Science.gov

Sample records for aerodynamic lift essential

  1. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  2. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  3. High lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Sullivan, John; Schneider, Steve; Campbell, Bryan; Bucci, Greg; Boone, Rod; Torgerson, Shad; Erausquin, Rick; Knauer, Chad

    1994-01-01

    The current program is aimed at providing a physical picture of the flow physics and quantitative turbulence data of the interaction of a high Reynolds number wake with a flap element. The impact of high lift on aircraft performance is studied for a 150 passenger transport aircraft with the goal of designing optimum high lift systems with minimum complexity.

  4. Aerodynamics of Supersonic Lifting Bodies

    DTIC Science & Technology

    1981-02-01

    verso of front cover. 19 Y WOROS (Continue on rt.’,;erso side i recessary and identily by block number) Theoretical Aerodynamics Lifting Bodies Wind ...waverider solution, developed from the supersonic wedge flow solution, is then i Fused to fashion vertLcal stabilizer-likh control surfaces. Wind ...served as Project Engineers ror thE wind tunnel work. Important contributions were also made bv: Mr. iis±ung Miin; Lee, -M. Beom-Soo Kim, Mtr. Martin Weeks

  5. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  6. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  7. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  8. Aerodynamic development of a lifting body launch vehicle

    NASA Astrophysics Data System (ADS)

    Reaser, J. Scott

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described.

  9. Aerodynamic development of a lifting body launch vehicle

    SciTech Connect

    Reaser, J.S.

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described. {copyright} {ital 1997 American Institute of Physics.}

  10. Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1992-01-01

    The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

  11. Thermal lift generation and drag reduction in rarefied aerodynamics

    NASA Astrophysics Data System (ADS)

    Pekardan, Cem; Alexeenko, Alina

    2016-11-01

    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  12. Nonlinear prediction of the aerodynamic loads on lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1974-01-01

    A numerical procedure is used to predict the nonlinear aerodynamic characteristics of lifting surfaces of low aspect ratio at high angles of attack for low subsonic Mach numbers. The procedure utilizes a vortex-lattice method and accounts for separation at sharp tips and leading edges. The shapes of the wakes emanating from the edges are predicted, and hence the nonlinear characteristics are calculated. Parallelogram and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data.

  13. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  14. Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.

  15. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  16. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.

    PubMed

    Lees, John J; Dimitriadis, Grigorios; Nudds, Robert L

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  17. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  18. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  19. Influence matrix program for aerodynamic lifting surface theory. [in subsonic flows

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1973-01-01

    A users manual is described for a USA FORTRAN 4 computer program which computes an aerodynamic influence matrix and is one of several computer programs used to analyze lifting, thin wings in steady, subsonic flow according to a kernel function method lifting surface theory. The most significant features of the program are that it can treat unsymmetrical wings, control points can be placed on the leading and/or trailing edges, and a stable, efficient algorithm is used to compute the influence matrix.

  20. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  1. Aerodynamic sensitivities from subsonic, sonic and supersonic unsteady, nonplanar lifting-surface theory

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.

    1987-01-01

    The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.

  2. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  3. A theoretical note on aerodynamic lifting in dust devils

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ting

    2016-02-01

    The stress distribution of a known rotating flow near the ground in fluid mechanics indicates that the horizontal aerodynamic entrainment of particles within dust devils is attributed to friction force rather than pressure force. The expression of dust emission rate on Earth was theoretically discussed based on simulated flow field and our current understanding of the physics of aeolian dust. It seems that transition flow is vital to dust devils on Mars.

  4. Impact of Airfoils on Aerodynamic Optimization of Heavy Lift Rotorcraft

    DTIC Science & Technology

    2006-01-01

    Modeling Capability with a Conceptual Rotorcraft Sizing Code,” American Helicopter Society Vertical Lift Aircraft Design Conference, San Francisco...American Helicopter Society International, Inc. All rights reserved. Introduction A new generation of very large, fast rotorcraft is being studied to...Ref. 4). Other codes, including NASTRAN and HeliFoil, were used for subsystem analyses. Reference 1 discusses the integration of the various

  5. Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1998-01-01

    This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.

  6. Prediction of longitudinal aerodynamic characteristics of STOL configurations with externally blown high lift devices

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1976-01-01

    A theoretical method has been developed to predict the longitudinal aerodynamic characteristics of engine-wing-flap combinations with externally blown flaps (EBF) and upper surface blowing (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wake are combined to calculate the induced interference of the engine wakes on the lifting surfaces. The engine wakes may be circular, elliptic, or rectangular cross-sectional jets, and the lifting surfaces are comprised of a wing with multiple-slotted trailing-edge flaps or a deflected trailing-edge Coanda surface. Results are presented showing comparisons of measured and predicted forces, pitching moments, span-load distributions, and flow fields.

  7. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  8. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Riley, Jim

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  9. Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  10. Computational Design and Analysis of a Microtab Based Aerodynamic Loads Control System for Lifting Surfaces

    NASA Astrophysics Data System (ADS)

    van Dam, Cornelis P.; Nakafuji, Dora Y.; Bauer, Candice; Standish, Kevin; Chao, David

    2003-01-01

    A computational design and analysis of a microtab based aerodynamic loads control system is presented. The microtab consists of a small tab that emerges from a wing approximately perpendicular to its surface in the vicinity of its trailing edge. Tab deployment on the upper side of the wing causes a decrease in the lift generation whereas deployment on the pressure side causes an increase. The computational methods applied in the development of this concept solve the governing Reynolds-averaged Navier-Stokes equations on structured, overset grids. The application of these methods to simulate the flows over lifting surfaces including the tabs has been paramount in the development of these devices. The numerical results demonstrate the effectiveness of the microtab and that it is possible to carry out a sensitivity analysis on the positioning and sizing of the tabs before they are implemented in successfully controlling the aerodynamic loads.

  11. Performance and Design Investigation of Heavy Lift Tiltrotor with Aerodynamic Interference Effects

    NASA Technical Reports Server (NTRS)

    Yeo, Yyeonsoo; Johnson, Wayne

    2007-01-01

    The aerodynamic interference effects on tiltrotor performance in cruise are investigated using comprehensive calculations, to better understand the physics and to quantify the effects on the aircraft design. Performance calculations were conducted for 146,600-lb conventional and quad tiltrotors, which are to cruise at 300 knots at 4000 ft/95 deg F condition. A parametric study was conducted to understand the effects of design parameters on the performance of the aircraft. Aerodynamic interference improves the aircraft lift-to-drag ratio of the baseline conventional tiltrotor. However, interference degrades the aircraft performance of the baseline quad tiltrotor, due mostly to the unfavorable effects from the front wing to the rear wing. A reduction of rotor tip speed increased the aircraft lift-to-drag ratio the most among the design parameters investigated.

  12. Longitudinal aerodynamic characteristics of an externally blown flap powered lift model with several propulsive system simulators

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1974-01-01

    An investigation of a four-engine externally blown flap (EBF) powered-lift transport was conducted in the Langley V/STOL tunnel to determine the effect of different engine configurations on the longitudinal aerodynamic characteristics. The different engine configurations were simulated by five different sets of propulsion simulators on a single aircraft model. Longitudinal aerodynamic data were obtained for each simulator on each flap deflection corresponding to cruise, take-off, and landing at a range of angles of attack and various thrust coefficients. The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag characteristics of the five simulators tested in the take-off and landing configurations. The poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mismatch of engine-model sizes or poor engine location and orientation. Isolated engine wake surveys indicated that a reasonable assessment of the aerodynamic characteristics of an engine-wing-flap configuration could be made if qualitative information were available which defined the engine wake characteristics. All configurations could be trimmed easily with relatively small horizontal-tail incidence angles; however, the take-off landing configurations required a high-lift tail.

  13. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  14. Boundary-integral method for calculating aerodynamic sensitivities with illustration for lifting-surface theory

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Desmarais, Robert N.

    1990-01-01

    The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. The present process appears to be readily adaptable to more general surface-panel methods.

  15. A computer program for wing subsonic aerodynamic performance estimates including attainable thrust and vortex lift effects

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1982-01-01

    Numerical methods incorporated into a computer program to provide estimates of the subsonic aerodynamic performance of twisted and cambered wings of arbitrary planform with attainable thrust and vortex lift considerations are described. The computational system is based on a linearized theory lifting surface solution which provides a spanwise distribution of theoretical leading edge thrust in addition to the surface distribution of perturbation velocities. The approach used relies on a solution by iteration. The method also features a superposition of independent solutions for a cambered and twisted wing and a flat wing of the same planform to provide, at little additional expense, results for a large number of angles of attack or lift coefficients. A previously developed method is employed to assess the portion of the theoretical thrust actually attainable and the portion that is felt as a vortex normal force.

  16. Incompressible lifting-surface aerodynamics for a rotor-stator combination

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.

    1984-01-01

    Current literature on the three dimensional flow through compressor cascades deals with a row of rotor blades in isolation. Since the distance between the rotor and stator is usually 10 to 20 percent of the blade chord, the aerodynamic interference between them has to be considered for a proper evaluation of the aerothermodynamic performance of the stage. A unified approach to the aerodynamics of the incompressible flow through a stage is presented that uses the lifting surface theory for a compressor cascade of arbitrary camber and thickness distribution. The effects of rotor stator interference are represented as a linear function of the rotor and stator flows separately. The loading distribution on the rotor and stator flows separately. The loading distribution on the rotor and stator blades and the interference factor are determined concurrently through a matrix iteration process.

  17. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  18. Effect of Groundboard Height on the Aerodynamic Characteristics of a Lifting Circular Cylinder Using Tangential Blowing from Surface Slots for Lift Generation

    NASA Technical Reports Server (NTRS)

    Lockwood, Vernard E.

    1961-01-01

    A wind-tunnel investigation has been made to determine the ground effect on the aerodynamic characteristics of a lifting circular cylinder using tangential blowing from surface slots to generate high lift coefficients. The tests were made on a semispan model having a length 4 times the cylinder diameter and an end plate of 2.5 diameters. The tests were made at low speeds at a Reynolds number of approximately 290,000, over a range of momentum coefficients from 0.14 to 4.60, and over a range of groundboard heights from 1.5 to 10 cylinder diameters. The investigation showed an earlier stall angle and a large loss of lift coefficient as the groundboard was brought close to the cylinder when large lift coefficients were being generated. For example, at a momentum coefficient of 4.60 the maximum lift coefficient was reduced from a value of 20.3 at a groundboard height of 10 cylinder diameters to a value of 8.7 at a groundboard height of 1.5 cylinder diameters. In contrast to this there was little effect on the lift characteristics of changes in groundboard height when lift coefficients of about 4.5 were being generated. At a height of 1.5 cylinder diameters the drag coefficients generally increased rapidly when the slot position angle for maximum lift was exceeded. Slightly below the slot position angle for maximum lift, the groundboard had a beneficial effect, that is, the drag for a given lift was less near the groundboard than away from the groundboard. The variation of maximum circulation lift coefficient (maximum lift coefficient minus momentum coefficient) obtained in this investigation is in general agreement with a theory developed for a jet-flap wing which assumes that the loss in circulation is the result of blockage of the main stream beneath the wing.

  19. Application of empirical and linear methods to VSTOL powered-lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Margason, Richard; Kuhn, Richard

    1988-01-01

    Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

  20. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  1. Longitudinal aerodynamics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Gentry, G. L., Jr.

    1975-01-01

    A wind-tunnel investigation was conducted in the Langley V/STOL tunnel to determine the longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport throughout transition. The large midspan lift-fan pods and cruise fans were removed to determine their influence on the stability and control of the configuration. Data were obtained in the hovering mode for ranges of model height above ground. The data are presented without analysis or discussion.

  2. Computational Design and Analysis of a Micro-Tab Based Aerodynamic Loads Control System for Lifting Surfaces

    SciTech Connect

    Van Dam, C P; Nakafuji, D Y; Bauer, C; Chao, D; Standish, K

    2002-11-01

    A computational design and analysis of a microtab based aerodynamic loads control system is presented. The microtab consists of a small tab that emerges from a wing approximately perpendicular to its surface in the vicinity of its trailing edge. Tab deployment on the upper side of the wing causes a decrease in the lift generation whereas deployment on the pressure side causes an increase. The computational methods applied in the development of this concept solve the governing Reynolds-averaged Navier-Stokes equations on structured, overset grids. The application of these methods to simulate the flows over lifting surface including the tabs has been paramount in the development of these devices. The numerical results demonstrate the effectiveness of the microtab and that it is possible to carry out a sensitivity analysis on the positioning and sizing of the tabs before they are implemented in successfully controlling the aerodynamic loads.

  3. Flight-determined aerodynamic stability and control derivatives of the M2-F2 lifting body vehicle at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Thompson, R. C.

    1971-01-01

    Aerodynamic derivatives were obtained for the M2-F2 lifting body flight vehicle in the subsonic flight region between Mach numbers of 0.41 and 0.64 and altitudes of 7000 feet to 45,000 feet. The derivatives were determined by a flight time history curve-fitting process utilizing a hybrid computer. The flight-determined derivatives are compared with wind-tunnel and predicted values. Modal-response characteristics, calculated from the flight derivatives, are presented.

  4. Low Speed Aerodynamic Characteristics of Wings of Aspect Ratios 3 and 4 Equipped with High Lift Systems

    DTIC Science & Technology

    1980-05-01

    Trailing Edge in CCW Configuration without Tip Fence ................. ... 47 16 - Effect of a Nonround Coanda Trailing Edge on an Aspect Ratio 3 Wing in...fence installed. Figure 16 summarizes the effect of the noncircular Coanda surface on the lift characteristics. The aerodynamic characteristics of the...that of the round Coanda trailing edge depending on the value of a and C Figure 17 is a crossplot of all of the CCW data showing the effect of a wing tip

  5. Longitudinal aerodynamic characteristics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Gentry, G. L., Jr.

    1977-01-01

    The longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport through transition were determined by an investigation conducted in the Langley V/STOL tunnel. Tests were also made with the large midspan lift-fan pods and lift-cruise fans removed to determine their their influence on the stability and control of the configuration. Data were obtained for a range of model height above ground.

  6. Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

  7. Aerodynamic characteristics of the HL-20 and HL-20A lifting-body configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1991-01-01

    The data show that the HL-20 is longitudinally and laterally stable over the test range from Mach 10 to 0.2. At hypersonic speeds it has a trimmed lift/drag ratio of 1.4. This values gives the vehicle a cross range capability similar to that of the Space Shuttle. At subsonic speeds, the HL-20 has a trimmed lift/drag ratio of about 3.6. Replacing the flat plate outboard fins with fins having an airfoil shape, increased the maximum trimmed L/D to 4.3. Preliminary evaluation of configuration modifications (the HL-20A series), indicates that trim at higher values of lift at hypersonic speeds could be achieved with an L/D of about 1.0. In the supersonic range, the lift and directional stability characteristics were improved. The untrimmed subsonic L/D was increased to 5.8 with airfoil fins.

  8. Aerodynamic Lift and Moment Calculations Using a Closed-Form Solution of the Possio Equation

    NASA Technical Reports Server (NTRS)

    Lin, Jensen; Iliff, Kenneth W.

    2000-01-01

    In this paper, we present closed-form formulas for the lift and moment coefficients of a lifting surface in two dimensional, unsteady, compressible, subsonic flow utilizing a newly developed explicit analytical solution of the Possio equation. Numerical calculations are consistent with previous numerical tables based on series expansions or ad hoc numerical schemes. More importantly, these formulas lend themselves readily to flutter analysis, compared with the tedious table-look-up schemes currently in use.

  9. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  10. Effect of compressibility on the nonlinear prediction of the aerodynamic loads on lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1975-01-01

    The vortex-lattice technique for incompressible flow which accounts for separation at sharp edges is modified to account for compressibility. This is accomplished by extending the Prandtl-Glauert transformation to moderate angles of attack. Thus, the aerodynamic characteristics for the compressible case are obtained from the solution of an equivalent incompressible problem. Numerical results are presented for parallelogram and delta wings to assess the effects of compressibility. The results are in good agreement with available experimental data.

  11. High-Lift System Aerodynamics (L’Aerodynamique des Systems Hypersustentateurs)

    DTIC Science & Technology

    1993-09-01

    Chairman: B. Wagner Numerical Solution of the Navier-Stokes Equations for High-Lift 9 Configurations on Structured Composite Grids by T.E. Nelson...provided a basis for numerical solutions to the Navier-Stokes equations, six of optimizatiom, if slat and flap positions relative to the main which, as...experi- technology at the time. mental cases against which to test theoretical predictions. Also, there is a need to assess numerical solution errors

  12. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  13. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  14. TRW vortex-lattice method subsonic aerodynamic analysis for multiple-lifting-surfaces (N. surface) TRW program number HA010B

    NASA Technical Reports Server (NTRS)

    Gomez, A. V.

    1972-01-01

    The program was designed to provide solutions of engineering accuracy for determining the aerodynamic loads on single- or multiple-lifting-surface configurations that represent vehicles in subsonic flight, e.g., wings, wing-tail, wing-canard, lifting bodies, etc. The preparation is described of the input data, associated input arrangement, and the output format for the program data, including specification of the various operational details of the program such as array sizes, tape numbers utilized, and program dumps. A full description of the underlying theory used in the program development and a review of the program qualification tests are included.

  15. Aerodynamic characteristics of a six-jet V/STOL configuration with four swing-out lift jets in the transition speed range

    NASA Technical Reports Server (NTRS)

    Carter, A. W.

    1970-01-01

    A wind-tunnel investigation has been made of the longitudinal aerodynamic characteristics and jet-interference effects of a model of a jet V/STOL variable-sweep fighter airplane that employs four direct-lift engines which swing out from the fuselage and two lift-cruise engines located in the rear part of the fuselage. Data were obtained with two wing areas for various forward speeds and power conditions in the transition speed range. The data are presented without analysis or discussion.

  16. Computerized three-dimensional aerodynamic design of a lifting rotor blade

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Hicks, R. M.

    1980-01-01

    A three-dimensional, inviscid, full-potential lifting rotor code was used to demonstrate that pressure distributions on both advancing and retreating blades could be significantly improved by perturbing local airfoil sections. The perturbations were described by simple geometric shape functions. To illustrate the procedure, an example calculation was made at a forward flight speed of 85 m/sec (165 knots) and an advance ratio of 0.385. It was found that a minimum of three shape functions was required to improve the pressures without producing undesirable secondary effects in high-speed forward flight on a hypothetical modern rotor blade initially having an NLR-1 supercritical airfoil. Reductions in the shock strength on the advancing blade could be achieved, while simultaneously lessening leading-edge pressure gradients on the retreating blade. The major blade section modifications required were blunting of the upper surface leading edge and some reshaping of the blade's upper surface resulting in moderately thicker airfoils.

  17. The application of general aerodynamic lifting surface elements to problems in unsteady transonic flow

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1973-01-01

    A study was conducted to investigate the feasibility of using combined subsonic and supersonic linear theory as a means for solving unsteady transonic flow problems in an economical and yet realistic manner. With some modification, existing linear theory methods are combined into a single program and a simple algorithm is derived for determining interference between lifting surface elements of different Mach number. The method is applied to a wide variety of problems for which measured unsteady pressure distributions and Mach number distributions are available. By comparing theory and experiment, the transonic method solutions show a significant improvement over uniform flow solutions. It is concluded that with these refinements the method will provide a means for performing realistic transonic flutter and dynamic response analyses at costs which are compatible with current linear theory based solutions.

  18. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  19. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  20. Low-speed, high-lift aerodynamic characteristics of slender, hypersonic accelerator-type configurations

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.

    1989-01-01

    Two investigations were conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a generic hypersonic accelerator-type configuration. The model was a delta wing configuration incorporating a conical forebody, a simulated wrap-around engine package, and a truncated conical aftbody. Six-component force and moment data were obtained over a range of attack from -4 to 30 degrees and for a sideslip range of + or - 20 degrees. In addition to tests of the basic configuration, component build-up tests were conducted; and the effects of power, forebody nose geometry, canard surfaces, fuselage strakes, and engines on the lower surface alone were also determined. Control power available from deflections of wing flaps and aftbody flaps was also investigated and found to be significantly increased during power-on conditions. Large yawing moments resulted from asymmetric flow fields exhibited by the forebody as revealed by both surface pressure data and flow visualization. Increasing nose bluntness reduced the yawing-moment asymmetry, and the addition of a canard eliminated the yawing-moment asymmetry.

  1. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.

    PubMed

    Gurka, Roi; Krishnan, Krishnamoorthy; Ben-Gida, Hadar; Kirchhefer, Adam J; Kopp, Gregory A; Guglielmo, Christopher G

    2017-02-06

    Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named 'double branch'). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.

  2. Computation of interactional aerodynamics for noise prediction of heavy lift rotorcraft

    NASA Astrophysics Data System (ADS)

    Hennes, Christopher C.

    Many computational tools are used when developing a modern helicopter. As the design space is narrowed, more accurate and time-intensive tools are brought to bear. These tools are used to determine the effect of a design decision on the performance, handling, stability and efficiency of the aircraft. One notable parameter left out of this process is acoustics. This is due in part to the difficulty in making useful acoustics calculations that reveal the differences between various design configurations. This thesis presents a new approach designed to bridge the gap in prediction capability between fast but low-fidelity Lagrangian particle methods, and slow but high-fidelity Eulerian computational fluid dynamics simulations. A multi-pronged approach is presented. First, a simple flow solver using well-understood and tested flow solution methodologies is developed specifically to handle bodies in arbitrary motion. To this basic flow solver two new technologies are added. The first is an Immersed Boundary technique designed to be tolerant of geometric degeneracies and low-resolution grids. This new technique allows easy inclusion of complex fuselage geometries at minimal computational cost, improving the ability of a solver to capture the complex interactional aerodynamic effects expected in modern rotorcraft design. The second new technique is an extension of a concept from flow visualization where the motion of tip vortices are tracked through the solution using massless particles convecting with the local flow. In this extension of that concept, the particles maintain knowledge of the expected and actual vortex strength. As a post-processing step, when the acoustic calculations are made, these particles are used to augment the loading noise calculation and reproduce the highly-impulsive character of blade-vortex interaction noise. In combination these new techniques yield a significant improvement to the state of the art in rotorcraft blade-vortex interaction noise

  3. Aerodynamic flow control of a high lift system with dual synthetic jet arrays

    NASA Astrophysics Data System (ADS)

    Alstrom, Robert Bruce

    Implementing flow control systems will mitigate the vibration and aeroacoustic issues associated with weapons bays; enhance the performance of the latest generation aircraft by reducing their fuel consumption and improving their high angle-of-attack handling qualities; facilitate steep climb out profiles for military transport aircraft. Experimental research is performed on a NACA 0015 airfoil with a simple flap at angle of attack of 16o in both clean and high lift configurations. The results of the active control phase of the project will be discussed. Three different experiments were conducted; they are Amplitude Modulated Dual Location Open Loop Control, Adaptive Control with Amplitude Modulation using Direct Sensor Feedback and Adaptive Control with Amplitude Modulation using Extremum Seeking Control. All the closed loop experiments are dual location. The analysis presented uses the spatial variation of the root mean square pressure fluctuations, power spectral density estimates, Fast Fourier Transforms (FFTs), and time frequency analysis which consists of the application of the Morlet and Mexican Hat wavelets. Additionally, during the course of high speed testing in the wind tunnel, some aeroacoustic phenomena were uncovered; those results will also be presented. A cross section of the results shows that the shape of the RMS pressure distributions is sensitive to forcing frequency. The application of broadband excitation in the case adaptive control causes the flow to select a frequency to lock in to. Additionally, open loop control results in global synchronization via switching between two stable states and closed loop control inhibits the switching phenomena, but rather synchronizes the flow about multiple stable shedding frequencies.

  4. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  5. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  6. Aerodynamic characteristics of some modified conical bodies with low lift-drag ratios at Mach numbers of 2.30 and 4.63

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1972-01-01

    A wind-tunnel investigation was conducted at Mach numbers of 2.30 and 4.63 to determine the static aerodynamic characteristics of three 60 deg half-angle cone models. Configuration 1 was obtained by raking off a symmetrical cone at a base angle of 6.15 deg, and configuration 2 and 3 were obtained by adding flaps to a symmetrical cone. The models were tested at angles of attack from about -5 deg to about 20 deg at roll angles of 0 deg to -180 deg and at a freestream Reynolds number of 1.09 x one million, based on body diameter. The results showed that all three configurations produced finite values of lift-drag ratio useful for lifting planetary entry. All three configurations exhibited increases in yawing moment and side force with roll angle; thus, the capability for lateral trajectory control is provided.

  7. Aerodynamics of Hypersonic Lifting Vehicles: Conference Proceedings Held at the Fluid Dynamics Panel Symposium in Bristol, United Kingdom on 6-9 April 1987

    DTIC Science & Technology

    1987-11-01

    AI ILE C * 1IYi AGARD-CP-428 IL to AGARD CONFERENCE PROCEEDINGS No.428 Aerodynamics of Hypersonic Lifting Vehicles DTIC D ~flzrnoNUYATM~r4 A 21 T8...hPPMV~ d to, PubWi vellsa"izizziz Sr o DISTIBUTION AND AVAILABILITY ON BACK COVER 88 1 12 003, AGARI)-CP-4 28 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY...diminution des efforts d ~ployds dans le domaine spatial apres Ic programme Apollo, tant aux Etats Unis quc dans la plupart des autres pays occidentaux

  8. Aerodynamic Analyses and Database Development for Lift-Off/Transition and First Stage Ascent of the Ares I A106 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Pei, Jing; Covell, Peter F.; Favaregh, Noah M.; Gumbert, Clyde R.; Hanke, Jeremy L.

    2011-01-01

    NASA Langley Research Center, in partnership with NASA Marshall Space Flight Center and NASA Ames Research Center, was involved in the aerodynamic analyses, testing, and database development for the Ares I A106 crew launch vehicle in support of the Ares Design and Analysis Cycle. This paper discusses the development of lift-off/transition and ascent databases. The lift-off/transition database was developed using data from tests on a 1.75% scale model of the A106 configuration in the NASA Langley 14x22 Subsonic Wind Tunnel. The power-off ascent database was developed using test data on a 1% A106 scale model from two different facilities, the Boeing Polysonic Wind Tunnel and the NASA Langley Unitary Plan Wind Tunnel. The ascent database was adjusted for differences in wind tunnel and flight Reynolds numbers using USM3D CFD code. The aerodynamic jet interaction effects due to first stage roll control system were modeled using USM3D and OVERFLOW CFD codes.

  9. Three-dimensional aerodynamic analysis of a subsonic transport high-lift configuration and comparisons with wind-tunnel test results

    NASA Technical Reports Server (NTRS)

    Edge, D. Christian; Perkins, John N.

    1995-01-01

    The sizing and efficiency of an aircraft is largely determined by the performance of its high-lift system. Subsonic civil transports most often use deployable multi-element airfoils to achieve the maximum-lift requirements for landing, as well as the high lift-to-drag ratios for take-off. However, these systems produce very complex flow fields which are not fully understood by the scientific community. In order to compete in today's market place, aircraft manufacturers will have to design better high-lift systems. Therefore, a more thorough understanding of the flows associated with these systems is desired. Flight and wind-tunnel experiments have been conducted on NASA Langley's B737-100 research aircraft to obtain detailed full-scale flow measurements on a multi-element high-lift system at various flight conditions. As part of this effort, computational aerodynamic tools are being used to provide preliminary flow-field information for instrumentation development, and to provide additional insight during the data analysis and interpretation process. The purpose of this paper is to demonstrate the ability and usefulness of a three-dimensional low-order potential flow solver, PMARC, by comparing computational results with data obtained from 1/8 scale wind-tunnel tests. Overall, correlation of experimental and computational data reveals that the panel method is able to predict reasonably well the pressures of the aircraft's multi-element wing at several spanwise stations. PMARC's versatility and usefulness is also demonstrated by accurately predicting inviscid three-dimensional flow features for several intricate geometrical regions.

  10. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  11. A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping

    NASA Astrophysics Data System (ADS)

    MacDonald, J. H. G.; Larose, G. L.

    2006-02-01

    Inclined cables of cable-stayed bridges often experience large amplitude vibrations. One of the potential excitation mechanisms is dry inclined cable galloping, which has been observed in wind tunnel tests but which has not previously been fully explained theoretically. In this paper, a general expression is derived for the quasi-steady aerodynamic damping (positive or negative) of a cylinder of arbitrary cross-section yawed/inclined to the flow, for small amplitude vibrations in any plane. The expression covers the special cases of conventional quasi-steady aerodynamic damping, Den Hartog galloping and the drag crisis, as well as dry inclined cable galloping. A nondimensional aerodynamic damping parameter governing this behaviour is proposed, which is a function of only the Reynolds number, the angle between the wind velocity and the cable axis, and the orientation of the vibration plane. Measured static force coefficients from wind tunnel tests have been used with the theoretical expression to predict values of this parameter. Two main areas of instability (i.e. negative aerodynamic damping) have been identified, both in the critical Reynolds number region, one of which was previously observed in separate wind tunnel tests on a dynamic cable model. The minimum values of structural damping required to prevent dry inclined cable galloping are defined, and other factors in the behaviour in practice are discussed.

  12. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  13. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  14. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  15. A method for estimating static aerodynamic characteristics for slender bodies of circular and noncircular cross section alone and with lifting surfaces at angles of attack from 0 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    An engineering-type method is presented for estimating normal-force, axial-force, and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. Static aerodynamic characteristics computed by the method are shown to agree closely with experimental results for slender bodies of circular and elliptic cross section and for winged-circular and winged-elliptic cones. However, the present experimental results used for comparison with the method are limited to angles of attack only up to about 20 deg and Mach numbers from 2 to 4.

  16. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  17. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  18. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  19. Aerodynamic performance of the DeSiReH high-lift laminar wing at free flight and ETW in-tunnel conditions

    NASA Astrophysics Data System (ADS)

    Bosnyakov, S.; Kazhan, E.; Kursakov, I.; Matyash, S.; Mikhaylov, S.; Lysenkov, A.

    2015-06-01

    The current research concerns a half-model high-lift configuration inside the European Transonic Wind Tunnel (ETW) at landing regime. The influence of the wind-tunnel walls (both slotted and closed) is investigated and the numerical results are compared with measured data. The investigated model is a three-element landing configuration with Krueger device and flap. All calculations are performed on structured grids using EWT-TsAGI code. The computed in-tunnel results are in good agreement with uncorrected experimental data, with maximum lift predicted at the same angle of attack. The slotted wall configuration produces less wall interference than the closed wall configuration.

  20. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  1. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  2. Aerodynamic yawing moment characteristics of bird wings.

    PubMed

    Sachs, Gottfried

    2005-06-21

    The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.

  3. Longitudinal aerodynamic characteristics of a deflected-thrust propulsive-lift transport model. [wind tunnel tests of aircraft models of jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1975-01-01

    A wind-tunnel investigation was conducted to determine the effect of deflecting the engine exit of a four-engine double-slotted flap transport to provide STOL performance. Longitudinal aerodynamic data were obtained at various engine exit positions and deflections. The data were obtained at three flap deflections representing cruise, take-off, and landing conditions for a range of angles of attack and various thrust coefficients. Downwash angles at the location of the horizontal tail were measured. The data are presented without analysis or discussion. Photographs of the test configurations are shown.

  4. Serrated-Planform Lifting-Surfaces

    NASA Technical Reports Server (NTRS)

    McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

    1999-01-01

    A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

  5. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  6. Computer program for supersonic Kernel-function flutter analysis of thin lifting surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1974-01-01

    This report describes a computer program (program D2180) that has been prepared to implement the analysis described in (N71-10866) for calculating the aerodynamic forces on a class of harmonically oscillating planar lifting surfaces in supersonic potential flow. The planforms treated are the delta and modified-delta (arrowhead) planforms with subsonic leading and supersonic trailing edges, and (essentially) pointed tips. The resulting aerodynamic forces are applied in a Galerkin modal flutter analysis. The required input data are the flow and planform parameters including deflection-mode data, modal frequencies, and generalized masses.

  7. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  8. Lift generation by the avian tail.

    PubMed

    Maybury, W J; Rayner, J M; Couldrick, L B

    2001-07-22

    Variation with tail spread of the lift generated by a bird tail was measured on mounted, frozen European starlings (Sturnus vulgaris) in a wind tunnel at a typical air speed and body and tail angle of attack in order to test predictions of existing aerodynamic theories modelling tail lift. Measured lift at all but the lowest tail spread angles was significantly lower than the predictions of slender wing, leading edge vortex and lifting line models of lift production. Instead, the tail lift coefficient based on tail area was independent of tail spread, tail aspect ratio and maximum tail span. Theoretical models do not predict bird tail lift reliably and, when applied to tail morphology, may underestimate the aerodynamic optimum tail feather length. Flow visualization experiments reveal that an isolated tail generates leading edge vortices as expected for a low-aspect ratio delta wing, but that in the intact bird body-tail interactions are critical in determining tail aerodynamics: lifting vortices shed from the body interact with the tail and degrade tail lift compared with that of an isolated tail.

  9. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  10. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  11. Incremental wind tunnel testing of high lift systems

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Efficiency of trailing edge high lift systems is essential for long range future transport aircrafts evolving in the direction of laminar wings, because they have to compensate for the low performance of the leading edge devices. Modern high lift systems are subject of high performance requirements and constrained to simple actuation, combined with a reduced number of aerodynamic elements. Passive or active flow control is thus required for the performance enhancement. An experimental investigation of reduced kinematics flap combined with passive flow control took place in a low speed wind tunnel. The most important features of the experimental setup are the relatively large size, corresponding to a Reynolds number of about 2 Million, the sweep angle of 30 degrees corresponding to long range airliners with high sweep angle wings and the large number of flap settings and mechanical vortex generators. The model description, flap settings, methodology and results are presented.

  12. Lift enhancement by bats' dynamically changing wingspan

    PubMed Central

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-01-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  13. Overview of NASA HSR high-lift program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.

    1992-01-01

    The viewgraphs and discussion of the NASA High-Speed Research (HSR) Program being conducted to develop the technologies essential for the successful U.S. development of a commercial supersonic air transport in the 2005 timeframe are provided. The HSR program is being conducted in two phases, with the first phase stressing technology to ensure environmental acceptability and the second phase stressing technology to make the vehicle economically viable (in contrast to the current Concorde design). During Phase 1 of the program, a key element of the environmental emphases is minimization of community noise through effective engine nozzle noise suppression technology and through improving the performance of high-lift systems. An overview of the current Phase 1 High-Lift Program, directed at technology for community noise reduction, is presented. The total target for takeoff engine noise reduction to meet expected regulations is believed to be about 20 EPNdB. The high-lift research is stressing the exploration of innovative high-lift concepts and advanced flight operations procedures to achieve a substantial (approximately 6 EPNdB) reduction in community noise to supplement the reductions expected from engine nozzle noise suppression concepts; primary concern is focused on the takeoff and climbout operations where very high engine power settings are used. Significant reductions in aerodynamic drag in this regime will allow substantial reductions in the required engine thrust levels and therefore reductions in the noise generated.

  14. Forehead lift

    MedlinePlus

    ... both sides even. If you have already had plastic surgery to lift your upper eyelids, a forehead ... Managing the cosmetic patient. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  15. Buttock Lift

    MedlinePlus

    ... after surgery using a needle and syringe. Poor wound healing. Sometimes areas along the incision line heal poorly ... might be given antibiotics if there is a wound healing problem. Scarring. Incision scars from a buttock lift ...

  16. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  17. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  18. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  19. Steady incompressible variable thickness shear layer aerodynamics

    NASA Technical Reports Server (NTRS)

    Chi, M. R.

    1976-01-01

    A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses.

  20. Experimental determination of baseball spin and lift.

    PubMed

    Alaways, L W; Hubbard, M

    2001-05-01

    The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.

  1. Computational unsteady aerodynamics for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1988-01-01

    Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.

  2. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  3. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  4. Prediction of Aerodynamic Loading

    DTIC Science & Technology

    1977-02-01

    predictable even with knowledge of the motion and the quasi- steady aerodynamic coefficients . It sems likely that the unsteady boundary-layer...build up, which are explainable 41 terams of the stability coefficients . More research is needed on the former type of undemanded manoeuvre. In some...drag 81, 82... B5 body sections I. kg lift St strdke 1M kg m pitching moment N kg normal force T kg axial force a 0 angle of attack Coefficie its: CD, cD

  5. Aerodynamic Force Characteristics of a Series of Lifting Cone and Cone-Cylinder Configurations at a Mach Number of 6.83 and Angles of Attack up to 130 Deg

    NASA Technical Reports Server (NTRS)

    Penland, Jim A.

    1961-01-01

    Force tests of a series of right circular cones having semivertex angles ranging from 5 deg to 45 deg and a series of right circular cone-cylinder configurations having semivertex angles ranging from 5 deg to 20 deg and an afterbody fineness ratio of 6 have been made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.83, a Reynolds number of 0.24 x 10.6 per inch, and angles of attack up to 130 deg. An analysis of the results made use of the Newtonian and modified Newtonian theories and the exact theory. A comparison of the experimental data of both cone and cone-cylinder configurations with theoretical calculations shows that the Newtonian concept gives excellent predictions of trends of the force characteristics and the locations with respect to angle of attack of the points of maximum lift, maximum drag, and maximum lift-drag ratio. Both the Newtonian a.nd exact theories give excellent predictions of the sign and value of the initial lift-curve slope. The maximum lift coefficient for conical bodies is nearly constant at a value of 0.5 based on planform area for semivertex angles up to 30 deg. The maximum lift-drag ratio for conical bodies can be expected to be not greater than about 3.5, and this value might be expected only for slender cones having semivertex angles of less than 5 deg. The increments of angle of attack and lift coefficient between the maximum lift-drag ratio and the maximum lift coefficient for conical bodies decrease rapidly with increasing semivertex angles as predicted by the modified Newtonian theory.

  6. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  7. On a global aerodynamic optimization of a civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Savu, G.; Trifu, O.

    1991-01-01

    An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

  8. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  9. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  10. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  11. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  12. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  13. Active Control of Aerodynamic Noise Sources

    NASA Technical Reports Server (NTRS)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  14. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  15. The mechanisms of lift enhancement in insect flight

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Recent studies have revealed a diverse array of fluid dynamic phenomena that enhance lift production during flapping insect flight. Physical and analytical models of oscillating wings have demonstrated that a prominent vortex attached to the wing's leading edge augments lift production throughout the translational parts of the stroke cycle, whereas aerodynamic circulation due to wing rotation, and possibly momentum transfer due to a recovery of wake energy, may increase lift at the end of each half stroke. Compared to the predictions derived from conventional steady-state aerodynamic theory, these unsteady aerodynamic mechanisms may account for the majority of total lift produced by a flying insect. In addition to contributing to the lift required to keep the insect aloft, manipulation of the translational and rotational aerodynamic mechanisms may provide a potent means by which a flying animal can modulate direction and magnitude of flight forces for manoeuvring flight control and steering behaviour. The attainment of flight, including the ability to control aerodynamic forces by the neuromuscular system, is a classic paradigm of the remarkable adaptability that flying insects have for utilising the principles of unsteady fluid dynamics. Applying these principles to biology broadens our understanding of how the diverse patterns of wing motion displayed by the different insect species have been developed throughout their long evolutionary history.

  16. Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories

    NASA Technical Reports Server (NTRS)

    Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.

    1988-01-01

    In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.

  17. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  18. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  19. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  20. Longitudinal aerodynamic characteristics of an elliptical body with a horizontal tail at Mach numbers from 2.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Robins, A. W.

    1982-01-01

    Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present.

  1. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  2. Bat flight generates complex aerodynamic tracks.

    PubMed

    Hedenström, A; Johansson, L C; Wolf, M; von Busse, R; Winter, Y; Spedding, G R

    2007-05-11

    The flapping flight of animals generates an aerodynamic footprint as a time-varying vortex wake in which the rate of momentum change represents the aerodynamic force. We showed that the wakes of a small bat species differ from those of birds in some important respects. In our bats, each wing generated its own vortex loop. Also, at moderate and high flight speeds, the circulation on the outer (hand) wing and the arm wing differed in sign during the upstroke, resulting in negative lift on the hand wing and positive lift on the arm wing. Our interpretations of the unsteady aerodynamic performance and function of membranous-winged, flapping flight should change modeling strategies for the study of equivalent natural and engineered flying devices.

  3. Total facelift: forehead lift, midface lift, and neck lift.

    PubMed

    Park, Dong Man

    2015-03-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined.

  4. Total Facelift: Forehead Lift, Midface Lift, and Neck Lift

    PubMed Central

    2015-01-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

  5. Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps. [low turbulence pressure tunnel tests to determine two dimensional lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1974-01-01

    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.

  6. Allometry of hummingbird lifting performance.

    PubMed

    Altshuler, D L; Dudley, R; Heredia, S M; McGuire, J A

    2010-03-01

    Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics.

  7. Piloted simulator studies of the HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    1991-01-01

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  8. Piloted simulator studies of the HL-20 Lifting Body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  9. Noise of fan designed to reduce stator lift fluctuations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Stakolich, E. G.

    1977-01-01

    An existing fan stage was redesigned to reduce stator lift fluctuations and was acoustically tested at three nozzle sizes for reduced noise generation. The lift fluctuations on the stator were reduced by increasing the stator cord, adjusting incidence angles, and adjusting the rotor velocity diagrams. Broadband noise levels were signficantly reduced in the middle to high frequencies. Blade passage tone sound power was not lessened, but decreases in the harmonics were observed. Aerodynamic improvements in both performance and efficiency were obtained.

  10. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, N = 5), flying at 6-10 m s- 1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s- 1 and body angle from -15∘ to 50∘. The wake of bounding birds and mounted specimens consisted of a pair of counterrotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10∘ to 30∘. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15∘ or 20∘, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in CL and CD from maximum values of 1.19 and 0.95 during flight at 6 m s- 1 to minimum values of 0.70 and 0.54 during flight at 10 m s- 1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the

  11. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    2009-05-01

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch ( Taeniopygia guttata, N = 5), flying at 6-10 m s-1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens ( N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s-1 and body angle from -15° to 50°. The wake of bounding birds and mounted specimens consisted of a pair of counter-rotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag ( L: D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10° to 30°. Peak ( L: D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15° or 20°, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in C L and C D from maximum values of 1.19 and 0.95 during flight at 6 m s-1 to minimum values of 0.70 and 0.54 during flight at 10 m s-1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L: D ratios and extending tail length to 150% of normal increased L: D ratio. As downward induced velocity is present in the

  12. Variable Lifting Index (VLI)

    PubMed Central

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2015-01-01

    Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300

  13. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  14. Effect of flap deflection on the lift coefficient of wings operating in a biplane configuration

    NASA Technical Reports Server (NTRS)

    Stasiak, J.

    1977-01-01

    Biplane models with a lift flap were tested in a wind tunnel to study the effect of flap deflection on the aerodynamic coefficient of the biplane as well as of the individual wings. Optimization of the position flap was carried out, and the effect of changes in the chord length of the lower wing was determined for the aerodynamic structure of a biplane with a lift flap on the upper wing.

  15. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  16. Aerodynamic interactions from reaction controls for lateral control of the M2-F2 lifting-body entry configuration at transonic and supersonic and supersonic Mach numbers. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Brownson, J. J.

    1979-01-01

    Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.

  17. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  18. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  19. Chaff Aerodynamics

    DTIC Science & Technology

    1975-11-01

    further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for

  20. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  2. Heavy-lift airship dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  3. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  4. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  5. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  6. Aerodynamics of the upper surface blow flap

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III

    1972-01-01

    The results of some preliminary wind-tunnel investigations made to provide fundamental aerodynamic information on the upper surface blown jet-flap concept incorporating high-bypass-ratio turbofan engines are summarized. The results of the investigation have shown the concept to have aerodynamic performance generally similar to that of other externally blown high-lift systems. A few of the more critical problems associated with this concept have been identified and preliminary solutions to some of these problems have been found. These results have proven to be sufficiently encouraging to warrant continuation of fundamental research efforts on the concept.

  7. High-Lift Capability of Low Aspect Ratio Wings Utilizing Circulation Control and Upper Surface Blowing

    DTIC Science & Technology

    1980-07-01

    the Upper Surface Blowing (USB) and the Circulation Control Wing (CCW). Both concepts use the Coanda effect as a means of augmenting aerodynamic lift...USB), and a unique combination of the two (CCW/USB). Wing tip sails were used as a means of increasing th(, effective aspect ratio of these wings...wing tip sails are effective in reducing the induced drag of these powered- lift low aspect ratio wings under high-lift conditions. The induced drag

  8. Aerodynamics/ACEE: aircraft energy efficiency

    SciTech Connect

    Not Available

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  9. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  10. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  11. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  12. Wing flexibility enhances load-lifting capacity in bumblebees.

    PubMed

    Mountcastle, Andrew M; Combes, Stacey A

    2013-05-22

    The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context. Bumblebee wings were artificially stiffened in vivo by applying a micro-splint to a single flexible vein joint, and the bees were subjected to load-lifting tests. Bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical aerodynamic force production, which cannot be accounted for by changes in gross wing kinematics, as stroke amplitude and flapping frequency were unchanged. Our results reveal that flexible wing design and the resulting passive deformations enhance vertical force production and load-lifting capacity in bumblebees, locomotory traits with important ecological implications.

  13. Missile Aerodynamics

    DTIC Science & Technology

    1979-02-01

    desired properties. To this end, we shall make use of ex- perimental evidence, as obtained in wind or water tunnels by various flow visualization...based on the results of number of tests carried out in a water and various wind tunnels, as reported by H. Werl6 in Ref. 3. Vortex breakdown is found...of a triangular wing Rogachev, G.V. moving close to the earth ’ s surface. AD 785154, FTD-HC-23-1802-74. 25 Fox, C.H. Prediction of lift and drag for

  14. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  15. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  16. Dragonfly flight. III. Lift and power requirements.

    PubMed

    Wakeling, JM; Ellington, CP

    1997-02-01

    A mean lift coefficient quasi-steady analysis has been applied to the free flight of the dragonfly Sympetrum sanguineum and the damselfly Calopteryx splendens. The analysis accommodated the yaw and accelerations involved in free flight. For any given velocity or resultant aerodynamic force (thrust), the damselfly mean lift coefficient was higher than that for the dragonfly because of its clap and fling. For both species, the maximum mean lift coefficient L was higher than the steady CL,max. Both species aligned their strokes planes to be nearly normal to the thrust, a strategy that reduces the L required for flight and which is different from the previously published hovering and slow dragonfly flights with stroke planes steeply inclined to the horizontal. Owing to the relatively low costs of accelerating the wing, the aerodynamic power required for flight represents the mechanical power output from the muscles. The maximum muscle mass-specific power was estimated at 156 and 166 W kg-1 for S. sanguineum and C. splendens, respectively. Measurements of heat production immediately after flight resulted in mechanical efficiency estimates of 13 % and 9 % for S. sanguineum and C. splendens muscles, respectively.

  17. Aerodynamic characteristics of the HL-20

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Cruz, Christopher I.

    1993-09-01

    Wind tunnel tests were made from subsonic to hypersonic speeds to define the aerodynamic characteristics of the HL-20 lifting-body configuration. The data have been assembled into an aerodynamic database for flight analysis of this proposed vehicle. The wind tunnel data indicates that the model is longitudinally and laterally stable (about a center-of-gravity location of 0.54 body length) over the test range from Mach 20 to 0.3. At hypersonic speeds, the HL-20 model trimmed at a lift/drag (L/D) ratio of 1.4. This value gives the vehicle a crossrange capability similar to that of the space shuttle. At subsonic speeds, the HL-20 has a trimmed L/D ratio of about 3.6. Replacing the flat-plate outboard fins with fins having an airfoil shape increased the maximum subsonic trimmed L/D to 4.2.

  18. Biological and aerodynamic problems with the flight of animals

    NASA Technical Reports Server (NTRS)

    Holst, E. V.; Kuchemann, D.

    1980-01-01

    Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.

  19. Leading-edge vortex improves lift in slow-flying bats.

    PubMed

    Muijres, F T; Johansson, L C; Barfield, R; Wolf, M; Spedding, G R; Hedenström, A

    2008-02-29

    Staying aloft when hovering and flying slowly is demanding. According to quasi-steady-state aerodynamic theory, slow-flying vertebrates should not be able to generate enough lift to remain aloft. Therefore, unsteady aerodynamic mechanisms to enhance lift production have been proposed. Using digital particle image velocimetry, we showed that a small nectar-feeding bat is able to increase lift by as much as 40% using attached leading-edge vortices (LEVs) during slow forward flight, resulting in a maximum lift coefficient of 4.8. The airflow passing over the LEV reattaches behind the LEV smoothly to the wing, despite the exceptionally large local angles of attack and wing camber. Our results show that the use of unsteady aerodynamic mechanisms in flapping flight is not limited to insects but is also used by larger and heavier animals.

  20. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  1. A theoretical investigation of over-wing-blowing aerodynamics

    NASA Technical Reports Server (NTRS)

    Lan, C. E.

    1976-01-01

    A theoretical method is established for determining the aerodynamic characteristics of over-wing-blowing configurations. The method accounts for both jet entrainment and jet interaction effects because of the differences in freestream and jet dynamic pressures and Mach numbers. The predicted lift increments agree well with available data. It is shown that the lift is underpredicted with entrainment effect alone when the jet is close to the wing surface.

  2. The Aerodynamics of Deforming Wings at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Medina, Albert

    Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be

  3. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  4. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  5. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  6. On simple aerodynamic sensitivity derivatives for use in interdisciplinary optimization

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.

    1991-01-01

    Low-aspect-ratio and piston aerodynamic theories are reviewed as to their use in developing aerodynamic sensitivity derivatives for use in multidisciplinary optimization applications. The basic equations relating surface pressure (or lift and moment) to normal wash are given and discussed briefly for each theory. The general means for determining selected sensitivity derivatives are pointed out. In addition, some suggestions in very general terms are included as to sample problems for use in studying the process of using aerodynamic sensitivity derivatives in optimization studies.

  7. Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

  8. Lift production in the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2009-11-07

    Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energy of the LEV is re-captured in the subsequent half-cycle translation. We here show that while the hummingbird wing is strongly influenced by similar sharp-leading-edge aerodynamics, leading edge vorticity is inconsistent, varying from 0.7 to 26 per cent (mean 16%) of total lift production, is always generated within 3 mm of the dorsal surface of the wing, showing no retrograde (trailing to leading edge) flow, and does not increase from proximal to distal wing as would be expected with a conical vortex (class III LEV) described for hawkmoths. Further, the bound circulation is not shed as a vortex at the end of translation, but instead remains attached and persists after translation has ceased, augmented by the rotation (pronation, supination) of the wing that occurs between the wing-translation half-cycles. The result is a near-continuous lift production through wing turn-around, previously unknown in vertebrates, able to contribute to weight support as well as stability and control during hovering. Selection for a planform suited to creating this unique flow and nearly-uninterrupted lift production throughout the wingbeat cycle may help explain the relatively narrow hummingbird wing.

  9. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    NASA Technical Reports Server (NTRS)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  10. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  11. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  12. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  13. Catwalk grate lifting tool

    DOEpatents

    Gunter, Larry W.

    1992-01-01

    A device for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate.

  14. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  15. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  16. Comparisons of AEROX computer program predictions of lift and induced drag with flight test data

    NASA Technical Reports Server (NTRS)

    Axelson, J.; Hill, G. C.

    1981-01-01

    The AEROX aerodynamic computer program which provides accurate predictions of induced drag and trim drag for the full angle of attack range and for Mach numbers from 0.4 to 3.0 is described. This capability is demonstrated comparing flight test data and AEROX predictions for 17 different tactical aircraft. Values of minimum (skin friction, pressure, and zero lift wave) drag coefficients and lift coefficient offset due to camber (when required) were input from the flight test data to produce total lift and drag curves. The comparisons of trimmed lift drag polars show excellent agreement between the AEROX predictions and the in flight measurements.

  17. Computational Design of a Krueger Flap Targeting Conventional Slat Aerodynamics

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Housman, Jeffrey A.; Kiris, Cetin C.; Bahr, Christopher J.; Hutcheson, Florence V.

    2016-01-01

    In this study, we demonstrate the design of a Krueger flap as a substitute for a conventional slat in a high-lift system. This notional design, with the objective of matching equivalent-mission performance on aircraft approach, was required for a comparative aeroacoustic study with computational and experimental components. We generated a family of high-lift systems with Krueger flaps based on a set of design parameters. Then, we evaluated the high-lift systems using steady 2D RANS simulations to find a good match for the conventional slat, based on total lift coefficients in free-air. Finally, we evaluated the mean aerodynamics of the high-lift systems with Krueger flap and conventional slat as they were installed in an open-jet wind tunnel flow. The surface pressures predicted with the simulations agreed well with experimental results.

  18. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  19. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  20. Contribution to the aerodynamic study of wings and propellers

    NASA Technical Reports Server (NTRS)

    Menard, M.

    1983-01-01

    Various problems regarding the aerodynamics of lifting wings are solved. Two methods are proposed for replacing the wing, both involving "viscous" edge vortices. the applications give results which agree well with experiments. Two new methods are also proposed for calculating propellers based on the vortex model consisting of an edge vortex and a "viscous" hub vortex.

  1. The Aerodynamic Performance of the 24 Inch Houck Configuration

    DTIC Science & Technology

    2007-03-01

    8 2.5 Winglets ... Winglets “ Winglets are aerodynamic components, placed at the tip of a wing to improve its efficiency during cruise” (6). The purpose of the winglet ...reduction in downwash, and therefore the induced drag (20; 11:1). Properly designed winglets can reduce overall drag, increase lift, provide added stability

  2. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  3. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.

    PubMed

    Dyke, Gareth; de Kat, Roeland; Palmer, Colin; van der Kindere, Jacques; Naish, Darren; Ganapathisubramani, Bharathram

    2013-01-01

    Understanding the aerodynamic performance of feathered, non-avialan dinosaurs is critical to reconstructing the evolution of bird flight. Here we show that the Early Cretaceous five-winged paravian Microraptor is most stable when gliding at high-lift coefficients (low lift/drag ratios). Wind tunnel experiments and flight simulations show that sustaining a high-lift coefficient at the expense of high drag would have been the most efficient strategy for Microraptor when gliding from, and between, low elevations. Analyses also demonstrate that anatomically plausible changes in wing configuration and leg position would have made little difference to aerodynamic performance. Significant to the evolution of flight, we show that Microraptor did not require a sophisticated, 'modern' wing morphology to undertake effective glides. This is congruent with the fossil record and also with the hypothesis that symmetric 'flight' feathers first evolved in dinosaurs for non-aerodynamic functions, later being adapted to form lifting surfaces.

  4. Two-Dimensional Shape Optimization of Hypersonic Vehicles Considering Transonic Aerodynamic Performance

    NASA Astrophysics Data System (ADS)

    Ueno, Atsushi; Suzuki, Kojiro

    For the success of hypersonic vehicles, their shape must be optimized to achieve a high lift-to-drag ratio as well as a low aerodynamic heating rate in the hypersonic regime. In addition, the transonic lift-to-drag ratio must also be optimized to realize quick acceleration to the hypersonic cruise speed. The three-dimensional lift-to-drag ratio can be improved even by the two-dimensional section shape (i.e., airfoil) optimization in the region where the sweep back angle is small. Here, prior to three-dimensional shape optimization, a study is done to optimize airfoils of hypersonic vehicles based on these three parameters. At optimization, the hypersonic lift-to-drag ratio is maximized while the transonic lift-to-drag ratio and the aerodynamic heating rate are constrained. The optimum lift coefficient for hypersonic cruise at the maximum lift-to-drag ratio is investigated. The relation between the leading edge radius, which determines the aerodynamic heating rate, and the hypersonic lift-to-drag ratio is also investigated. Results show that to improve the hypersonic lift-to-drag ratio, the airfoil thickness around the leading edge should be small as long as an appropriate compromise with the transonic lift-to-drag ratio is achieved. Results also show that the optimum lift coefficient for hypersonic cruise is much lower than that for typical supersonic vehicles. Small cruise lift coefficient suggests that the wing loading of a hypersonic vehicle should be small. The leading edge radius should be determined by a compromise between the hypersonic lift-to-drag ratio and leading edge heating. Airfoil optimization can provide an appropriate initial guess of the three-dimensional optimum shape. By using an appropriate initial guess, the computation time of the three-dimensional shape optimization is expected to be reduced.

  5. Aerodynamics of a turbojet-boosted launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Riebe, G. D.; Taylor, A. H.

    1980-01-01

    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle are presented. The success of this launch vehicle concept depends upon several novel applications of aerodynamic technology, particularly in the area of takeoff lift and minimum transonic drag requirements. The take-off mode stresses leading edge vortex lift generated in parallel by a complex arrangement of low aspect ratio booster and orbiter wings. Wind-tunnel tests on a representative model showed that this low-speed lift is sensitive to geometric arrangements of the booster-orbiter combination and is not predictable by standard analytic techniques. Transonic drag was also experimentally observed to be very sensitive to booster location; however, these drag levels were accurately predicted by standard farfield wave drag theory.

  6. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  7. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  8. Aerodynamics at NASA JSC

    NASA Technical Reports Server (NTRS)

    Vicker, Darby

    2006-01-01

    A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.

  9. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  10. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  11. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  12. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  13. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  14. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  15. Prediction of Aerodynamic Characteristics of Fighter Wings at High Lift.

    DTIC Science & Technology

    1978-12-31

    A basic viscous/potential flow iterative technique is developed for calculating flow on finite wings up to and beyond the stall. The procedure used...is a direct adaptation and extension of successfully validated Analytical Methods , Inc. (AMI) two-dimensional CLMAX separation model to three

  16. A new method for the aerodynamic analysis of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Brandao, Mauricio Pazini

    1987-01-01

    The use of the original Ffowcs Williams and Hawkings equation to improve the solution to simple problems of two-dimensional and incompressible flow is studied. It is shown that a linear formulation, with the quadrupole term neglected, leads to better correlation with the results of potential theory. A solution to steady and two-dimensional problems is developed and applied to families of elliptic cylinders and symmetric airfoils.

  17. Impact of Aerodynamics and Structures Technology on Heavy Lift Tiltrotors

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2006-01-01

    Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.

  18. Current developments lighter than air systems. [heavy lift airships

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types.

  19. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  20. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  1. Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.; Roskam, J.

    1983-01-01

    Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.

  2. Development and validation of the V/STOL aerodynamics and stability and control manual

    NASA Technical Reports Server (NTRS)

    Henderson, C.; Walters, M. M.

    1981-01-01

    A V/STOL Aerodynamics and Stability and Control Manual was developed to provide prediction methods which are applicable to a wide range of V/STOL configurations in hover and transition flight, in and out of ground effect. Propulsion-induced effects have been combined with unpowered aerodynamics in a buildup of total forces and moments for the jet-lift concept, so that total aerodynamics can be used to predict aircraft stability, control, and flying qualities characteristics. Results of longitudinal aerodynamic predictions have been compared with test data, and indicate that the methods are fast, inexpensive, and within the desired accuracy for the objective preliminary design stage.

  3. Feasibility study of a novel method for real-time aerodynamic coefficient estimation

    NASA Astrophysics Data System (ADS)

    Gurbacki, Phillip M.

    In this work, a feasibility study of a novel technique for the real-time identification of uncertain nonlinear aircraft aerodynamic coefficients has been conducted. The major objective of this paper is to investigate the feasibility of a system for parameter identification in a real-time flight environment. This system should be able to calculate aerodynamic coefficients and derivative information using typical pilot inputs while ensuring robust, stable, and rapid convergence. The parameter estimator investigated is based upon the nonlinear sliding mode control schema; one of the main advantages of the sliding mode estimator is the ability to guarantee a stable and robust convergence. Stable convergence is ensured by choosing a sliding surface and function that satisfies the Lyapunov stability criteria. After a proper sliding surface has been chosen, the nonlinear equations of motion for an F-16 aircraft are substituted into the sliding surface yielding an estimator capable of identifying a single aircraft parameter. Multiple sliding surfaces are then developed for each of the different flight parameters that will be identified. Sliding surfaces and parameter estimators have been developed and simulated for the pitching moment, lift force, and drag force coefficients of the F-16 aircraft. Comparing the estimated coefficients with the reference coefficients shows rapid and stable convergence for a variety of pilot inputs. Starting with simple doublet and sin wave commands, and followed by more complicated continuous pilot inputs, estimated aerodynamic coefficients have been shown to match the actual coefficients with a high degree of accuracy. This estimator is also shown to be superior to model reference or adaptive estimators, it is able to handle positive and negative estimated parameters and control inputs along with guaranteeing Lyapunov stability during convergence. Accurately estimating these aerodynamic parameters in real-time during a flight is essential

  4. Lift evaluation of a two-dimensional pitching flat plate

    NASA Astrophysics Data System (ADS)

    Xia, X.; Mohseni, K.

    2013-09-01

    Several previous experimental and theoretical studies have shown that a leading edge vortex (LEV) on an airfoil or wing can provide lift enhancement. In this paper, unsteady two-dimensional (2D) potential flow theory is employed to model the flow field of a pitching flat plate wing. A multi-vortices model is developed to model both the leading edge and trailing edge vortices (TEVs), which offers improved accuracy compared with using only single vortex at each separation location. The lift is obtained by integrating the unsteady Blasius equation. It is found that the motion of vortices contributes significantly to the overall aerodynamic force on the flat plate. A Kutta-like condition is used to determine the vortex intensity and location at the leading edge for large angle of attack cases; however, it is proposed to relax this condition for small angle of attack cases and apply a 2D shear layer model to calculate the circulation of the new added vortex. The results of the simulation are then compared with classical numerical, theoretical, and experimental data for canonical unsteady flat plat problems. Good agreement with these data is observed. Moreover, these results suggested that the leading edge vortex shedding for small angles of attack should be modeled differently than that for large angles of attack. Finally, the results of vortex motion vs. lift indicate that the slow convection of the LEV creates less negative lift while the rapid shedding of the TEV creates more positive lift. The difference between these two contributions of lift results in a total positive lift that lasts for about two chord-length travel of the plate. It is therefore concluded that the lift enhancement during the LEV "stabilization" above the wing is a combined effect of both the LEV and TEV motion. This also provides the insights for future active flow control of micro aerial vehicles (MAVs) that the formation and shedding process of LEVs and TEVs can be manipulated to provide lift

  5. Experimental and numerical research of lift force produced by Coandă effect

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Niculescu, M. L.

    2013-10-01

    The paper presents research results of aerodynamics of Coandă airfoil, that is a key element of drones with jet propulsion. The Coandă propulsion allows drones to monitor quickly the large areas in emergencies: forest fires, earthquakes, meteor attacks and so on. The aim of this work consists in establishment of geometric and aerodynamic parameters at which, the lift force produced by Coandă airfoil is maximal.

  6. Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

    DTIC Science & Technology

    2007-06-01

    and ±200 in-lb for rolling moment. A parallelogram linkage sting support system is able to set the angle of attack from –36o to 36o within the... deforming under aerodynamic loading. The differential 3rd International Symposium on Integrating CFD and Experiments in Aerodynamics 20-21 June 2007...Figure 14. Comparison of normalized lift enhancement between SETE and Gurney flap based on thin airfoil theory. Deformation and Bending Moment

  7. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  8. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  9. Comparison of selected lift and sideslip characteristics of the Ayres Thrush S2R-800, winglets off and winglets on, to full-scale wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Williams, M.

    1981-01-01

    All calculations were done in the stability axes system. The winglets used were constructed of modified GA(w)-2 airfoils. Aerodynamic characteristics discussed include: angle of attack; lift-curve slope; side force; yawing moments; rolling moments.

  10. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  11. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight

    PubMed Central

    Nabawy, Mostafa R. A.; Crowthe, William J.

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  12. Feasibility study of modern airships, phase 2. Volume 1: Heavy lift airship vehicle. Book 1: Overall study results

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A Heavy Lift Airship combining buoyant lift derived from a conventional helium-filled non-rigid airship hull with propulsive lift derived from conventional helicopter rotors was investigated. The buoyant lift essentially offsets the empty weight of the vehicle; thus the rotor thrust is available for useful load and to maneuver and control the vehicle. Such a vehicle is capable of providing a quantum increase in current vertical lifting capability. Certain critical deficiencies of past airships are significantly minimized or eliminated.

  13. Aerodynamic Effects and Modeling of Damage to Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    2008-01-01

    A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

  14. On the lift induced drag in viscous flows

    NASA Astrophysics Data System (ADS)

    Tognaccini, Renato; Marongiu, Claudio; Ueno, Makoto

    2012-11-01

    As stated by Spalart (JFM, 2008): ``An ambition which will have to wait is a rigorous definition of induced drag in viscous flows.'' The idea that there is a link between the aerodynamic force and the Lamb vector, defined as the cross product of fluid vorticity and velocity dates back to Prandtl. Saffman (``Vortex Dynamics,'' 1992) and, more recently, Wu J.-Z. et al. (JFM, 2007) suggested an expression of the lift induced drag in terms of vortex force (the volume integral of the Lamb vector). In this paper we analyze the steady incompressible flow around a 3D lifting body at high Reynolds numbers. The suggested connection between vortex force and induced drag is discussed in detail. In particular, a rigorous definition of the lift induced drag in viscous flows without ambiguities is proposed. A numerical experiment: the analysis of the flow around an elliptic wing will confirm the theoretical analysis. The aerodynamic force and its lift and drag components are computed by integration of the Lamb vector field as obtained by a numerical solution and will be compared with classical expressions.

  15. Development of the X-33 Aerodynamic Uncertainty Model

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    1998-01-01

    An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.

  16. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  17. Mimicking the humpback whale: An aerodynamic perspective

    NASA Astrophysics Data System (ADS)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  18. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  19. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  20. Aerodynamics and vortical structures in hovering fruitflies

    NASA Astrophysics Data System (ADS)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  1. Moving base simulation of an ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.

  2. Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Montefort; Liou, William W.; Pantula, Srinivasa R.; Shams, Qamar A.

    2007-01-01

    A static extended trailing edge attached to a NACA0012 airfoil section is studied for achieving lift enhancement at a small drag penalty. It is indicated that the thin extended trailing edge can enhance the lift while the zero-lift drag is not significantly increased. Experiments and calculations are conducted to compare the aerodynamic characteristics of the extended trailing edge with those of Gurney flap and conventional flap. The extended trailing edge, as a simple mechanical device added on a wing without altering the basic configuration, has a good potential to improve the cruise flight efficiency.

  3. JWST Lifting System

    NASA Technical Reports Server (NTRS)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  4. Forehead lift - slideshow

    MedlinePlus

    ... Indications URL of this page: //medlineplus.gov/ency/presentations/100020.htm Forehead lift - series—Indications To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  5. Breast lift (mastopexy) - slideshow

    MedlinePlus

    ... Incisions URL of this page: //medlineplus.gov/ency/presentations/100188.htm Breast lift (mastopexy) - series—Incisions To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  6. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  7. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  8. Adaptation of the Theodorsen theory to the representation of an airfoil as a combination of a lifting line and a thickness distribution

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1975-01-01

    The theory provides a direct method for resolving an airfoil into a lifting line and a thickness distribution as well as a means of synthesizing thickness and lift components into a resultant airfoil and computing its aerodynamic characteristics. Specific applications of the technique are discussed.

  9. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight

    PubMed Central

    Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J.; Guglielmo, Christopher G.; Kopp, Gregory A.; Liberzon, Alexander; Gurka, Roi

    2015-01-01

    We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion. PMID:26394213

  10. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.

    PubMed

    Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J; Guglielmo, Christopher G; Kopp, Gregory A; Liberzon, Alexander; Gurka, Roi

    2015-01-01

    We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.

  11. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  12. Lifting speed preferences and their effects on the maximal lifting capacity

    PubMed Central

    LIN, Chiuhsiang Joe; CHENG, Chih-Feng

    2016-01-01

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants’ preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity. PMID:27383532

  13. Lifting speed preferences and their effects on the maximal lifting capacity.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng

    2017-02-07

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.

  14. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  15. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  16. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  17. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  18. Lift crisis of a spinning table tennis ball

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Sakai, W.; Komatsu, T.; Takahashi, N.; Himeno, R.

    2017-03-01

    The aerodynamic properties of a spinning table tennis ball were investigated using flight experiments. Using high-speed video cameras, the trajectory and rotation of an official ball (Nittaku 3-Star Premium), which was launched by a three rotor machine, were recorded. The drag and lift coefficients (C D and C L) were determined by analysing the video images. The measurements covered the speed and rotation range of typical table tennis shots in the form of the Reynolds number (Re) and dimensionless spin rate (SP), i.e. 3.0 × 104 < Re < 9.0 × 104 and 0 < SP < 1.0, and C D and C L were obtained as functions of Re and SP. We determined that the lift coefficient C L is not a monotonically increasing function of SP. A deep valley of C L was found around SP = 0.5, and the lift force exerted on a spinning ball almost vanished at Re = 9.0 × 104 and 0.48 < SP < 0.5. These results qualitatively agree with the results from recent wind tunnel tests, but quantitative differences owing to the unsteady nature of the flight experiments remain. This anomaly in the lift coefficient should be called the ‘lift crisis’.

  19. Prediction of nacelle aerodynamic interference effects at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.

    1980-01-01

    The accuracy of analytical predictions of nacelle aerodynamic interference effects at low supersonic speeds are studied by means of test versus theory comparisons. Comparisons shown include: (1) isolated wing body lift, drag, and pitching moments; (2) isolated nacelle drag and pressure distributions; (3) nacelle interference shock wave patterns and pressure distributions on the wing lower surface; (4) nacelle interference effects on wing body lift, drag, and pitching moments; and (5) total installed nacelle interference effects on lift, drag, and pitching moment. The comparisons also illustrate effects of nacelle location, nacelle spillage, angle of attack, and Mach numbers on the aerodynamic interference. The initial results seem to indicate that the methods can satisfactorily predict lift, drag, pitching moment, and pressure distributions of installed engine nacelles at low supersonic Mach numbers with mass flow ratios from 0.7 to 1.0 for configurations typical of efficient supersonic cruise airplanes.

  20. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  1. Iced-airfoil aerodynamics

    NASA Astrophysics Data System (ADS)

    Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.

    2005-07-01

    Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.

  2. Satellite aerodynamics as a function of atmospheric properties.

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1972-01-01

    Demonstration that satellite aerodynamic properties are a function of numerous factors associated with atmospheric properties. Among these factors, the gas composition has influence on the gas surface interaction which in turn has considerable influence on the satellite drag and lift properties. The drag and lift properties, which are also influenced by the orientation of the satellite with respect to the flow, are influenced by upper atmospheric winds which cause changes in the angle of attack of the satellite. Another strong influence on the aerodynamic properties is due to the speed ratio effect which is found to cause a systematic increase in drag coefficient with respect to altitude. The study of these factors is facilitated by the introduction of a generalized gas surface interaction model which is capable of representing a wide range of possible interactions.

  3. Study of aerodynamic technology for VSTOL fighter/attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.

    1978-01-01

    An assessment was made of the aerodynamic uncertainties associated with the design of a cold-deck-environment Navy VSTOL fighter/attack aircraft utilizing jet-diffuser ejectors for vertical lift and vectored-engine-over-wing blowing for supercirculation benefits. The critical aerodynamic uncertainties were determined as those associated with the constraints which size the aircraft to a specified set of requirements. A wind tunnel model and test programs are recommended for resolving these uncertainties.

  4. High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  5. High lift wake investigation

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Schneider, S. P.; Hoffenberg, R.

    1996-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although known to be important for high-lift systems, few studies of such decelerated wakes exist. In this study, the wake of a flat plate has been subjected to an adverse pressure gradient in a two-dimensional diffuser, whose panels were forced to remain attached by use of slot blowing. Pitot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  6. Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight

    NASA Astrophysics Data System (ADS)

    Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo

    2016-11-01

    Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  7. Lifting liquid from boreholes

    SciTech Connect

    Reese, T.E.

    1983-05-17

    A device for lifting liquid from boreholes comprises a pump which is located downhole in the region of a production formation and which consists of a fluid-actuated, double-action piston. The pump is connected by fluid pressure lines to a source of fluid pressure disposed above ground and a switching valve is connected to provide fluid pressure to alternate sides of the piston to effect reciprocation thereof.

  8. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  9. Fluid Dynamics Panel Specialists’ Meeting on Prediction of Aerodynamic Loads on Rotorcraft.

    DTIC Science & Technology

    1983-02-01

    generally periodic. The aerodynamic phenomena that result include subsonic yawed flow, transonic flow, separation and reattachment, and 3-D flows. While...operating in this environment, the rotor blade elements generate the forces necessary to provide aircraft lift, propulsive thrust, and control. As...this lift is generated , both shed and trailing vorticity is left in the wake. A mutual interaction takes place between this rotor flow and the flow

  10. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  11. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  12. The investigation of a variable camber blade lift control for helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Awani, A. O.

    1982-01-01

    A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.

  13. Tip Fence for Reduction of Lift-Generated Airframe Noise

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor); Storms, Bruce L. (Inventor)

    1998-01-01

    The present invention is directed toward a unique lift-generated noise reduction apparatus. This apparatus includes a plurality of tip fences that are secured to the trailing and leading assemblies of the high-lift system, as close as possible to the discontinuities where the vortices are most likely to form. In one embodiment, these tip fences are secured to some or all of the outboard and inboard tips of the wing slats and flaps. The tip fence includes a generally flat, or an aerodynamically shaped plate or device that could be formed of almost any rigid material, such as metal, wood, plastic, fiber glass, aluminum, etc. In a preferred embodiment, the tip fences extend below and perpendicularly to flaps and the slats to which they are attached, such that these tip fences are aligned with the nominal free stream velocity of the aircraft. In addition to reducing airframe noise, the tip fence tends to decrease drag and to increase lift, thus improving the overall aerodynamic performance of the aircraft. Another advantage presented by the tip fence lies in the simplicity of its design, its elegance, and its ready ability to fit on the wing components, such as the flaps and the slats. Furthermore, it does not require non-standard materials or fabrication techniques, and it can be readily, easily and inexpensively retrofited on most of the existing aircraft, with minimal design changes.

  14. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  15. AEROX: Computer program for transonic aircraft aerodynamics to high angles of attack. Volume 1: Aerodynamic methods and program users' guide

    NASA Technical Reports Server (NTRS)

    Axelson, J. A.

    1977-01-01

    The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.

  16. Low-speed wind-tunnel investigation of a large-scale VTOL lift-fan transport model

    NASA Technical Reports Server (NTRS)

    Aoyagi, K.

    1979-01-01

    An investigation was conducted in the NASA-Ames 40 by 80 Foot Wind Tunnel to determine the aerodynamic characteristics of a large scale, VTOL, lift fan, jet transport model. The model had two lift fans at the forward portion of the fuselage, a lift fan at each wing tip, and two lift/cruise fans at the aft portion of the fuselage. All fans were driven by tip turbines using T-58 gas generators. Results were obtained for several lift fan, exit vane deflections and lift/cruise fan thrust deflections are zero sideslip. Three component longitudinal data are presented at several fan tip speed ratios. A limited amount of six component data were obtained with asymmetric vane settings. All of the data were obtained without a horizontal tail. Downwash angles at a typical tail location are also presented.

  17. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  18. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  19. Detail of lift wire rope attachment to lift span at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lift wire rope attachment to lift span at southeast corner. Note rope-adjustment turnbuckle with strap keepers to prevent its rotation, which could pull the bridge out of alignment. A single rope and light-gauge attachment at each corner were adequate for lifting the span because most of its weight was balanced by the two counterweights. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  20. Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration with Externally Blown Flaps

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey P.; An, Michael Y.; Mysko, Stephen J.; Yeh, David T.; Rogers, Stuart E.; Roth, Karlin; Baker, M.David; Nash, S.

    2000-01-01

    Insights and lessons learned from the aerodynamic analysis of the High Wing Transport (HWT) high-lift configuration are presented. Three-dimensional Navier-Stokes CFD simulations using the OVERFLOW flow solver are compared with high Reynolds test data obtained in the NASA Ames 12 Foot Pressure Wind Tunnel (PWT) facility. Computational analysis of the baseline HWT high-lift configuration with and without Externally Blown Flap (EBF) jet effects is highlighted. Several additional aerodynamic investigations, such as nacelle strake effectiveness and wake vortex studies, are presented. Technical capabilities and shortcomings of the computational method are discussed and summarized.

  1. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  2. Influencing the aerodynamics of the ACFA2020 aircraft with flap and trailing edge device oscillations

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Breitsamter, Ch.

    2013-12-01

    The influence of an oscillating aileron and trailing edge device on the unsteady aerodynamics of a blended wing body (BWB) aircraft configuration with high-fidelity time-accurate Euler simulations has been investigated. Steady results show an unequally-distributed lift distribution in spanwise direction with a particularly severe shock at cruise conditions on the outboard wing. Unsteady oscillations of the outboardlocated aileron are able to influence the local and global aerodynamics. The oscillation of the trailing edge device designed to be at trailing edge of the aileron does not show any great effect on neither local nor global aerodynamics.

  3. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  4. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Meng, Xue Guang; Sun, Mao

    2013-07-01

    Corrugation gives an insect-wing the advantages of low mass, high stiffness, and low membrane stress. Researchers are interested to know if it is also advantageous aerodynamically. Previous works reported that corrugation enhanced the aerodynamic performance of wings at gliding flight. However, Reynolds numbers considered in these studies were higher than that of gliding insects. The present study showed that in the Reynolds number range of gliding insects, corrugation had negative aerodynamic effects. We studied aerodynamic effects of corrugation at gliding motion using the method of computational fluid dynamics, in the Reynolds number range of Re = 200-2400. Different corrugation patterns were considered. The effect of corrugation on aerodynamic performance was identified by comparing the aerodynamic forces between the corrugated and flat-plate wings, and the underlying flow mechanisms of the corrugation effects were revealed by analyzing the flow fields and surface pressure distributions. The findings are as follows: (1) the effect of corrugation is to decrease the lift, and change the drag only slightly (at 15°-25° angles of attack, lift is decreased by about 16%; at smaller angles of attack, the percentage of lift reduction is even larger because the lift is small). (2) Two mechanisms are responsible for the lift reduction. One is that the pleats at the lower surface of the corrugated wing produce relatively strong vortices, resulting in local low-pressure regions on the lower surface of the wing. The other is that corrugation near the leading edge pushes the leading-edge-separation layer slightly upwards and increases the size of the separation bubble above the upper surface, reducing the "suction pressure," or increasing the pressure, on the upper surface.

  5. Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Bowlin, Melissa S.; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  6. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  7. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds

    PubMed Central

    Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers

    2015-01-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  8. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  9. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    PubMed Central

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  10. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  11. Experimental Study of Lift-Enhancing Tabs on a Two-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.

    1995-01-01

    The results of a wind-tunnel test are presented for a two-dimensional NASA 63(sub 2)-215 Mod B airfoil with a 30% chord single-slotted flap. The use of lift-enhancing tabs (similar to Gurney flaps) on the lower surface near the trailing edge of both elements was investigated on four nap configurations. A combination of vortex generators on the flap and lift-enhancing tabs was also investigated. Measurements of surface-pressure distributions and wake profiles were used to determine the aerodynamic performance of each configuration. By reducing flow separation on the flap, a lift-enhancing tab at the main-element trailing edge increased the maximum lift by 10.3% for the 42-deg flap case. The tab had a lesser effect at a moderate flap deflection (32 deg) and adversely affected the performance at the smallest flap deflection (22 deg). A tab located near the flap trailing edge produced an additional lift increment for all flap deflections. The application of vortex generators to the flap eliminated lift-curve hysteresis and reduced flow separation on two configurations with large flap deflections (greater than 40 deg). A maximum-lift coefficient of 3.32 (17% above the optimum baseline) was achieved with the combination of lift-enhancing tabs on both elements and vortex generators on the flap.

  12. Framelet lifting in image processing

    NASA Astrophysics Data System (ADS)

    Lu, Da-Yong; Feng, Tie-Yong

    2010-08-01

    To obtain appropriate framelets in image processing, we often need to lift existing framelets. For this purpose the paper presents some methods which allow us to modify existing framelets or filters to construct new ones. The relationships of matrices and their eigenvalues which be used in lifting schemes show that the frame bounds of the lifted wavelet frames are optimal. Moreover, the examples given in Section 4 indicate that the lifted framelets can play the roles of some operators such as the weighted average operator, the Sobel operator and the Laplacian operator, which operators are often used in edge detection and motion estimation applications.

  13. The aerodynamics of hovering flight in Drosophila.

    PubMed

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2005-06-01

    Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight

  14. Qualitative Features of High Lift Hovering Dynamics and Inertial Manifolds

    NASA Astrophysics Data System (ADS)

    Gustafson, K.; Leben, R.; McArthur, J.; Mundt, M.

    1996-03-01

    Hovering aerodynamics, such as that practiced by dragonflys, hummingbirds, and certain other small insects, utilizes special patterns of vorticity to generate high lift flows. Such lift as we measure it computationally on the airfoil surface is in good agreement with downstream thrust measured in the physical laboratory. In this paper we examine the qualitative signatures of this dynamical system. A connection to the theory of inertial manifolds, more specifically the instance of time-dependent slow manifolds, is initiated. Additional interest attaches to the fact that in our compact computational domain, the forcing is on the boundary. Because of its highly oscillatory nature, in this dynamics one proceeds rapidly up the bifurcation ladder at relatively low Reynolds numbers. Thus, aside from its intrinsic interest, the hover model provides an attractive vehicle for a better understanding of dynamical system attractor dynamics and inertial manifold theory.

  15. Prediction of Aerodynamic Drag.

    DTIC Science & Technology

    1984-07-01

    prediction method for reasonable estimates of the drag of afterbodies for military airlifters has recently been published by Kolesar and May72 to...method predicts the drag due to lift reasonably well for quite general, assumed limit shock positions, as shown in Fig. 25. The drag at zero lift is not...investigators, a reasonable estimate for the drag polar could be obtained by numerically averaging the zero and full leading- edge suction drag polars. Drag

  16. V/STOL Aerodynamics

    DTIC Science & Technology

    1974-10-01

    free strean Is of Interest from the standpol power management . Reference 22 discussed 11 studied were of the fan-ln-wlng variety. SI external...at—Mi 2-1 RESEARCH INTO POWERED HIGH LIFT SYSTEMS FOR AIRCRAFT WITH TURBOFAN PROPULSION by B. Egg lea ton Advanced Projects Manager ...landing, and terminal operations with the propulsive lift concepts under study are the aero dynamics, power management , ground effects, handling

  17. A continuous-vorticity panel method for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Yen, A.; Mook, D. T.; Nayfeh, A. H.

    1981-01-01

    A continuous-vorticity panel method is developed and utilized to predict the steady aerodynamic loads on lifting surfaces having sharp-edge separation. Triangular panels with linearly varying vorticity are used. The velocity field generated by an individual element is obtained in closed form. An optimization scheme is constructed for finding the vorticity at the nodes of the elements. The method is not restricted by aspect ratios, angles of attack, planforms, or camber. Rectangular and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data for incompressible flows.

  18. The HL-20 lifting-body personnel launch system

    NASA Technical Reports Server (NTRS)

    Stone, Howard W.; Piland, William M.

    1991-01-01

    The HL-20 early lifting-body personnel launch system (PSL) research, expected PSL mission requirements, the HL-20 concept design status, and those features which enhance aerodynamic and aerothermodynamic performance, operation, efficiency, maintainability, reliability, and crew safety are described. Results of the HL-20 PLS research to date show that the concept has definite advantages for efficiently satisfying future needs for assured manned access to space. The vehicle is designed with operational efficiency, low life-cycle costs, reliability, and safety as the primary criteria. It is shown that the HL-20 PLS can be developed and put into operation in the same timeframe that the Space Station Freedom is deployed.

  19. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  20. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+.

  1. Lift generation on a flat plate with unsteady motions

    NASA Astrophysics Data System (ADS)

    Xia, Xi; Mohseni, Kamran

    2013-11-01

    The leading edge vortex (LEV) on an airfoil or wing has been considered to be one of the most important sources of lift enhancement according to several previous experimental and theoretical studies. In this work, the unsteady 2D potential flow theory is employed to model the flow field of a flat plate wing undergoing unsteady motions. A multi-vortices model is developed to model both the leading edge and trailing edge vortices (TEVs), which offers improved accuracy compared with using only single vortex at each separation location. The lift prediction is obtained by integrating the unsteady Blasius equation. It is found that the motion of vortices contributes significantly to the overall aerodynamic force on the flat plate. The results of the simulation are then compared with classical numerical, theoretical and experimental data for canonical unsteady flat plat problems. Good agreement with these data is observed. Moreover, these results suggests that the leading edge vortex shedding for small angles of attack should be modeled differently than that for large angles of attack. Finally, the results of vortex motion vs. lift indicate that the lift enhancement during the LEV ``stabilization'' above the wing is a combined effect of both the LEV and TEV motion.

  2. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  3. Effect of lift-to-drag ratio upon pilot rating for a preliminary version of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1991-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting body vehicle has been performed in a fixed-base simulation cockpit. The study was aimed at identifying opportunities to improve the original design of the vehicle from a handling qualities and landing performance perspective. A subsonic aerodynamic model of the HL-20 was used as a baseline, and visual approaches and landings were made at various vehicle lift-to-drag (L/D) ratios. It is concluded that there is a high degree of correlation between maximum L/D ratio and pilot rating. Using the pilot ratings Level 1, flying qualities were found to be possible for configurations with a maximum L/D ratio of 3.8 or higher.

  4. An asymptotic unsteady lifting-line theory with energetics and optimum motion of thrust-producing lifting surfaces. Thesis

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.

    1981-01-01

    A low frequency unsteady lifting-line theory is developed for a harmonically oscillating wing of large aspect ratio. The wing is assumed to be chordwise rigid but completely flexible in the span direction. The theory is developed by use of the method of matched asymptotic expansions which reduces the problem from a singular integral equation to quadrature. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. The influence of reduced frequency, aspect ratio, planform shape, and mode of oscillation on wing aerodynamics is demonstrated through numerical examples. Compared with lifting-surface theory, computation time is reduced significantly. Using the present theory, the energetic quantities associated with the propulsive performance of a finite wing oscillating in combined pitch and heave are obtained in closed form. Numerical examples are presented for an elliptic wing.

  5. Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs

    SciTech Connect

    Giguere, P.; Selig, M.S.; Tangler, J.L.

    1999-11-01

    A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum-lift coefficient ranging from 0.7--1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum-life coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that the effect of the maximum-lift coefficient on the cost of energy is small with a slight advantage to the highest maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, provided the airfoils yield acceptable stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.

  6. Effects of range and mode on lifting capability and lifting time.

    PubMed

    Lee, Tzu-Hsien

    2012-01-01

    This study examined the effects of 3 lifting ranges and 3 lifting modes on maximum lifting capability and total lifting time. The results demonstrated that the maximum lifting capability for FK (from floor to knuckle height) was greater than that for KS (from knuckle height to shoulder height) or FS (from floor to shoulder height). Additionally, asymmetric lifting with initial trunk rotation decreased maximum lifting capability compared with symmetric lifting or asymmetric lifting with final trunk rotation. The difference in total lifting time between KS and FS was not significant, while FK increased total lifting time by ~20% compared with FS even though the travel distance was 50% shorter.

  7. Project LIFT: Year 1 Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  8. Project LIFT: Year Two Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) has completed its second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  9. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  10. What is a safe lift?

    PubMed

    Espinoza, Kathy

    2013-09-01

    In a perfect world, a "safe" lift would be 51 pounds if the object is within 7 inches from the front of the body, if it is at waist height, if it is directly in front of the person, if there is a handle on the object, and if the load inside the box/bucket doesn't shift once lifted. If the load to be lifted does not meet all of these criteria, then it is an unsafe lift, and modifications must be made. Modifications would include lightening the load, getting help, or using a mechanical lifting device. There is always a way to turn an unsafe lift into a safer lift. An excellent resource for anyone interested in eliminating some of the hazards associated with lifting is the "Easy Ergonomics" publication from Cal/OSHA. This booklet offers practical advice on how to improve the workplace using engineering and administrative controls, problem-solving strategies and solutions, and a vast amount of ergonomics information and resources. "Easy Ergonomics" can be obtained by calling Cal/OSHA's education and training unit in Sacramento at 800-963-9424. A free copy can be obtained via www.dir.ca.gov/dosh/puborder.asp.

  11. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  12. Aerodynamic performances of cruise missile flying above local terrain

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Saad, M. R.; Che Idris, A.; Rahman, M. R. A.; Sujipto, S.

    2016-10-01

    Cruise missile can be classified as a smart bomb and also Unmanned Aerial Vehicle (UAV) due to its ability to move and manoeuvre by itself without a pilot. Cruise missile flies in constant velocity in cruising stage. Malaysia is one of the consumers of cruise missiles that are imported from other nations, which can have distinct geographic factors including their local terrains compared to Malaysia. Some of the aerodynamic performances of missile such as drag and lift coefficients can be affected by the local geographic conditions in Malaysia, which is different from the origin nation. Therefore, a detailed study must be done to get aerodynamic performance of cruise missiles that operate in Malaysia. The effect of aerodynamic angles such as angle of attack and side slip can be used to investigate the aerodynamic performances of cruise missile. Hence, subsonic wind tunnel testings were conducted to obtain the aerodynamic performances of the missile at various angle of attack and sideslip angles. Smoke visualization was also performed to visualize the behaviour of flow separation. The optimum angle of attack found was at α=21° and side slip, β=10° for optimum pitching and yawing motion of cruise missile.

  13. Lift-Drag Ratios for an Arrow Wing With Bodies at Mach Number 3

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1959-01-01

    Force and moment characteristics, including lift-drag ratios, have been measured for bodies of circular and elliptic cross section alone and combined with a warped arrow wing. The test Mach number was 2.94, and the Reynolds number was 3.5 x 10(exp 6) (based on wing mean aerodynamic chord). The experimental results show that for equal volume the use of an elliptical body can result in a noticeably higher maximum lift-drag ratio than that obtained through use of a circular body. Methods for estimating the aerodynamic characteristics have been assessed by comparing computed with experimental results. Because of good agreement of the predictions with experiment, maximum lift-drag ratios have been computed for the arrow wing in combination with bodies of various sizes. These calculations have shown that, for an efficient wing-body combination, little loss in maximum lift-drag ratio results from considerable extension of afterbody length. For example, for a wing-body configuration having a maximum lift-drag ratio of about 7.1, a loss in maximum lift-drag ratio of less than 0.2 results from a 40-percent increase in body volume by extension of afterbody length. It also appears that with body length fixed, maximum lift-drag ratio decreases almost linearly with increase in body diameter. For a wing- body combination employing a body of circular cross section, a decrease in maximum lift-drag ratio from about 9.1 for zero body diameter to about 4.6 for a body diameter of 13.5 percent of the body length was computed.

  14. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  15. Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1988-01-01

    Calculation of longitudinal and lateral directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with corrections of high angle of attack phenomena; namely, vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the three dimensional lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at higher angles of attack are discussed.

  16. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  17. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  18. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  19. Aerodynamically landing reentry vehicles

    NASA Astrophysics Data System (ADS)

    Widjaja, I.

    This article represents a continuation of a paper in the preceding edition of this journal. The longitudinal stability of the reentry vehicle configuration 24B is discussed, taking into account an evaluation of the possibilities for lateral control, aileron effectiveness, and rudder effectiveness. It is pointed out that regarding the selection of the characteristics of the descent trajectory, there are apparently no constraints related to stability or controllability limits. In the hypersonic range, large reciprocal lift drag ratios can also be obtained without positive flap displacement. Attention is given to angle of sideslip relations, a cylindrical body with flat nose and trim tabs, the flow characteristics in the case of a cylinder with a flat nose, graphical relations describing longitudinal stability and controllability in the hypersonic range, and relations involving lift, drag, and the lift drag ratio.

  20. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  1. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  2. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  3. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  4. The development of cambered airfoil sections having favorable lift characteristics at supercritical Mach numbers

    NASA Technical Reports Server (NTRS)

    Graham, Donald J

    1949-01-01

    Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.

  5. High-lift calculations using Navier-Stokes methods

    NASA Astrophysics Data System (ADS)

    Larsson, Torbjoern

    Wing sections on an aircraft are designed for optimal cruise performance, whereas during the take-off and landing phase totally different lift-to-drag characteristics are needed. High lift and low drag is essential while taking off, on the other hand high lift and high drag is favorable when landing. The design and shaping of the high-lift system can have a major influence on the overall economy and safety of the aircraft. In a historical perspective experimental investigations have been the only way to gain any deeper knowledge of the performance of a given wing-flap configuration. Today, computational methods for high-lift systems based on the viscid-inviscid interaction approach with integral methods for boundary layers and wakes are quite common. Although fast solutions can be obtained with these methods it is highly desirable to have a numerical method that captures the flow physics in a more detailed and adequate way. The present wotk demonstrates that Navier-Stokes methods can be used with good results for simulating high-lift flow fields, but also points to the area where further research is needed.

  6. Experimental investigation of hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Intrieri, Peter F.

    1988-01-01

    An extensive series of ballistic range tests were conducted at the Ames Research Center to determine precisely the aerodynamic characteristics of the Galileo entry probe vehicle. Figures and tables are presented which summarize the results of these ballistic range tests. Drag data were obtained for both a nonablated and a hypothesized ablated Galileo configuration at Mach numbers from about 0.7 to 14 and at Reynolds numbers from 1000 to 4 million. The tests were conducted in air and the experimental results were compared with available Pioneer Venus data since these two configurations are similar in geometry. The nonablated Galileo configuration was also tested with two different center-of-gravity positions to obtain values of pitching-moment-curve slope which could be used in determining values of lift and center-of-pressure location for this configuration. The results indicate that the drag characteristics of the Galileo probe are qualitatively similar to that of Pioneer Venus, however, the drag of the nonablated Galileo is about 3 percent lower at the higher Mach numbers and as much as 5 percent greater at transonic Mach numbers of about 1.0 to 1.5. Also, the drag of the hypothesized ablated configuration is about 3 percent lower than that of the nonablated configuration at the higher Mach numbers but about the same at the lower Mach numbers. Additional tests are required at Reynolds numbers of 1000, 500, and 250 to determine if the dramatic rise in drag coefficient measured for Pioneer Venus at these low Reynolds numbers also occurs for Galileo, as might be expected.

  7. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.

    PubMed

    Kang, Chang-kwon; Shyy, Wei

    2014-12-06

    In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke.

  8. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover

    PubMed Central

    Kang, Chang-kwon; Shyy, Wei

    2014-01-01

    In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. PMID:25297319

  9. Lifting strength in two-person teamwork.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  10. Improvements to the missile aerodynamic prediction code DEMON3

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.

    1992-01-01

    The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.

  11. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  12. Theoretical aerodynamics of upper-surface-blowing jet-wing interaction

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1975-01-01

    A linear, inviscid subsonic compressible flow theory is formulated to treat the aerodynamic interaction between the wing and an inviscid upper-surface-blowing (USB) thick jet with Mach number nonuniformity. The predicted results show reasonably good agreement with some available lift and induced-drag data. It was also shown that the thin-jet-flap theory is inadequate for the USB configurations with thick jet. Additional theoretical results show that the lift and induced drag were reduced by increasing jet temperature and increased by increasing jet Mach number. Reducing jet aspect ratio, while holding jet area constant, caused reductions in lift, induced drag, and pitching moment at a given angle of attack but with a minimal change in the curve of lift coefficient against induced-drag coefficient. The jet-deflection effect was shown to be beneficial to cruise performance. The aerodynamic center was shifted forward by adding power or jet-deflection angle. Moving the jet away from the wing surface resulted in rapid changes in lift and induced drag. Reducing the wing span of a rectangular wing by half decreased the jet-circulation lift by only 24 percent at a thrust coefficient of 2.

  13. Development of pneumatic test techniques for subsonic high-lift and in-ground-effect wind tunnel investigations

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1994-01-01

    Wind tunnel evaluations of two-dimensional high-lift airfoils and of vehicles operating in ground effect near the tunnel floor require special test facilities and procedures. These are needed to avoid errors caused by proximity to the walls and interference from the wall boundary layers. Pneumatic test techniques and facilities were developed for GTRI aerodynamic research tunnels and calibrated to verify that these wall effects had been removed. The modified facilities were then employed to evaluate the aerodynamic characteristics of blown very-high-lift airfoils and of racing hydroplanes operating in ground effect at various levels above the floor. The pneumatic facilities, techniques and calibrations are discussed and typical aerodynamic data recorded both with and without the test-section blowing systems are presented.

  14. Large-scale wind tunnel studies of a jet-engined powered ejector-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.; Smith, Brian E.; Corsiglia, Victor; Ashby, Dale L.

    1990-01-01

    A full-scale model of a supersonic STOVL single engine flighter aircraft employing an ejector to augment lift in hover and in low-speed flight was tested in the 40- by 80-ft and 80- by 120-ft test sections of the National Full-Scale Aerodynamics Complex located at the NASA Ames Research Center. The measured ejector augmentation ratio in hover met the design requirement of 1.6 and continued to provide the lift necessary in forward flight for good transition qualities. The up-and-away aerodynamics (ejector system stowed) were found to be conventional for this class of vehicle. The pitch control provided by the full-span blown flaps is sufficient to control the large pitching moments generated by ventral exhaust nozzle vectoring and propulsion induced aerodynamic effects such as the turning of the flow entrained into the ejectors.

  15. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.

    PubMed

    Sun, Mao; Tang, Jian

    2002-01-01

    A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.

  16. Effects of ice accretions on aircraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Lynch, Frank T.; Khodadoust, Abdollah

    2001-11-01

    This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not

  17. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  18. Null lifts and projective dynamics

    SciTech Connect

    Cariglia, Marco

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  19. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  20. Ontogeny of lift and drag production in ground birds

    PubMed Central

    Heers, Ashley M.; Tobalske, Bret W.; Dial, Kenneth P.

    2011-01-01

    The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight. PMID:21307057

  1. The influence of the elastic vibration of the carrier to the aerodynamics of the external store in air-launch-to-orbit process

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ye, Zheng-Yin; Wu, Jie

    2016-11-01

    The separation between the carrier and store is one of the most important and difficult phases in Air-launch-to-orbit technology. Based on the previous researches, the interference aerodynamic forces of the store caused by the carrier are obvious in the earlier time during the separation. And the interference aerodynamics will be more complex when considering the elastic deformation of the carrier. Focusing on the conditions that in the earlier time during the separation, the steady and unsteady interference aerodynamic forces of the store are calculated at different angle of attacks and relative distances between the carrier and store. During the calculation, the elastic vibrations of the carrier are considered. According to the cause of formations of the interference aerodynamics, the interference aerodynamic forces of the store are divided into several components. The relative magnitude, change rule, sphere of influence and mechanism of interference aerodynamic forces components of the store are analyzed quantitatively. When the relative distance between the carrier and store is small, the interference aerodynamic forces caused by the elastic vibration of the carrier is about half of the total aerodynamic forces of the store. And as the relative distance increases, the value of interference aerodynamic forces decrease. When the relative distance is larger than twice the mean aerodynamic chord of the carrier, the values of interference aerodynamic forces of the store can be ignored. Besides, under the influence of the steady interference aerodynamic forces, the lift characteristics of the store are worse and the static stability margin is poorer.

  2. Aerodynamics of the Fuselage

    NASA Technical Reports Server (NTRS)

    Multhopp, H.

    1942-01-01

    The present report deals with a number of problems, particularly with the interaction of the fuselage with the wing and tail, on the basis of simple calculating method's derived from greatly idealized concepts. For the fuselage alone it affords, in variance with potential theory, a certain frictional lift in yawed flow, which, similar to the lift of a wing of small aspect ratio, is no longer linearly related to the angle of attack. Nevertheless there exists for this frictional lift something like a neutral stability point the position of which on oblong fuselages appears to be associated with the lift increase of the fuselage in proximity to the zero lift, according to the present experiments. The Pitching moments of the fuselage can be determined with comparatively great reliability so far as the flow conditions in the neighborhood of the axis of the fuselage can be approximated if the fuselage were absent, which, in general, is not very difficult. For the unstable contribution of the fuselage to the static longitudinal stability of the airplane it affords comparatively simple formulas, the evaluation of which offers little difficulty. On the engine nacelles there is, in addition a very substantial wing moment contribution induced by the nonuniform distribution of the transverse displacement flow of the nacelle along the wing chord; this also can be represented by a simple formula. A check on a large number of dissimilar aircraft types regarding the unstable fuselage and nacelle moments disclosed an agreement with the wind-tunnel tests, which should be sufficient for practical requirements. The errors remained throughout within the scope of instrumental accuracy.

  3. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix C: Method for computing the aerodynamic influence coefficient matrix of nonplanar wing-body-tail configurations

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1972-01-01

    Expressions are derived for computing the aerodynamic influence coefficient matrix for nonplanar wing-body-tail configurations. An aerodynamic influence coefficient is defined as the load in lbs. induced on a panel as a result of a unit angle of attack on another panel. Fuselage, wing and tail thickness are assumed to be small with the result that the thickness effect on the flow-field is negligible. The method for determining the aerodynamic influence coefficient matrix is based on the lifting solution to the small perturbation, steady potential flow equation.

  4. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  5. Mechanics and aerodynamics of insect flight control.

    PubMed

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments

  6. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  7. The Aerodynamic Cost of Head Morphology in Bats: Maybe Not as Bad as It Seems

    PubMed Central

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat’s morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  8. Fluid-thermal-structural study of aerodynamically heated leading edges

    NASA Technical Reports Server (NTRS)

    Deuchamphai, Pramote; Thornton, Earl A.; Wieting, Allan R.

    1988-01-01

    A finite element approach for integrated fluid-thermal-structural analysis of aerodynamically heated leading edges is presented. The Navier-Stokes equations for high speed compressible flow, the energy equation, and the quasi-static equilibrium equations for the leading edge are solved using a single finite element approach in one integrated, vectorized computer program called LIFTS. The fluid-thermal-structural coupling is studied for Mach 6.47 flow over a 3-in diam cylinder for which the flow behavior and the aerothermal loads are calibrated by experimental data. Issues of the thermal-structural response are studied for hydrogen-cooled, super thermal conducting leading edges subjected to intense aerodynamic heating.

  9. Automated Aerodynamic Optimization System for SST Wing-Body Configuration

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Yang, Guowei; Obayashi, Shigeru

    In this paper, wing-body configurations for a next generation Supersonic Transport are designed by means of Multiobjective Evolutionary Algorithms. SST wing-body configurations are designed to reduce the aerodynamic drag and the sonic boom for supersonic flight. To lower the sonic boom intensity, the present objective function is to satisfy the equivalent area distribution for low sonic boom proposed by Darden. Wing and fuselage is defined by 131 design variables and optimized at the same time. Structured multiblock grids around SST wing-body configuration are generated automatically and an Euler solver is used to evaluate the aerodynamic performance of SST wing-body configuration. Compromised solutions are found as Pareto solutions. Although they have a variety of fuselage configurations, all of them have a similar wing planform due to the imposed constraints. The present results imply that a lifting surface should be distributed innovatively to match Darden’s distribution for low boom.

  10. Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1995-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.

  11. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  12. Iterative optimal subcritical aerodynamic design code including profile drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    A subcritical aerodynamic design computer code has been developed, which uses linearized aerodynamics along with sweep theory and airfoil data to obtain minimum total drag preliminary designs for multiple planform configurations. These optimum designs consist of incidence distributions yielding minimum total drag at design values of Mach number and lift and pitching moment coefficients. Linear lofting is used between airfoil stations. Solutions for isolated transport wings have shown that the solution is unique, and that including profile drag effects decreases tip loading and incidence relative to values obtained for minimum induced drag solutions. Further, including effects of variation of profile drag with Reynolds number can cause appreciable changes in the optimal design for tapered wings. Example solutions are also discussed for multiple planform configurations.

  13. Satellite Aerodynamics and Density Determination from Satellite Dynamic Response

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1972-01-01

    The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.

  14. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  15. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.

    PubMed

    Zhang, G Q; Yu, S C M

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.

  16. Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle

    PubMed Central

    Zhang, G. Q.; Yu, S. C. M.

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  17. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    NASA Astrophysics Data System (ADS)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  18. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  19. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 2

    SciTech Connect

    Not Available

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations.

  20. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  1. Aerodynamic Leidenfrost effect

    NASA Astrophysics Data System (ADS)

    Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David

    2016-12-01

    When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.

  2. Passive flow control by membrane wings for aerodynamic benefit

    NASA Astrophysics Data System (ADS)

    Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence

    2013-03-01

    The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.

  3. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.

    PubMed

    Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David

    2016-12-06

    There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift

  4. Theoretical evaluation of high speed aerodynamics for arrow wing configurations

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.

    1978-01-01

    A limited study in the use of theoretical methods to calculate the high speed aerodynamics of arrow wing supersonic cruise configurations was conducted. The study consisted of correlations with existing wind tunnel data at Mach numbers from 0.8 to 2.7, using theoretical methods to extrapolate the wind tunnel data to full scale flight conditions, and presentation of a typical supersonic data package for an advanced supersonic transport application prepared using the theoretical methods. A brief description of the methods and their application was given. In general, all three methods had excellent correlation with wind tunnel data at supersonic speeds for drag and lift characteristics and fair to poor agreement with pitching moment characteristics. The VORLAX program had excellent correlation with wind tunnel data at subsonic speeds for lift and pitching moment characteristics and fair agreement in drag characteristics.

  5. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  6. Aerodynamic coefficients in generalized unsteady thin airfoil theory

    NASA Technical Reports Server (NTRS)

    Williams, M. H.

    1980-01-01

    Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).

  7. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Rettie, I. H.

    1980-01-01

    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  8. Wake shape and its effects on aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Emdad, H.; Lan, C. E.

    1986-01-01

    The wake shape under symmetrical flight conditions and its effects on aerodynamic characteristics are examined. In addition, the effect of wake shape in sideslip and discrete vortices such as strake or forebody vortex on lateral characteristics is presented. The present numerical method for airplane configurations, which is based on discretization of the vortex sheet into vortex segments, verified the symmetrical and asymmetrical roll-up process of the trailing vortices. Also, the effect of wing wake on tail planes is calculated. It is concluded that at high lift the assumption of flat wake for longitudinal and lateral-directional characteristics should be reexamined.

  9. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  10. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  11. Aerodynamic Control of a Pitching Airfoil using Distributed Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2012-11-01

    Aero-effected flight control using distributed active bleed driven by pressure differences across lifting surface and regulated by integrated louver actuators is investigated in wind tunnel experiments. The interaction between unsteady bleed and the cross flows alters the apparent aerodynamic shape of the lifting surface by regulating the accumulation and shedding of vorticity concentrations, and consequently the distributions of forces and moments. The present experiments are conducted using a 2-D dynamically-pitching VR-7 airfoil model from pre- to post-stall angles of attack. The effects of leading edge bleed at high angles of attack on the formation and evolution of the dynamic stall vorticity concentrations are investigated at high reduced frequencies (k > 0.1) using PIV phase-locked to the airfoil's motion. The time-dependent bleed enables broad-range variation in lift and pitching moment with significant extension of the stall margin. In particular, bleed actuation reduces the extent of ``negative damping'' or pitching moment instability with minimal lift penalty. Supported by NTRC-VLRCOE, monitored by Dr. Mike Rutkowski.

  12. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    PubMed

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  13. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    PubMed Central

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  14. Mist lift analysis summary report

    SciTech Connect

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  15. Identifying Sources of Lift Production on Rapidly Pitching Trailing Edge Flaps

    NASA Astrophysics Data System (ADS)

    Mancini, Peter; Jones, Anya; Ol, Michael

    2016-11-01

    Recent work has delved into the design and quantification of the aerodynamic response of large trailing edge flaps. Ultimately, these flaps would be used as a control mechanism to provide an immediate aerodynamic response to the vehicle, e.g. in the event of a gust encounter. The present work explores the individual sources and contributions of lift in the case of a large, rapidly pitching trailing edge flap. The flap is 50% of the chord length, and thus produces large acceleration and pitch rate terms that dominate the lift production. In the experiment and simulations presented here, the front element remains fixed at a constant angle of attack, while the rear element pitches to a final incidence angle, which in this study ranges from 5 degrees to 40 degrees. Although the front element does not pitch throughout the motion, it is important to consider the time history of the lift distribution on that wing section and assess whether the rapid pitching of the aft element affects the forces experienced on the stationary front element. These results are then used to suggest a simplified method for predicting lift production of a wing with a large trailing flap.

  16. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  17. Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.

    2007-01-01

    The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.

  18. An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.

    2014-01-01

    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.

  19. Sensitivity of lag-damping correlations to structural and aerodynamic approximations of isolated experimental rotors in forward flight

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Subramanian, S.; Chunduru, Srinivas

    1994-01-01

    The predictions of regressive lag-mode damping levels are correlated with the database of an isolated, soft-inplane, three-blade rotor operated untrimmed. The database was generated at the Army Aeroflightdynamics Directorate at Ames. The correlation covers a broad range of data, from near-zero thrust conditions in hover to high-thrust and highly stalled conditions in forward flight with advance ratio as high as 0.55 and shaft angle as high as 20 degrees. In the experimental rotor, the airfoil or blade portion has essentially uniform mass and stiffness distributions, but the root flexure has highly nonuniform mass and stiffness distributions. Accordingly, the structural approximations refer to four models of root-flexure-blade assembly. They range from a rigid flap-lag model to three elastic flap-lag-torsion models, which differ in modeling the root flexure. The three models of root-flexure are: three root springs in which the bending-torsion couplings are fully accounted for; a finite-length beam element with some average mass and stiffness distributions such that the fundamental frequencies match those of the experimental model; and accurate modal representation in which the actual mass and stiffness distributions of the experimental root-flexure-blade assembly are used in calculating the nonrotating mode shapes. The four models of root-flexure-blade assembly are referred to as the rigid flap-lag model, spring model, modified model and modal model. For each of these four models of the root-flexure-blade assembly, the predictions are based on the following five aerodynamic theories: ear theory, which accounts for large angle-of-attack and reverse-flow effects on lift, and has constant drag and pitching moment; quasisteady stall theory, which includes quasisteady stall lift, drag and pitching moment characteristics of the airfoil section, dynamics stall theory, which uses the ONERA dynamic stall models of lift, drag and pitching moment; dynamic wake theory, which is

  20. Effect of symmetrical vortex shedding on the longitudinal aerodynamic characteristics of wing-body-tail combinations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Nielsen, J. N.

    1975-01-01

    An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail combinations is developed. The method includes the effects of nonlinear aerodynamics of components and the interference between components. Nonlinearities associated with symmetrical vortex shedding from the nose of the body are considered as well as the nonlinearities associated with the separation vortices from the leading edges and side edges of the lifting surfaces. The wing and tail characteristics are calculated using lifting surface theories which include effects of incidence, camber, twist, and induced velocities from external sources of disturbance such as bodies and vortices. The lifting surface theories calculate the distribution of leading edge and side edge suction which is converted to vortex lift using the Polhamus suction analogy. Correlation curves are developed to determine the fraction of the theoretical suction force which is converted into vortex lift. The prediction method is compared with experimental data on a variety of aircraft configurations to assess the accuracy and limitations of the method.

  1. Endoscopic brow lifts uber alles.

    PubMed

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  2. Unsteady Lift Generation for MAVs

    DTIC Science & Technology

    2010-10-22

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  3. Baseball Aerodynamics: What do we know and how do we know it?

    NASA Astrophysics Data System (ADS)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  4. The linear and non-linear aerodynamics of three-surface aircraft concepts

    NASA Technical Reports Server (NTRS)

    Agnew, J. W.; Lyerla, G. W.; Grafton, S. B.

    1980-01-01

    It is noted that most modern fighter aircraft rely on vortex interaction to provide lift enhancement at maneuvering angles of attack. It is shown that the close-coupled horizontal canard in a three-surface configuration provides a control surface which in addition to its other control functions, can be used to optimize this vortex interaction. Attention is given to a study intended to provide a detailed understanding of the aerodynamics of this type of configuration. The discussion examines the results of this investigation and hypotheses are presented to explain the linear and nonlinear aerodynamic phenomena observed.

  5. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  6. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  7. The compressible aerodynamics of rotating blades based on an acoustic formulation

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.

  8. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.

    PubMed

    Dial, Terry R; Heers, Ashley M; Tobalske, Bret W

    2012-11-01

    Wing morphology correlates with flight performance and ecology among adult birds, yet the impact of wing development on aerodynamic capacity is not well understood. Recent work using chukar partridge (Alectoris chukar), a precocial flier, indicates that peak coefficients of lift and drag (C(L) and C(D)) and lift-to-drag ratio (C(L):C(D)) increase throughout ontogeny and that these patterns correspond with changes in feather microstructure. To begin to place these results in a comparative context that includes variation in life-history strategy, we used a propeller and force-plate model to study aerodynamic force production across a developmental series of the altricial-flying mallard (Anas platyrhynchos). We observed the same trend in mallards as reported for chukar in that coefficients of vertical (C(V)) and horizontal force (C(H)) and C(V):C(H) ratio increased with age, and that measures of gross-wing morphology (aspect ratio, camber and porosity) in mallards did not account for intraspecific trends in force production. Rather, feather microstructure (feather unfurling, rachis width, feather asymmetry and barbule overlap) all were positively correlated with peak C(V):C(H). Throughout ontogeny, mallard primary feathers became stiffer and less transmissive to air at both macroscale (between individual feathers) and microscale (between barbs/barbules/barbicels) levels. Differences between species were manifest primarily as heterochrony of aerodynamic force development. Chukar wings generated measurable aerodynamic forces early (<8 days), and improved gradually throughout a 100 day ontogenetic period. Mallard wings exhibited delayed aerodynamic force production until just prior to fledging (day 60), and showed dramatic improvement within a condensed 2-week period. These differences in timing may be related to mechanisms of escape used by juveniles, with mallards swimming to safety and chukar flap-running up slopes to take refuge. Future comparative work should test

  9. Determination of longitudinal aerodynamic derivatives from steady-state measurement of an aircraft

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1977-01-01

    A method for the estimation of aerodynamic derivatives from steady-state symmetric flight data is developed. The derivatives considered are the longitudinal static stability and control derivatives, damping derivatives due to tail, and the derivatives expressing the speed effect on the lift and pitching moment coefficients. The method is an extension of the well known theory of longitudinal static stability and control, and corresponding flight data interpretation. Measured data is assumed in the form of trim curves and lift vs angle of attack. The expressions for the derivative estimates are in the form of algebraic relationships containing known constants, and directly or indirectly measured quantities.

  10. Calculation of the aerodynamic characteristics of tapered wings with partial-span flaps

    NASA Technical Reports Server (NTRS)

    Person, Henry A; Anderson, Raymond F

    1939-01-01

    Factors derived from wing theory are presented. By means of these factors, the angle of zero lift, the lift-curve slope, the pitching moment, the aerodynamic-center position, and the induced drag of tapered wings with partial-span flaps may be calculated. The factors are given for wings of aspect ratios 6 and 10 , of taper ratios from 0.25 to 1.00, and with flaps of various length. An example is presented of the method of application of the factors. Fair agreement with experimental results is shown for two wings of different taper ratio having plain flaps of various spacing.

  11. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather.

  12. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  13. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  14. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  15. Effect of wing design on the longitudinal aerodynamic characteristics of a wing-body model at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Huffman, J. K.

    1972-01-01

    An investigation has been conducted to determine the effects of wing camber and twist on the longitudinal aerodynamic characteristics of a wingbody configuration. Three wings were used each having the same planform (aspect ratio of 2.5 and leading-edge sweep angle of 44 deg.) but differing in amounts of camber and twist (wing design lift coefficient). The wing design lift coefficients were 0, 0.35, and 0.70. The investigation was conducted over a Mach number range from 0.20 to 0.70 at angles of attack up to about 22 deg. The effect of wing strakes on the aerodynamic characteristics of the cambered wings was also studied. A comparison of the experimentally determined aerodynamic characteristics with theoretical estimates is also included.

  16. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  17. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  18. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  19. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  20. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  1. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  2. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  3. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  4. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  5. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    NASA Technical Reports Server (NTRS)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  6. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-05

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.

  7. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  8. On least-order flow decompositions for aerodynamics and aeroacoustics

    NASA Astrophysics Data System (ADS)

    Schlegel, Michael; Noack, Bernd R.; Jordan, Peter

    2012-11-01

    A generalisation of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables is presented, as proposed in the identically named publication of Schlegel, Noack, Jordan, Dillmann, Groeschel, Schroeder, Wei, Freund, Lehmann and Tadmor (Journal of Fluid Mechanics 2012, vol. 697, pp. 367-398). This Galerkin expansion, termed ``observable inferred decomposition'' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Three aerodynamic and aeroacoustic observables are studied: (1) lift and drag fluctuation of a two-dimensional cylinder wake flow, (2) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer, and (3) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ``drag-related,'' ``lift-related'' and ``loud'' structures are distilled and interpreted in terms of known physical processes. This work was partially funded by the DFG under grants SCHL 586/2-1 and ANR, Chair of Excellence, TUCOROM.

  9. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  10. An aerodynamic study on flexed blades for VAWT applications

    NASA Astrophysics Data System (ADS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  11. An aerodynamic tradeoff study of the scissor wing configuration

    NASA Technical Reports Server (NTRS)

    Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.

    1990-01-01

    A scissor wing configuration, consisting of two independently sweeping wings was numerically studied. This configuration was also compared with an equivalent fixed wing baseline. Aerodynamic and stability and control characteristics of these geometries were investigated over a wide range of flight Mach numbers. It is demonstrated that in the purely subsonic flight regime, the scissor wing can achieve higher aerodynamic efficiency as the result of slightly higher aspect ratio. In the transonic regime, the lift to drag ratio of the scissor wing is shown to be higher than that of the baseline, for higer values of the lift coefficient. This tends to make the scissor wing more efficient during transonic cruise at high altitudes as well as during air combat at all altitudes. In supersonic flight, where the wings are maintained at maximum sweep angle, the scissor wing is shown to have a decided advantage in terms of reduced wave drag. From the view point of stability and control, the scissor wing is shown to have distinct advantages. It is shown that this geometry can maintain a constant static margin in supersonic as well as subsonic flight, by proper sweep scheduling. Furthermore, it is demonstrated that addition of wing mounted elevons can greatly enhance control authority in pitch and roll.

  12. Wind tunnel and ground static investigation of a large scale model of a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.

  13. Influences on lifetime of wire ropes in traction lifts

    NASA Astrophysics Data System (ADS)

    Vogel, W.

    2016-05-01

    Traction lifts are complex systems with rotating and translating moving masses, springs and dampers and several system inputs from the lifts and the users. The wire ropes are essential mechanical elements. The mechanical properties of the ropes in use depend on the rope construction, the load situation, nonlinearities and the lift dimensions. The mechanical properties are important for the proper use in lifts and the ride quality. But first of all the wire ropes (for all other suspension means as well) have to satisfy the safety relevant requirements sufficient lifetime, reliable determination of discard and sufficient and limited traction capacity. The lifetime of the wire ropes better the number of trips until rope discard depends on a lot of parameters of the rope and the rope application eg use of plastic deflection sheaves and reverse bending layouts. New challenges for rope lifetime are resulting from the more or less open D/d-ratio limits possible by certificates concerning the examination of conformity by notified bodies. This paper will highlight the basics of wire rope technology, the endurance and lifetime of wire ropes running over sheaves, and the different influences from the ropes and more and more important from the lift application parameters. Very often underestimated are the influences of transport, storage, installation and maintenance. With this background we will lead over to the calculation methods of wire rope lifetime considering the actual findings of wire rope endurance research. We'll show in this paper new and innovative facts as the influence of rope length and size factor in the lifetime formular, the reduction of lifetime caused by traction grooves, the new model for the calculation in reverse bending operations and the statistically firmed possibilities for machine roomless lifts (MRL) under very small bending conditions.

  14. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  15. 46 CFR 64.43 - Lifting fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Lifting fittings. 64.43 Section 64.43 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.43 Lifting fittings. Each MPT must have attached lifting fittings so that the tank remains horizontal and stable while being moved....

  16. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  17. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  18. Project LIFT: Year Three Student Outcomes Memo

    ERIC Educational Resources Information Center

    Norton, Michael; Kim, Dae Y.; Long, Daniel A.

    2016-01-01

    Research for Action (RFA) was commissioned to evaluate changes in student outcomes during the first three years of the Project Leadership and Investment for Transformation (LIFT). This report focuses on two questions: (1) how do LIFT students' behavioral and academic performance compare to those of a matched set of non-LIFT comparison students?;…

  19. An Alternative Maxillary Sinus Lift Technique – Sinu Lift System

    PubMed Central

    T, Parthasaradhi; B, Shivakumar; Kumar, T.S.S.; P, Suganya

    2015-01-01

    Objectives: Maxillary sinus augmentation surgical techniques have evolved greatly allowing successful placement of dental implants in the atrophic posterior maxillary region. The purpose of the present study is to evaluate the clinical and radiological outcomes and postoperative morbidity of sinus floor elevation procedures performed using the minimally invasive surgical technique the Sinu lift system. Materials and Methods: Sinus lift procedure was done using the sinu lift system by a transcrestal approach and bone augmentation was done on ten systemically healthy patients using β- tricalcium phosphate and platelet rich plasma mix. The study was evaluated upto six months period with bone related parameters being assessed at base line using CT scan, OPG and after six months the results were analysed using SPSS Version 18.0 software (p < 0.01 (0.005). Wilcoxson signed rank sum test was used to correlate between preoperative and postoperative measurements. Implant placements were done at the desired area of sinus augmentation with a two year follow up. (Nobel Biocare, Nobel Biocare Holding AG, Zürich-Flughafen, Switzerland) Results: The augmented sites had a significant increase in the bone parameters at the desired grafted region. The mean gain in bone height as observed in CT Scan had revealed increased measurements from 5.80mm±0.98 to 10.20mm±1.68 at the sixth month evaluation. This was statistically significant (0.005). Clinically, no complications were observed during or after the surgical procedure. Conclusion: Within the limitations of this study, the Sinu lift system with a controlled working action resulted in high procedural success and this procedure may be an alternative to the currently used surgical methods. PMID:25954702

  20. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    SciTech Connect

    Not Available

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.

  1. A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics and Active Controls

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Adams, W. M., Jr.

    1979-01-01

    A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.

  2. Requirements for implementation of Kuessner and Wagner indicial lift growth functions into the FLEXSTAB computer program system for use in dynamic loads analyses

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Rogers, J. T.

    1975-01-01

    General requirements for dynamic loads analyses are described. The indicial lift growth function unsteady subsonic aerodynamic representation is reviewed, and the FLEXSTAB CPS is evaluated with respect to these general requirements. The effects of residual flexibility techniques on dynamic loads analyses are also evaluated using a simple dynamic model.

  3. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model

    NASA Technical Reports Server (NTRS)

    Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.

    2008-01-01

    Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.

  4. Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated HAWTs

    SciTech Connect

    Giguere, P.; Selig, M. S.; Tangler, J. L.

    1999-04-08

    A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum lift coefficient ranging from 0.7-1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum lift coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that reducing the maximum lift coefficient below the upper limit considered in this study increases the cost of energy independently of the wind regime. As a consequence, higher maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, as long as they provide gentle stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.

  5. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Junkai, YAO; Danjie, ZHOU; Haibo, HE; Chengjun, HE; Zhiwei, SHI; Hai, DU

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s‑1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from ‑4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  6. Lift on a Steady Airfoil in Low Reynolds Number Shear Flow

    NASA Astrophysics Data System (ADS)

    Hammer, Patrick; Visbal, Miguel; Naguib, Ahmed; Koochesfahani, Manoochehr

    2016-11-01

    Current understanding of airfoil aerodynamics is primarily based on a uniform freestream velocity approaching the airfoil, without consideration for possible presence of shear in the approach flow. Inviscid theory by Tsien (1943) shows that a symmetric airfoil at zero angle of attack experiences positive lift, i.e. a shift in the zero-lift angle of attack, in the presence of positive mean shear in the approach flow. In the current work, 2D computations are conducted on a steady NACA 0012 airfoil at a chord Reynolds number of Re = 12,000, at zero angle of attack. A uniform shear profile (i.e. a linear velocity variation) is used for the approach flow by modifying the FDL3DI Navier-Stokes solver (Visbal and Gaitonde, 1999). Interestingly, opposite to the inviscid prediction of Tsien (1943), the results for the airfoil at zero angle of attack show that the average lift is negative in the shear flow. The magnitude of this lift grows as the shear rate increases. Additional results are presented regarding the physics underlying the shear effect on lift. A companion experimental study is also given in a separate presentation. This work was supported by AFOSR Award Number FA9550-15-1-0224.

  7. Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W. (Inventor); Howard, Floyd G. (Inventor); Bushnell, Dennis M. (Inventor); Holmes, Bruce J. (Inventor)

    1992-01-01

    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.

  8. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff

    PubMed Central

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier–Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering. PMID:27019208

  9. Aerodynamic Design Exploration for Reusable Launch Vehicle Using Genetic Algorithm with Navier Stokes Solver

    NASA Astrophysics Data System (ADS)

    Tatsukawa, Tomoaki; Nonomura, Taku; Oyama, Akira; Fujii, Kozo

    In this study, aerodynamic design exploration for reusable launch vehicle (RLV) is conducted using genetic algorithm with Navier-Stokes solver to understand the aerodynamic characteristics for various body configurations and find design information such as tradeoff information among objectives. The multi-objective aerodynamic design optimization for minimizing zero-lift drag at supersonic condition, maximizing maximum lift-to-drag ratio (L/D) at subsonic condition, maximizing maximum L/D at supersonic condition, and maximizing volume of shape is conducted for bi-conical shape RLV based on computational fluid dynamics (CFD). The total number of evaluation in multi-objective optimization is 400, and it is necessary for evaluating one body configuration to conduct 8 CFD runs. In total, 3200 CFD runs are conducted. The analysis of Pareto-optimal solutions shows that there are various trade-off relations among objectives clearly, and the analysis of flow fields shows that the shape for the minimum drag configuration is almost the same as that of the shape for the maximum L/D configuration at supersonic condition. The shape for the maximum L/D at subsonic condition obtains additional lift at the kink compared with the minimum drag configuration. It leads to enhancement of L/D.

  10. Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control

    NASA Astrophysics Data System (ADS)

    Sun, Min; Yang, Bo; Peng, Tianxiang; Lei, Mingkai

    2016-06-01

    Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)

  11. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  12. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  13. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  14. Atmospheric tests of trailing-edge aerodynamic devices

    SciTech Connect

    Miller, L S; Huang, S; Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  15. Aerodynamic implications of gull's drooped wing-tips.

    PubMed

    Andrews, S A; Perez, R E; Allan, W D E

    2013-12-01

    When in gliding flight, gulls are observed to adopt a drooped wing-tip configuration. This paper investigates whether this configuration might represent an aerodynamic optimum or if it is the result of constraints imposed by the gull's anatomy. A computational model was developed for the aerodynamic performance of a gull in gliding flight. This model was used in conjunction with both global and local optimizers to determine the most aerodynamically optimal configuration for cases where the gull was constrained to move its wing within its natural flapping cycle as well as when the wing had full freedom of motion. The results of this analysis determined the best wing configuration for a gull in gliding flight and demonstrated that such a configuration not only had the highest lift-to-drag ratio but also could be achieved within the constraints of the kinematics of the gull wing. These results are of interest outside studies of gulls, since the drooped wing-tip configuration could be relevant for new designs of small air vehicles.

  16. In-Flight Aerodynamic Measurements of an Iced Horizontal Tailplane

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss

    1999-01-01

    The effects of tailplane icing on aircraft dynamics and tailplane aerodynamics were investigated using, NASA's modified DHC-6 Twin Otter icing research aircraft. This flight program was a major element of the four-year NASA/FAA research program that also included icing wind tunnel testing, dry-air aerodynamic wind tunnel testing, and analytical code development. Flight tests were conducted to obtain aircraft dynamics and tailplane aerodynamics of the DHC-6 with four tailplane leading-edge configurations. These configurations included a clean (baseline) and three different artificial ice shapes. Quasi-steady and various dynamic flight maneuvers were performed over the full range of angles of attack and wing flap settings with each iced tailplane configuration. This paper presents results from the quasi-steady state flight conditions and describes the range of flow fields at the horizontal tailplane, the aeroperformance effect of various ice shapes on tailplane lift and elevator hinge moment, and suggests three paths that can lead toward ice-contaminated tailplane stall. It was found that wing, flap deflection was the most significant factor in driving the tailplane angle of attack toward alpha(tail stall). However, within a given flap setting, an increase in airspeed also drove the tailplane angle of attack toward alpha(tail stall). Moreover, increasing engine thrust setting also pushed the tailplane to critical performance limits, which resulted in premature tailplane stall.

  17. Aerodynamics and interaction noise of streamlined bodies in nonuniform flows

    NASA Astrophysics Data System (ADS)

    Atassi, H. M.; Logue, M. M.

    2011-08-01

    The unsteady aerodynamics and interaction noise of streamlined bodies are modeled in terms of the Euler equations linearized about a nonuniform flow. The validity of the inviscid approach is supported by recent LES simulations of an airfoil in a gust indicating that for not-too-small impinging excitations, the interaction process is dominated by inertia forces. Results in the present paper are focused on the aerodynamics and interaction noise of a turbofan modeled as an annular cascade. The model accounts for the inflow-fan-duct coupling and the high frequency of the interaction process. Two high-order numerical algorithms are developed with body-fitted coordinate system. One algorithm uses a primitive variable formulation, the other uses an efficient velocity splitting algorithm and is suitable for broadband computations. Analytical and numerical analysis of disturbances in rotational flows is developed and exact inflow/outflow boundary conditions are derived, yielding directly the radiated acoustics. The upstream disturbances evolve in rotational flows and as a result the aerodynamic-aeroacoustic response of the annular cascade depends on the initial conditions location. Computational results show that the three-dimensional geometry of the annular cascade, the mean flow swirl, and the blade geometry have strong influence on the blade sectional lift and the radiated sound. These results also show the inadequacy of using the popular linear cascade model particularly for realistic fan geometry and inflow conditions.

  18. Quiet powered-lift propulsion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

  19. Preliminary piloted simulation studies of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. Bruce; Ragsdale, W. A.

    1994-05-01

    NASA Langley Research Center is developing a lifting body vehicle, designated the HL-20, as one option of the proposed Personnel Launch System for NASA's future manned access to space requirements. Data derived from wind-tunnel and computational fluid dynamics analyses of the conceptual design led to the derivation of a flight simulator model to investigate the potential flight characteristics of the HL-20. A simulation investigation was initiated to determine if satisfactory unpowered horizontal landings could be accomplished. Control law design and trajectory development were directed toward this end. The study uncovered several deficiencies subsequently corrected through design changes, and it validated the predicted subsonic aerodynamic properties. Expanding the investigation to the Mach 4 to Mach 1 regime revealed flight characteristics necessitating the development of innovative control techniques. This article will present the significant results uncovered to date by flight simulator evaluations of a lifting body class of vehicle, and will demonstrate the effectiveness of flight simulation as an integrated part of the conceptual design phase.

  20. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  1. Payload vehicle aerodynamic reentry analysis

    NASA Astrophysics Data System (ADS)

    Tong, Donald

    An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

  2. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  3. Aerodynamic levitator for large-sized glassy material production.

    PubMed

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept.

  4. Transitory Aerodynamic Forces on a Body of Revolution using Synthetic Jet Actuation

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher; McMichael, James; Glezer, Ari

    2002-11-01

    The aerodynamic forces and moments on axisymmetric bodies at subsonic speeds are controlled by exploiting local flow attachment using fluidic (synthetic jet) actuation and thereby altering the apparent aerodynamic shape of the surface. Control is effected upstream of the base of the body by an azimuthal array of individually-controlled, aft-facing synthetic jets emanating along an azimuthal Coanda surface. Actuation produces asymmetric aerodynamic forces and moments, with ratios of lift to average jet momentum approaching values typical of conventional jet-based circulation control on two-dimensional airfoils. Momentary forces are achieved using transient (pulsed) actuation and are accompanied by the formation and shedding of vorticity concentrations as a precursor to the turning of the outer flow into the wake region.

  5. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    PubMed

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-06

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.

  6. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  7. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  8. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  9. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  10. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.

    1978-01-01

    The aerodynamic characteristics for a winged and a wingless cruciform missile are examined. The body was an ogive-cylinder with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and has cruciform tails that were trapexoidal in planform. Tests were made both with and without 72.9 deg cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 and 45 deg, angles of attack from -40 to 22 deg, and tail control deflections from 10 to -40 deg. The purpose is to determine the influence of the aerodynamic behavior on the design choice for maneuverable missiles intended primarily for air-to-air or surface-to-surface missions. The results indicate that the winged missile with its more linear aerodynamic characteristics and higher lift-curve slope, should provide the highest maneuverability over a large operational range.

  11. The relationship between maximal lifting capacity and maximum acceptable lift in strength-based soldiering tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J

    2012-07-01

    Psychophysical assessments, such as the maximum acceptable lift, have been used to establish worker capability and set safe load limits for manual handling tasks in occupational settings. However, in military settings, in which task demand is set and capable workers must be selected, subjective measurements are inadequate, and maximal capacity testing must be used to assess lifting capability. The aim of this study was to establish and compare the relationship between maximal lifting capacity and a self-determined tolerable lifting limit, maximum acceptable lift, across a range of military-relevant lifting tasks. Seventy male soldiers (age 23.7 ± 6.1 years) from the Australian Army performed 7 strength-based lifting tasks to determine their maximum lifting capacity and maximum acceptable lift. Comparisons were performed to identify maximum acceptable lift relative to maximum lifting capacity for each individual task. Linear regression was used to identify the relationship across all tasks when the data were pooled. Strong correlations existed between all 7 lifting tasks (rrange = 0.87-0.96, p < 0.05). No differences were found in maximum acceptable lift relative to maximum lifting capacity across all tasks (p = 0.46). When data were pooled, maximum acceptable lift was equal to 84 ± 8% of the maximum lifting capacity. This study is the first to illustrate the strong and consistent relationship between maximum lifting capacity and maximum acceptable lift for multiple single lifting tasks. The relationship developed between these indices may be used to help assess self-selected manual handling capability through occupationally relevant maximal performance tests.

  12. Transitory Control of the Aerodynamic Loads on an Airfoil in Dynamic Pitch and Plunge

    NASA Astrophysics Data System (ADS)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2016-11-01

    Transitory control and regulation of trapped vorticity concentrations are exploited in wind tunnel experiments for control of the aerodynamic loads on an airfoil moving in time-periodic 2-DOF (pitch and plunge) beyond the dynamic stall margin. Actuation is effected using a spanwise array of integrated miniature chemical (combustion based) high-impulse actuators that are triggered intermittently relative to the airfoil's motion. Each actuation pulse has sufficient control authority to alter the global aerodynamic performance throughout the motion cycle on a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. The effects of the actuation on the aerodynamic characteristics of the airfoil are assessed using time-dependent measurements of the lift force and pitching moment coupled with time-resolved particle image velocimetry that is acquired phased-locked to the motion of the airfoil. It is shown that the aerodynamic loads can be significantly altered using actuation programs based on multiple actuation pulses during the time-periodic pitch/plunge cycle. Superposition of such actuation programs leads to enhancement of cycle lift and pitch stability, and reduced cycle hysteresis and peak pitching moment. Supported by GT-VLRCOE.

  13. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  14. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  15. Finite wing aerodynamics with simulated glaze ice

    NASA Technical Reports Server (NTRS)

    Khodadoust, A.; Bragg, M. B.; Kerho, M.; Wells, S.; Soltani, M. R.

    1992-01-01

    The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. The model used for these tests was a semi-span wing of effective aspect ratio five, mounted from the sidewall of the UIUC subsonic wind tunnel. The model has an NACA 0012 airfoil section on a rectangular, untwisted planform with interchangeable leading edges to allow for testing both the baseline and the iced wing geometry. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. A four-beam two-color fiberoptic laser Doppler velocimeter (LDV) was used to map the flowfield along several spanwise cuts on the model. Preliminary results from LDV scans, which will be the bulk of this paper, are presented following the force balance measurement results. Initial comparison of LDV surveys compare favorably with inviscid theory results and 2D split hot-film measurements near the model surface.

  16. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  17. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-10-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  18. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  19. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  20. The aerodynamic forces and pressure distribution of a revolving pigeon wing.

    PubMed

    Usherwood, James R

    2009-05-01

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.

  1. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    NASA Astrophysics Data System (ADS)

    Usherwood, James R.

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.

  2. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    NASA Astrophysics Data System (ADS)

    Usherwood, James R.

    2009-05-01

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.

  3. Numerical analysis of the three-dimensional aerodynamics of a hovering rufous hummingbird ( Selasphorus rufus)

    NASA Astrophysics Data System (ADS)

    Yang, Songyuan; Zhang, Weiping

    2015-12-01

    Hummingbirds have a unique way of hovering. However, only a few published papers have gone into details of the corresponding three-dimensional vortex structures and transient aerodynamic forces. In order to deepen the understanding in these two realms, this article presents an integrated computational fluid dynamics study on the hovering aerodynamics of a rufous hummingbird. The original morphological and kinematic data came from a former researcher's experiments. We found that conical and stable leading-edge vortices (LEVs) with spanwise flow inside their cores existed on the hovering hummingbird's wing surfaces. When the LEVs and other near-field vortices were all shed into the wake after stroke reversals, periodically shed bilateral vortex rings were formed. In addition, a strong downwash was present throughout the flapping cycle. Time histories of lift and drag were also obtained. Combining the three-dimensional flow field and time history of lift, we believe that high lift mechanisms (i.e., rotational circulation and wake capture) which take place at stroke reversals in insect flight was not evident here. For mean lift throughout a whole cycle, it is calculated to be 3.60 g (104.0 % of the weight support). The downstroke and upstroke provide 64.2 % and 35.8 % of the weight support, respectively.

  4. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    PubMed Central

    Usherwood, James R.

    2012-01-01

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels. PMID:22736891

  5. Analysis of the effect of engine characteristics on the external aerodynamics of STOL wing propulsion systems

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1972-01-01

    The effects of engine presssure ratio, engine size, and engine location on the pressure distribution, lift coefficient, and flow field of a STOL wing propulsion system are presented. The flow variables of the engines are included in the two-dimensional potential flow analysis by considering the effects of mass flow coefficient at the engine inlet and thrust coefficient at the engine exit. A functional relation between these coefficients and engine pressure ratio is given. The results of this study indicate that the effect of engine pressure ratio on the external aerodynamics is a function of engine location. For engines located on the bottom of the wing, the highest pressure ratio engine resulted in the highest lift coefficient. For engines located on the top of the wing, the lowest pressure ratio engine resulted in the highest lift coefficient.

  6. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    NASA Astrophysics Data System (ADS)

    Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

    2014-12-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

  7. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  8. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  9. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  10. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  11. Investigation of the Aerodynamic Characteristics of a Model Wing-Propeller Combination and of the Wing and Propeller Separately at Angles of Attack up to 90 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E; Draper, John W

    1956-01-01

    This report presents the results of an investigation conducted in the Langley 300 mph 7- by 10-foot wind tunnel for the purpose of determining the aerodynamic characteristics of a model wing-propeller combination, and of the wing and propeller separately at angles of attack up to 90 degrees. The tests covered thrust coefficients corresponding to free-stream velocities from zero forward speed to the normal range of cruising speeds. The results indicate that increasing the thrust coefficient increases the angle of attack for maximum lift and greatly diminishes the usual reduction in lift above the angle of attack for maximum lift.

  12. New and expected developments in artificial lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1994-12-31

    Artificial lift is a broad subject. This paper discusses some of the new developments in the major areas of artificial lift. These are (1) beam lift, (2) electrical submersible pumping, (3) gas lift, (4) hydraulic pumping and (5) miscellaneous topics. The beam lift discussion concerns a new rod material, downhole measurements for rod loading, unit design and some miscellaneous topics. The ESP (Electrical Submersible Pump) section includes a discussion on solids handling, downhole sensor technology, new motor temperature limitations, motor efficiency, and other topics. The gas lift discussion includes mention of coiled tubing with gas lift valves internal, a surface controlled gas lift valve concept, and gas lift valve testing and modeling. Hydraulic pumping is used in many locations with deep pay and fairly small production rates. New hydraulic developments include a wider availability of power fluid pumps other than positive displacement pumps, and small jet pumps specifically designed for de-watering gas wells. Some miscellaneous developments include an insertable PC (progressing cavity) pump and improved plunger lift algorithms and equipment.

  13. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  14. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  15. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  16. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  17. Maximum isoinertial lifting capabilities for different lifting ranges and container dimensions.

    PubMed

    Lee, Tzu-Hsien

    2005-05-01

    The aim of this study was to examine the effects of lifting range and container dimension on human maximum isoinertial lifting capability in the sagittal plane. Ten young and experienced lifters were tested for their maximum isoinertial lifting capabilities for 12 different lifting conditions (three lifting ranges x four container dimensions). The results showed that lifting range and container dimension significantly affected human maximum isoinertial lifting capability. The order for the highest to lowest lifting capability for the three lifting ranges was FK (from floor to knuckle height, 0-74 cm), FS (from floor to shoulder height, 0-141 cm) and KS (from knuckle height to shoulder height, 74-141 cm) regardless of the container dimension, and for the four container dimensions was 50 x 35 x 15 cm(3), 70 x 35 x 15 cm(3), 50 x 50 x 15 cm(3) and 70 x 50 x 15 cm(3) regardless of the lifting range. The mean(SD) maximum isoinertial lifting capability ranged from 29.3(3.3) kg for the combination of KS range and 70 x 50 x 15 cm(3) container to 53.2(5.7)kg for the combination of FK range and 50 x 35 x 15 cm(3) container. The results of this study can help our knowledge of human maximum isoinertial lifting capability and designing the upper limit of lifting weight.

  18. Training for lifting; an unresolved ergonomic issue?

    PubMed

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification.

  19. The control of flight force by a flapping wing: lift and drag production.

    PubMed

    Sane, S P; Dickinson, M H

    2001-08-01

    We used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an estimate of profile power. The results of this analysis may be divided into four main points. (i) For a short, symmetrical wing flip, mean lift was optimized by a stroke amplitude of 180 degrees and an angle of attack of 50 degrees. At all stroke amplitudes, mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude. (ii) For a 180 degrees stroke amplitude and a 45 degrees angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke reversal, however, produced very low mean lift. (iii) The production of aerodynamic forces was sensitive to changes in the magnitude of the wing's deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no

  20. Experimental aerodynamics of mesoscale trailing-edge actuators

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen Adam

    Uninhabited air vehicles (UAVs) are commonly designed with high-aspect ratio wings, which can be susceptible to significant aeroelastic vibrations. These modes can result in a loss of control or structural failure, and new techniques are necessary to alleviate them. A multidisciplinary effort at Stanford developed a distributed flow control method that used small trailing-edge actuators to alter the aerodynamic loads at specific spanwise locations along an airplane wing. This involved design and production of the actuators, computational and experimental study of their characteristics, and application to a flexible wing. This project focused on the experimental response. The actuators were based on a Gurney flap, which is a trailing-edge flap of small size and large deflection, typically about 2% of the chord and 90 degrees, respectively. Because of the large deflection, there is a significant change to the wing camber, increasing the lift. However, due to the small size, the drag does not increase substantially, and the performance is actually improved for high lift conditions. For this project, a 1.5% flap was divided into small span segments (5.2% of the chord), each individually controllable. These devices are termed microflaps or Micro Trailing-edge Effectors (MiTEs). The aerodynamic response was examined to determine the effects of small flap span, the influence of the device structure, and the transient response to relatively rapid MiTE actuation. Measurements included integrated loads, pressure profiles, wake surveys, and near-wake studies using particle image velocimetry. The basic response was similar to a Gurney flap, as full-span actuation of the devices produced a lift increment of about +0.25 when applied towards the pressure surface. For partial actuated spans, the load increment was approximately linear with the actuated span, regardless of configuration. The primary effects occurred within two device spans, indicating that most of the load was

  1. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  2. Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover

    NASA Astrophysics Data System (ADS)

    Shahzad, Aamer; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2016-11-01

    This numerical study is focused on assessing the effect on the aerodynamic hovering performance of wing shapes defined by the radius of the first moment of the wing area ( r 1 ¯ ) and aspect ratio (AR). In addition, the effect of introducing a deviation angle in the kinematics is examined. The performance of r 1 ¯ = 0 . 43 , 0.53, and 0.63 wings with AR of 1.5, 2.96, 4.5, and 6.0 is investigated at Reynolds numbers (Re) = 12, 400, and 13 500. The performance trends of the wing shapes have been observed to be independent of Re for both 2-angle and 3-angle kinematics. This is because high suction pressures associated with the leading-edge vortex are predominantly spread in the distal (away from the wing root) and leeward regions (towards the trailing-edge) of high flapping velocities for all the cases. While the deviation angle is detrimental to the production of lift and power economy (PE, defined as the ratio of the mean lift coefficient to the mean aerodynamic power coefficient) at Re = 12 due to strong viscous effects, it improves PE at Re = 400 and 13 500. A high instantaneous angle of attack at the stroke reversal results in high lift peak for 3-angle kinematics but its effect at Re = 400 and 13 500 is attenuated by strong vortical structures on the underside of the wing. Maximum PE is achieved at AR = 2.96, as a low AR wing does not produce enough lift and high AR wings consume more aerodynamic power. Although the lift is maximized using high r 1 ¯ and AR wings, our results show that low r 1 ¯ and high AR wings are best for maximizing PE for a given lift in insects.

  3. Optimum configuration of high-lift aeromaneuvering orbital transfer vehicles in viscous flow

    NASA Technical Reports Server (NTRS)

    Davies, C. B.; Park, C.

    1985-01-01

    The results of an analysis to determine the geometrical configuration of an aeroassisted transfer vehicle with a high lift-to-drag ratio (L/D) are described and the constraints imposed on this type of entry vehicle are considered. The aerodynamic characteristics of three configurations, a flat-plate delta wing, a truncated straight cone, and a truncated bent biconic are compared. The effect of viscosity is included in the analysis which examines the rounding of the sharp leading edges. It is shown that, under the constraints of carrying a given volume in the dead air region, the values of L/D are similar for each configuration and that a small blunt leading edge only slightly affects each vehicle's aerodynamic performance, causing less than a 5 percent drop in L/D. The truncated bent biconic is found to be the only configuration that provides the necessary stabilizing moments.

  4. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  5. System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag

    NASA Technical Reports Server (NTRS)

    Florence, D. E.; Fischer, G.

    1983-01-01

    The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.

  6. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  7. Influence of lift redistribution along the length of a supersonic airplane on the acoustic-shock parameters

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Volkov, V. F.; Chirkashenko, V. F.

    2007-09-01

    Results of numerical investigations of the influence of lift redistribution along the length of the airframe of an airplane arrangement on the parameters of the acoustic shock produced by this arrangement and its aerodynamic characteristics are presented. The airplane arrangements investigated were constructed by disposition of wings in tandem at definite values of the aerodynamic lift and the lifting-surface area. The gasdynamic parameters of the flow near an arrangement were calculated by the numerical scheme based on the integral Euler equations, and the disturbed-pressure distribution at a large distance from the arrangement was determined using the quasi-linear theory. It is shown that the acoustic-shock level is substantially decreased in the case where there arises a middle-zone effect and an excess-pressure profile with an N-like shape. The arrangement of a supersonic airplane of weight 40 t making a cruise at a height H = 18 km and a Mach number M∞ = 2.0, which makes it possible to decrease the acoustic shock produced by this airplane with no decrease in its lift-drag ratio, was determined.

  8. Study of potential aerodynamic benefits from spanwise blowing at wingtip. Ph.D. Thesis - George Washington Univ., 1992

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1995-01-01

    Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.

  9. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  10. Aerodynamics of wing-assisted incline running in birds.

    PubMed

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  11. Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David

    1994-01-01

    An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.

  12. Hypersonic bodies of maximum drag for a given lift-to-drag ratio.

    NASA Technical Reports Server (NTRS)

    Mcmillan, W., III; Hull, D. G.

    1971-01-01

    The problem considered in this paper is concerned with the aerodynamic design of the forebody shape of reentry vehicles in the blunt, homothetic, elliptic transversal contour, power-law longitudinal contour, raked-off configurational set. In particular, the forebody shape which maximizes the ratio of the forebody pressure drag to the free-stream dynamic pressure for a given lift-to-drag ratio and given geometric properties is determined. This problem is considered because recent survey articles indicate that its solution will provide useful qualitative design information about manned vehicles entering the earth's atmosphere from any of the foreseeable planetary missions. Single-integral equations relating the lift and drag in Newtonian hypersonic flow to the forebody geometry are derived and used to formulate the optimization problem which is solved by a direct numerical method.

  13. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  14. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    PubMed

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  15. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  16. Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.

  17. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  18. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  19. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  20. AIAA Applied Aerodynamics Conference, 7th, Seattle, WA, July 31-Aug. 2, 1989, Technical Papers

    SciTech Connect

    Not Available

    1989-01-01

    The present conference discusses the comparative aerodynamic behavior of half-span and full-span delta wings, TRANAIR applications to engine/airframe integration, a zonal approach to V/STOL vehicle aerodynamics, an aerodynamic analysis of segmented aircraft configurations in high-speed flight, unstructured grid generation and FEM flow solvers, surface grid generation for flowfields using B-spline surfaces, the use of chimera in supersonic viscous calculations for the F-15, and hypersonic vehicle forebody design studies. Also discussed are the aerothermodynamics of projectiles at hypersonic speeds, flow visualization of wing-rock motion in delta wings, vortex interaction over delta wings at high alpha, the analysis and design of dual-rotation propellers, unsteady pressure loads from plunging airfoils, the effects of riblets on the wake of an airfoil, inverse airfoil design with Navier-Stokes methods, flight testing for a 155-mm base-burn projectile, experimental results on rotor/fuselage aerodynamic interactions, the high-alpha aerodynamic characteristics of crescent and elliptic wings, and the effects of free vortices on lifting surfaces.

  1. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  2. The roles of aerodynamic and inertial forces on maneuverability in flapping flight

    NASA Astrophysics Data System (ADS)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2015-11-01

    We investigate the relative contributions of aerodynamic and the whole-body dynamics in generating extreme maneuvers. We developed a 3D dynamical model of a body (trunk) and two rectangular wings using a Lagrangian formulation. The trunk has 6 degrees of freedom and each wing has 4 degrees of actuation (flapping, sweeping, wing pronation/supination and wing extension/flexion) and can be massless (like insect wings) or relatively massive (like bats). To estimate aerodynamic forces, we use a blade element method; drag and lift are calculated using a quasi-steady model. We validated our model using several benchmark tests, including gliding and hovering motion. To understand the roles of aerodynamic and inertial forces, we start the investigation by constraining the wing motion to flapping and wing length extension/flexion motion. This decouples the trunk degrees of freedom and affects only roll motion. For bats' dynamics (massive wings), the model is much more maneuverable than the insect dynamics case, and the effect of inertial forces dominates the behavior of the system. The role of the aerodynamic forces increases when the wings have sweeping and flapping motion, which affects the pitching motion of the body. We also analyzed the effect of all wing motions together on the behavior of the model in the presence and in the absence of aerodynamic forces.

  3. Summary of model VTOL lift fan tests conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.

    1975-01-01

    The purpose of the tests was to obtain overall performance and influencing factors as well as detailed measurements of the internal flow characteristics. The first experiment consisted of crossflow tests of a 15-inch diameter fan installed in a two-dimensional wing. Tests were run with and without exit louvers over a range of tunnel speeds, fan speeds, and wing angle of attack. The wing was used for a study of installation effects on lift fan performance. The model tested consisted of three 5.5-inch diameter tip-turbine driven model VTOL lift fans mounted chord-wise in the two-dimensional wing to simulate a pod-type array. Several inlet and exit cover door configurations and an adjacent fuselage panel were tested. For the third program, a pod was attached to the wing, and an investigation was conducted of the effect of design tip speed on the aerodynamic performance and noise of a 15-inch diameter lift fan-in-pod under static and crossflow conditions. Three single VTOL lift fan stages were designed for the same overall total pressure ratio but at three different rotor tip speeds.

  4. Experimental Development and Evaluation of Pneumatic Powered-Lift Super-STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Campbell, Bryan A.

    2005-01-01

    The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing (PCW) configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (CL values of 10 to 11). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust in terms of lift generation. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg - 45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. A preliminary design study of this pneumatic vehicle based on the two technologies integrated into a simple Pneumatic Channel Wing configuration showed very strong Super-STOL potential. This paper presents these experimental results, discusses variations in the configuration geometry under development, and addresses additional considerations to extend this integrated technology to advanced design studies of PCW-type vehicles.

  5. Wind tunnel wall interference in V/STOL and high lift testing: A selected, annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.; Mineck, R. E.; Cole, K. L.

    1986-01-01

    This bibliography, with abstracts, consists of 260 citations of interest to persons involved in correcting aerodynamic data, from high lift or V/STOL type configurations, for the interference arising from the wind tunnel test section walls. It provides references which may be useful in correcting high lift data from wind tunnel to free air conditions. References are included which deal with the simulation of ground effect, since it could be viewed as having interference from three tunnel walls. The references could be used to design tests from the standpoint of model size and ground effect simulation, or to determine the available testing envelope with consideration of the problem of flow breakdown. The arrangement of the citations is chronological by date of publication in the case of reports or books, and by date of presentation in the case of papers. Included are some documents of historical interest in the development of high lift testing techniques and wall interference correction methods. Subject, corporate source, and author indices, by citation numbers, have been provided to assist the users. The appendix includes citations of some books and documents which may not deal directly with high lift or V/STOL wall interference, but include additional information which may be helpful.

  6. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Compton, William B, III

    2015-01-01

    Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  8. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the navigable channel under the span will be marked by a range of two green lights when the vertical lift...

  9. Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis

    NASA Technical Reports Server (NTRS)

    Yates, L.; Kumagai, H.

    1985-01-01

    The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.

  10. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    PubMed

    Cheng, Xin; Sun, Mao

    2016-05-11

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  11. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Sun, Mao

    2016-05-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°) therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2) that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so.

  12. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    PubMed Central

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  13. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Chang, Song; Wang, Z. Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.

  14. Experimental Investigation of the Aerodynamic Forces on a Curveball

    NASA Astrophysics Data System (ADS)

    Jemmott, Colin; Utvich, Alexis; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    The physics of baseball has fascinated researchers nearly as long as the game has existed, yet research into aerodynamic forces on curveballs has often been conflicting and incomplete. A team of undergraduates used the newly completed Harvey Mudd College wind tunnel with a specially designed apparatus to quantify these forces. The coefficient of lift was found to be a non-linear function of both the dimensionless spin number and the Reynolds number, suggesting a stronger Reynolds number dependence than previously reported. The coefficient of drag was found to be primarily a function of spin number over the range of Reynolds numbers investigated and is significantly higher than that for a static baseball over the same Reynolds number range. While these findings help to quantify and interpret what pitchers know intuitively, they also motivate further investigations of both forces and the resulting flow field over a wider parameter range.

  15. Subsonic potential aerodynamics for complex configurations - A general theory

    NASA Technical Reports Server (NTRS)

    Morino, L.; Kuo, C.-C.

    1974-01-01

    A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.

  16. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    NASA Astrophysics Data System (ADS)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  17. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  18. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  19. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small.

  20. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548