly oriented while the bulk of the Fe layer has an in-plane magnetic anisotropy. Several models for the interface and anisotropies of the layers were used in the simulations of spin configurations and hysteresis loops. From the whole set of simulations, one can conclude the direct analysis of hysteresis curves is not enough to infer whether the interface has a configuration with spins tilted out of the film plane at equilibrium since different choices of parameters provide similar curves. The simulations have also shown the occurrence of spin clusters at the interface is compatible with CEMS and MOKE measurements.

  2. Aerodynamic Design on Unstructured Grids for Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Bonhaus, Daryl L.

    1997-01-01

    An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses adjoint (costate) variables for obtaining derivatives of the cost function. The solution of the adjoint equations is obtained using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few example computations are shown. In addition, a user interface is described which significantly reduces the time required for setting up the design problems. Recommendations on directions of further research into the Navier Stokes design process are made.

  3. Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface

    NASA Astrophysics Data System (ADS)

    Onopriienko, Oleg; Loboda, Volodymyr; Sheveleva, Alla; Lapusta, Yuri

    2018-06-01

    The interaction of a conductive crack and an electrode at a piezoelectric bi-material interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the interface and an anti-plane mechanical loading. The problem is formulated and reduced, via the application of sectionally analytic vector functions, to a combined Dirichlet-Riemann boundary value problem. Simple analytical expressions for the stress, the electric field, and their intensity factors as well as for the crack faces' displacement jump are derived. Our numerical results illustrate the proposed approach and permit to draw some conclusions on the crack-electrode interaction.

  4. Space-time interface-tracking with topology change (ST-TC)

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin; Asada, Shohei

    2014-10-01

    To address the computational challenges associated with contact between moving interfaces, such as those in cardiovascular fluid-structure interaction (FSI), parachute FSI, and flapping-wing aerodynamics, we introduce a space-time (ST) interface-tracking method that can deal with topology change (TC). In cardiovascular FSI, our primary target is heart valves. The method is a new version of the deforming-spatial-domain/stabilized space-time (DSD/SST) method, and we call it ST-TC. It includes a master-slave system that maintains the connectivity of the "parent" mesh when there is contact between the moving interfaces. It is an efficient, practical alternative to using unstructured ST meshes, but without giving up on the accurate representation of the interface or consistent representation of the interface motion. We explain the method with conceptual examples and present 2D test computations with models representative of the classes of problems we are targeting.

  5. STB-White

    NASA Technical Reports Server (NTRS)

    Molnar, Dan; Ammon, Rob; Gallagher, Todd; Gouhin, Pat; Hermann, Steve; Roos, John Bryan; Saurer, Craig; White, Heather

    1990-01-01

    The final design of a hypersonic, SCRAMjet research aircraft, which is to be dropped from a carrier plane, is considered. Topics such as propulsion systems, aerodynamics, component weight analysis, and aircraft design with waverider analyses are stressed with smaller emphasis placed on aircraft systems such as cockpit design and landing gear configurations. Propulsion systems include analysis of the turbofanramjet for acceleration to low hypersonic speed (Mach 6.0) and analysis of the SCRAMjets themselves to carry the aircraft to Mach 10.0. Both analyses include the use of liquid hydrogen as fuel. Inlet design for both propulsion systems is analyzed as well. Aerodynamic properties are found using empirical and theoretical formulas for lift and drag on delta-wing aircraft. The aircraft design involves the integration of all preliminary studies into a modified waverider configuration.

  6. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  7. Transonic Aerodynamic Characteristics of a Wing-Body Combination having a 52.5 deg Sweptback Wing of Aspect Ratio 3 with Conical Camber and Designed for a Mach Number of the Square Root of 2

    NASA Technical Reports Server (NTRS)

    Igoe, William B.; Re, Richard J.; Cassetti, Marlowe

    1961-01-01

    An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.

  8. Scattering of SH wave by a semi-cylindrical salient near vertical interface in the bi-material half space

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Zhang, Xi-meng

    2017-10-01

    With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.

  9. Effects of oxide replacement with fluoride at the CoFeB interface on interface magnetic anisotropy and its voltage control

    NASA Astrophysics Data System (ADS)

    Pankieiev, Mykhailo; Kita, Koji

    2018-05-01

    In this paper we report results of improving Co60Fe20B20 interface perpendicular magnetic anisotropy (PMA) by replacing neighbor oxide layer with fluoride one. We expected that fluorine as element with higher than oxide electronegativity could more effectively attract electrons from out-of-plane d orbitals of ferromagnetic, increasing role of in-plane orbitals. By this we wanted to increase PMA and its response to applied voltage bias. Polar magneto-optic Kerr effect measurement show decreasing of out-of-plane magnetic field needed to change magnetization to perpendicular in stacks with oxygen replaced by fluorine as well as increasing of coefficient of response to applied voltage α from < 10 fJ/Vm for CoFeB/Al2O3 interface to 20 fJ/Vm for CoFeB/AlF3/Al2O3 and 22 fJ/Vm for CoFeB/MgF2 stacks. Direct chemical interaction of Co with F was confirmed by x-ray photoelectron spectroscopy (XPS) measurement of Co2p core level region. Moreover angular-resolved XPS showed that F tends to stay at CoFeB interface rather than diffuse out of it.

  10. Second Stage Turbine Bucket Airfoil.

    DOEpatents

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  11. Third-stage turbine bucket airfoil

    DOEpatents

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  12. First-stage high pressure turbine bucket airfoil

    DOEpatents

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  13. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  14. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  15. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    NASA Astrophysics Data System (ADS)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  16. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  17. Solution of plane cascade flow using improved surface singularity methods. [application of panel method to internal aerodynamics

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  18. NASA/USRA advanced design program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report analyzes and presents a preliminary design for an experimental hypersonic vehicle. This plane will have a cruise speed of Mach 12 for one minute at an altitude of 120,000 feet. The major design areas of aerodynamics, propulsion, and weights are discussed in depth. An elementary analysis of thermal protection, trajectory, and cost is also presented. Finally, a discussion of future plans and recommendations is given, and overall conclusions are drawn.

  19. CAD-Based Modeling of Advanced Rotary Wing Structures for Integrated 3-D Aeromechanics Analysis

    NASA Astrophysics Data System (ADS)

    Staruk, William

    This dissertation describes the first comprehensive use of integrated 3-D aeromechanics modeling, defined as the coupling of 3-D solid finite element method (FEM) structural dynamics with 3-D computational fluid dynamics (CFD), for the analysis of a real helicopter rotor. The development of this new methodology (a departure from how rotor aeroelastic analysis has been performed for 40 years), its execution on a real rotor, and the fundamental understanding of aeromechanics gained from it, are the key contributions of this dissertation. This work also presents the first CFD/CSD analysis of a tiltrotor in edgewise flight, revealing many of its unique loading mechanisms. The use of 3-D FEM, integrated with a trim solver and aerodynamics modeling, has the potential to enhance the design of advanced rotors by overcoming fundamental limitations of current generation beam-based analysis tools and offering integrated internal dynamic stress and strain predictions for design. Two primary goals drove this research effort: 1) developing a methodology to create 3-D CAD-based brick finite element models of rotors including multibody joints, controls, and aerodynamic interfaces, and 2) refining X3D, the US Army's next generation rotor structural dynamics solver featuring 3-D FEM within a multibody formulation with integrated aerodynamics, to model a tiltrotor in the edgewise conversion flight regime, which drives critical proprotor structural loads. Prior tiltrotor analysis has primarily focused on hover aerodynamics with rigid blades or forward flight whirl-flutter stability with simplified aerodynamics. The first goal was met with the development of a detailed methodology for generating multibody 3-D structural models, starting from CAD geometry, continuing to higher-order hexahedral finite element meshing, to final assembly of the multibody model by creating joints, assigning material properties, and defining the aerodynamic interface. Several levels of verification and validation were carried out systematically, covering formulation, model accuracy, and accuracy of the physics of the problem and the many complex coupled aeromechanical phenomena that characterize the behavior of a tiltrotor in the conversion corridor. Compatibility of the new structural analysis models with X3D is demonstrated using analytical test cases, including 90° twisted beams and thick composite plates, and a notional bearingless rotor. Prediction of deformations and stresses in composite beams and plates is validated and verified against experimental measurements, theory, and state-of-the-art beam models. The second goal was met through integrated analysis of the Tilt Rotor Aeroacoustic Model (TRAM) proprotor using X3D coupled to Helios--the US Army's next generation CFD framework featuring a high fidelity Reynolds-average Navier-Stokes (RANS) structured/unstructured overset solver--as well as low order aerodynamic models. Although development of CFD was not part of this work, coupling X3D with Helios was, including establishing consistent interface definitions for blade deformations (for CFD mesh motion), aerodynamic interfaces (for loads transfer), and rotor control angles (for trim). It is expected that this method and solver will henceforth be an integral part of the Helios framework, providing an equal fidelity of representation for fluids and structures in the development of future advanced rotor systems. Structural dynamics analysis of the TRAM model show accurate prediction of the lower natural frequencies, demonstrating the ability to model advanced rotors from first principles using 3-D structural dynamics, and a study of how joint properties affect these frequencies reveals how X3D can be used as a detailed design tool. The CFD/CSD analysis reveals accurate prediction of rotor performance and airloads in edgewise flight when compared to wind tunnel test data. Structural blade loads trends are well predicted at low thrust, but a 3/rev component of flap and lag bending moment appearing in test data at high thrust remains a mystery. Efficiently simulating a gimbaled rotor is not trivial; a time-domain method with only a single blade model is proposed and tested. The internal stress in the blade, particularly at its root where the gimbal action has major influence, is carefully examined, revealing complex localized loading patterns.

  20. Phonon Transport at the Interfaces of Vertically Stacked Graphene and Hexagonal Boron Nitride Heterostructures

    DOE PAGES

    Yan, Zhequan; Chen, Liang; Yoon, Mina; ...

    2016-01-12

    Hexagonal boron nitride (h-BN) is a substrate for graphene based nano-electronic devices. We investigate the ballistic phonon transport at the interface of vertically stacked graphene and h-BN heterostructures using first principles density functional theory and atomistic Green's function simulations considering the influence of lattice stacking. We compute the frequency and wave-vector dependent transmission function and observe distinct stacking-dependent phonon transmission features for the h-BN/graphene/h-BN sandwiched systems. We find that the in-plane acoustic modes have the dominant contributions to the phonon transmission and thermal boundary conductance (TBC) for the interfaces with the carbon atom located directly on top of the boronmore » atom (C–B matched) because of low interfacial spacing. The low interfacial spacing is a consequence of the differences in the effective atomic volume of N and B and the difference in the local electron density around N and B. For the structures with the carbon atom directly on top of the nitrogen atom (C–N matched), the spatial distance increases and the contribution of in-plane modes to the TBC decreases leading to higher contributions by out-of-plane acoustic modes. We find that the C–B matched interfaces have stronger phonon–phonon coupling than the C–N matched interfaces, which results in significantly higher TBC (more than 50%) in the C–B matched interface. The findings in this study will provide insights to understand the mechanism of phonon transport at h-BN/graphene/h-BN interfaces, to better explain the experimental observations and to engineer these interfaces to enhance heat dissipation in graphene based electronic devices.« less

  1. Design of n - and p -type oxide thermoelectrics in LaNiO3/SrTiO3(001 ) superlattices exploiting interface polarity

    NASA Astrophysics Data System (ADS)

    Geisler, Benjamin; Blanca-Romero, Ariadna; Pentcheva, Rossitza

    2017-03-01

    We investigate the structural, electronic, transport, and thermoelectric properties of LaNiO3/SrTiO3(001 ) superlattices containing either exclusively n - or p -type interfaces or coupled interfaces of opposite polarity by using density functional theory calculations with an on-site Coulomb repulsion term. The results show that significant octahedral tilts are induced in the SrTiO3 part of the superlattice. Moreover, the La-Sr distances and Ni-O out-of-plane bond lengths at the interfaces exhibit a distinct variation by about 7 % with the sign of the electrostatic doping. In contrast to the much studied LaAlO3/SrTiO3 system, the charge mismatch at the interfaces is exclusively accommodated within the LaNiO3 layers, whereas the interface polarity leads to a band offset and to the formation of an electric field within the coupled superlattice. Features of the electronic structure indicate an orbital-selective quantization of quantum well states. The potential- and confinement-induced multiband splitting results in complex cylindrical Fermi surfaces with a tendency towards nesting that depends on the interface polarity. The analysis of the thermoelectric response reveals a particularly large positive Seebeck coefficient (135 μ V /K) and a high figure of merit (0.35) for room-temperature cross-plane transport in the p -type superlattice that is attributed to the participation of the SrTiO3 valence band. Superlattices with either n - or p -type interfaces show cross-plane Seebeck coefficients of opposite sign and thus emerge as a platform to construct an oxide-based thermoelectric generator with structurally and electronically compatible n - and p -type oxide thermoelectrics.

  2. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  3. PyFly: A fast, portable aerodynamics simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  4. PyFly: A fast, portable aerodynamics simulator

    DOE PAGES

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...

    2018-03-14

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  5. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  6. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  7. Demonstration of an Aerocapture GN and C System Through Hardware-in-the-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Masciarelli, James; Deppen, Jennifer; Bladt, Jeff; Fleck, Jeff; Lawson, Dave

    2010-01-01

    Aerocapture is an orbit insertion maneuver in which a spacecraft flies through a planetary atmosphere one time using drag force to decelerate and effect a hyperbolic to elliptical orbit change. Aerocapture employs a feedback Guidance, Navigation, and Control (GN&C) system to deliver the spacecraft into a precise postatmospheric orbit despite the uncertainties inherent in planetary atmosphere knowledge, entry targeting and aerodynamic predictions. Only small amounts of propellant are required for attitude control and orbit adjustments, thereby providing mass savings of hundreds to thousands of kilograms over conventional all-propulsive techniques. The Analytic Predictor Corrector (APC) guidance algorithm has been developed to steer the vehicle through the aerocapture maneuver using bank angle control. Through funding provided by NASA's In-Space Propulsion Technology Program, the operation of an aerocapture GN&C system has been demonstrated in high-fidelity simulations that include real-time hardware in the loop, thus increasing the Technology Readiness Level (TRL) of aerocapture GN&C. First, a non-real-time (NRT), 6-DOF trajectory simulation was developed for the aerocapture trajectory. The simulation included vehicle dynamics, gravity model, atmosphere model, aerodynamics model, inertial measurement unit (IMU) model, attitude control thruster torque models, and GN&C algorithms (including the APC aerocapture guidance). The simulation used the vehicle and mission parameters from the ST-9 mission. A 2000 case Monte Carlo simulation was performed and results show an aerocapture success rate of greater than 99.7%, greater than 95% of total delta-V required for orbit insertion is provided by aerodynamic drag, and post-aerocapture orbit plane wedge angle error is less than 0.5 deg (3-sigma). Then a real-time (RT), 6-DOF simulation for the aerocapture trajectory was developed which demonstrated the guidance software executing on a flight-like computer, interfacing with a simulated IMU and simulated thrusters, with vehicle dynamics provided by an external simulator. Five cases from the NRT simulations were run in the RT simulation environment. The results compare well to those of the NRT simulation thus verifying the RT simulation configuration. The results of the above described simulations show the aerocapture maneuver using the APC algorithm can be accomplished reliably and the algorithm is now at TRL-6. Flight validation is the next step for aerocapture technology development.

  8. Laser Pencil Beam Based Techniques for Visualization and Analysis of Interfaces Between Media

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Giles, Sammie, Jr.

    1998-01-01

    Traditional optical methods that include interferometry, Schlieren, and shadowgraphy have been used successfully for visualization and evaluation of various media. Aerodynamics and hydrodynamics are major fields where these methods have been applied. However, these methods have such major drawbacks as a relatively low power density and suppression of the secondary order phenomena. A novel method introduced at NASA Lewis Research Center minimizes disadvantages of the 'classical' methods. The method involves a narrow pencil-like beam that penetrates a medium of interest. The paper describes the laser pencil beam flow visualization methods in detail. Various system configurations are presented. The paper also discusses interfaces between media in general terms and provides examples of interfaces.

  9. Determination of nongeometric effects: equivalence between Artmann's and Tamir's generalized methods.

    PubMed

    Perez, Liliana I; Echarri, Rodolfo M; Garea, María T; Santiago, Guillermo D

    2011-03-01

    This work shows that all first- and second-order nongeometric effects on propagation, total or partial reflection, and transmission can be understood and evaluated considering the superposition of two plane waves. It also shows that this description yields results that are qualitatively and quantitatively compatible with those obtained by Fourier analysis of beams with Gaussian intensity distribution in any type of interface. In order to show this equivalence, we start by describing the first- and second-order nongeometric effects, and we calculate them analytically by superposing two plane waves. Finally, these results are compared with those obtained for the nongeometric effects of Gaussian beams in isotropic interfaces and are applied to different types of interfaces. A simple analytical expression for the angular shift is obtained considering the transmission of an extraordinary beam in a uniaxial-isotropic interface.

  10. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.

  11. Hydrodynamic and Aerodynamic Tests of a Family of Models of Seaplane Floats with Varying Angles of Dead Rise - N.A.C.A. Models 57-A, 57-B, and 57-C

    NASA Technical Reports Server (NTRS)

    Parkinson, John B; Olson, Roland E; House, Rufus O

    1939-01-01

    Three models of V-bottom floats for twin-float seaplanes (N.A.C.A. models 57-A, 57-B, and 57-C) having angles of dead rise of 20 degrees, 25 degrees, and thirty degrees, respectively, were tested in the N.A.C.A. tank and in the N.A.C.A. 7- by 10-foot wind tunnel. Within the range investigated, the effect of angle of dead rise on water resistance was found to be negligible at speeds up to and including the hump speed, and water resistance was found to increase with angle of dead rise at planing speeds. The height of the spray at the hump speed decreased with increase in angle of dead rise and the aerodynamic drag increased with dead rise. Lengthening the forebody of model 57-B decreased the water resistance and the spray at speeds below the hump speed. Spray strips provided an effective means for the control of spray with the straight V sections used in the series but considerably increased the aerodynamic drag. Charts for the determination of the water resistance and the static properties of the model with 25 degrees dead rise and for the aerodynamic drag of all the models are included for use in design.

  12. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation

    PubMed Central

    Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.

    2008-01-01

    A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017

  13. Mated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CAM and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CA8), volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Aerodynamic force data are presented in tables and graphs for the NASA Langley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting, stabilizer angle, elevator angle, ground proximity, and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators.

  14. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  15. Raman Microscopy Insights on the Out-of-Plane Electrical Transport of Carbon Nanotube-Doped PEDOT:PSS Electrodes for Solar Cell Applications.

    PubMed

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W

    2018-03-08

    In the present report, we focused on the study of the out-of-plane electrical transport of multiwalled carbon nanotube (MWCNT)-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composites (PEDOT:PSS-MWCNTs) as electrodes for solar cell applications. The out-of-plane direct current and alternating current electrical transport, rarely studied but not less relevant, was additionally supported with in-plane and out-of-plane confocal Raman microscopy and grazing incidence small-angle X-ray scattering characterizations. The main relevance of our study is the monitoring of the polymer structure all across the polymeric film by using confocal Raman spectroscopy and its correlation with electrical transport. Modifications in the PEDOT benzenoid and quinoid conformations were observed in the vicinities of MWCNTs, and the enrichment of PSS at the indium tin oxide electrode interface was also evidenced. In consequence, the low MWCNT loadings into PEDOT:PSS lead to an increase of the out-of-plane conductivity, but the heavier MWCNT loadings lead to a drastic decrease. The tuning of the doping level of these polymer composites and the understanding of the interface structure are crucial to fabricate electrodes with higher out-of-plane conductivities for organic solar cell applications.

  16. Molecular dynamics simulations of ferroelectric domain formation by oxygen vacancy

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; You, Jeong Ho; Chen, Jinghong; Yeo, Changdong

    2018-05-01

    An oxygen vacancy, known to be detrimental to ferroelectric properties, has been investigated numerically for the potential uses to control ferroelectric domains in films using molecular dynamics simulations based on the first-principles effective Hamiltonian. As an electron donor, an oxygen vacancy generates inhomogeneous electrostatic and displacement fields which impose preferred polarization directions near the oxygen vacancy. When the oxygen vacancies are placed at the top and bottom interfaces, the out-of-plane polarizations are locally developed near the interfaces in the directions away from the interfaces. These polarizations from the interfaces are in opposite directions so that the overall out-of-plane polarization becomes significantly reduced. In the middle of the films, the in-plane domains are formed with containing 90° a 1/a 2 domain walls and the films are polarized along the [1 1 0] direction even when no electric field is applied. With oxygen vacancies placed at the top interface only, the films exhibit asymmetric hysteresis loops, confirming that the oxygen vacancies are one of the possible sources of ferroelectric imprint. It has been qualitatively demonstrated that the domain structures in the imprint films can be turned on and off by controlling an external field along the thickness direction. This study shows qualitatively that the oxygen vacancies can be utilized for tuning ferroelectric domain structures in films.

  17. Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    PubMed Central

    Nedelkoski, Zlatko; Kuerbanjiang, Balati; Glover, Stephanie E.; Sanchez, Ana M.; Kepaptsoglou, Demie; Ghasemi, Arsham; Burrows, Christopher W.; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-01-01

    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors. PMID:27869132

  18. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  19. Local Flow Conditions for Propulsion Experiments on the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Vachon, Michael J.; Moes, Timothy R.; Corda, Stephen

    2005-01-01

    Local flow conditions were measured underneath the National Aeronautics and Space Administration F-15B airplane to support development of future experiments on the Propulsion Flight Test Fixture (PFTF). The local Mach number and flow angles were measured using a conventional air data boom on a cone-cylinder mounted under the PFTF and compared with the airplane air data nose boom measurements. At subsonic flight speeds, the airplane and PFTF Mach numbers were approximately equal. Transonic Mach number values were up to 0.1 greater at the PFTF than the airplane, which is a counterintuitive result. The PFTF local supersonic Mach numbers were as much as 0.46 less than the airplane values. The maximum local Mach number at the PFTF was approximately 1.6 at an airplane Mach number near 2.0. The PFTF local angle of attack was negative at all Mach numbers, ranging from -3 to -8 degrees. When the airplane angle of sideslip was zero, the PFTF local value was zero between Mach 0.8 and Mach 1.1, -2 degrees between Mach 1.1 and Mach 1.5, and increased from zero to 1 degree from Mach 1.5 to Mach 2.0. Airplane inlet shock waves crossed the aerodynamic interface plane between Mach 1.85 and Mach 1.90.

  20. High Reynolds Number Investigation of a Flush Mounted, S-Duct Inlet With Large Amounts of Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Carter, Melissa B.; Allan, Brian G.

    2005-01-01

    An experimental investigation of a flush-mounted, S-duct inlet with large amounts of boundary layer ingestion has been conducted at Reynolds numbers up to full scale. The study was conducted in the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. In addition, a supplemental computational study on one of the inlet configurations was conducted using the Navier-Stokes flow solver, OVERFLOW. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on aerodynamic interface plane diameter) from 5.1 million to 13.9 million (full-scale value), and inlet mass-flow ratios from 0.29 to 1.22, depending on Mach number. Results of the study indicated that increasing Mach number, increasing boundary layer thickness (relative to inlet height) or ingesting a boundary layer with a distorted profile decreased inlet performance. At Mach numbers above 0.4, increasing inlet airflow increased inlet pressure recovery but also increased distortion. Finally, inlet distortion was found to be relatively insensitive to Reynolds number, but pressure recovery increased slightly with increasing Reynolds number.This CD-ROM supplement contains inlet data including: Boundary layer data, Duct static pressure data, performance-AIP (fan face) data, Photos, Tunnel wall P-PTO data and definitions.

  1. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet

    DOE PAGES

    Lee, Changmin; Katmis, Ferhat; Jarillo-Herrero, Pablo; ...

    2016-06-27

    When a topological insulator (TI) is in contact with a ferromagnet, both time-reversal and inversion symmetries are broken at the interface. An energy gap is formed at the TI surface, and its electrons gain a net magnetic moment through short-range exchange interactions. Magnetic TIs can host various exotic quantum phenomena, such as massive Dirac fermions, Majorana fermions, the quantum anomalous Hall effect and chiral edge currents along the domain boundaries. However, selective measurement of induced magnetism at the buried interface has remained a challenge. Using magnetic second-harmonic generation, we directly probe both the in-plane and out-of-plane magnetizations induced at themore » interface between the ferromagnetic insulator (FMI) EuS and the three-dimensional TI Bi 2Se 3. Furthermore, our findings not only allow characterizing magnetism at the TI–FMI interface but also lay the groundwork for imaging magnetic domains and domain boundaries at the magnetic TI surfaces.« less

  2. Unveiling the Semicoherent Interface with Definite Orientation Relationships between Reinforcements and Matrix in Novel Al3BC/Al Composites.

    PubMed

    Zhao, Yongfeng; Qian, Zhao; Ma, Xia; Chen, Houwen; Gao, Tong; Wu, Yuying; Liu, Xiangfa

    2016-10-05

    High-strength lightweight Al-based composites are promising materials for a wide range of applications. To provide high performance, a strong bonding interface for effective load transfer from the matrix to the reinforcement is essential. In this work, the novel Al 3 BC reinforced Al composites have been in situ fabricated through a liquid-solid reaction method and the bonding interface between Al 3 BC and Al matrix has been unveiled. The HRTEM characterizations on the Al 3 BC/Al interface verify it to be a semicoherent bonding structure with definite orientation relationships: (0001) Al 3 BC //(11̅1) Al ;[112̅0] Al 3 BC //[011] Al . Periodic arrays of geometrical misfit dislocations are also observed along the interface at each (0001) Al 3 BC plane or every five (11̅1) Al planes. This kind of interface between the reinforcement and the matrix is strong enough for effective load transfer, which would lead to the evidently improved strength and stiffness of the introduced new Al 3 BC/Al composites.

  3. Mass Transport of Condensed Species in Aerodynamic Fallout Glass from a Near-Surface Nuclear Test

    NASA Astrophysics Data System (ADS)

    Weisz, David Gabriel

    In a near-surface nuclear explosion, vaporized device materials are incorporated into molten soil and other carrier materials, forming glassy fallout upon quenching. Mechanisms by which device materials mix with carrier materials have been proposed, however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. A surface deposition layer was observed preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused. Eleven such boundaries were studied using spatially resolved analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nano-scale secondary ion mass spectrometry (NanoSIMS), we identified higher concentrations of uranium from the device in 7 of the interface layers, as well as isotopic enrichment (>75% 235U) in 9 of the interface layers. Major element analysis of the interfaces revealed the deposition layer to be chemically enriched in Fe-, Ca- and Na-bearing species and depleted in Ti- and Al-bearing species. The concentration profiles of the enriched species at the interface are characteristic of diffusion. Three of the uranium concentration profiles were fit with a modified Gaussian function, representative of 1-D diffusion from a planar source, to determine time and temperature parameters of mass transport. By using a historical model of fireball temperature to simulate the cooling rate at the interface, the temperature of deposition was estimated to be 2200 K, with 1? uncertainties in excess of 140 K. The presence of Na-species in the layers at this estimated temperature of deposition is indicative of an oxygen rich fireball. The notable depletion of Al-species, a refractory oxide that is highly abundant in the soil, together with the enrichment of Ca-, Fe-, and 235U-species, suggests an anthropogenic source of the enriched species, together with a continuous chemical fractionation process as these species condensed.

  4. Second-stage turbine bucket airfoil

    DOEpatents

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  5. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  6. Jet-Boundary and Plan-Form Corrections for Partial-Span Models with Reflection Plane, End Plate, or No End Plate in a Closed Circular Wind Tunnel

    DTIC Science & Technology

    1946-06-01

    complete-span models. Such models are used to--best- advantage to determine the aerodynamic characteristics of wings, flaps, lateral-control devices, and...d~mensfons w? Indes> . . ... ,. ., I . .’ . .,. . , 84295 #aOO . ~- 4 g— --% ii E~ [039 E. miiw%“” NATto )w. AWIWRY mwl—nEmkMEwrK5 . faKw+- WIW m&J. I

  7. Problem of Vortex Turbulence behind Wings (II),

    DTIC Science & Technology

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  8. Janus Colloids Actively Rotating on the Surface of Water.

    PubMed

    Wang, Xiaolu; In, Martin; Blanc, Christophe; Würger, Alois; Nobili, Maurizio; Stocco, Antonio

    2017-12-05

    Biological or artificial microswimmers move performing trajectories of different kinds such as rectilinear, circular, or spiral ones. Here, we report on circular trajectories observed for active Janus colloids trapped at the air-water interface. Circular motion is due to asymmetric and nonuniform surface properties of the particles caused by fabrication. Motion persistence is enhanced by the partial wetted state of the Janus particles actively moving in two dimensions at the air-water interface. The slowing down of in-plane and out-of-plane rotational diffusions is described and discussed.

  9. Internal stresses at the crystalline scale in textured ZrO2 films before lateral cracking

    NASA Astrophysics Data System (ADS)

    Berdin, Clotilde; Pascal, Serge; Tang, Yan

    2015-05-01

    Zirconium oxide layers are submitted to internal stresses that play a role in damage of the layer. Lateral cracking is often observed during Zr alloys oxidation. In this paper, we investigated the influence of the microstresses at the crystalline scale on the lateral cracking within a growing oxide on a plane substrate. A parametric study was carried out taking into account the crystallographic texture of the oxide and the presence of a tetragonal zirconia at the metal-oxide interface. Macroscopic computations and polycrystalline aggregate computations were performed. The result indicating the (1 0 6 bar) fiber texture as the most favorable was recovered. It was found that under macroscopic compressive stresses parallel to the plane metal-oxide interface, positive microstresses perpendicular to the interface develops. They can trigger the lateral cracking and the phenomenon is promoted by the presence of tetragonal zirconia at the metal-oxide interface.

  10. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2014-01-01

    The purpose of this thesis is to document the impact of incidence angle and Reynolds number variations on the three-dimensional flow field and midspan loss and turning of a two-dimensional section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic measurements were obtained in a transonic linear cascade at NASA Glenn Research Center in Cleveland, Ohio. Steady-state data were obtained for 10 incidence angles ranging from +15.8deg to -51.0deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×105 to 2.12×106. Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan tota lpressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8deg and -36.7deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures.

  11. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    NASA Astrophysics Data System (ADS)

    Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.

    2017-03-01

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.

  12. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.

    2017-03-15

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less

  13. HyPlane for Space Tourism and Business Transportation

    NASA Astrophysics Data System (ADS)

    Savino, R.

    In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.

  14. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  15. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  16. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  17. Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude

    NASA Astrophysics Data System (ADS)

    Zhu, Hao Jie; Sun, Mao

    2017-08-01

    Hovering insects require a rather large lift coefficient. Many insects hover with a large stroke amplitude (120°-170°), and it has been found that the high lift is mainly produced by the delayed-stall mechanism. However, some insects hover with a small stroke amplitude (e.g., 65°). The delayed-stall mechanism might not work for these insects because the wings travel only a very short distance in a stroke, and other aerodynamic mechanisms must be operating. Here we explore the aerodynamic mechanisms of a hoverfly hovering with an inclined stroke plane and a small stroke amplitude (65.6°). The Navier-Stokes equations are numerically solved to give the flows and forces and the theory of vorticity dynamics used to reveal the aerodynamic mechanisms. The majority of the weight-supporting vertical force is produced in the mid portion of the downstroke, a short period (about 26% of the stroke cycle) in which the vertical force coefficient is larger than 4. The force is produced using a new mechanism, the "paddling mechanism." During the short period, the wing moves rapidly downward and forward at a large angle of attack (about 48°), and strong counter clockwise vorticity is produced continuously at the trailing edge and clockwise vorticity at the leading edge, resulting in a large time rate of change in the first moment of vorticity, hence the large aerodynamic force. It is interesting to note that with the well known delayed stall mechanism, the force is produced by the relative motion of two vortices of opposite sign, while in the "paddling mechanism," it is produced by generating new vortices of opposite sign at different locations.

  18. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2012-03-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present study suggests that manipulating the angle of attack during a flapping cycle is the most effective way to control the aerodynamic forces and corresponding power expenditure for a dragonfly-like inclined flapping wing.

  19. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. I Analysis. II - Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M.-C.; Erdogan, F.

    1983-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429

  20. Automated Wing Twist And Bending Measurements Under Aerodynamic Load

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Martinson, S. D.

    1996-01-01

    An automated system to measure the change in wing twist and bending under aerodynamic load in a wind tunnel is described. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. The measurement technique has been used successfully at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley Research Center. The advantages and limitations (including targeting) of the technique are discussed. A major consideration in the development was that use of the technique must not appreciably reduce wind tunnel productivity.

  1. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  2. Aerodynamic levitation, supercooled liquids and glass formation

    DOE PAGES

    Benmore, C. J.; Weber, J. K. R.

    2017-05-04

    Containerless processing or ‘levitation’ is a valuable tool for the synthesis and characterization of materials, particularly at extreme temperatures and under non-equilibrium conditions. The method enables formation of novel glasses, amorphous phases, and metastable crystalline forms that are not easily accessed when nucleation and growth can readily occur at a container interface. Removing the container enables the use of a wide variety of process atmospheres to modify a materials structure and properties. In the past decade levitation methods, including acoustic, aerodynamic, electromagnetic, and electrostatic, have become well established sample environments at X-ray synchrotron and neutron sources. This article briefly reviewsmore » the methods and then focuses on the application of aerodynamic levitation to synthesize and study new materials. This is presented in conjunction with non-contact probes used to investigate the atomic structure and to measure the properties of materials at extreme temperatures. The use of aerodynamic levitation in research using small and wide-angle X-ray diffraction, XANES, and neutron scattering are discussed in the context of technique development. The use of the containerless methods to investigate thermophysical properties is also considered. We argue that structural motifs and in the liquid state can potentially lead to the fabrication of materials, whose properties would differ substantially from their well known crystalline forms.« less

  3. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  4. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    NASA Technical Reports Server (NTRS)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  5. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.

    1981-12-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  6. Aeroelastic modal characteristics of mistuned blade assemblies: Mode localization and loss of eigenstructure

    NASA Technical Reports Server (NTRS)

    Pierre, Christophe; Murthy, Durbha V.

    1991-01-01

    An investigation of the effects of small mistuning on the aeroelastic modes of bladed disk assemblies with aerodynamic coupling between blades is presented. The cornerstone of the approach is the use and development of perturbation methods that exhibit the crucial role of the interblade coupling and yield general findings regarding mistuning effects. It is shown that blade assemblies with weak aerodynamic interblade coupling are highly sensitive to small blade mistuning, and that their dynamics is quantitatively altered in the following ways: the regular pattern that characterizes the root locus of the tuned aeroelastic eigenvalues in the complex plane is totally lost; the aeroelastic mode shapes becomes severely localized to only a few blades of the assembly and lose their constant interblade phase angle feature; and curve veering phenomena take place when the eigenvalues are plotted versus a mistuning parameter.

  7. Study on galloping behavior of iced eight bundle conductor transmission lines

    NASA Astrophysics Data System (ADS)

    Zhou, Linshu; Yan, Bo; Zhang, Liang; Zhou, Song

    2016-02-01

    Wind tunnel test was carried out to obtain the aerodynamic coefficients of an eight bundle conductor accreted with crescent-shaped ice. A user-defined cable element with torsional degree of freedom is developed in ABAQUS software to capture the torsional deformation of the iced conductors during galloping. By means of the user-defined cable element, different damping ratios in in-plane, out-of-plane and torsional directions of the conductors can be defined and the aerodynamic forces varying with their motion status can be exerted on the conductors conveniently when ABAQUS is used to simulate galloping of transmission lines. A wind tunnel test to model galloping of an iced eight bundle conductor segment was carried out, and the validity of the numerical simulation method is demonstrated by the agreement of the galloping orbit of the bundle conductor segment model recorded in the test and that by the numerical simulation. Furthermore, galloping behavior, including dynamic responses, galloping orbits, frequencies, vibration modes and amplitudes, of typical iced eight bundle conductor transmission lines in the cases of different span lengths, initial tensions in sub-conductors, wind velocities, angles of wind attack and damping ratios is studied, and the galloping behavior of the lines with internal resonance conditions is discussed. The obtained results may provide a fundamental tool for the development of anti-galloping techniques of eight bundle conductor transmission lines.

  8. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  9. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air- oxidized samples. However, peak intensity variations were observed due to interface interdiffusion.

  10. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric Aircraft Engines and Pratt & Whitney for evaluation, (3) a collaborative effort has been initiated with the National Institute of Standards and Testing to develop a Standard Data Access Interface, and (4) a blade tip clearance capability has been implemented into the Structural Airfoil Blade Engineering Routine (SABER) program. We plan to continue to develop the data mappers and data management tools. As progress is made, additional efforts will be made to apply these tools to propulsion system applications.

  11. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1979-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  12. Active isotropic slabs: conditions for amplified reflection

    NASA Astrophysics Data System (ADS)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  13. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1978-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  14. Interface Shape and Convection During Solidification and Melting of Succinonitrile

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III; Lindstrom, Tiffany

    1994-01-01

    An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.

  15. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  16. Shaft flexibility effects on aeroelastic stability of a rotating bladed disk

    NASA Technical Reports Server (NTRS)

    Khader, Naim; Loewy, Robert

    1989-01-01

    A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.

  17. Optimal trajectories for an aerospace plane. Part 2: Data, tables, and graphs

    NASA Technical Reports Server (NTRS)

    Miele, Angelo; Lee, W. Y.; Wu, G. D.

    1990-01-01

    Data, tables, and graphs relative to the optimal trajectories for an aerospace plane are presented. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied for a single aerodynamic model (GHAME) and three engine models. Four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (1) minimization of the weight of fuel consumed; (2) minimization of the peak dynamic pressure; (3) minimization of the peak heating rate; and (4) minimization of the peak tangential acceleration. The above optimization studies are carried out for different combinations of constraints, specifically: initial path inclination that is either free or given; dynamic pressure that is either free or bounded; and tangential acceleration that is either free or bounded.

  18. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    NASA Astrophysics Data System (ADS)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  19. Prenucleation Induced by Crystalline Substrates

    NASA Astrophysics Data System (ADS)

    Men, H.; Fan, Z.

    2018-04-01

    Prenucleation refers to the phenomenon of atomic ordering in the liquid adjacent to the substrate/liquid interface at temperatures above the liquidus. In this paper, we have systematically investigated and holistically quantified the prenucleation phenomenon as a function of temperature and the lattice misfit between the substrate and the solid, using molecular dynamics (MD) simulations. Our results have confirmed that at temperatures above the liquidus, the atoms in the liquid at the interface may exhibit pronounced atomic ordering, manifested by atomic layering normal to the interface, in-plane atomic ordering parallel to the interface, and the formation of a 2-dimensional (2D) ordered structure (a few atomic layers in thickness) on the substrate surface. Holistic quantification of such atomic ordering at the interface has revealed that the atomic layering is independent of lattice misfit and is only slightly enhanced by reducing temperature while both in-plane atomic ordering and the formation of the 2D ordered structure are significantly enhanced by reducing the lattice misfit and/or temperature. This substrate-induced atomic ordering in the liquid may have a significant influence on the subsequent heterogeneous nucleation process.

  20. Kinematic compensation for wing loss in flying damselflies.

    PubMed

    Kassner, Ziv; Dafni, Eyal; Ribak, Gal

    2016-02-01

    Flying insects can tolerate substantial wing wear before their ability to fly is entirely compromised. In order to keep flying with damaged wings, the entire flight apparatus needs to adjust its action to compensate for the reduced aerodynamic force and to balance the asymmetries in area and shape of the damaged wings. While several studies have shown that damaged wings change their flapping kinematics in response to partial loss of wing area, it is unclear how, in insects with four separate wings, the remaining three wings compensate for the loss of a fourth wing. We used high-speed video of flying blue-tailed damselflies (Ischnura elegans) to identify the wingbeat kinematics of the two wing pairs and compared it to the flapping kinematics after one of the hindwings was artificially removed. The insects remained capable of flying and precise maneuvering using only three wings. To compensate for the reduction in lift, they increased flapping frequency by 18±15.4% on average. To achieve steady straight flight, the remaining intact hindwing reduced its flapping amplitude while the forewings changed their stroke plane angle so that the forewing of the manipulated side flapped at a shallower stroke plane angle. In addition, the angular position of the stroke reversal points became asymmetrical. When the wingbeat amplitude and frequency of the three wings were used as input in a simple aerodynamic model, the estimation of total aerodynamic force was not significantly different (paired t-test, p=0.73) from the force produced by the four wings during normal flight. Thus, the removal of one wing resulted in adjustments of the motions of the remaining three wings, exemplifying the precision and plasticity of coordination between the operational wings. Such coordination is vital for precise maneuvering during normal flight but it also provides the means to maintain flight when some of the wings are severely damaged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Rich catalytic injection

    DOEpatents

    Veninger, Albert [Coventry, CT

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  2. The growth mechanism of grain boundary carbide in Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang

    2013-07-15

    The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less

  3. The interface character distribution of cold-rolled and annealed duplex stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xiaoying, E-mail: fxy@sdut.edu.cn

    The interface character distributions (ICDs) of cold-rolled and annealed duplex stainless steel specimens, previously solid-solution-heated (SHT) at 1573 K and 1323 K, are investigated using electron backscatter diffraction (EBSD) and five-parameter analysis (FPA). For the δ-ferrite phase, high concentrations of low angle grain boundaries (LAGBs) are developed, and the boundary planes are predominantly oriented on (111). High angle grain boundaries (HAGBs) with misorientations ranging from 50{sup o} to 60° are mostly pure tilt boundaries, and the boundary planes are primarily located on (112). For the austenite phase, very high density of coherent twin boundaries are introduced, implying that the boundarymore » planes are exactly oriented on (111). The phase boundary character distribution (PBPD) appears to be connected with the K-S and N-W orientation relationships (ORs) terminating on (110) {sub F}‖(111) {sub A} and (110){sub F}‖(hkl){sub A}, respectively. - Highlights: •Five-parameter analysis was used to determine interface character distribution. •ICD results of statistical meaning were achieved. •Initial microstructure has a significant effect on ICD. •Low and high angle GBs in δ phase prefer in (111) and (112) planes, respectively. •K-S phase boundaries terminate on (110){sub F}‖(111){sub A} while N-W ones on (110){sub F}‖(hkl){sub A}.« less

  4. Solution to the Boltzmann equation for layered systems for current perpendicular to the planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.

    2000-05-01

    Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less

  5. Au-assisted fabrication of nano-holes on c-plane sapphire via thermal treatment guided by Au nanoparticles as catalysts

    NASA Astrophysics Data System (ADS)

    Sui, Mao; Pandey, Puran; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2017-01-01

    Nanoscale patterning of sapphires is a challenging task due to the high mechanical strength, chemical stability as well as thermal durability. In this paper, we demonstrate a gold droplet assisted approach of nano-hole fabrication on c-plane sapphire via a thermal treatment. Uniformly distributed nano-holes are fabricated on the sapphire surface guided by dome shaped Au nanoparticles (NPs) as catalysts and the patterning process is discussed based on the disequilibrium of vapor, liquid, solid interface energies at the Au NP/sapphire interface induced by the Au evaporation at high temperature. Followed by the re-equilibration of interface energy, transport of alumina from the beneath of NPs to the sapphire surface can occur along the NP/sapphire interface resulting in the formation of nano-holes. The fabrication of nano-holes using Au NPs as catalysts is a flexible, economical and convenient approach and can find applications in various optoelectronics.

  6. Interface layer to tailor the texture and surface morphology of Al-doped ZnO polycrystalline films on glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2017-06-01

    A 10-nm-thick radio frequency magnetron-sputtered aluminum-doped zinc oxide (AZO) showing a texture with a preferential (0001) orientation on amorphous glass substrates was used as an interface layer for tailoring the orientation of 490-nm-thick polycrystalline AZO films subsequently deposited by direct current (DC) magnetron sputtering at a substrate temperature of 200 °C. Wide-angle X-ray diffraction pole figure analysis showed that the resulting 500-nm-thick AZO films showed a texture with a highly preferential c-axis orientation. This showed that DC-magnetron-sputtered AZO films grew along with the orientation matching that of the interface layer, whereas 500-nm-thick AZO films deposited on bare glass substrates by DC magnetron sputtering exhibited a mixed orientation of the c-plane and other planes. The surface morphology was also improved while retaining the lateral grain size by applying the interface layer as revealed by atomic force microscopy.

  7. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  8. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    DTIC Science & Technology

    2010-05-01

    modeling and grid constraints. NOTATION α Shaft tilt (corrected) or tip-path-plane angle BPF Blade passing frequency CT/σ Thrust coefficient to rotor...cyclic pitch angle, deg. LFSPL Low frequency sound metric (1st-6th BPF ), dB MFSPL Mid frequency sound metric (> 6th BPF ), dB OASPL Overall sound metric...Tunnel of the National Full- Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center in 2008 (Fig. 2a), as a guide for prediction validation. The

  9. Shock-Free Configurations in Two- and Three- Dimensional Transonic Flow,

    DTIC Science & Technology

    1981-05-01

    Sobieczky’s brilliant idea of a fictitious gas for finding shock-free airfoils directly in the physical plane. The aerodynamic efficiency of turbojet ...improvements to the Learjet Century series aircraft is given in Ref. 3. The GA(W)-2 airfoil used here is probably already superior to the present Learjet...AD-AIuG 261 ARIZONA UNIV TUCSON ENGINEERING EXPERIMENT STATION F/f 1/3 SH4OCK-FREE CONFIGURATIONS IN TWO- AND THREE- DIMENSIONAL TRANSO--ETC(U) MAY

  10. VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.

  11. Numerical Simulation of Hypersonic Aerodynamics and the Computational Needs for the Design of an Aerospace Plane

    DTIC Science & Technology

    1992-01-01

    2-layer algebraic eddy Lawrence flow, 150corner implicit (lacCormack, viscosity (Baldwin and et al. at M = 14.1 1982) Lomax, 1978) (1987) 5) NASA...for Turbulence Research NASA Ames/Stanford Summer Programme," Journal of Fluid Mechanics, Vol. 190, pp. 375-392. Hussain, A.KM.F., (1986): "Coherent...the development of a Reynolds- stress turbulence closure," Journal of Fluid Mechanics, Vol. 68, pp. 537-566. Lawrence , S. L., and A. Balakrishnan (1988

  12. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  13. Fusion interfaces for tactical environments: An application of virtual reality technology

    NASA Technical Reports Server (NTRS)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  14. AFM study of the plastic deformation behavior of poly-synthetically-twinned (PST) titanium aluminide crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yali

    The plastic deformation behavior of PST TiAl crystals was investigated using AFM techniques to reveal the effects of lamellar structure on the deform mechanisms of two-phase TiAl materials. PST crystals with a nominal composition of Ti52Al48 (atomic percent) were grown by the floating zone method and at various orientations deformed in compression at room temperature. Atomic Force Microscopy (AFM) was employed to investigate the deformation structure on the free surfaces. The deformation of the PST crystals is highly anisotropic and the deformation mechanism changes dramatically with sample orientation. When the angle between the loading axis and the lamellar interfaces is below 20°, the gamma lamellae deform by dislocation slip and twinning on planes oblique to the lamellar interfaces, but the Burgers vectors or the resultant shear vectors are parallel to the lamellar interfaces inside each lamella. When the angle is between 20° and 80° the gamma phase deforms by shear on planes parallel to the lamellar interfaces. Some domains deform by a combination of ordinary dislocation slip and twinning. In the domains where twinning cannot be activated, slip occurs by ordinary dislocations or superdislocations. When the loading axis is nearly perpendicular to the lamellar interfaces ordinary dislocation slip and twinning on slip planes inclined with the lamellar interfaces are dominant and the shear is trans-lamellar. The three deformation modes are termed as A, B and N type deformation modes respectively. In the A type mode the alpha2 lamellae concomitantly deform by prismatic slip. In the other two modes, the alpha2 phase does not deform and acts as strong obstacles to the transfer of deformation. Abundant misfit dislocations are emitted from the lamellar interfaces which is beneficial for the plastic deformation. On the other hand, the lamellar interfaces strongly impede trans-lamellar deformation and channel the deformation inside each lamella. The inhomogeneous coherency stresses at the lamellar interfaces also lead to heterogeneous deformation of PST crystals. The deformation behavior of the lamellar grains produces remarkable strain incompatibility in lamellar polycrystals and deteriorates the deformability.

  15. CFD Analysis and Design Optimization Using Parallel Computers

    NASA Technical Reports Server (NTRS)

    Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James

    1997-01-01

    A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.

  16. Stress intensity factors for bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. Cracks fully imbedded into the homogenous strips were analyzed as well as the singular behavior of the stresses for two special crack geometries. The analysis of cracks crossing interfaces indicates that, for certain orthotropic material combinations, the stress state at the point of intersection of a crack and an interface may be bounded. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters.

  17. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  18. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  19. Electron gas at the interface between two antiferromagnetic insulating manganites

    NASA Astrophysics Data System (ADS)

    Calderón, M. J.; Salafranca, J.; Brey, L.

    2008-07-01

    We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.

  20. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  1. Third All-Union Symposium on Wave Diffraction.

    DTIC Science & Technology

    1982-08-02

    the Half - Plane of Waves, Formed on the Surface of Liquid and on the Interface in the Laminar Liquid by the Periodically Functioning Source, by...majority of the cases is of basic practical interest. For this way of integration it is displaced into lower half - plane Im xɘ and are computed deductions...and f(x) exponentially decrease, then u(x, p) is continued as meromorphic function for the variable/alternating p into half - plane Re p>-b,

  2. Textured Na x CoO2 Ceramics Sintered from Hydrothermal Platelet Nanocrystals: Growth Mechanism and Transport Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pengcheng; Wang, Yifeng; Zhu, Kongjun; Tai, Guoan; Liu, Jinsong; Wang, Jing; Yan, Kang; Zhang, Jianhui

    2018-05-01

    Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution-recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.

  3. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  4. Quantification of normative ranges and baseline predictors of aortoventricular interface dimensions using multi-detector computed tomographic imaging in patients without aortic valve disease.

    PubMed

    Gooley, Robert P; Cameron, James D; Soon, Jennifer; Loi, Duncan; Chitale, Gauri; Syeda, Rifath; Meredith, Ian T

    2015-09-01

    Multidetector computed tomographic (MDCT) assessment of the aortoventricular interface has gained increased importance with the advent of minimally invasive treatment modalities for aortic and mitral valve disease. This has included a standardised technique of identifying a plane through the nadir of each coronary cusp, the basal plane, and taking further measurements in relation to this plane. Despite this there is no published data defining normal ranges for these aortoventricular metrics in a healthy cohort. This study seeks to quantify normative ranges for MDCT derived aortoventricular dimensions and evaluate baseline demographic and anthropomorphic associates of these measurements in a normal cohort. 250 consecutive patients undergoing MDCT coronary angiography were included. Aortoventricular dimensions at multiple levels of the aortoventricular interface were assessed and normative ranges quantified. Multivariate linear regression was performed to identify baseline predictors of each metric. The mean age was 59±12 years. The basal plane was eccentric (EI=0.22±0.06) while the left ventricular outflow tract was more eccentric (EI=0.32±0.06), with no correlation to gender, age or hypertension. Male gender, height and body mass index were consistent independent predictors of larger aortoventricular dimensions at all anatomical levels, while age was predictive of supra-annular measurements. Male gender, height and BMI are independent predictors of all aortoventricular dimensions while age predicts only supra-annular dimensions. Use of defined metrics such as the basal plane and formation of normative ranges for these metrics allows reference for clinical reporting and for future research studies by using a standardised measurement technique. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    NASA Technical Reports Server (NTRS)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  6. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    USGS Publications Warehouse

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future earthquakes.

  7. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD.

    PubMed

    Zhang, Chunyang; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-09-01

    The mechanical and magnetic properties of Ni-Mn-Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni 50 Mn 38 Sb 12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0[Formula: see text]} A // {2[Formula: see text]} M and 〈0[Formula: see text]1〉 A // 〈[Formula: see text]2〉 M ; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K 1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0[Formula: see text]} A and {0[Formula: see text]} A of austenite. The three {0[Formula: see text]} A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11[Formula: see text]〉 A axis zone. The {0[Formula: see text]} A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11[Formula: see text]〉 A axis zones having one {0[Formula: see text]} A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the variants in the compatible plates are compatible and demonstrate an edge-to-edge character. Thus, such plates should nucleate and grow simultaneously. On the other hand, the strains to form the variants in the incompatible plates are incompatible, so they nucleate and grow separately until they meet during the transformation. The results of the present work provide comprehensive information on the martensitic transformation of Ni-Mn-Sb intermetallic compounds and its impact on martensite variant organization.

  8. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  9. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.

  10. The habit of crystals in aggregates: five parameter grain boundary characterization of olivine

    NASA Astrophysics Data System (ADS)

    Marquardt, K.; Rohrer, G. S.; Morales, L. F. G.; De Graef, M.; Farla, R. J.

    2016-12-01

    There is growing evidence that the presence of interfaces in rocks, including phase and grain boundaries influence macroscopic properties. To model resulting bulk rock properties and ultimately interpret geophysical signals, such as electrical conductivity, knowledge about the relative abundance of specific grain boundaries is needed. To date, neither the anisotropic frequency of appearance of specific grain boundaries nor its dependence on chemical composition is known for rock forming minerals. Here, we report detailed interface characterizations in olivine, the most abundant phase in the upper mantle. To obtain the area distribution of the geometrically varying interfaces, which is among the most fundamental information, we used electron backscatter diffraction (EBSD) to detect the orientations of over 3x104grains corresponding to more than 6000 mm length of grain boundary separating them. Subsequently we used a stereological approach to determine the grain boundary character distribution (GBCD), defined as the relative areas of grain boundaries of different types, distinguished by their five degrees of freedom (Rohrer et al. 2004). We discuss data collected from different olivine aggregates with chemical compositions ranging from Mg2SiO4 forsterite to Mg1.8Fe0.2SiO4 derived from different synthesis methods. We show that standard EBSD indexing as commonly used is sufficient for many applications, but when characterizing grain boundaries higher accuracy and precision is fundamental and provided by the new dictionary indexing approach, where clean up procedures, that can cause artifacts, are superfluous. The grain boundary planes show a preference for low index planes, which is in agreement with observations on other materials (e.g. MgO, TiO2, SrTiO3, MgAl2O4). We find that the principal crystallographic planes have the lowest energies resulting in crystal habits dominated by (001) planes, followed by (010) and (001) planes and that 90°/[001] (100)(010) are the most frequent grain boundaries, for pure forsterite aggregates. However in the absence of any impurities such as Al or Ca on the grain boundaries the (001) planes dominate the crystal habits. Rohrer G. S. et al. (2004) The distribution of internal interfaces in polycrystals. Zeitschrift für Met. 95, 197-214.

  11. Adaptation of the Camera Link Interface for Flight-Instrument Applications

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Mahoney, John C.

    2010-01-01

    COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.

  12. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  13. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.

    2014-08-01

    We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.

  14. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    NASA Astrophysics Data System (ADS)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  15. Electronic and Mechanical Properties of GrapheneGermanium Interfaces Grown by Chemical Vapor Deposition

    DTIC Science & Technology

    2015-10-27

    both surfaces lack order underneath the graphene, quantitative differences exist in their in-plane and out-of plane structure. Relatively sharp in-plane...Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe , K.; Taniguchi, T.; Kim, P.; Shepard, K. L. Nat. Nanotechnol. 2010, 5, 722−726. (25) Martin, J...V.; MacDonald, A. H.; Morozov, S. V.; Watanabe , K.; Taniguchi, T.; Ponomarenko, L. A. Nat. Phys. 2012, 8, 896−901. (32) Ponomarenko, L. A

  16. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission

  17. Pressure actuated film riding seals for turbo machinery

    DOEpatents

    Bidkar, Rahul Anil; Thatte, Azam Mihir; Gibson, Nathan Evan McCurdy; Giametta, Andrew Paul

    2015-08-25

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the sealing device segments includes a stator interface element, a shoe plate having an extended portion having one or more labyrinth teeth facing the rotor and a load bearing portion, wherein the shoe plate is configured to generate an aerodynamic force between the shoe plate and the rotor. The sealing device segment further includes a secondary seal configured to be in contact with the stator interface element at a radially outer end and configured to be in contact with an elevated nose section of the extended portion of the shoe plate on a radially inner end; and multiple flexible elements attached to the shoe plate and to the stator interface element.

  18. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Jan-Niklas, E-mail: hau@fdy.tu-darmstadt.de; Oberlack, Martin; GSC CE, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt

    2015-12-15

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys.more » Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber plane, which results in highly directional linear sound radiation, whereas the nonlinearly generated waves are almost omni-directional. As part of this analysis, we compare the effectiveness of the linear and nonlinear mechanisms of wave generation within the range of validity of the rapid distortion theory and show the dominance of the linear aerodynamic sound generation. Finally, topological differences between the linear source term of the acoustic analogy equation and of the anisotropic non-normality induced linear mechanism of wave generation are found.« less

  19. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  20. Spectral element modelling of fault-plane reflections arising from fluid pressure distributions

    USGS Publications Warehouse

    Haney, M.; Snieder, R.; Ampuero, J.-P.; Hofmann, R.

    2007-01-01

    The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective-stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We performa complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  1. Interface-based two-way tuning of the in-plane thermal transport in nanofilms

    NASA Astrophysics Data System (ADS)

    Hua, Yu-Chao; Cao, Bing-Yang

    2018-03-01

    Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.

  2. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  3. Measured and predicted impingement noise for a model-scale under the wing externally blown flap configuration with a QCSEE type nozzle

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.

    1980-01-01

    Jet/flap interaction noise was measured and predicted for a small-scale model two-flap, under-the-wing, externally blown flap configuration equipped with and without noise suppression devices. The devices consisted of short spanwise fairings centered in relationship to the jet axis and positioned in the slots between the wing and flaps. The nozzle approximated that of the Quiet Clean Short-haul Experimental Engine (QCSEE). Takeoff noise reductions of 6 dB in the flyover and 5 dB in the sideline plane were obtained over a wide range of radiation angles. Approach noise reductions of about 5 dB were obtained only in the forward quadrant of the flyover plane; no reductions were obtained in the sideline plane. Models of several noise sources were combined analytically to form an overall noise prediction, the results from which compared favorably with the measured data. The aerodynamic performance characteristics for these configurations were substantially the same in the takeoff attitude. However, in the approach attitude, the suppressed configuration produced a 6 percent reduction in the flow turning efficiency.

  4. Stability analysis of flexible wind turbine blades using finite element method

    NASA Technical Reports Server (NTRS)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  5. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  6. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1991-01-01

    Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

  7. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  8. The COREL and W12SC3 computer programs for supersonic wing design and analysis

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Rosen, B. S.

    1983-01-01

    Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case.

  9. Damage Arresting Composites

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Davis, Pamela A.

    2015-01-01

    Under NASA's Environmentally Responsible Aviation Project (ERA) the most promising vehicle concepts and technologies that can simultaneously reduce aircraft fuel use, community noise, and emissions are being evaluated. Two key factors to accomplishing these goals are reducing structural weight and moving away from the traditional tube and wing aircraft configuration to a shape that has improved lift and less drag. The hybrid wing body (HWB) configuration produces more lift and less drag by smoothly joining the wings to the center fuselage section so it provides aerodynamic advantages. This shape, however, presents structural challenges with its pressurized, non-circular cabin subjected to aerodynamic flight loads. In the HWB, the structure of the center section where the passenger cabin would be located must support large in-plane loads as well as internal pressure on nearly-flat panels and right-angle joints. This structural arrangement does not lend itself to simple, efficient designs. Traditional aluminum and even state-of-the-art composites do not provide a solution to this challenge.

  10. Aeroacoustic wind-tunnel tests of a light twin-boom general-aviation airplane with free or shrouded-pusher propellers. [in the Langley full-scale tunnel

    NASA Technical Reports Server (NTRS)

    Mclemore, H. C.; Pegg, R. J.

    1980-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the aerodynamic performance and acoustic characteristics of four different pusher-propeller configurations on a twin boom, general aviation airplane. The propellers included a 2-blade free propeller, two 3-blade shrouded propellers, and a 5-blade shrouded propeller. The tests were conducted for a range of airplane angles of attack from about 0 deg to 16 deg for test speeds from 0 to about 36 m/sec and for a range of propeller blade angles and rotation speeds. The free propeller provided the best aerodynamic propulsive performance. For forward flight conditions, the free propeller noise levels were lower than those of the shrouded propellers. In the static conditions the free propeller noise levels were as low as those for the shrouded propellers, except for the propeller in-plane noise where the shrouded propeller noise levels were lower.

  11. Use of source distributions for evaluating theoretical aerodynamics of thin finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Evvard, John C

    1950-01-01

    A series of publications on the source-distribution methods for evaluating the aerodynamics of thin wings at supersonic speeds is summarized, extended, and unified. Included in the first part are the deviations of: (a) the linearized partial-differential equation for unsteady flow at a substantially constant Mach number. b) The source-distribution solution for the perturbation-velocity potential that satisfies the boundary conditions of tangential flow at the surface and in the plane of the wing; and (c) the integral equation for determining the strength and the location of sources to describe the interaction effects (as represented by upwash) of the bottom and top wing surfaces through the region between the finite wing boundary and the foremost Mach wave. The second part deals with steady-state thin-wing problems. The third part of the report approximates the integral equation for unsteady upwash and includes a solution of approximate equation. Expressions are then derived to evaluate the load distributions for time-dependent finite-wing motions.

  12. The investigation of a variable camber blade lift control for helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Awani, A. O.

    1982-01-01

    A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.

  13. USV UHTC- Based Nose And WLE Experimental Test In SCIROCCO And CFD Rebuilding

    NASA Astrophysics Data System (ADS)

    Marino, G.; De Filippis, F.; Di Clement, M.; Russo, G.

    2011-05-01

    It is well known that sharp aerodynamic configurations could provide much more efficiency in “flying” during the re-entry phase of spacecrafts, and/or the hypersonic cruise of futuristic aerospace planes. However such innovation in the design criteria, implies a dramatic increase of the localized heat fluxes at the stagnation points of the leading edges of the aerodynamic surfaces that, as matter of fact, might then require dedicated thermal protection systems, able to sustain thermal loads much higher than those typically experienced by conventional materials applied on blunt bodies. In this perspective CIRA started its own investigations on the design methodology [1], characterization methods, manufacturing procedures, and qualification tests of medium size components based on exotic ceramic materials able to sustain temperatures even exceeding 2000°C, the so called Ultra High Temperature Ceramics (UHTC’s). This paper summarizes CIRA experience achieved so far trough the test opportunities conducted on-ground in the SCIROCCO plasma wind tunnel.

  14. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  15. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2017-12-01

    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  16. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  17. Superconductivity in interacting interfaces of cuprate-based heterostructures

    NASA Astrophysics Data System (ADS)

    Di Castro, Daniele; Balestrino, Giuseppe

    2018-07-01

    Low dimensional superconducting systems have been the subject of numerous studies in the recent past, with the aim of achieving a higher and higher critical temperature (T c ). The recent improvement in film deposition techniques has allowed the realization of artificial heterostructures, with atomically flat surfaces and interfaces, where novel properties appear that are not present in the single constituent. For instance, quasi-2D superconductivity was found at the interface between different oxides. In this review we analyze, in particular, the quasi-2D superconductivity occurring at the interface between two non-superconducting oxides, mostly cuprates. Throughout a comparison of the superconducting properties of different oxide heterostructures and superlattices, we propose a phenomenological explanation of the behavior of the T c as a function of the number of conducting CuO2 planes. This is achieved by introducing two different interactions between the superconducting 2D sheets. This interpretation is finally extended also to standard high T c cuprates, contributing to the solution of the long-standing question of the dependence of T c on the number of CuO2 planes in these systems.

  18. Pilot-in-the Loop CFD Method Development

    DTIC Science & Technology

    2016-04-27

    Contract # N00014-14-C-0020 Pilot-in-the-Loop CFD Method Development Progress Report (CDRL A001) Progress Report for Period: January 21...aerodynamics of the aircraft from the rest of its external environment. For example, ship airwake are calculated using CFD solutions without the presence of...hardware approaches with the goal of real time, fully coupled CFD for virtual dynamic interface modeling & simulation. Penn State is supporting the project

  19. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  20. Dynamical transitions of a driven Ising interface

    NASA Astrophysics Data System (ADS)

    Sahai, Manish K.; Sengupta, Surajit

    2008-03-01

    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.

  1. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    PubMed

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  2. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    PubMed Central

    Zhang, Fangzhou; Bordia, Rajendra K.

    2018-01-01

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647

  3. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  4. The Gyroplane : Its Principles and Its Possibilities

    NASA Technical Reports Server (NTRS)

    Breguet, Louis

    1937-01-01

    This report begins by indicating several simple principles concerning the velocity distribution over the blades of a lifting propeller of diameter D, revolving at n revolutions per second, and animated by a horizontal movement of translation at speed V. The calculation, compared with the test data, has shown that the aerodynamic action of the air on the blades depends almost only on the velocity components in a plane at right angles to the blade span. A history of gyroplane and gyrocopter development is presented as well as the advantages in using both types of craft.

  5. CFD lends the government a hand

    NASA Technical Reports Server (NTRS)

    Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.

    1992-01-01

    The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.

  6. Results of dynamic stability tests conducted on a .012 scale model modified 089 B shuttle orbiter in the AEDC-VKF tunnel B at a Mach number of 8.0 (LA42)

    NASA Technical Reports Server (NTRS)

    Vaughn, J. E.; Daviet, J. T.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a .012 scale model of a NASA/Langley modified version of the Rockwell 089B Space Shuttle Orbiter. Using the forced oscillation test technique, dynamic stability derivatives were measured in the pitch, yaw and roll planes at a Mach number of 8 over an angle of attack range from -4 deg to 28 deg. Plotted and tabulated results are presented.

  7. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  8. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    PubMed Central

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  9. Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution.

    PubMed

    Bai, Lijie; Ye, Fan; Li, Luna; Lu, Jingjing; Zhong, Shuxian; Bai, Song

    2017-10-01

    Integration of plasmonic metal and cocatalyst with semiconductor is a promising approach to simultaneously optimize the generation, transfer, and consumption of photoinduced charge carriers for high-performance photocatalysis. The photocatalytic activities of the designed hybrid structures are greatly determined by the efficiencies of charge transfer across the interfaces between different components. In this paper, interface design of Ag-BiOCl-PdO x hybrid photocatalysts is demonstrated based on the choice of suitable BiOCl facets in depositing plasmonic Ag and PdO x cocatalyst, respectively. It is found that the selective deposition of Ag and PdO x on BiOCl(110) planes realizes the superior photocatalytic activity in O 2 evolution compared with the samples with other Ag and PdO x deposition locations. The reason was the superior hole transfer abilities of Ag-(110)BiOCl and BiOCl(110)-PdO x interfaces in comparison with those of Ag-(001)BiOCl and BiOCl(001)-PdO x interfaces. Two effects are proposed to contribute to this enhancement: (1) stronger electronic coupling at the BiOCl(110)-based interfaces resulted from the thinner contact barrier layer and (2) the shortest average hole diffuse distance realized by Ag and PdO x on BiOCl(110) planes. This work represents a step toward the interface design of high-performance photocatalyst through facet engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming

    2012-01-01

    In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.

  11. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Emanuel, G.; Rasmussen, M. L.

    1991-01-01

    Research efforts related to the development of a unified aerospace plane analysis based on waverider technology are summarized. Viscous effects on the forebodies of cone-derived waverider configurations were studied. A simple means for determining the average skin friction coefficient of laminar boundary layers was established. This was incorporated into a computer program that provides lift and drag coefficients and lift/drag ratio for on-design waveriders when the temperature and Reynolds number based on length are specified. An effort was made to carry out parabolized Navier-Stokes (PNS) calculations for cone-derived waveriders. When the viscous terms were turned off (in the Euler mode) computations for elliptic cone-derived waveriders could be carried out for a wide range of on-design and off-design situations. Work related to waveriders derived from power law shocks is described in some detail.

  12. Derivation of the out-of-plane behaviour of an English bond masonry wall through homogenization strategies

    NASA Astrophysics Data System (ADS)

    Silva, Luís Carlos; Milani, Gabriele; Lourenço, Paulo B.

    2017-11-01

    Two finite element homogenized-based strategies are presented for the out-of-plane behaviour characterization of an English bond masonry wall. A finite element micro-modelling approach using Cauchy stresses and first order movements are assumed for both strategies. The material nonlinearity is lumped on joints interfaces and bricks are considered elastic. Nevertheless, the first model is based on a Plane-stress assumption, in which the out-of-plane quantities are derived through on-thickness wall integration considering a Kirchhoff-plate theory. The second model is a tridimensional one, in which the homogenized out-of-plane quantities can be directly derived after solving the boundary value problem. The comparison is conducted by assessing the obtained out-of-plane bending- and torsion-curvature diagrams. A good agreement is found for the present study case.

  13. The behavior of mineral inclusions during host decomposition. A SEM-STEM study of rutile inclusions at a natural propagating corundum-spinel interface.

    NASA Astrophysics Data System (ADS)

    Baldwin, Lisa; Li, Chen; Habler, Gerlinde; Abart, Rainer

    2017-04-01

    When two neighbor phases are not in chemical equilibrium, they may react and produce a reaction rim at their interface, separating the mutually incompatible phases. At constant P-T-X conditions, such a reaction will continue until one of the reactants is completely consumed. Reaction rim growth involves transfer of chemical components across the growing rim by long-range diffusion and localized interface reactions on either side of the growing rim. Consequently, the thickness of the reaction rim will be a function of time. Yet, in order to quantify and interpret such corona structures and to define a reaction rate law, the kinetics and mechanism of rim formation must be well constrained. In particular, the coupling between long-range diffusion, and interface reaction must be known. In this contribution we focus on potential complexities associated with interface reactions. Many natural minerals contain inclusions of other phases, which in turn may influence the reaction interface propagation kinetics during host phase decomposition (Ashby et al. 1969), as a propagating reaction interface dissipates more free energy when bypassing a mineral inclusion, resulting in a locally decelerated reaction rate. Here, we report results of a SEM-STEM study of the interface between natural rutile-bearing corundum and a polycrystalline ferromagnesio-aluminate spinel that grew topotactically with respect to the corundum precursor as a consequence of its reaction with FeO and MgO from basaltic melt. Electron Backscatter Diffraction (EBSD) crystal orientation imaging revealed that the spinel rim is polycrystalline and exhibits (111) twinning that is parallel to the corundum (0001) plane. The rutile inclusions in corundum are elongated perpendicular to the corundum [0001] axis and are randomly oriented in the (0001) plane. Furthermore, they follow an oscillatory grain size distribution zonation with grain sizes being either a few tens of nanometers, or about 500 to 800 nanometers in the elongated axis. The behavior of the rutile inclusions as they are encountered by the propagating corundum-spinel reaction interface strongly depends on the inclusion size. The nano-inclusions are incorporated into the spinel rim, where -after a recrystallization and coarsening step at the reaction interface- they have a size of > 1 micrometer. There, rutiles form inclusions within spinel grains or accumulate at grain- or twin boundaries within the spinel reaction rim. In contrast, larger inclusions in corundum are collected at the reaction interface, leaving behind a largely rutile-free spinel rim. From our investigations, we conclude that the inclusion size plays an important role in the effective mechanisms of interface propagation during precursor phase decomposition. Contrastingly, the reactive interface orientation with respect to certain crystallographic planes of corundum seems not to influence the inclusion behavior.

  14. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff

    PubMed Central

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier–Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering. PMID:27019208

  15. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  16. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  17. Interface extinction and subsurface peaking of the radiation pattern of a line source

    NASA Technical Reports Server (NTRS)

    Engheta, N.; Papas, C. H.; Elachi, C.

    1981-01-01

    The radiation pattern of a line source lying along the plane interface of two dielectric half-spaces is calculated. It is found that the pattern at the interface has a null (interface extinction); that the pattern in the upper half-space, whose index of refraction is taken to be less than that of the lower half-space, has a single lobe with a maximum normal to the interface; and that the pattern in the lower half-space (subsurface region) has two maxima (peaks) straddling symmetrically a minimum. Interpretation of these results in terms of ray optics, Oseen's extinction theorem, and the Cerenkov effect are given.

  18. Simple full micromagnetic model of exchange bias behavior in ferro/antiferromagnetic layered structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1997-04-01

    It is shown using full micromagnetic relaxation calculations that exchange bias behavior is predicted for single-crystal ferro/antiferromagnetic layers with a fully compensated interface. The particular example most fully studied has a bcc/bct lattice structure with a fully compensated (110) interface plane. Only bilinear Heisenberg exchange was assumed, with anisotropy only in the antiferromagnet. In spite of the intuitive notion that exchange coupling between a ferromagnet and an antiferromagnet across a fully compensated plane of the antiferromagnet should be zero, we find strong coupling, comparable to the bilinear exchange, with a 90° angle between the ferromagnetic and antiferromagnetic axes of layers far from the interface in absence of an applied field. Even though the 90° coupling has characteristics resembling "biquadratic" exchange, it originates entirely from frustrated bilinear exchange. The development of exchange bias is found to originate from the formation of a domain wall in the antiferromagnet via the strong 90° exchange coupling and pinning of the wall by the magnetocrystalline anisotropy in the antiferromagnet. Because the large demagnetizing factor of the ferromagnet tends to confine its magnetization to the plane, the exchange bias is found to depend mainly on the strength and the symmetry of the in-plane component of anisotropy. Although little effort was made to analyze specific systems, the model reproduces many of the qualitative features observed in real exchange bias systems and gives reasonable semiquantitative estimates for the bias field when exchange and anisotropy values consistent with real systems are used.

  19. Gassing in Li4Ti5O12-based batteries and its remedy

    PubMed Central

    He, Yan-Bing; Li, Baohua; Liu, Ming; Zhang, Chen; Lv, Wei; Yang, Cheng; Li, Jia; Du, Hongda; Zhang, Biao; Yang, Quan-Hong; Kim, Jang-Kyo; Kang, Feiyu

    2012-01-01

    Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li4Ti5O12 (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H2, CO2 and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO2. A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs. PMID:23209873

  20. In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces

    PubMed Central

    2013-01-01

    The in-plane optical anisotropy (IPOA) in InAs/GaSb superlattices has been studied by reflectance difference spectroscopy (RDS) at different temperatures ranging from 80 to 300 K. We introduce alternate GaAs- and InSb-like interfaces (IFs), which cause the symmetry reduced from D2d to C2v. IPOA has been observed in the (001) plane along [110] and [11¯0] axes. RDS measurement results show strong anisotropy resonance near critical point (CP) energies of InAs and GaSb. The energy positions show red shift and RDS intensity decreases with the increasing temperature. For the superlattice sample with the thicker InSb-like IFs, energy positions show red shift, and the spectra exhibit stronger IPOA. The excitonic effect is clearly observed by RDS at low temperatures. It demonstrates that biaxial strain results in the shift of the CP energies and IPOA is enhanced by the further localization of the carriers in InSb-like IFs. PMID:23799946

  1. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    PubMed Central

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-01-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902

  2. Rotorcraft In-Plane Noise Reduction Using Active/Passive Approaches with Induced Vibration Tracking

    NASA Astrophysics Data System (ADS)

    Chia, Miang Hwee

    A comprehensive study of the use of active and passive approaches for in-plane noise reduction, including the vibrations induced during noise reduction, was conducted on a hingeless rotor configuration resembling the MBB BO-105 rotor. First, a parametric study was performed to examine the effects of rotor blade stiffness on the vibration and noise reduction performance of a 20%c plain trailing edge flap and a 1.5%c sliding microflap. This was accomplished using a comprehensive code AVINOR (for Active VIbration and NOise Reduction). A two-dimensional unsteady reduced order aerodynamic model (ROM), using the Rational Function Approximation approach and CFD-based oscillatory aerodynamic load data, was used in the comprehensive code. The study identified a hingeless blade configuration with torsional frequency of 3.17/rev as an optimum configuration for studying vibration and noise reduction using on-blade control devices such as flaps or microflaps. Subsequently, a new suite of computational tools capable of predicting in-plane low frequency sound pressure level (LFSPL) rotorcraft noise and its control was developed, replacing the acoustic module WOPWOP in AVINOR with a new acoustic module HELINOIR (for HELIcopter NOIse Reduction), which overcomes certain limitations associated with WOPWOP. The new suite, consisting of the AVINOR/HELINOIR combination, was used to study active flaps, as well as microflaps operating in closed-loop mode for in-plane noise reduction. An alternative passive in-plane noise reduction approach using modification to the blade tip in the 10%R outboard region was also studied. The new suite consisting of the AVINOR/HELINOIR combination based on a compact aeroacoustic model was validated by comparing with wind tunnel test results, and subsequently verified by comparing with computational results. For active control, the in-plane noise reduction obtained with a single 20%c plain trailing edge flap during level flight at a moderate advance ratio was examined. Different configurations of far-field and near-field feedback microphone locations were examined to develop a fundamental understanding of the feedback microphone locations on the noise reduction process A near-field microphone located on the tip of a nose boom was found to produce a LFSPL reduction of up to 6dB. However, this noise reduction was accompanied by an out-of-plane noise increase of 18dB and 60% increase in vertical hub shear. For passive control, three tip geometries having sweep, dihedral, and anhedral, were considered. The tip dihedral reduced LFSPL by up to 2dB without a vibratory load penalty. However, this was accompanied by an increase in the mid frequency sound pressure levels (MFSPL). The tip sweep and tip anhedral produced an increase in in-plane LFSPL below the horizon. A comparison of the active and passive approaches indicated that active approaches implemented by a plain flap with a feedback microphone located on the nose boom is superior to the passive control approaches. However, there is a general trade-off between LFSPL reduction, MFSPL generation and vibratory hub loads induced by noise control.

  3. Inter-plume aerodynamics for gasoline spray collapse

    DOE PAGES

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...

    2017-11-10

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  4. Inter-plume aerodynamics for gasoline spray collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  5. The wake of hovering flight in bats

    PubMed Central

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2015-01-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  6. A Chemical and Structural Study of the A1N-Si Interface

    NASA Technical Reports Server (NTRS)

    George, T.; Beye, R.

    1997-01-01

    Samples of A1N grown on silicon [111] subtrates were examined using electron enery loss spectroscopy (EELS) and selected area diffraction (SAD) with high-resolution transmission electron microscopy (TEM) to determine the source of out-of-place tilts and in-plane rotations of the A1N crystallites at the Si interface.

  7. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico

    2012-03-14

    Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array. © 2012 American Chemical Society

  8. Fundamentals of lateral and vertical heterojunctions of atomically thin materials.

    PubMed

    Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K; Ozkan, Cengiz; Tongay, Sefaattin

    2016-02-21

    At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.

  9. Computational insight into the capacitive performance of graphene edge planes

    DOE PAGES

    Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...

    2017-02-01

    Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less

  10. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2017-04-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  11. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Muljadi, E.; Jonkman, J.

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. Asmore » described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.« less

  12. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  13. Aerodynamic features of flames in premixed gases

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  14. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  15. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  16. Non-monotonous dependence of the ocean surface drag coefficient on the hurricane wind speed due to the fragmentation of the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu. I.; Ermakova, O. S.; Kandaurov, A. A.; Kozlov, D. S.; Sergeev, D. A.; Zilitinkevich, S. S.

    2017-11-01

    Influence of the spray generation due to the fragmentation of the "bag-breakup" type on momentum exchange in the atmospheric boundary layer above the sea surface at hurricane winds was investigated on the basis of the analysis of the results of laboratory experiments. It was shown that aerodynamic drag is determined by the contribution of three factors: first, the drag of the "bag-breakup" canopies as obstacles; second, acceleration of the spray formed during fragmentation by the air flow; and the third factor is related to the stratification of the near-water atmospheric layer due to the presence of levitated water droplets. Combination of all three factors leads to a non-monotonous dependence of the aerodynamic drag coefficient on wind speed, which confirms the results of the field and laboratory measurements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Satyesh Kumar; Shao, S.; Chen, Youxing

    Here, using a newly developed embedded-atom-method potential for Mg–Nb, the semi-coherent Mg/Nb interface with the Kurdjumov–Sachs orientation relationship is studied. Atomistic simulations have been carried out to understand the shear strength of the interface, as well as the interaction between lattice glide dislocations and the interface. The interface shear mechanisms are dependent on the shear loading directions, through either interface sliding between Mg and Nb atomic layers or nucleation and gliding of Shockley partial dislocations in between the first two atomic planes in Mg at the interface. The shear strength for the Mg/Nb interface is found to be generally high,more » in the range of 0.9–1.3 GPa depending on the shear direction. As a consequence, the extents of dislocation core spread into the interface are considerably small, especially when compared to the case of other “weak” interfaces such as the Cu/Nb interface.« less

  18. Basis for paraxial surface-plasmon-polariton packets

    NASA Astrophysics Data System (ADS)

    Martinez-Herrero, Rosario; Manjavacas, Alejandro

    2016-12-01

    We present a theoretical framework for the study of surface-plasmon polariton (SPP) packets propagating along a lossy metal-dielectric interface within the paraxial approximation. Using a rigorous formulation based on the plane-wave spectrum formalism, we introduce a set of modes that constitute a complete basis set for the solutions of Maxwell's equations for a metal-dielectric interface in the paraxial approximation. The use of this set of modes allows us to fully analyze the evolution of the transversal structure of SPP packets beyond the single plane-wave approximation. As a paradigmatic example, we analyze the case of a Gaussian SPP mode, for which, exploiting the analogy with paraxial optical beams, we introduce a set of parameters that characterize its propagation.

  19. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  20. Detection of trans–cis flips and peptide-plane flips in protein structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G., E-mail: wouter.touw@radboudumc.nl; Joosten, Robbie P.; Vriend, Gert, E-mail: wouter.touw@radboudumc.nl

    A method is presented to detect peptide bonds that need either a trans–cis flip or a peptide-plane flip. A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely availablemore » and the method is available from a web server, a web-service interface and through WHAT-CHECK.« less

  1. Co-scheduling of network resource provisioning and host-to-host bandwidth reservation on high-performance network and storage systems

    DOEpatents

    Yu, Dantong; Katramatos, Dimitrios; Sim, Alexander; Shoshani, Arie

    2014-04-22

    A cross-domain network resource reservation scheduler configured to schedule a path from at least one end-site includes a management plane device configured to monitor and provide information representing at least one of functionality, performance, faults, and fault recovery associated with a network resource; a control plane device configured to at least one of schedule the network resource, provision local area network quality of service, provision local area network bandwidth, and provision wide area network bandwidth; and a service plane device configured to interface with the control plane device to reserve the network resource based on a reservation request and the information from the management plane device. Corresponding methods and computer-readable medium are also disclosed.

  2. PNIC - A near infrared camera for testing focal plane arrays

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Harper, D. A.; Pernic, R. J.; Rauscher, Bernard J.

    1990-07-01

    This paper describes the design and the performance of the Astrophysical Research Consortium prototype near-infrared camera (pNIC) designed to test focal plane arrays both on and off the telescope. Special attention is given to the detector in pNIC, the mechanical and optical designs, the electronics, and the instrument interface. Experiments performed to illustrate the most salient aspects of pNIC are described.

  3. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  4. Magnetothermopower of δ-doped LaTiO3/SrTiO3 interfaces in the Kondo regime

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.; Budhani, R. C.

    2014-08-01

    Measurements of magnetothermopower [S (H,T)] of interfacial δ-doped LaTiO3/SrTiO3 (LTO/STO) heterostructure by an isostructural antiferromagnetic perovskite LaCrO3 are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is ≈118 μV /K, but increases dramatically on δ doping. The observed linear temperature dependence of S (T) over the temperature range 100 to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S (T) displays a distinct enhancement in the temperature range (T < 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S (T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo-model-based interpretation of S (H,T).

  5. Seismic and aseismic slip on the ``uncoupled'' Tonga subduction megathrust

    NASA Astrophysics Data System (ADS)

    Beavan, R. J.; Wang, X.; Bevis, M. G.; Kautoke, R'

    2010-12-01

    The Tonga subduction zone has been a type example of a weakly coupled subduction interface since soon after the birth of plate tectonics. Yet in the September 2009 double earthquake, the northern Tonga subduction interface failed in a great Mw 8 earthquake that was probably dynamically triggered by a Mw 8 extensional intraplate earthquake in the outer trench slope region of the incoming Pacific Plate. There are some discrepancies between models of the September 2009 doublet derived from seismic data and those derived from geodetic and DART tsunami data, in particular about which fault plane failed in the intraplate earthquake. In this presentation we explore how well the geodetic and tsunami data can be fit using the alternative fault plane. We also present new GPS data that show the subduction interface is continuing to slip faster than its 1996-2005 “long-term” rate, and we speculate on what this means for the mechanisms by which interplate slip is accommodated at the Tonga subduction zone.

  6. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...

    2016-09-02

    Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less

  7. A fully polarimetric scattering model for a coniferous forest

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.

    1991-01-01

    For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.

  8. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.

    2007-02-01

    A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.

  9. Synthesis and Characterization of Ferromagnetic/Antiferromagnetic Perovskite Oxide Superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue

    Perovskite oxides span a diverse range of functional properties such as ferromagnetism, superconductivity, and ferroelectricity, which makes them promising candidate materials for applications such as sensors, energy conversion and data storage devices. With recent advances in thin film deposition techniques, the precise manipulation of atomic layers on the unit cell level make it possible to synthesize epitaxial thin film heterostructures consisting of layers with different properties. The structural compatibility of perovskite oxides allows them to be epitaxially grown in complex heterostructures such as superlattices with a large density of interfaces where the interplay between spin, charge, orbital, and lattice degrees of freedom gives rise to new behaviors. The ferromagnetic (FM)/antiferromagnetic (AF) interface is particularly interesting due to exchange coupling which is not only of interest for fundamental research but also is of great significance for industrial applications. Unlike metallic systems that have been studied for decades with wide ranges of applications in devices such as hard disk drives, thin films of complex metal oxides is a relatively new field. Perovskite oxides show much more diverse functional properties than metals and open new pathways for tailoring propertiestowards specific device applications. Epitaxial La0.7Sr0.3MnO3 (LSMO)/La 0.7Sr0.3FeO3 (LSFO) superlattices serve as model systems to explore the magnetic structure and exchange coupling at perovskite oxide interfaces. Earlier work suggested that (001)-oriented LSMO/LSFO superlattices with compensated AF spins at the interface display spin-flop coupling characterized by perpendicular alignment between the AF spin axes and the FM moments at a sublayer thickness of 6 unit cells (u.c.). Changing the crystallographic orientation of the interface from (001) to (111) introduces changes to factors such as the charge density of each stacking layer, the magnetic iiistructure of the AF layer at the interface, the symmetry of the lattice, and the orbital degeneracy. Therefore, different properties and exchange coupling mechanisms are expected. (111)-oriented LSMO/LSFO superlattices with sublayer thicknesses ranging from 3 to 60 u.c. were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed using synchrotron radiation based resonant x-ray reflectivity, soft x-ray magnetic spectroscopy, and photoemission electron microscopy to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. Interfacial effects and ultrathin superlattice sublayers can stabilize orientations of the LSFO AF spin axis which differ from that of LSFO films and LSMO/LSFO bilayers. In the ultrathin limit (3 to 6 u.c.), it was found that the AF properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the FM properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (> 9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis. A portion of the AF moments can be reoriented by a moderate external magnetic field through spin-flop coupling with the FM LSMO sublayers that have low magnetocrystalline anisotropy in the (111) plane. The AF order in the spin-flop coupled superlattices was studied using angle-dependent x-ray magnetic linear dichroism. The AF order can be categorized into two types: majority of the AF moments cant out-of-the-plane of the film along the or directions depending on the LSFO layer thickness, while a minority portion lies within the (111) plane in different AF domains. The energy difference between domains with their spin axes along the in-plane or out-of-plane directions is small, and the magnetic order of AF thin films is far ivmore complex than in bulk LSFO. The complex AF structure in these (111)-oriented LSMO/LSFO superlattices illustrates that complex metal oxide heterostructures can serve as fertile ground for discovery of new magnetic phases, which have potential applications in next generation information technology devices.

  10. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 2: Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The numerical method is given for solving the plane problem for two bonded infinite dissimilar elastic strips which contain cracks of various configurations. The problem is intended to approximate a composite beam or a plate having cracks perpendicular to and on the interface of the two layers.

  11. Ships/Trains/Planes/Automobiles: A Renaissance of their Interface

    NASA Technical Reports Server (NTRS)

    Allan, Stanley N.

    1974-01-01

    This paper highlights some of the major multi-modal interface problems created by technological advances, socio-political individualism and the flexibility of choices we expect from our transportation modes. The emphasis is on the need for a comprehensive national network of multi-modal priorities to enhance the movement of people and goods within the changing physical shape of our cities.

  12. Orientation of Ordered Structures of Cytosine and Cytidine 5'-Monophosphate Adsorbed at Au(110)/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Weightman, P.; Dolan, G. J.; Smith, C. I.; Cuquerella, M. C.; Almond, N. J.; Farrell, T.; Fernig, D. G.; Edwards, C.; Martin, D. S.

    2006-03-01

    It is demonstrated using reflection anisotropy spectroscopy that the adsorption of cytosine and cytidine 5'-monophosphate at the Au(110) 1×2/electrolyte interface gives rise to ordered structures in which the base is oriented vertical to the surface and parallel to the [11¯0] axis of the Au(110) plane.

  13. Dependence of reflection and transmission of soliton on angle of incidence at an interface between chalcogenide fibre and gallium nanoparticle film by phase plane trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.

    In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less

  14. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  15. Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations

    NASA Technical Reports Server (NTRS)

    Reddy, Tondapu S.; Bakhle, Milind A.

    2004-01-01

    A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.

  16. Systematic assessment of the various controversies, difficulties, and current trends in the reestablishment of lost occlusal planes in edentulous patients.

    PubMed

    Sahoo, S; Singh, D; Raghav, D; Singh, G; Sarin, A; Kumar, P

    2014-05-01

    Accurate occlusal plane orientation is an essential factor in the fabrication of complete denture prosthesis. Over the years, it has received a number of methodologies by several researchers utilizing various anatomical landmarks however none of them is considered as perfect that could orient ideal occlusal plane. The presented literature review is an attempt to enlighten historical perspectives, pioneer researches, different controversies, difficulties and current trends for re-establishment of lost occlusal plane in edentulous patients. An extensive literature search was performed using Medline/PubMed interface and other scholarly research bibliographic databases using Medical Subject Headings. Studies describing research studies, case series and assorted clinical reports were retrieved and evaluated from 1963 to 2013. Most of the studies have suggest and evidence to consider Camper's plane for artificial orientation of occlusal plane however there is a substantial lack of genuine long term studies and authentic data that could recommend a single reliable landmark for perfect occlusal plane reorientation in a variety of cases.

  17. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  18. Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1997-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.

  19. MASCOT - MATLAB Stability and Control Toolbox

    NASA Technical Reports Server (NTRS)

    Kenny, Sean; Crespo, Luis

    2011-01-01

    MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.

  20. Evaluation of Game-Based Visualization Tools for Military Flight Simulation

    DTIC Science & Technology

    2014-02-01

    pitch, and yaw) then converts this position to WGS84 geocentric coordinates to conform to DIS standards prior to broadcast. The position data of...each external entity is processed by X-Plane® directly in geocentric coordinates for out-the-window display. This interface then allows X- Plane® to...applied to each. Additionally, the XCITE software calculates entity locations in latitude, longitude, and altitude before converting to geocentric

  1. Numerical investigations on the aerodynamic performance of wind turbine: Downwind versus upwind configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Wan, Decheng

    2015-03-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  2. Dynamic Stability Instrumentation System (DSIS). Volume 3; User Manual

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Boyden, Richmond P.; Dress, David A.; Jordan, Thomas L.

    1996-01-01

    The paper is an operating manual for the Dynamic Stability Instrumentation System in specific NASA Langley wind tunnels. The instrumentation system performs either a synchronous demodulation or a Fast Fourier Transform on dynamic balance strain gage signals, and ultimately computes aerodynamic coefficients. The dynamic balance converts sting motor rotation into pitch or yaw plane or roll axis oscillation, with timing information provided by a shaft encoder. Additional instruments control model attitude and balance temperature and monitor sting vibrations. Other instruments perform self-calibration and diagnostics. Procedures for conducting calibrations and wind-off and wind-on tests are listed.

  3. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    NASA Technical Reports Server (NTRS)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  4. Longhorn Business Jets

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Developed in NASA's Aircraft Energy Efficiency program and manufactured by Gates Learjet Corporation, the winglet is an aerodynamic innovation designed to reduce fuel consumption and improve airplane performance. Winglets are lifting surfaces designed to operate in the "vortex" or air whirlpool which occurs at an airplane's wingtip. Complex flow of air around wingtip creates drag which retards the plane's progress. Winglet reduces strength of vortex and thereby reduces strength of drag. Additionally, winglet generates its own lift, producing forward thrust in the manner of a boat's sail. Combination of reduced drag and additional thrust adds up to significant improvement in fuel efficiency.

  5. Study of the mechanical behavior of a 2-D carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1987-01-01

    The out-of-plane fracture of a 2-D carbon-carbon composite was observed and characterized to gain an understanding of the factors influencing the stress distribution in such a laminate. Finite element analyses of a two-ply carbon-carbon composite under in-plane, out-of-plane, and thermal loading were performed. Under in-plane loading all components of stress were strong functions of geometry. Additionally, large thermal stresses were predicted. Out-of-plane tensile tests revealed that failure was interlaminar, and that cracks propagated along the fiber-matrix interface. An elasticity solution was utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that the stress distributions in a transversely orthotropic fiber are radically different than those predicted assuming the fiber to be transversely isotropic.

  6. Atomistic modeling of Mg/Nb interfaces: shear strength and interaction with lattice glide dislocations

    DOE PAGES

    Yadav, Satyesh Kumar; Shao, S.; Chen, Youxing; ...

    2017-10-17

    Here, using a newly developed embedded-atom-method potential for Mg–Nb, the semi-coherent Mg/Nb interface with the Kurdjumov–Sachs orientation relationship is studied. Atomistic simulations have been carried out to understand the shear strength of the interface, as well as the interaction between lattice glide dislocations and the interface. The interface shear mechanisms are dependent on the shear loading directions, through either interface sliding between Mg and Nb atomic layers or nucleation and gliding of Shockley partial dislocations in between the first two atomic planes in Mg at the interface. The shear strength for the Mg/Nb interface is found to be generally high,more » in the range of 0.9–1.3 GPa depending on the shear direction. As a consequence, the extents of dislocation core spread into the interface are considerably small, especially when compared to the case of other “weak” interfaces such as the Cu/Nb interface.« less

  7. Assembling Bare Au Nanoparticles at Positively Charged Templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; ...

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less

  8. NASA's Next Solar Sail: Lessons Learned from NanoSail - D2

    NASA Technical Reports Server (NTRS)

    Katan, Chelsea

    2012-01-01

    NanoSail-D2 unfurled January 17th, 2011 and commenced a nine month Low Earth Orbit path to reentry to evaluate a sail's capacity to deploy in space and deorbit satellites. The orbit was strongly affected by variables including but not limited to: initial attitude, orbit lighting, solar radiation pressure, aerodynamic drag, gravity, and Center of Pressure offsets. The effects of these variables were evaluated through a 3-DOF rigid body simulation. The sail experienced stability in orbits which were continuously lit, i.e. did not orbit behind Earth. Probable drag area experienced by the sail for the mission is also estimated from orbital data and compared to the attitude simulation results. Analysis focuses on sail behavior in full lighting conditions to establish the limits of the sails stability in full lighting. Solar radiation pressure, aerodynamic drag, and gravity torque effects are described. Lastly, a reasonable upper bound on the variation of the Center of Pressure from the geometric center of the sail plane is established. Each of these results contributes to the design requirements for future solar sails.

  9. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  10. Results from a Sting Whip Correction Verification Test at the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, B. L.; Finley, T. D.

    2002-01-01

    In recent years, great strides have been made toward correcting the largest error in inertial Angle of Attack (AoA) measurements in wind tunnel models. This error source is commonly referred to as 'sting whip' and is caused by aerodynamically induced forces imparting dynamics on sting-mounted models. These aerodynamic forces cause the model to whip through an arc section in the pitch and/or yaw planes, thus generating a centrifugal acceleration and creating a bias error in the AoA measurement. It has been shown that, under certain conditions, this induced AoA error can be greater than one third of a degree. An error of this magnitude far exceeds the target AoA goal of 0.01 deg established at NASA Langley Research Center (LaRC) and elsewhere. New sting whip correction techniques being developed at LaRC are able to measure and reduce this sting whip error by an order of magnitude. With this increase of accuracy, the 0.01 deg AoA target is achievable under all but the most severe conditions.

  11. Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2017-04-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.

  12. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  13. Aerothermoelastic analysis of a NASP demonstrator model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Zeiler, Thomas A.; Pototzky, Anthony S.; Spain, Charles V.; Engelund, Walter C.

    1993-01-01

    The proposed National AeroSpace Plane (NASP) is designed to travel at speeds up to Mach 25. Because aerodynamic heating during high-speed flight through the atmosphere could destiffen a structure, significant couplings between the elastic and rigid body modes could result in lower flutter speeds and more pronounced aeroelastic response characteristics. These speeds will also generate thermal loads on the structure. The purpose of this research is develop methodologies applicable to the NASP and to apply them to a representative model to determine its aerothermoelastic characteristics when subjected to these thermal loads. This paper describes an aerothermoelastic analysis of the generic hypersonic vehicle configuration. The steps involved in this analysis were: (1) generating vehicle surface temperatures at the appropriate flight conditions; (2) applying these temperatures to the vehicle's structure to predict changes in the stiffness resulting from material property degradation; (3) predicting the vibration characteristics of the heated structure at the various temperature conditions; (4) performing aerodynamic analyses; and (5) conducting flutter analysis of the heated vehicle. Results of these analyses and conclusions representative of a NASP vehicle are provided in this paper.

  14. Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J. L., E-mail: jlyu@semi.ac.cn; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002

    2015-01-07

    The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spectroscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness ofmore » the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k ⋅ p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.« less

  15. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  16. Precise hypocenter distribution and earthquake generating and stress in and around the upper-plane seismic belt in the subducting Pacific slab beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.

    2007-12-01

    1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in the slab should correspond to the difference of the spatial distribution of the hydrated minerals and their dehydration reactions. In the upper slab crust, the upper-plane seismic belt is found because the hydrated minerals could be distributed homogeneously and the dehydration reaction (from jadeite lawsonite blueschist to lawsonite amphibole eclogite [Hacker et al., 2003b]) occurs perhaps largely at depth of 70-100km. Our result also suggests that in the lower portion of the slab crust and/or the uppermost portion of the slab mantle, the hydrated minerals could be inhomogeneously distributed and the seismicity occurs at depths around 65km, where another dehydration reaction may exist. 4. Characteristics of the focal mechanisms We examined the stress distribution within the slab by using focal mechanisms of the upper plane, interplane and lower plane events. From the plate interface to about 20 km below it, downdip-compressional (DC) type events are dominant. Below 20km from the plate interface, downdip-tensional (DT) type events are dominant. Many of interplane events have DC type focal mechanisms because of their locations in the uppermost portions of the slab mantle. These results indicate that the stress neutral plane from the DC type to DT type could be located at depth of about 20km from the plate interface.

  17. Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu

    2014-09-01

    Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungstenmore » with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less

  18. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Koh, Yee Rui; Comparan, Jonathan; Sadasivam, Sridhar; Schroeder, Jeremy L.; Garbrecht, Magnus; Mohammed, Amr; Birch, Jens; Fisher, Timothy; Shakouri, Ali; Sands, Timothy D.

    2016-01-01

    Reduction of cross-plane thermal conductivity and understanding of the mechanisms of heat transport in nanostructured metal/semiconductor superlattices are crucial for their potential applications in thermoelectric and thermionic energy conversion devices, thermal management systems, and thermal barrier coatings. We have developed epitaxial (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices with periodicity ranging from 1 nm to 240 nm that show significantly lower thermal conductivity compared to the parent TiN/(Al,Sc)N superlattice system. The (Ti,W)N/(Al,Sc)N superlattices grow with [001] orientation on the MgO(001) substrates with well-defined coherent layers and are nominally single crystalline with low densities of extended defects. Cross-plane thermal conductivity (measured by time-domain thermoreflectance) decreases with an increase in the superlattice interface density in a manner that is consistent with incoherent phonon boundary scattering. Thermal conductivity values saturate at 1.7 W m-1K-1 for short superlattice periods possibly due to a delicate balance between long-wavelength coherent phonon modes and incoherent phonon scattering from heavy tungsten atomic sites and superlattice interfaces. First-principles density functional perturbation theory based calculations are performed to model the vibrational spectrum of the individual component materials, and transport models are used to explain the interface thermal conductance across the (Ti,W)N/(Al,Sc)N interfaces as a function of periodicity. The long-wavelength coherent phonon modes are expected to play a dominant role in the thermal transport properties of the short-period superlattices. Our analysis of the thermal transport properties of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices addresses fundamental questions about heat transport in multilayer materials.

  19. Simulation of the flow past a model in the closed test section of a low-speed wind tunnel and in the free stream

    NASA Astrophysics Data System (ADS)

    Bui, V. T.; Lapygin, V. I.

    2015-05-01

    The flow around a model in the closed test section of a low-speed wind tunnel has been analyzed in 2D approximation. As the contour of the nozzle, test section, and diffuser, the contour of the T-324 wind tunnel, of the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM SB RAS, Novosibirsk), in its symmetry plane was adopted. A comparison of experimental with calculated data on the distribution of velocities and dynamic pressures in the test section is given. The effect due to the sizes of a model installed in the test section on the values of the aerodynamic coefficients of the model is analyzed. As the aerodynamic model, the NASA0012 airfoil and the circular cylinder were considered. For the airfoil chord length b = 20 % of nozzle height, the values of the aerodynamic coefficients of the airfoil in the free stream and in the test section proved to be close to each other up to the angle of attack a = 7°, which configuration corresponds to blockage-factor value ξ ≈ 7 %. The obtained data are indicative of the expedience of taking into account, in choosing the model scale, not only the degree of flow passage area blockage by the model but, also, the length of the well-streamlined model. In the case of a strongly blunted body with a high drag-coefficient value, the admissible blockage factor ξ may reach a value of 10 %.

  20. High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wu, Dafang; Xia, Yong

    2010-09-01

    To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.

  1. Crack stability and branching at interfaces

    NASA Astrophysics Data System (ADS)

    Thomson, Robb

    1995-11-01

    The various events that occur at a crack on an interface are explored, and described in terms of a simple graphical construction called the crack stability diagram. For simple Griffith cleavage in a homogeneous material, the stability diagram is a sector of a circle in the space of stress intensity factors, KI/KII. The Griffith circle is limited in both positive and negative KII directions by nonblunting dislocation emission on the cleavage plane. For a branching plane inclined at an angle to the original cleavage plane, both cleavage and emission (which blunts the crack) can be described as a balance between an elastic driving force and a lattice resistance for the event. We use an analytic expression obtained by Cotterell and Rice for cleavage, and show that it is an excellent approximation, but show that the lattice resistance includes a cornering resistance, in addition to the standard surface energy in the final cleavage criterion. Our discussion of the lattaice resistance is derived from simulations in two-dimensional hexagonal lattices with UBER force laws with a variety of shapes. Both branching cleavage and blunting emission can be described in terms of a stability diagram in the space of the remote stress intensity factors, and the competition between events on the initial cleavage plane and those on the branching plane can be described by overlays of the two appropriate stability diagrams. The popular criterion that kII=0 on the branching plane is explored for lattices and found to fail significantly, because the lattice stabilizes cleavage by the anisotropy of the surface energy. Also, in the lattice, dislocation emission must must always be considered as an alternative competing event to branching.

  2. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  3. Designing It Smart With SIV

    NASA Technical Reports Server (NTRS)

    2003-01-01

    When research staff at NASA s Glenn Research Center developed and patented Stereo Imaging Velocimetry (SIV), the world s first three-dimensional (3-D), full-field quantitative and qualitative analysis tool to investigate flow velocities, experiments that were previously impossible became a reality. Seizing the opportunity to commercialize NASA s breakthrough invention, Digital Interface Systems (DIS), Inc., of North Olmsted, Ohio, acquired an exclusive license to market SIV, which has a range of applications from improving the aerodynamics of aircraft and automobiles to avoiding "no flow" regions in artificial hearts.

  4. The Development of High Order Methods for Real World Applications

    DTIC Science & Technology

    2015-12-03

    current method has been applied to aerodynamic problems. Numerical tests show that significant savings in the number of DOFs can be achieved through... current element Vi, and the normal flux Fn(Qi) at the interface is Fn(Qi) = ~F (Qi) · ~n. In order to eliminate the test function, the boundary integral...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

  5. The Development of High-Order Methods for Real World Applications

    DTIC Science & Technology

    2015-12-03

    current method has been applied to aerodynamic problems. Numerical tests show that significant savings in the number of DOFs can be achieved through... current element Vi, and the normal flux Fn(Qi) at the interface is Fn(Qi) = ~F (Qi) · ~n. In order to eliminate the test function, the boundary integral...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

  6. Impact of emerging technologies on future combat aircraft agility

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.; Gilert, William P.

    1990-01-01

    The foreseeable character of future within-visual-range air combat entails a degree of agility which calls for the integration of high-alpha aerodynamics, thrust vectoring, intimate pilot/vehicle interfaces, and advanced weapons/avionics suites, in prospective configurations. The primary technology-development programs currently contributing to these goals are presently discussed; they encompass the F-15 Short Takeoff and Landing/Maneuver Technology Demonstrator Program, the Enhanced Fighter Maneuverability Program, the High Angle-of-Attack Technology Program, and the X-29 Technology Demonstrator Program.

  7. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  8. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  9. Laser anemometry - Advances and applications 1991; Proceedings of the 4th International Conference, Cleveland, OH, Aug. 5-9, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Dybbs, Alexander (Editor); Ghorashi, Bahman (Editor)

    1991-01-01

    The papers presented in this volume provide an overview of the latest advances in laser anemometry and optical flow diagnostics. Topics discussed include turbulence, jets, and chaos; novel optical techniques for velocity measurements; chemical reactions and combusting flows; and LDA/CFD interface. Attention is also given to particle image velocimetry, high speed flows and aerodynamic flows, internal flows, particle sizing, optics and signal processing, two-phase flows, and general fluid mechanics applications.

  10. Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan

    2018-05-01

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.

  11. EAGLEView: A surface and grid generation program and its data management

    NASA Technical Reports Server (NTRS)

    Remotigue, M. G.; Hart, E. T.; Stokes, M. L.

    1992-01-01

    An old and proven grid generation code, the EAGLE grid generation package, is given an added dimension of a graphical interface and a real time data base manager. The Numerical Aerodynamic Simulation (NAS) Panel Library is used for the graphical user interface. Through the panels, EAGLEView constructs the EAGLE script command and sends it to EAGLE to be processed. After the object is created, the script is saved in a mini-buffer which can be edited and/or saved and reinterpreted. The graphical objects are set-up in a linked-list and can be selected or queried by pointing and clicking the mouse. The added graphical enhancement to the EAGLE system emphasizes the unique capability to construct field points around complex geometry and visualize the construction every step of the way.

  12. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  13. Aerodynamic Measurements of an Incidence Tolerant Blade in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.

    2012-01-01

    An overview of the recent facility modifications to NASA s Transonic Turbine Blade Cascade Facility and aerodynamic measurements on the VSPT incidence-tolerant blade are presented. This work supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 or more variations in VSPT blade incidence angles. The Transonic Turbine Blade Cascade Facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Details of the modifications are described. An incidence-tolerant blade was developed under an RTPAS study contract and tested in the cascade to look at the effects of large incidence angle and Reynolds number variations. Recent test results are presented which include midspan exit total pressure and flow angle measurements obtained at three inlet angles representing the cruise, take-off, and maximum incidence flight mission points. For each inlet angle, data were obtained at five flow conditions with exit Reynolds numbers varying from 2.12 106 to 2.12 105 and two isentropic exit Mach numbers of 0.72 and 0.35. Three-dimensional flowfield measurements were also acquired at the cruise and take-off points. The flowfield measurements were acquired using a five-hole and three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  14. Inertial Upper Stage (IUS) software analysis

    NASA Technical Reports Server (NTRS)

    Grayson, W. L.; Nickel, C. E.; Rose, P. L.; Singh, R. P.

    1979-01-01

    The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis.

  15. Direct electronic communication at bio-interfaces assisted by layered-metal-hydroxide slab arrays with controlled nano-micro structures.

    PubMed

    An, Zhe; He, Jing

    2011-10-28

    The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011

  16. Scattering by multiple cylinders located on both sides of an interface

    NASA Astrophysics Data System (ADS)

    Lee, Siu-Chun

    2018-07-01

    The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.

  17. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides

    DOE PAGES

    De Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; ...

    2014-11-24

    The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. In this paper, we show that, even in the absence of direct Cu–O–Mn covalent bonding, the interfacial CuO 2 planes of superconducting La 1.85Sr 0.15CuO 4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La 0.66Sr 0.33MnO 3 ferromagnet.more » Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. Finally, the Dzyaloshinskii–Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO 2 planes into the superconductor, eventually depressing its critical temperature.« less

  18. Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture.

    PubMed

    Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed

    2015-12-01

    Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Glide of threading edge dislocations after basal plane dislocation conversion during 4H-SiC epitaxial growth

    NASA Astrophysics Data System (ADS)

    Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek

    2015-05-01

    Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.

  20. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) atmore » room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.« less

  1. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies. Electronic supplementary information (ESI) available: Details of the testing of four different DFT functionals; the adsorption energies and separation distances for the full set of analogue molecules; details of the adsorption energies of the phenyl species on the graphene surface at different adsorption sites; snapshots of the set-ups of the three different water-graphene simulations; plane-wave DFT minimum energy configurations of the full set of analogue molecules; details of the development and parametrisation of the GRAPPA FF; details of the parameters and setup used for the AMEOBAPRO simulations; the probability distribution of the O-H bond vectors of water molecules at the graphene interface; details of the simulation times for the (14 × 0) CNT systems using the different FFs; details of tests performed to determine the contribution of polarisability to binding energies; the RMSD between the reference values and plane-wave DFT values of different groups of molecules; 2D density maps of water on the graphene interface; density and hydrogen bond profiles for the simulations of water inside CNTs; 2D density maps of water inside the CNTs; plots of the collective variable against time for the meta-dynamics simulations; probability distributions of the angle between the plane of the aromatic rings and the graphene surface; the probability distribution of distance of the methyl carbon from the graphene surface for Ala. See DOI: 10.1039/c4nr00468j

  2. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  3. A Study of Wing Flutter

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Bear, R M

    1929-01-01

    Part I describes vibration tests, in a wind tunnel, of simple airfoils and of the tail plane of an M0-1 airplane model; it also describes the air flow about this model. From these tests are drawn inferences as to the cause and cure of aerodynamic wing vibrations. Part II derives stability criteria for wing vibrations in pitch and roll, and gives design rules to obviate instability. Part III shows how to design spars to flex equally under a given wing loading and thereby economically minimize the twisting in pitch that permits cumulative flutter. Resonant flutter is not likely to ensue from turbulence of air flow along past wings and tail planes in usual flying conditions. To be flutterproof a wing must be void of reversible autorotation and not have its centroid far aft of its pitching axis, i. e., axis of pitching motion. Danger of flutter is minimized by so proportioning the wing's torsional resisting moment to the air pitching moment at high-speed angles that the torsional flexure is always small. (author)

  4. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  5. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  6. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1975-01-01

    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  7. An Experimental Investigation of the Flow Over the Rear End of a Notchback Automobile Configuration

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.

    2000-01-01

    An experimental investigation of the flow over the rear end of a 0.16 scale notchback automobile configuration has been conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART). The objective of this work was to investigate the flow separation that occurs behind the backlight and obtain experimental data that can be used to understand the physics and time-averaged structure of the flow field. A three-component laser velocimeter was used to make non-intrusive, velocity measurements in the center plane and in a single cross-flow plane over the decklid. In addition to off-body measurements, flow conditions on the car surface were documented via surface flow visualization, boundary layer measurements, and surface pressures. The experimental data show several features previously identified by other researchers, but also reveal differences between the flow field associated with this particular configuration and the generally accepted models for the flow over a notchback rear end.

  8. An analysis of the effect of aeroassist maneuvers on orbital transfer vehicle performance

    NASA Technical Reports Server (NTRS)

    Murphy, Gregory O.; Suit, William T.

    1987-01-01

    This paper summarizes a Langley Research Summer Scholars (LARSS) research project (Summer 1986) dealing with the topic of the effectiveness of aeroassist maneuvers to accomplish a change in the orbital inclination of an Orbital Transfer Vehicle (OTV). This task was subject to OTV design constraints, chief of which were the axial acceleration and the aerodynamic heating rate limits of the OTV. The use of vehicle thrust to replace lost kinetic energy and, thereby, to increase the maximum possible change in orbital inclination was investigated. A relation between time in the hover orbit and payload to LEO was established. The amount of plane change possible during this type of maneuver was checked for several runs and a possible thrusting procedure to increase the plane change and still get to LEO was suggested. Finally, the sensitivity of various target parameters to controllable independent variables was established, trades between the amount of control allowed, and payload to LEO suggested.

  9. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  10. Structural and electronic properties of in-plane phase engineered WSe2: A DFT study

    NASA Astrophysics Data System (ADS)

    Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.

    2018-04-01

    We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.

  11. The crack problem for a half plane stiffened by elastic cover plates

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.

  12. Temperature Dependence of Morphology and Growth Mechanism of Vapor-Grown Cd crystals as Affected by Bi Impurities

    NASA Astrophysics Data System (ADS)

    Yumoto, Hisami; Hasiguti, Ryukiti R.

    1984-07-01

    Hexagonal prismatic Cd crystals having {10\\bar{1}0} prismatic planes, or occasionally having {11\\bar{2}0} prismatic planes, were grown as high-temperature-type Cd crystals by the thin layer VLS mechanism at Ts (growth temperature) ≥ Tt (transition temperature range: 250-260°C). Pencil-shaped Cd crystals (low-temperature-type Cd crystals) were grown, having {10\\bar{1}0} and {11\\bar{2}0} prismatic planes and {10\\bar{1}1} pyramidal planes by the mixed-type VLS mechanism at Ts≤Tt. When the growth temperature was decreased below Tt, the shape of the solid-liquid interface changed from rounded to faceted. Three processes for the termination of the mixed-type VLS growth are proposed.

  13. Systematic Assessment of the Various Controversies, Difficulties, and Current Trends in the Reestablishment of Lost Occlusal Planes in Edentulous Patients

    PubMed Central

    Sahoo, S; Singh, D; Raghav, D; Singh, G; Sarin, A; Kumar, P

    2014-01-01

    Accurate occlusal plane orientation is an essential factor in the fabrication of complete denture prosthesis. Over the years, it has received a number of methodologies by several researchers utilizing various anatomical landmarks however none of them is considered as perfect that could orient ideal occlusal plane. The presented literature review is an attempt to enlighten historical perspectives, pioneer researches, different controversies, difficulties and current trends for re-establishment of lost occlusal plane in edentulous patients. An extensive literature search was performed using Medline/PubMed interface and other scholarly research bibliographic databases using Medical Subject Headings. Studies describing research studies, case series and assorted clinical reports were retrieved and evaluated from 1963 to 2013. Most of the studies have suggest and evidence to consider Camper's plane for artificial orientation of occlusal plane however there is a substantial lack of genuine long term studies and authentic data that could recommend a single reliable landmark for perfect occlusal plane reorientation in a variety of cases. PMID:24971200

  14. Analysis of Double Layer and Adsorption Effects at the Alkaline Polymer Electrolyte-Electrode Interface

    DTIC Science & Technology

    2011-10-05

    anion exchange mem - branes (AEM) are an attractive alternative to proton exchange mem - brane (PEM) fuel cells.1, 2 From electrocatalysts standpoint...gener- ally broken down into three distinct regions: the inner Helmholtz plane (IHP), the outer Helmholtz plane ( OHP ), and the diffuse layer. Figure 11...closest approach and is defined as OHP at a distance, x2. Nonspecifically adsorbed ions are distributed in a three dimensional region, called diffuse layer

  15. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.

    PubMed

    Hoernke, Maria; Falenski, Jessica A; Schwieger, Christian; Koksch, Beate; Brezesinski, Gerald

    2011-12-06

    Amyloid formation plays a causative role in neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Soluble peptides form β-sheets that subsequently rearrange into fibrils and deposit as amyloid plaques. Many parameters trigger and influence the onset of the β-sheet formation. Early stages are recently discussed to be cell-toxic. Aiming at understanding various triggers such as interactions with hydrophobic-hydrophilic interfaces and metal ion complexation and their interplay, we investigated a set of model peptides at the air-water interface. We are using a general approach to a variety of diseases such as Alzheimer's disease, Parkinson's disease, and type II diabetes that are connected to amyloid formation. Surface sensitive techniques combined with film balance measurements have been used to assess the conformation of the peptides and their orientation at the air-water interface (IR reflection-absorption spectroscopy). Additionally, the structures of the peptide layers were characterized by grazing incidence X-ray diffraction and X-ray reflectivity. The peptides adsorb to the air-water interface and immediately adopt an α-helical conformation. This helical intermediate transforms into β-sheets upon further triggering. The factors that result in β-sheet formation are dependent on the peptide sequence. In general, the interface has the strongest effect on peptide conformation compared to high concentrations or metal ions. Metal ions are able to prevent aggregation in bulk but not at the interface. At the interface, metal ion complexation has only minor effects on the peptide secondary structure, influencing the in-plane structure that is formed in two dimensions. At the air-water interface, increased concentrations or a parallel arrangement of the α-helical intermediates are the most effective triggers. This study reveals the role of various triggers for β-sheet formation and their complex interplay. Our main finding is that the hydrophobic-hydrophilic interface largely governs the conformation of peptides. Therefore, the present study implies that special care is needed when interpreting data that may be affected by different amounts or types of interfaces during experimentation. © 2011 American Chemical Society

  16. Containerless crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Aoyama, T.

    2002-04-01

    Crystallization from undercooled melt of silicon was carried out by means of electro-magnetic levitation method under controlled undercooling. The measured growth rate vs. undercooling was categorized into three regions, I, II and III, respectively, from the point of the interface morphology. Thin plate crystals whose interface consisted of both faceted (1 1 1) plane and wavy edge plane like saw-tooth were observed in the region I where the undercooling is less than 100 K. The growth rate of the wavy edge plane was well described by the dendrite growth model. The morphology of growing crystals was abruptly changed to faceted dendrite in the region II, though there was no abrupt change in the growth rate. Seeding at temperatures in the region I changes the drop to a mono-crystalline sphere, if the growth rate along the normal direction of the thin plate crystal is controlled by step-wise growth on the faceted plane. Actually, the sample of 5 mm in diameter seeded at undercooling of 26 K was a quasi-single crystal with large grain, except for a small area where twinning and cracking are observed. The result suggests that the single crystal could be grown, if a smaller sample, 1 or 2 mm in diameter, that is difficult to be levitated by electro-magnetic force were processed with other methods such as free fall in a drop tube.

  17. Thermal modeling of head disk interface system in heat assisted magnetic recording

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfermore » in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.« less

  18. The deformation twin in lamellar Ti 3Al/TiAl structure

    NASA Astrophysics Data System (ADS)

    Zhang, J. X.; Ye, H. Q.

    2003-04-01

    A Ti-48Al-2Cr (at.%) alloy consisting of γ+α 2 lamellar structure was deformed in compression at room temperature. Study by high resolution electron microscopy was carried out on the characteristic of induced γ T/α 2 interface. During deformation the γ T/α 2 interface presents a stepped structure and the γ/α 2 interface remains straight. The formation mechanism of γ T associated with misfit dislocations is proposed. 1/2[01 1¯] γ interfacial dislocation in the γ/α 2 interface can dissociate into a 1/6[ 1¯1 2¯] γ partial dislocation which glides on the ( 1¯11) γ plane and causes γ T to form.

  19. Overview of the Aerothermodynamics Analysis Conducted in Support of the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2004-01-01

    A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.

  20. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  1. Low Speed Aerodynamics of the X-38 CRV

    NASA Technical Reports Server (NTRS)

    Komerath, N. M.; Funk, R.; Ames, R. G.; Mahalingam, R.; Matos, C.

    1998-01-01

    This project was performed in support of the engineering development of the NASA X-38 Crew Return Vehicle (CRV)system. Wind tunnel experiments were used to visualize various aerodynamic phenomena encountered by the CRV during the final stages of descent and landing. Scale models of the CRV were used to visualize vortex structures above and below the vehicle, and in its wake, and to quantify their trajectories. The effect of flaperon deflection on these structures was studied. The structure and dynamics of the CRV's wake during the drag parachute deployment stage were measured. Regions of high vorticity were identified using surveys conducted in several planes using a vortex meter. Periodic shedding of the vortex sheets from the sides of the CRV was observed using laser sheet videography as the CRV reached high angles of attack during the quasi-steady pitch-up prior to parafoil deployment. Using spectral analysis of hot-film anemometer data, the Strouhal number of these wake fluctuations was found to be 0.14 based on the model span. Phenomena encountered in flight test during parafoil operation were captured in scale-model tests, and a video photogrammetry technique was implemented to obtain parafoil surface shapes during flight in the tunnel. Forces on the parafoil were resolved using tension gages on individual lines. The temporal evolution of the phenomenon of leading edge collapse was captured. Laser velocimetry was used to demonstrate measurement of the porosity of the parafoil surface. From these measurements, several physical explanations have been developed for phenomena observed at various stages of the X-38 development program. Quantitative measurement capabilities have also been demonstrated for continued refinement of the aerodynamic technologies employed in the X-38 project. Detailed results from these studies are given in an AIAA Paper, two slide presentations, and other material which are given on a Web-based archival resource. This is the Digital Library of the Georgia Tech Experimental Aerodynamics Group.

  2. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Murman, Scott; Aftosmis, Michael

    2003-01-01

    Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.

  3. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    PubMed

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the curvature effect of thin membranes

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James

    2013-01-01

    We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.

  5. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    NASA Astrophysics Data System (ADS)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense, cross-pitch flow on the contoured endwall side. Endwall adiabatic effectiveness values and coolant distribution thermal fields show minimal effects of varying slot film coolant MFR. This suggests the dominant effects of combustor liner coolant. show dominant effects of combustor liner coolant on cooling the endwall. A coolant vorticity correlation presenting the advective mixing of the coolant due to secondary flow vorticity at the exit plane is also discussed.

  6. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  7. Refraction at a curved dielectric interface - Geometrical optics solution

    NASA Technical Reports Server (NTRS)

    Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.

    1982-01-01

    The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.

  8. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  9. Aerodynamic Characteristics of Three Deep-Step Planing-Tail Flying-Boat Hulls and a Transverse-Step Hull With Extended Afterbody

    DTIC Science & Technology

    1952-08-01

    28 NACA TN 2762 ( a ) Langley tank model 221E. a = 2°. (b) Langley tank model 221G . a = 2°. ( c ) Langley tank model 221F. a = k<: Figure 13...coefficient based on maximum cross-sectional area A A of hull (Drag/qA) CDy drag coefficien"t based on surface area W of hull (Drag/qW) C lateral-force... 221G , and 221F were drawn by the Langley Hydrodynamics Division by increasing the step of hull 221B of reference 1 from a depth which was 23

  10. Hypersonics. Volume 1 - Defining the hypersonic environment; Proceedings of the First Joint Europe/U.S. Short Course on Hypersonics, Paris, France, Dec. 7-11, 1987

    NASA Astrophysics Data System (ADS)

    Bertin, John J.; Glowinski, Roland; Periaux, Jacques

    1989-05-01

    The present work discusses the general characterization of hypersonic flows, the hypersonic phenomena to be encountered by the Hermes spacecraft, industrial methodologies for the design of hypersonic vehicles, the definition of aerodynamic methodology, and hypersonic airbreathing-propulsion vehicle design practices applicable to the U.S. National Aerospace Plane. Also discussed are real gas effects in the hypersonic regime, the influence of thermochemistry and of nonequilibrium and surface catalysis on hypersonic vehicle design, the modelling of nonequilibrium effects in high speed flows, air-dissociation thermochemistry, and rarefied gas dynamics effects for spacecraft.

  11. Skylab viscous damper study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed magnetically anchored viscous fluid damper can maintain the Skylab in a gravity-gradient stabilized mode at the anticipated reboost altitudes. The parameters influencing damper performance (and thereby affecting the degree of risk) are: (1) amount of skylab pitch bias in the orbit plane which will result from aerodynamic trim conditions of the post-reboost configuration Skylab; (2) the lowest altitude to which the post-reboost Skylab will be allowed to decay prior to the next rendezvous; (3) maximum allowable weight and size of the proposed damper in order to match shuttle/TRS mission constraints; (4) the amount of magnetic materials expected to be in the vicinity of the damper.

  12. Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.

    2018-03-01

    Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.

  13. Reynolds-Averaged Navier-Stokes Simulations of Two Partial-Span Flap Wing Experiments

    NASA Technical Reports Server (NTRS)

    Takalluk, M. A.; Laflin, Kelly R.

    1998-01-01

    Structured Reynolds Averaged Navier-Stokes simulations of two partial-span flap wing experiments were performed. The high-lift aerodynamic and aeroacoustic wind-tunnel experiments were conducted at both the NASA Ames 7-by 10-Foot Wind Tunnel and at the NASA Langley Quiet Flow Facility. The purpose of these tests was to accurately document the acoustic and aerodynamic characteristics associated with the principle airframe noise sources, including flap side-edge noise. Specific measurements were taken that can be used to validate analytic and computational models of the noise sources and associated aerodynamic for configurations and conditions approximating flight for transport aircraft. The numerical results are used to both calibrate a widely used CFD code, CFL3D, and to obtain details of flap side-edge flow features not discernible from experimental observations. Both experimental set-ups were numerically modeled by using multiple block structured grids. Various turbulence models, grid block-interface interaction methods and grid topologies were implemented. Numerical results of both simulations are in excellent agreement with experimental measurements and flow visualization observations. The flow field in the flap-edge region was adequately resolved to discern some crucial information about the flow physics and to substantiate the merger of the two vortical structures. As a result of these investigations, airframe noise modelers have proposed various simplified models which use the results obtained from the steady-state computations as input.

  14. Spin-pumping and spin-Hall magnetoresistance (SMR) at transition metal interfaces: case of (Co/Pt) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaffres, Henri; George, Jean-Marie; Laczowski, Piotr; Reyren, Nicolas; Vila, Laurent

    2016-10-01

    Spintronic phenomena are made possible via the diffusion of spin-currents or the generation of spin-accumulation. Spinorbitronics uses the electronic spin-orbit coupling (SOC) and emerges as a new route to create spin-currents in the transverse direction of the charge flow. This is made possible via the intrinsic spin Hall conduction (SHE) of heavy metals or extrinsic spin-Hall effect of metallic alloys. SHE borrows its concept from the anomalous Hall effect (AHE) where the relativistic spin-orbit coupling (SOC) promotes an asymmetric deflection of the spin-current. SHE is now at the base of magnetization commutation and domain wall moving via spin-orbit torque (SOT) and spin-transfer torque operations in the FMR regime. However, the exact anatomy of SOT at spin-orbit active interfaces like Co/Pt is still missing. In the case of Pt, recent studies have put forward the major role played by i) the spin-memory loss (SML) and the electronic transparency at 3d/5d interfaces and ii) the inhomogeneity of the conductivity in the current-in-plane (CIP) geometry to explain the discrepancy in the SHE. Ingredients to consider then are the profiles of both the conductivity and spin-current across the multilayers and spin-transmission. In this talk, we will present robust SMR measurements observed on NiCo/Pt multilayer stacks characterized by a perpendicular magnetic anisotropy (PMA). The SMR occurs for both in-plane magnetization rotation or from nominal out-of-plane to the in-plane direction transverse to the current flow. This clearly departs from standard AMR or pure interfacial anisotropic-AMR symmetries. We analyze in large details our SMR signals for the whole series of samples owing to two main guidelines: i) we consider the exact conductivity profile across the multilayers, in particular near the Co/Pt interface, via the Camley-Barnas approach and ii) we derive the spin current profile generated by SHE along the perpendicular direction responsible for SMR. We consider pure interfacial spin dissipation by SML (decoherence, interfacial enhanced scattering) and give out a general analytical expression for SMR. Our conclusions go towards a robust value of the spin-Hall conductivity and SML like previously published. The CIP spin-Hall angle, of the order of 0.10 is larger than the one found in spin-pumping experiments (CPP geometry) owing to the smaller conductivity at the Co/Pt interface, in agreement with the results of STT-FMR experiments.

  15. Development of a ROT22 - DATAMAP interface

    NASA Technical Reports Server (NTRS)

    Shenoy, K. R.; Waak, T.; Brieger, J. T.

    1986-01-01

    This report (Contract NAS2-10331- Mod 10), outlines the development and validation of an interface between the three-dimensional transonic analysis program ROT22 and the Data from Aeromechanics Test and Analytics-Management and Analysis Package (DATAMAP). After development of the interface, the validation is carried out as follows. First, the DATAMAP program is used to analyze a portion of the Tip Aerodynamics and Acoustics Test (TAAT) data. Specifically, records 2872 and 2873 are analyzed at an azimuth of 90 deg, and record 2806 is analyzed at 60 deg. Trim conditions for these flight conditions are then calculated using the Bell performance prediction program ARAM45. Equivalent shaft, pitch, and twist angles are calculated from ARAM45 results and used as input to the ROT22 program. The interface uses the ROT22 results and creates DATAMAP information files from which the surface pressure contours and sectional pressure coefficients are plotted. Twist angles input to ROT22 program are then iteratively modified in the tip region until the computed pressure coefficients closely match the measurements. In all cases studied, the location of the shock is well predicted. However, the negative pressure coefficients were underpredicted. This could be accounted for by blade vortex interaction effects.

  16. Plane-Wave DFT Methods for Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.

    A detailed description of modern plane-wave DFT methods and software (contained in the NWChem package) are described that allow for both geometry optimization and ab initio molecular dynamics simulations. Significant emphasis is placed on aspects of these methods that are of interest to computational chemists and useful for simulating chemistry, including techniques for calculating charged systems, exact exchange (i.e. hybrid DFT methods), and highly efficient AIMD/MM methods. Sample applications on the structure of the goethite+water interface and the hydrolysis of nitroaromatic molecules are described.

  17. Noncontact evaluation for interface states by photocarrier counting

    NASA Astrophysics Data System (ADS)

    Furuta, Masaaki; Shimizu, Kojiro; Maeta, Takahiro; Miyashita, Moriya; Izunome, Koji; Kubota, Hiroshi

    2018-03-01

    We have developed a noncontact measurement method that enables in-line measurement and does not have any test element group (TEG) formation. In this method, the number of photocarriers excited from the interface states are counted which is called “photocarrier counting”, and then the energy distribution of the interface states density (D it) is evaluated by spectral light excitation. In our previous experiment, the method used was a preliminary contact measurement method at the oxide on top of the Si wafer. We developed, at this time, a D it measurement method as a noncontact measurement with a gap between the probes and the wafer. The shallow trench isolation (STI) sidewall has more localized interface states than the region under the gate electrode. We demonstrate the noncontact measurement of trapped carriers from interface states using wafers of three different crystal plane orientations. The demonstration will pave the way for evaluating STI sidewall interface states in future studies.

  18. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  19. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface.

    PubMed

    Palafox-Hernandez, J Pablo; Laird, Brian B

    2016-12-07

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K-a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface, relative to Cu(111), whose surface is more similar to the nucleating phase due to the presence of the prefreezing layer.

  20. Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.

    2013-01-01

    A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.

  1. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  2. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  3. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp; Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure componentsmore » and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.« less

  5. The Observation of the Structure of M23C6/ γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel

    NASA Astrophysics Data System (ADS)

    Xu, Zhenfeng; Ding, Zhimin; Liang, Bo

    2018-03-01

    The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.

  6. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Astrophysics Data System (ADS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-09-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  7. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics

    PubMed Central

    Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.

    2016-01-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042

  8. Reflection plane tests of a wind turbine blade tip section with ailerons

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Nyland, T. W.; Birchenough, A. G.; Jordan, F. L.; Campbell, N. K.

    1985-01-01

    Tests were conducted in the NASA Langley 30 by 60 foot Wind Tunnel on a full scale 7.31 m (24 ft) long tip section of a wind turbine rotor blade. The blade tip section was built with ailerons on the trailing edge. The ailerons, which spanned a length of 6.1 m (20 ft), were designed so that two types could be evaluated: the plain and the balanced. The ailerons were hinged on the suction surface at the 0.62 X chord station behind the leading edge. The purpose of the tests was to measure the aerodynamic characteristics of the blade section for: an angle of attack range from 0 deg to 90 deg aileron deflections from 0 deg to -90 deg, and Reynolds numbers of 0.79 and 1.5 x 10 to the 6th power. These data were then used to determine which aileron configuration had the most desirable rotor control and aerodynamic braking characteristics. Tests were also run to determine the effects of vortex generators, leading edge roughness, and the gaps between the aileron sections on the lift, drag, and chordwise force coefficients of the blade tip section.

  9. Cold Aero Performance of a Two-Dimensional Mixer Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Balan, C.

    2005-01-01

    Since 1986, NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Environmental acceptability in terms of airport community noise and economic viability are critical elements in this endeavor. Development of a propulsion system that satisfies strict airport noise regulations (FAR36 Stage III levels), at acceptable performance and weight, is critical to the success of any HSCT program. Two-dimensional mixer-ejector (2DME) exhaust systems are one approach in achieving this goal. In support of HSCT development, GEAE (GE Aircraft Engines), under contract to the NASA Glenn Research Center, conducted this test program at the NASA Langley 16 ft transonic wind tunnel to evaluate the cold aerodynamic performance aspects of the 2DME exhaust system concept. The effects of SAR (SAR, suppressor area ratio, = mixed-flow area/primary nozzle throat area), MAR (MAR = overall exhaust system exit/mixing-plane area), flap length, CER (suppressor chute expansion ratio), chute alignment, and free stream Mach number were investigated on a 1/11th cold aerodynamic scale model of a 2DME exhaust system.

  10. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-01-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  11. Noise of a model high speed counterrotation propeller at simulated takeoff/approach conditions (F7/A7)

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1987-01-01

    A high speed advanced counterrotation propeller, was tested in the NASA-Lewis 9 x 15 foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Acoustic measurements were taken with fixed floor microphones, an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could take both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish the propeller operating conditions. The propeller was run over a range of blade setting angles from 36.4/36.5 to 41.1/39.4 deg, tip speeds from 165 to 259 m/sec, rotor spacings from 1.56 to 3.63 based on forward rotor tip chord to aerodynamic separation, and angles of attack to + or - 16 deg. First order rotor alone tones showed highest directivity levels near the propeller plane, while interaction tone showed high levels throughout sideline directivity, especially toward the propeller rotation axis. Interaction tone levels were sensitive to propeller row spacing while rotor alone tones showed little spacing effect. There is a decreased noise level associated with higher propeller blade numbers for the same overall propeller thrust.

  12. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  13. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part 1. Mathematical models

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2008-12-01

    Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.

  14. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  15. Trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Vanburen, Mark A.

    1989-01-01

    The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.

  16. Influence of short rear end tapers on the wake of a simplified square-back vehicle: wake topology and rear drag

    NASA Astrophysics Data System (ADS)

    Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin

    2016-11-01

    As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.

  17. A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades

    NASA Technical Reports Server (NTRS)

    McCarthy, Thomas Robert

    1996-01-01

    A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.

  18. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  19. Hypersonic nozzle design

    NASA Technical Reports Server (NTRS)

    Griffith, Wayland C.

    1989-01-01

    Possible experimental facilities appropriate to a university environment that could make meaningful contributions to the solution of problems in hypersonic aerodynamics are investigated. Needs for the National Aerospace Plane and interplanetary flights with atmospheric aerobraking are used to scope the problem. Relevant events of the past two decades in universities and at the national laboratories are examined for their implications regarding both problems and prospects. Most striking is the emergence of computational fluid dynamics, which is viewed here as an equal partner with laboratory experimentation and flight test in relating theory with reality. Also significant are major advances in instrumentation and data processing methods, especially optical techniques. The direction of the study was guided by the concept of a companion program, i.e., the university effort should complement a major area of endeavor at NASA-Langley. Through this, both faculty and student participants gain a natural and effective working relationship. Existing and proposed major hypersonic aerodynamic facilities in industry and at the national laboratories are examined by type; hypersonic wind tunnels, arc-heated tunnels, shock tubes and tunnels, and ballistic ranges. Of these, the free piston tunnel and shock tube/tunnel are most appropriate for a university.

  20. Strain dependence of antiferromagnetic interface coupling in La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices

    DOE PAGES

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; ...

    2015-04-06

    We have investigated the magnetic response of La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg 1/3Nb 2/3O 3-0.28PbTiO 3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La 0.7Sr 0.3MnO 3(22 angstrom)/SrRuO 3(55 angstrom)] 15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic ordermore » in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO 3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.« less

  1. Dynamical characteristics of an electromagnetic field under conditions of total reflection

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr Ya

    2018-04-01

    The dynamical characteristics of electromagnetic fields include energy, momentum, angular momentum (spin) and helicity. We analyze their spatial distributions near the planar interface between two transparent and non-dispersive media, when the incident monochromatic plane wave with arbitrary polarization is totally reflected, and an evanescent wave is formed in the medium with lower optical density. Based on the recent arguments in favor of the Minkowski definition of the electromagnetic momentum in a material medium (Philbin 2011 Phys. Rev. A 83 013823; Philbin and Allanson 2012 86 055802; Bliokh et al 2017 Phys. Rev. Lett. 119 073901), we derive the explicit expressions for the dynamical characteristics in both media, with special attention to their behavior at the interface. In particular, the ‘extraordinary’ spin and momentum components orthogonal to the plane of incidence are described, and a canonical (spin-orbital) momentum decomposition is performed that contains no singular terms. The field energy, helicity, the spin momentum and orbital momentum components are everywhere regular but experience discontinuities at the interface; the spin components parallel to the interface appear to be continuous, which testifies to the consistency of the adopted Minkowski picture. The results supply a meaningful example of the electromagnetic momentum decomposition, with separation of spatial and polarization degrees of freedom, in inhomogeneous media, and can be used in engineering the structured fields designed for optical sorting, dispatching and micromanipulation.

  2. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, Fadi; Medlin, Douglas; Zimmerman, Jonathan; Hattar, Khalid; Foiles, Stephen

    Incorporating anisotropy into thermodynamic treatments of interfaces dates back to over a century ago. For a given orientation of two abutting grains in a pure metal, depressions in the grain boundary (GB) energy may exist as a function of GB inclination, defined by the plane normal. Therefore, an initially flat GB may facet resulting in a hill-and-valley structure. Herein, we present a diffuse interface model of GB faceting that is capable of capturing anisotropic GB energies and mobilities, and accounting for the excess energy due to facet junctions and their non-local interactions. The hallmark of our approach is the ability to independently examine the role of each of the interface properties on the faceting behavior. As a demonstration, we consider the Σ 5 < 001 > tilt GB in iron, where faceting along the { 310 } and { 210 } planes was experimentally observed. Linear stability analysis and numerical examples highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. On the whole, our modeling approach provides a general framework to examine the spatio-temporal evolution of highly anisotropic GBs in polycrystalline metals. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  3. An aircraft model for the AIAA controls design challenge

    NASA Technical Reports Server (NTRS)

    Brumbaugh, Randal W.

    1991-01-01

    A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.

  4. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  5. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  6. A New Domain Decomposition Approach for the Gust Response Problem

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.; Susan-Resiga, Romeo F.

    2002-01-01

    A domain decomposition method is developed for solving the aerodynamic/aeroacoustic problem of an airfoil in a vortical gust. The computational domain is divided into inner and outer regions wherein the governing equations are cast in different forms suitable for accurate computations in each region. Boundary conditions which ensure continuity of pressure and velocity are imposed along the interface separating the two regions. A numerical study is presented for reduced frequencies ranging from 0.1 to 3.0. It is seen that the domain decomposition approach in providing robust and grid independent solutions.

  7. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE PAGES

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    2017-08-24

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  8. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less

  9. Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yang, Zhenzhen; Wang, Yuanxu; Liu, Yunyan

    2018-05-01

    Interface has an important effect on charge separation of perovskite solar cells. Using first-principles calculations, we studied several different interfaces between CH3NH3SnI3 and TiO2. The interfacial structure and electronic structure of these interfaces are thoroughly explored. We found that the SnI2/anatase (SnI2/A) system is more stable than the other three systems, because an anatase surface can make Snsbnd I bond faster restore to the pristine value than a rutile surface, and SnI2/A system has a smaller standard deviation. The calculated plane-averaged electrostatic potential and the density of states suggest that SnI2/anatase interface has a better separation of photo-generated electron-hole pairs.

  10. The OPERA muon spectrometer tracking electronics

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.

    2004-11-01

    The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.

  11. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    ERIC Educational Resources Information Center

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  12. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  13. Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin

    2015-03-01

    We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''

  14. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  15. Environment-dependent interfacial strength using first principles thermodynamics: The example of the Pt-HfO2 interface

    NASA Astrophysics Data System (ADS)

    Cardona Quintero, Y.; Ramanath, Ganpati; Ramprasad, R.

    2013-10-01

    A parameter-free, quantitative, first-principles methodology to determine the environment-dependent interfacial strength of metal-metal oxide interfaces is presented. This approach uses the notion of the weakest link to identify the most likely cleavage plane, and first principles thermodynamics to calculate the average work of separation as a function of the environment (in this case, temperature and oxygen pressure). The method is applied to the case of the Pt-HfO2 interface, and it is shown that the computed environment-dependent work of separation is in quantitative agreement with available experimental data.

  16. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, Andras; Ney, A.; Duchamp, Martial

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  17. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out of the local blade passage. These flow features are isolated and validated based on the reference rotor design through changes in the inlet total pressure condition to alter incoming flow momentum and blade number count to change double leakage rate. In terms of flow mechanism, double leakage is shown to be detrimental to performance and stability, and its proportional increase with tip clearance size explains the sensitivity increase in the presence of double leakage and, conversely, the desensitization effect of reducing or eliminating double leakage. The increase in incoming meridional momentum in the tip region reduces sensitivity to tip clearance through its reduction of double leakage as well as through improved mixing with tip clearance flow, as demonstrated by an analytical model without double leakage flow. The above results imply that any blade design strategy that exploits the two desensitizing flow features would reduce the performance and stability sensitivity to tip clearance size. The increase of the incoming meridional momentum can be achieved through forward chordwise sweep of the blade. The reduction of double leakage without changing blade pitch can be obtained by decreasing the blade stagger angle in the tip region. Examples of blade designs associated with these strategies are shown through CFX simulations to be successful in reducing sensitivity to tip clearance size.

  18. Interfacial phonon scattering and transmission loss in > 1 µm thick silicon-on-insulator thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Puqing; Lindsay, Lucas R.; Huang, Xi

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman'smore » theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO 2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.« less

  19. Interfacial phonon scattering and transmission loss in > 1 µm thick silicon-on-insulator thin films

    DOE PAGES

    Jiang, Puqing; Lindsay, Lucas R.; Huang, Xi; ...

    2018-05-17

    Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. Here, to better understand the interfacial scattering of phonons and to test the validity of Ziman'smore » theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1–10 μm and a temperature range of 100–300 K. The Si/SiO 2 interface roughness was determined to be 0.11±0.04nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. Finally, we derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.« less

  20. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

Top