Science.gov

Sample records for aerodynamic model based

  1. Correlation-based Transition Modeling for External Aerodynamic Flows

    NASA Astrophysics Data System (ADS)

    Medida, Shivaji

    Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that

  2. Model-based fault detection and identification with online aerodynamic model structure selection

    NASA Astrophysics Data System (ADS)

    Lombaerts, T.

    2013-12-01

    This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.

  3. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  4. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  5. Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hanke, Jeremy L.

    2011-01-01

    The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space.

  6. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  7. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    NASA Astrophysics Data System (ADS)

    McWilliam, Michael K.; Crawford, Curran

    2014-06-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane.

  8. Aerodynamic analysis of natural flapping flight using a lift model based on spanwise flow

    NASA Astrophysics Data System (ADS)

    Alford, Lionel D., Jr.

    This study successfully described the mechanics of flapping hovering flight within the framework of conventional aerodynamics. Additionally, the theory proposed and supported by this research provides an entirely new way of looking at animal flapping flight. The mechanisms of biological flight are not well understood, and researchers have not been able to describe them using conventional aerodynamic forces. This study proposed that natural flapping flight can be broken down into a simplest model, that this model can then be used to develop a mathematical representation of flapping hovering flight, and finally, that the model can be successfully refined and compared to biological flapping data. This paper proposed a unique theory that the lift of a flapping animal is primarily the result of velocity across the cambered span of the wing. A force analysis was developed using centripetal acceleration to define an acceleration profile that would lead to a spanwise velocity profile. The force produced by the spanwise velocity profile was determined using a computational fluid dynamics analysis of flow on the simplified wing model. The overall forces on the model were found to produce more than twice the lift required for hovering flight. In addition, spanwise lift was shown to generate induced drag on the wing. Induced drag increased both the model wing's lift and drag. The model allowed the development of a mathematical representation that could be refined to account for insect hovering characteristics and that could predict expected physical attributes of the fluid flow. This computational representation resulted in a profile of lift and drag production that corresponds to known force profiles for insect flight. The model of flapping flight was shown to produce results similar to biological observation and experiment, and these results can potentially be applied to the study of other flapping animals. This work provides a foundation on which to base further exploration

  9. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  10. Nonlinear aerodynamic modeling using multivariate orthogonal functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1993-01-01

    A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate orthogonal functions based on the data. Each orthogonal function retained in the model was decomposed into an expansion of ordinary polynomials in the independent variables, so that the final model could be interpreted as selectively retained terms from a multivariable power series expansion. A predicted squared-error metric was used to determine the orthogonal functions to be retained in the model; analytical derivatives were easily computed. The approach was demonstrated on the Z-body axis aerodynamic force coefficient (Cz) wind tunnel data for an F-18 research vehicle which came from a tabular wind tunnel and covered the entire subsonic flight envelope. For a realistic case, the analytical model predicted experimental values of Cz very well. The modeling technique is shown to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The polynomial model has good predictive capability, global validity, and analytical differentiability.

  11. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.

  12. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  13. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  14. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  15. Launch vehicle aerodynamic data base development comparison with flight data

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.; Wallace, R. O.; Dill, C. C.

    1983-01-01

    The aerodynamic development plan for the Space Shuttle integrated vehicle had three major objectives. The first objective was to support the evolution of the basic configuration by establishing aerodynamic impacts to various candidate configurations. The second objective was to provide continuing evaluation of the basic aerodynamic characteristics in order to bring about a mature data base. The third task was development of the element and component aerodynamic characteristics and distributed air loads data to support structural loads analyses. The complexity of the configurations rendered conventional analytic methods of little use and therefore required extensive wind tunnel testing of detailed complex models. However, the ground testing and analyses did not predict the aerodynamic characteristics that were extracted from the Space Shuttle flight test program. Future programs that involve the use of vehicles similar to the Space Shuttle should be concerned with the complex flow fields characteristics of these types of complex configurations.

  16. The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Walker, Eric L.

    2011-01-01

    The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.

  17. Development of Nonlinear Aerodynamic Models for Unsteady Responses

    NASA Astrophysics Data System (ADS)

    Chin, Suei

    In the current study, a method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-deg delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-deg delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different mean angles of attack. To the author's knowledge, the current methodology of aerodynamic modeling is the first to produce the harmonic oscillation responses at high angle-of-attack and the ramp type motions.

  18. Validation and comparison of aerodynamic modelling approaches for wind turbines

    NASA Astrophysics Data System (ADS)

    Blondel, F.; Boisard, R.; Milekovic, M.; Ferrer, G.; Lienard, C.; Teixeira, D.

    2016-09-01

    The development of large capacity Floating Offshore Wind Turbines (FOWT) is an interdisciplinary challenge for the design solvers, requiring accurate modelling of both hydrodynamics, elasticity, servodynamics and aerodynamics all together. Floating platforms will induce low-frequency unsteadiness, and for large capacity turbines, the blade induced vibrations will lead to high-frequency unsteadiness. While yawed inflow conditions are still a challenge for commonly used aerodynamic methods such as the Blade Element Momentum method (BEM), the new sources of unsteadiness involved by large turbine scales and floater motions have to be tackled accurately, keeping the computational cost small enough to be compatible with design and certification purposes. In the light of this, this paper will focus on the comparison of three aerodynamic solvers based on BEM and vortex methods, on standard, yawed and unsteady inflow conditions. We will focus here on up-to-date wind tunnel experiments, such as the Unsteady Aerodynamics Experiment (UAE) database and the MexNext international project.

  19. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  20. A Generic Nonlinear Aerodynamic Model for Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  1. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  2. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

  3. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  4. Rarefield-Flow Shuttle Aerodynamics Flight Model

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.

    1994-01-01

    A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.

  5. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    The method based on Fourier functional analysis and indicial formulation for aerodynamic modeling as proposed by Chin and Lan is extensively examined and improved for the purpose of general applications to realistic airplane configurations. Improvement is made to automate the calculation of model coefficients, and to evaluate more accurately the indicial integral. Test data of large angle-of-attack ranges for two different models, a 70 deg. delta wing and an F-18 model, are used to further verify the applicability of Fourier functional analysis and validate the indicial formulation. The results show that the general expression for harmonic motions throughout a range of k is capable of accurately modeling the nonlinear responses with large phase lag except in the region where an inconsistent hysteresis behavior from one frequency to the other occurs. The results by the indicial formulation indicate that more accurate results can be obtained when the motion starts from a low angle of attack where hysteresis effect is not important.

  6. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward

    1990-01-01

    Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.

  7. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  8. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  9. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

  10. Development of the X-33 Aerodynamic Uncertainty Model

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    1998-01-01

    An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.

  11. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  12. Generic Wing-Body Aerodynamics Data Base

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  13. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  14. Aerodynamics model for a generic ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.

    1995-01-01

    This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

  15. Reduced Order Model-Based Prediction of the Nonlinear Geometric Response of a Panel Under Thermal, Aerodynamic, and Acoustic Loads

    NASA Astrophysics Data System (ADS)

    Matney, Andrew

    performed in which the solution of the structural-thermal-aerodynamic reduced order model was carried out for 300 seconds and validated against a full order model. Finally, a reduced order model of a thin, aluminum beam is extended to include linear variations with local temperature of the elasticity tensor and coefficients of thermal expansion.

  16. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  17. System Identification of a Vortex Lattice Aerodynamic Model

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.

    2001-01-01

    The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

  18. Computational fluid dynamics framework for aerodynamic model assessment

    NASA Astrophysics Data System (ADS)

    Vallespin, D.; Badcock, K. J.; Da Ronch, A.; White, M. D.; Perfect, P.; Ghoreyshi, M.

    2012-07-01

    This paper reviews the work carried out at the University of Liverpool to assess the use of CFD methods for aircraft flight dynamics applications. Three test cases are discussed in the paper, namely, the Standard Dynamic Model, the Ranger 2000 jet trainer and the Stability and Control Unmanned Combat Air Vehicle. For each of these, a tabular aerodynamic model based on CFD predictions is generated along with validation against wind tunnel experiments and flight test measurements. The main purpose of the paper is to assess the validity of the tables of aerodynamic data for the force and moment prediction of realistic aircraft manoeuvres. This is done by generating a manoeuvre based on the tables of aerodynamic data, and then replaying the motion through a time-accurate computational fluid dynamics calculation. The resulting forces and moments from these simulations were compared with predictions from the tables. As the latter are based on a set of steady-state predictions, the comparisons showed perfect agreement for slow manoeuvres. As manoeuvres became more aggressive some disagreement was seen, particularly during periods of large rates of change in attitudes. Finally, the Ranger 2000 model was used on a flight simulator.

  19. Maximum likelihood identification of aircraft parameters with unsteady aerodynamic modelling

    NASA Technical Reports Server (NTRS)

    Keskar, D. A.; Wells, W. R.

    1979-01-01

    A simplified aerodynamic force model based on the physical principle of Prandtl's lifting line theory and trailing vortex concept has been developed to account for unsteady aerodynamic effects in aircraft dynamics. Longitudinal equations of motion have been modified to include these effects. The presence of convolution integrals in the modified equations of motion led to a frequency domain analysis utilizing Fourier transforms. This reduces the integro-differential equations to relatively simple algebraic equations, thereby reducing computation time significantly. A parameter extraction program based on the maximum likelihood estimation technique is developed in the frequency domain. The extraction algorithm contains a new scheme for obtaining sensitivity functions by using numerical differentiation. The paper concludes with examples using computer generated and real flight data

  20. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight

  1. A workstation based simulator for teaching compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.

  2. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  3. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  4. Aerodynamic tailoring of the Learjet Model 60 wing

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  5. Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

  6. Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2008-01-01

    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

  7. Modeling Aerodynamically Generated Sound of Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    2002-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.

  8. An aerodynamic model for a hemispherically-capped biconic reentry vehicle with six drag flaps

    SciTech Connect

    Jordan, T.M.; Buffington, R.J.

    1987-01-01

    The development of an aerodynamic model for a hemispherically-capped biconic reentry vehicle with six drag flaps is presented. The aerodynamic model is primarily based on wind tunnel test results, with the use of computational fluid dynamic codes. For Mach numbers from 4 to 15, the inviscid axial force coefficient was computed for drag flap deflections from 6 to 36. Axial force coefficient was found to vary significantly with ablating flap shape as well as with changing flight conditions. The aerodynamic model can be used for input to vehicle recovery trajectory simulations.

  9. Aerodynamic Properties Analysis of Rapid Prototyped Models Versus Conventional Machined Models

    NASA Technical Reports Server (NTRS)

    Springer, A.; Cooper, K.

    1998-01-01

    Initial studies of the aerodynamic characteristics of proposed launch vehicles can be made more accurately if lower cost, high fidelity aerodynamic models are available for wind tunnel testing early in the design phase. This paper discusses the results of a study undertaken at NASA's Marshall Space Flight Center to determine if four rapid prototyping methods using a variety of materials are suitable for the design and manufacturing of high speed wind tunnel models in direct testing applications. It also gives an analysis of whether these materials and processes are of sufficient strength and fidelity to withstand the testing environment. In addition to test data, costs and turn-around times for the various models are given. Based on the results of this study, it can be concluded that rapid prototyping models show promise in limited direct application for preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  10. Unsteady aerodynamic models for agile flight at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Brunton, Steven L.

    This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of

  11. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  12. Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes

    NASA Astrophysics Data System (ADS)

    Wu, Teng; Kareem, Ahsan

    2013-11-01

    Accurate modeling of wind-induced loads on bridge decks is critical to ensure the functionality and survivability of long-span bridges. Over the last few decades, several schemes have emerged to model bridge behavior under winds from an aerodynamic/aeroelastic perspective. A majority of these schemes rely on the quasi-steady (QS) theory. This paper systematically compares and assesses the efficacy of five analytical models available in the literature with a new model presented herein. These models include: QS theory-based model, corrected QS theory-based model, linearized QS theory-based model, semi-empirical linear model, hybrid model, and the proposed modified hybrid model. The ability of these models to capture fluid memory and nonlinear effects either individually or collectively is examined. In addition, their ability to include the effects of turbulence in the approach flow on the bridge behavior is assessed. All models are compared in a consistent manner by utilizing the time domain approach. The underlying role of each model in capturing the physics of bridge behavior under winds is highlighted and the influence of incoming turbulence and its interaction with the bridge deck is examined. A discussion is included that focuses on a number of critical parameters pivotal to the effectiveness of corresponding models.

  13. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  14. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  15. Unsteady aerodynamic modeling for arbitrary motions

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Ashley, H.; Breakwell, J. V.

    1977-01-01

    A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.

  16. Some aerodynamic considerations related to wind tunnel model surface definition

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1980-01-01

    The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.

  17. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  18. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  19. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  20. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  1. Evaluation of thermographic phosphor technology for aerodynamic model testing

    SciTech Connect

    Cates, M.R.; Tobin, K.W.; Smith, D.B.

    1990-08-01

    The goal for this project was to perform technology evaluations applicable to the development of higher-precision, higher-temperature aerodynamic model testing at Arnold Engineering Development Center (AEDC) in Tullahmoa, Tennessee. With the advent of new programs for design of aerospace craft that fly at higher speeds and altitudes, requirements for detailed understanding of high-temperature materials become very important. Model testing is a natural and critical part of the development of these new initiatives. The well-established thermographic phosphor techniques of the Applied Technology Division at Oak Ridge National Laboratory are highly desirable for diagnostic evaluation of materials and aerodynamic shapes as studied in model tests. Combining this state-of-the-art thermographic technique with modern, higher-temperature models will greatly improve the practicability of tests for the advanced aerospace vehicles and will provide higher precision diagnostic information for quantitative evaluation of these tests. The wavelength ratio method for measuring surface temperatures of aerodynamic models was demonstrated in measurements made for this project. In particular, it was shown that the appropriate phosphors could be selected for the temperature range up to {approximately}700 {degree}F or higher and emission line ratios of sufficient sensitivity to measure temperature with 1% precision or better. Further, it was demonstrated that two-dimensional image- processing methods, using standard hardware, can be successfully applied to surface thermography of aerodynamic models for AEDC applications.

  2. Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2009-01-01

    Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.

  3. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  4. A CFD-informed quasi-steady model of flapping wing aerodynamics

    PubMed Central

    Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.

    2016-01-01

    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891

  5. Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick; Klein, Vladislav

    2011-01-01

    Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.

  6. The aerodynamics of revolving wings I. Model hawkmoth wings.

    PubMed

    Usherwood, James R; Ellington, Charles P

    2002-06-01

    Recent work on flapping hawkmoth models has demonstrated the importance of a spiral 'leading-edge vortex' created by dynamic stall, and maintained by some aspect of spanwise flow, for creating the lift required during flight. This study uses propeller models to investigate further the forces acting on model hawkmoth wings in 'propeller-like' rotation ('revolution'). Steadily revolving model hawkmoth wings produce high vertical ( approximately lift) and horizontal ( approximately profile drag) force coefficients because of the presence of a leading-edge vortex. Both horizontal and vertical forces, at relevant angles of attack, are dominated by the pressure difference between the upper and lower surfaces; separation at the leading edge prevents 'leading-edge suction'. This allows a simple geometric relationship between vertical and horizontal forces and the geometric angle of attack to be derived for thin, flat wings. Force coefficients are remarkably unaffected by considerable variations in leading-edge detail, twist and camber. Traditional accounts of the adaptive functions of twist and camber are based on conventional attached-flow aerodynamics and are not supported. Attempts to derive conventional profile drag and lift coefficients from 'steady' propeller coefficients are relatively successful for angles of incidence up to 50 degrees and, hence, for the angles normally applicable to insect flight.

  7. Aerodynamic performance of a scale-model, counterrotating unducted fan

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1990-01-01

    The aerodynamic performance of a scale model, counter-rotating unducted fan has been determined and the results are discussed. Experimental investigations were conducted using the scale model propulsor simulator and uniquely shaped fan blades. The blades, designed for a high disk loading at Mach 0.72 at 35,000 feet altitude maximum climb condition are aft-mounted on the simulator in a pusher configuration. Data are compared with analytical predictions at the design point and show good agreement.

  8. An evaluation of aerodynamics modeling of spinning light airplanes

    NASA Technical Reports Server (NTRS)

    Pamadi, B. N.; Taylor, L. W., Jr.

    1983-01-01

    This paper extends the application of the modified strip theory for wing body combination of a spinning light airplane reported earlier. In addition, to account for the contribution of the tail plane, the shielding effect on vertical tail under steady state spin condition is modeled from basic aerodynamic considerations. The results of this combined analysis, presented for some light airplane configurations, are shown to be in good agreement with spin tunnel rotary balance test data.

  9. Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Goon'ko, Yu. P.

    A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.

  10. Development of a droplet breakup model considering aerodynamic and droplet collision effects

    NASA Technical Reports Server (NTRS)

    Wert, K. L.; Jacobs, H. R.

    1993-01-01

    A model is currently under development to predict the occurrence and outcome of spray droplet breakup induced by aerodynamic forces and droplet collisions. It is speculated that these phenomena may be significant in determining the droplet size distribution in a spray subjected to acoustic velocity fluctuations. The goal is to integrate this breakup model into a larger spray model in order to examine the effects of combustion instabilities on liquid rocket motor fuel sprays. The model is composed of three fundamental components: a dynamic equation governing the deformation of the droplet, a criterion for breakage based on the amount of deformation energy stored in the droplet and an energy balance based equation to predict the Sauter mean diameter of the fragments resulting from breakup. Comparison with published data for aerodynamic breakup indicates good agreement in terms of predicting the occurrence of breakup. However, the model significantly over predicts the size of the resulting fragments. This portion of the model is still under development.

  11. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  12. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  13. Design of control laws for flutter suppression based on the aerodynamic energy concept and comparisons with other design methods

    NASA Technical Reports Server (NTRS)

    Nissim, Eli

    1990-01-01

    The aerodynamic energy method is used to synthesize control laws for NASA's drone for aerodynamic and structural testing-aerodynamic research wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared with other control laws that relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed. It is based on the aerodynamic energy approach and is shown to yield results that are superior to those results given in the literature and are based on optimal control theory. Nyquist plots are presented, together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness as compared with the more traditional measure involving phase and gain margins.

  14. Modeling of turbulent separated flows for aerodynamic applications

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1983-01-01

    Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.

  15. Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Cao, Jichang; Garrett, Frederick, Jr.; Hoffman, Eric; Stalford, Harold

    1990-01-01

    A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast.

  16. Aerodynamics of a Gulfstream G550 Nose Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2009-01-01

    In this paper we discuss detailed steady and unsteady aerodynamic measurements of a Gulfstream G550 nose landing gear model. The quarter-scale, high-fidelity model includes part of the lower fuselage and the gear cavity. The full model configuration allowed for removal of various gear components (e.g. light cluster, steering mechanism, hydraulic lines, etc.) in order to document their effects on the local flow field. The measurements were conducted at a Reynolds number of 7.3 x 10(exp 4) based on the shock strut (piston) diameter and a freestream Mach number of 0.166. Additional data were also collected at lower Mach numbers of 0.12 and 0.145 and correspondingly lower Reynolds numbers. The boundary layer on the piston was tripped to enable turbulent flow separation, so as to better mimic the conditions encountered during flight. Steady surface pressures were gathered from an extensive number of static ports on the wheels, door, fuselage, and within the gear cavity. To better understand the resultant flow interactions between gear components, surface pressure fluctuations were collected via sixteen dynamic pressure sensors strategically placed on various subcomponents of the gear. Fifteen of the transducers were flush mounted on the gear surface at fixed locations, while the remaining one was a mobile transducer that could be placed at numerous varying locations. The measured surface pressure spectra are mainly broadband in nature, lacking any local peaks associated with coherent vortex shedding. This finding is in agreement with off-surface flow measurements using PIV that revealed the flow field to be a collection of separated shear layers without any dominant vortex shedding processes.

  17. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  18. Aerodynamic force measurement on a large-scale model in a short duration test facility

    SciTech Connect

    Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.

    2005-03-01

    A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3 m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350 {mu}s is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1 ms.

  19. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  20. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  1. Elastic deformation effects on aerodynamic characteristics for a high-aspect-ratio supercritical-wing model

    NASA Technical Reports Server (NTRS)

    Watson, J. J.

    1982-01-01

    The results of an investigation of the deformations of a high-aspect-ratio, force/pressure, supercritical-wing model during wind tunnel tests and the effects these deformations have on the wing aerodynamics are presented. A finite element model of the wing was developed, and then, for conditions corresponding to wind tunnel test points, experimental aerodynamic loads and theoretical aerodynamic loads were applied to the finite element model. Comparisons were made between the results of these load conditions for changes in structural deflections and for changes in aerodynamic characteristics. The results show that the deformations are quite small and that the pressure data are not significantly affected by model deformation.

  2. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Rasmussen, M. L.; Emanuel, George

    1989-01-01

    The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.

  3. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  4. Aerodynamic model development and simulation of airliner spin for upset recovery

    NASA Astrophysics Data System (ADS)

    Khrabrov, A.; Sidoryuk, M.; Goman, M.

    2013-06-01

    The aerodynamic model of a generic airliner configuration is developed for a wide range of angles of attack, sideslip and angular rate based on experimental data obtained in wind tunnels using static, forced oscillations and rotary balance tests. The developed aerodynamic model is applied for the investigation of the airliner scaled model nonlinear dynamics at high angles of attack with an intensive rotation to identify potential spin modes and spin recovery procedures. The evaluated equilibrium spin parameters and simulated recovery control deflections are in good agreement with the experimental results from free-spin tests obtained in the TsAGI vertical wind tunnel. The work is performed in connection with the European FP7 project SUPRA (Simulation of UPset Recovery in Aviation, http://www.supra.aero).

  5. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  6. A Computational Model for Rotor-Fuselage Interactional Aerodynamics

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Barnwell, Richard W.; Gorton, Susan Althoff

    2000-01-01

    A novel unsteady rotor-fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a thin-layer Navier-Stokes solution procedure. This coupling is achieved using an unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between measured and predicted time-averaged and time-accurate rotor inflow ratios. Additional comparisons are made between measured and predicted unsteady surface pressures on the top centerline and sides of the fuselage.

  7. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  8. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  9. Aerodynamic potpourri

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    1981-05-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  10. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  11. Influence of Wake Models on Calculated Tiltrotor Aerodynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    The tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single,l/4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will examine the influence of wake models on calculated tiltrotor aerodynamics, comparing calculations of performance and airloads with TRAM DNW measurements. The calculations will be performed using the comprehensive analysis CAMRAD II.

  12. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  13. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  14. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  15. A Hybrid Aerodynamic and Aeroacoustic Modeling for Small Wind Turbines

    NASA Astrophysics Data System (ADS)

    Stoica, C.; Dumitrescu, H.; Dumitrache, Al.

    2010-09-01

    Stall control and pitch control are the most commonly used methods of regulating power. However, through the opportunities presented by the flexible (or teetered) hub of a two-bladed teetered rotor one can also utilize yaw control to regulate power. This is achieved by adjusting the capture area of the rotor disk relative to the prevailing wind direction. This paper presents the aerodynamic and aeroacoustic results obtained from theoretical models for such a rotor when is yawed to the undisturbed flow. The non-axial flow operating conditions results in a variation in the power output and noise spectrum. Some comparisons between calculated and measured noise spectra of a yaw controlled wind turbine show good agreement over all angles up to 60 degrees of yaw.

  16. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight. PMID:21098962

  17. Modification of k-ω turbulence model for predicting airfoil aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Yan, Hao; Fang, Hong; Wang, Ming

    2015-06-01

    Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is conducted with k-ω turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-ω model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating region when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-ω turbulence model.

  18. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  19. Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

    2012-01-01

    Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

  20. A numerical model of the electrostatic-aerodynamic shape of raindrops

    NASA Astrophysics Data System (ADS)

    Chuang, Catherine; Beard, Kenneth V.

    1990-01-01

    The model of Beard and Chuang (1987), using the complete form of Laplace's formula and adjustments to the aerodynamic pressure distribution for the effect of drop distortion, has been extended to raindrop shapes under the influence of vertical electric fields and drop charges. A finite volume method with numerically generated transformation to a boundary-fitted coordinate system was used to calculate the shape-dependent electric field. Sufficient constraints (viz, drop volume, overall force balance, and shape-dependent surface distributions of aerodynamic and electrostatic stresses) allow the calcualtion of a unique shape by integration from the upper to lower pole using a multiple iteration scheme. The model has been verified against solutions for a stationary drop in a uniform electric field (Taylor, 1964; Brazier-Smith 1971; Zrnic et al. 1984). Numerical shapes of drops falling in electric fields show a pronounced extension of the upper pole. The increased fall speed of electrostatically stretched drops enhances the aerodynamic flattening of the base. The resultant triangular drop profiles are similar to wind tunnel observations (Richards & Dawson 1973; Rasmussen et al. 1985).

  1. The Benchmark Active Controls Technology Model Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface

  2. Mathematical description of nonstationary aerodynamic characteristics of a passenger aircraft model in longitudinal motion at large angles of attack

    NASA Astrophysics Data System (ADS)

    Petoshin, V. I.; Chasovnikov, E. A.

    2011-05-01

    Aerodynamic loads in problems of flight dynamics of passenger aircraft in stalled flow regimes are described using a mathematical model that includes an ordinary linear first-order differential equation. A procedure for determining the parameters of the mathematical model is proposed which is based on approximating experimental frequency characteristics with the frequency characteristics of the linearized mathematical model. The mathematical model was verified by tests of a modern passenger aircraft model in a wind tunnel.

  3. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  4. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  5. Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.

  6. Analysis of holographic interferograms of aerodynamic models in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Perry, R. L.

    1985-01-01

    Holographic interferometry provides a non-invasive technique for estimating variations in the air density distribution around aerodynamic models in wind tunnels. The testing of this technique has been underway for some time and has been reported previously for a two dimensional aerodynamic model. Results obtained from tests using three dimensional aerodynamic models are summarized. Holograms were made of aerodynamic models in a wind tunnel. Interferograms were made from these holograms. The interference fringes in these holographic interferograms were digitized and this information was entered into the HOLOFT program. The HOLOFT program successfully calculated the known stagnation air density at the nose of a model and the known air density distribution across the cross section passing through the stagnation point for the axisymmetrical case of this model at a Mach number of 0.8. Thus the technique of holographic interferometry does work.The HOLOFT program stands for HOLOgraphic Inversion by 2-D Fourier Transform.

  7. Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.

    2004-01-01

    Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a

  8. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    observed in the vicinity of the collector, compared to the standard gauge shapes. Both the air velocity and the turbulent kinetic energy fields present structures that may improve the interception of particles by the aerodynamic gauge collector. To provide empirical validation, a field-based experimental campaign was undertaken at four UK research stations to compare the results of aerodynamic and conventional gauges, mounted in juxtaposition. The reference measurement is recorded using a rain gauge pit, as specified by the WMO. The results appear to demonstrate how the effect of the wind on rainfall measurements is influenced by the gauge shape and the mounting height. Significant undercatch is observed compared to the reference measurement. Aerodynamic gauges mounted on the ground catch more rainfall than juxtaposed straight-sided gauges, in most instances. This appears to provide some preliminary validation of the CFD model. The indication that an aerodynamic profile improves the gauge catching capability could be confirmed by tracking the hydrometeor trajectories with a Lagrangian method, based on the available set of airflows; and investigating time-dependent aerodynamic features by means of dedicated CFD simulations. Furthermore, wind-tunnel tests could be carried out to provide more robust physical validation of the CFD model.

  9. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  10. Aerodynamic performance of 0.4066-scale model to JT8D refan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.; Tysl, E. R.

    1976-01-01

    The aerodynamic performance of a scale model of the split flow JT8D rafan stage is presented over a range of flows at speeds from 40 to 100 percent design. The bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second and a pressure ratio of 1.697. The stall margin was 15 percent based on pressure ratio and weight flow at stall and peak efficiency conditions. The data indicated that the hub region of the core stators was choked at design speed over the entire flow range tested.

  11. Model Structures and Algorithms for Identification of Aerodynamic Models for Flight Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.

    2005-01-01

    This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.

  12. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  13. Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan

    NASA Astrophysics Data System (ADS)

    Azcona, José; Bouchotrouch, Faisal; González, Marta; Garciandía, Joseba; Munduate, Xabier; Kelberlau, Felix; Nygaard, Tor A.

    2014-06-01

    Wave tank testing of scaled models is standard practice during the development of floating wind turbine platforms for the validation of the dynamics of conceptual designs. Reliable recreation of the dynamics of a full scale floating wind turbine by a scaled model in a basin requires the precise scaling of the masses and inertias and also the relevant forces and its frequencies acting on the system. The scaling of floating wind turbines based on the Froude number is customary for basin experiments. This method preserves the hydrodynamic similitude, but the resulting Reynolds number is much lower than in full scale. The aerodynamic loads on the rotor are therefore out of scale. Several approaches have been taken to deal with this issue, like using a tuned drag disk or redesigning the scaled rotor. This paper describes the implementation of an alternative method based on the use of a ducted fan located at the model tower top in the place of the rotor. The fan can introduce a variable force that represents the total wind thrust by the rotor. A system controls this force by varying the rpm, and a computer simulation of the full scale rotor provides the desired thrust to be introduced by the fan. This simulation considers the wind turbine control, gusts, turbulent wind, etc. The simulation is performed in synchronicity with the test and it is fed in real time by the displacements and velocities of the platform captured by the acquisition system. Thus, the simulation considers the displacements of the rotor within the wind field and the calculated thrust models the effect of the aerodynamic damping. The system is not able currently to match the effect of gyroscopic momentum. The method has been applied during a test campaign of a semisubmersible platform with full catenary mooring lines for a 6MW wind turbine in scale 1/40 at Ecole Centrale de Nantes. Several tests including pitch free decay under constant wind and combined wave and wind cases have been performed. Data

  14. Simulation on a car interior aerodynamic noise control based on statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Dengfeng; Ma, Zhengdong

    2012-09-01

    How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.

  15. Description of a Computer Program Written for Approach and Landing Test Post Flight Data Extraction of Proximity Separation Aerodynamic Coefficients and Aerodynamic Data Base Verification

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1977-01-01

    A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.

  16. Hydrodynamic and Aerodynamic Tests of Models of Flying-boat Hulls Designed Flow Aerodynamic Drag - NACA Models 74, 74-A, and 75

    NASA Technical Reports Server (NTRS)

    Truscott, Starr; Parkinson, J B; Ebert, John W , Jr; Valentine, E Floyd

    1938-01-01

    The present tests illustrate how the aerodynamic drag of a flying boat hull may be reduced by following closely the form of a low drag aerodynamic body and the manner in which the extent of the aerodynamic refinement is limited by poorer hydrodynamic performance. This limit is not sharply defined but is first evidenced by an abnormal flow of water over certain parts of the form accompanied by a sharp increase in resistance. In the case of models 74-A and 75, the resistance (sticking) occurs only at certain combinations of speed, load, and trim and can be avoided by proper control of the trim at high water speeds. Model 75 has higher water resistance at very high speeds than does model 74-A. With constant speed propellers and high takeoff speeds, it appears that the form of model 75 would give slightly better takeoff performance. Model 74-A, however, has lower aerodynamic drag than does model 75 for the same volume of hull.

  17. Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.

  18. Simplified Aerodynamic and Structural Modeling for Oblique All-Wing Aircraft. Phase 2: Structures

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan (Principal Investigator)

    1994-01-01

    Any aircraft preliminary design study requires a structural model of the proposed configuration. The model must be capable of estimating the structural weight of a given configuration, and of predicting the deflections which will result from foreseen flight and ground loads. The present work develops such a model for the proposed Oblique All Wing airplane. The model is based on preliminary structural work done by Jack Williams and Peter Rudolph at Mdng, and is encoded in a FORTRAN program. As a stand-alone application, the program can calculate the weight CG location, and several types of structural deflections; used in conjunction with an aerodynamics model, the program can be used for mission analysis or sizing studies.

  19. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  20. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Tobak, M.; Malcolm, G. N.

    1980-01-01

    This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.

  1. Constraining planetary atmospheric density: application of heuristic search algorithms to aerodynamic modeling of impact ejecta trajectories

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y. C.; Shirzaei, M.

    2015-12-01

    Impact craters on the terrestrial planets are typically surrounded by a continuous ejecta blanket that the initial emplacement is via ballistic sedimentation. Following an impact event, a significant volume of material is ejected and falling debris surrounds the crater. Aerodynamics rule governs the flight path and determines the spatial distribution of these ejecta. Thus, for the planets with atmosphere, the preserved ejecta deposit directly recorded the interaction of ejecta and atmosphere at the time of impact. In this study, we develop a new framework to establish links between distribution of the ejecta, age of the impact and the properties of local atmosphere. Given the radial distance of the continuous ejecta extent from crater, an inverse aerodynamic modeling approach is employed to estimate the local atmospheric drags and density as well as the lift forces at the time of impact. Based on earlier studies, we incorporate reasonable value ranges for ejection angle, initial velocity, aerodynamic drag, and lift in the model. In order to solve the trajectory differential equations, obtain the best estimate of atmospheric density, and the associated uncertainties, genetic algorithm is applied. The method is validated using synthetic data sets as well as detailed maps of impact ejecta associated with five fresh martian and two lunar impact craters, with diameter of 20-50 m, 10-20 m, respectively. The estimated air density for martian carters range 0.014-0.028 kg/m3, consistent with the recent surface atmospheric density measurement of 0.015-0.020 kg/m3. This constancy indicates the robustness of the presented methodology. In the following, the inversion results for the lunar craters yield air density of 0.003-0.008 kg/m3, which suggest the inversion results are accurate to the second decimal place. This framework will be applied to older martian craters with preserved ejecta blankets, which expect to constrain the long-term evolution of martian atmosphere.

  2. Modeling aerodynamic discontinuities and the onset of chaos in flight dynamical systems

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Uenal, A.

    1986-01-01

    Various representations of the aerodynamic contribution to the aircraft's equation of motion are shown to be compatible within the common assumption of their Frechet differentiability. Three forms of invalidating Frechet differentiality are identified, and the mathematical model is amended to accommodate their occurrence. Some of the ways in which chaotic behavior may emerge are discussed, first at the level of the aerodynamic contribution to the equation of motion, and then at the level of the equations of motion themselves.

  3. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.

    1994-10-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  4. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  5. The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models

    NASA Technical Reports Server (NTRS)

    Hill, Melissa A.; Jackson, E. Bruce

    2007-01-01

    It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.

  6. PIV-based study of the gliding osprey aerodynamics in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Gurka, Roi; Liberzon, Alex; Kopp, Gregory; Kirchhefer, Adam; Weihs, Daniel

    2009-11-01

    The hunting flight of an osprey consists of periods where the bird glides while foraging for prey. High quality measurements of aerodynamics in this flight mode are needed in order to estimate the daily energy expenditure of the bird accurately. An experimental study of an osprey model in a wind tunnel (BLWTL, UWO) was performed in order to characterize the aerodynamic forces using particle image velocimetry (PIV). The model was a stuffed osprey with mechanical joints allowing control of the the wing (angle of attack, tilt) and tail orientation. Two-dimensional velocity realizations in the streamwise-normal plane were obtained simultaneously in the two fields of view: above the wing and in the wake of the wing. Mean and turbulent flow characteristics are presented as function of angle of attack based on measurements taken at 4 different angles of attack at three different locations over the wingspan. The main outcome is the accurate estimate of the drag from the measurements of momentum thickness in the turbulent boundary layer of the osprey wing. Moreover, the gradient of the momentum thickness method was applied to identify the separation point in the boundary layer. This estimate has been compared to the total drag calculated from measurements in the wake of the wing and with a theoretical prediction.

  7. Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  8. Toward Affordable, Theory-and-Simulation-Inspired, Models for Realistic Wind Turbine Aerodynamics and Noise

    NASA Astrophysics Data System (ADS)

    Ladeinde, Foluso; Alabi, Ken; Li, Wenhai

    2015-11-01

    The problem of generating design data for the operation of a farm of wind turbines for clean energy production is quite complicated, if properly done. Potential flow theories provide some models, but these are not suitable for the massive aerodynamic separation and turbulence that characterize many realistic wind turbine applications. Procedures, such as computational fluid dynamics (CFD), which can potentially resolve some of the accuracy problems with the purely theoretical approach, are quite expensive to use, and often prohibit real-time design and control. In our work, we seek affordable and acceptably-accurate models derived from the foregoing approaches. The simulation used in our study is based on high-fidelity CFD, meaning that we use high-order (compact-scheme based), mostly large-eddy simulation methods, with due regards for the proper treatment of the stochastic inflow turbulence data. Progress on the project described herein will be presented.

  9. Application of CFD techniques toward the validation of nonlinear aerodynamic models

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Katz, J.

    1985-01-01

    Applications of computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gas dynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.

  10. Application of CFD techniques toward the validation of nonlinear aerodynamic models

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Katz, J.

    1985-01-01

    Applications of Computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gasdynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.

  11. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  12. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  13. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  14. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  15. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  16. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.

    PubMed

    Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C

    2013-09-01

    The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces.

  17. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    NASA Astrophysics Data System (ADS)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  18. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    SciTech Connect

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  19. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 1: Analysis development

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    Structural, inertia, and aerodynamic models were combined to form a comprehensive model of rotor aerodynamics and dynamics that is applicable to a wide range of problems and a wide class of vehicles. A digital computer program is used to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight dynamics and handling qualities; and system aeroelastic stability. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories.

  20. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

  1. Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design

    NASA Technical Reports Server (NTRS)

    Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan

    2005-01-01

    A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.

  2. A faster optimization method based on support vector regression for aerodynamic problems

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Zhang, Weihua

    2013-09-01

    In this paper, a new strategy for optimal design of complex aerodynamic configuration with a reasonable low computational effort is proposed. In order to solve the formulated aerodynamic optimization problem with heavy computation complexity, two steps are taken: (1) a sequential approximation method based on support vector regression (SVR) and hybrid cross validation strategy, is proposed to predict aerodynamic coefficients, and thus approximates the objective function and constraint conditions of the originally formulated optimization problem with given limited sample points; (2) a sequential optimization algorithm is proposed to ensure the obtained optimal solution by solving the approximation optimization problem in step (1) is very close to the optimal solution of the originally formulated optimization problem. In the end, we adopt a complex aerodynamic design problem, that is optimal aerodynamic design of a flight vehicle with grid fins, to demonstrate our proposed optimization methods, and numerical results show that better results can be obtained with a significantly lower computational effort than using classical optimization techniques.

  3. Successive smoothing algorithm for constructing the semiempirical model developed at ONERA to predict unsteady aerodynamic forces. [aeroelasticity in helicopters

    NASA Technical Reports Server (NTRS)

    Petot, D.; Loiseau, H.

    1982-01-01

    Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

  4. Structural Verification and Modeling of a Tension Cone Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; Cruz, Juan R.; Braun, Robert D.

    2010-01-01

    Verification analyses were conducted on membrane structures pertaining to a tension cone inflatable aerodynamic decelerator using the analysis code LS-DYNA. The responses of three structures - a cylinder, torus, and tension shell - were compared against linear theory for various loading cases. Stress distribution, buckling behavior, and wrinkling behavior were investigated. In general, agreement between theory and LS-DYNA was very good for all cases investigated. These verification cases exposed the important effects of using a linear elastic liner in membrane structures under compression. Finally, a tension cone wind tunnel test article is modeled in LS-DYNA for which preliminary results are presented. Unlike data from supersonic wind tunnel testing, the segmented tension shell and torus experienced oscillatory behavior when subjected to a steady aerodynamic pressure distribution. This work is presented as a work in progress towards development of a fluid-structures interaction mechanism to investigate aeroelastic behavior of inflatable aerodynamic decelerators.

  5. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    material and energy consumption profiles of tall building. To date, the increasing use of light-weight and high-strength materials in tall buildings, with greater flexibility and reduced damping, has increased susceptibility to dynamic wind load effects that limit the gains afforded by incorporating these new materials. Wind, particularly fluctuating wind and its interaction with buildings induces two main responses; alongwind - in the direction of the flow and crosswind - perpendicular to the flow. The main risk associated with this vulnerability is resonant oscillations induced by von-Karman-like vortex shedding at or near the natural frequency of the structure caused by flow separation. Dynamic wind loading effects often increase with a power of wind speed greater than 3, thus increasingly, tall buildings pay a significant price in material to increase the natural frequency and/or the damping to overcome this response. In particular, crosswind response often governs serviceability (human habitability) design criteria of slender buildings. Currently, reducing crosswind response relies on a Solid-based Aerodynamic Modification (SAM), either by changing structural or geometric characteristics such as the tower shape or through the addition of damping systems. While this approach has merit it has two major drawbacks: firstly, the loss of valuable rentable areas and high construction costs due to increased structural requirements for mass and stiffness, further contributing towards the high consumption of non-renewable resources by the commercial building sector. For example, in order to insure human comfort within an acceptable range of crosswind response induced accelerations at the top of a building, an aerodynamically efficient plan shape comes at the expense of floor area. To compensate for the loss of valuable area compensatory stories are required, resulting in an increase in wind loads and construction costs. Secondly, a limited, if at all, ability to adaptively

  6. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  7. Unpowered Aerodynamic Characteristics of a 15-Percent Scale Model of a Twin-Engine Commuter Aircraft

    NASA Technical Reports Server (NTRS)

    Morgan, D. G.; Galloway, T. L.; Gambucci, B. J.

    1981-01-01

    An experimental investigation was conducted in the Ames 12-Foot Pressure Wind Tunnel to determine the unpowered aerodynamic characteristics of a 15-percent-scale model of a twin-engine commuter aircraft. Model longitudinal aerodynamic characteristics were examined at discrete flap deflections for various angle-of-attack and wind-tunnel-velocity ranges with the empennage on and off. Data are presented for the basic model configuration consisting of the fuselage, wing, basic wing leading edge, double slotted flaps, midengine nacelles, and empennage. Other configurations tested include a particle-span drooped leading edge (dropped outboard of the engine nacelles), a full-span drooped leading edge, low- and high-mounted engine nacelles, and a single-slotted flap. An evaluation was made of the model mounting system by comparing data obtained with the model mounted conventionally on the wind-tunnel model-support struts and the model inverted.

  8. Mathematical model and numerical algorithm for aerodynamical flow

    NASA Astrophysics Data System (ADS)

    Shaydurov, V.; Shchepanovskaya, G.; Yakubovich, M.

    2016-10-01

    In the paper, a mathematical model and a numerical algorithm are proposed for modeling an air flow. The proposed model is based on the time-dependent Navier-Stokes equations for viscous heat-conducting gas. The energy equation and the state equations are modified to account for two kinds of `internal' energy. The first one is the usual translational and rotational energy of molecules which defines the thermodynamical temperature and the pressure. The second one is the subgrid energy of small turbulent eddies. A numerical algorithm is proposed for solving the formulated initial-boundary value problem as a combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. A numerical example illustrates these approaches.

  9. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  10. Computational modeling of aerodynamics in the fast forward flight of hummingbirds

    NASA Astrophysics Data System (ADS)

    Song, Jialei; Luo, Haoxiang; Tobalske, Bret; Hedrick, Tyson

    2015-11-01

    Computational models of the hummingbird at flight speed 8.3 m/s is built based on high-speed imaging of the real bird flight in the wind tunnel. The goal is to understand the lift and thrust production of the wings at the high advance ratio (flight speed to the average wingtip speed) around 1. Both the full 3D CFD model based on an immersed-boundary method and the blade-element model based on quasi-steady flow assumption were adopted to analyze the aerodynamics. The result shows that while the weight support is generated during downstroke, little negative weight support is produced during upstroke. On the other hand, thrust is generated during both downstroke and upstroke, which allows the bird to overcome drag induced at fast flight. The lift and thrust characteristics are closely related to the instantaneous wing position and motion. In addition, the flow visualization shows that the leading-edge vortex is stable during most of the wing-beat, which may have contributed to the lift and thrust enhancement. NSF CBET-0954381.

  11. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  12. Studying aerodynamic drag for modeling the kinematical behavior of CMEs

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Vrsnak, B.; Moestl, C.; Zic, T.; Veronig, A. M.; Rollett, T.

    2013-12-01

    With the SECCHI instrument suite aboard STEREO, coronal mass ejections (CMEs) can be observed from multiple vantage points during their entire propagation all the way from the Sun to 1 AU. The propagation behavior of CMEs in interplanetary space is mainly influenced by the ambient solar wind flow. CMEs that are faster than the ambient solar wind get decelerated, whereas slower ones are accelerated until the CME speed is finally adjusted to the solar wind speed. On a statistical basis, empirical models taking into account the drag force acting on CMEs, are able to describe the observed kinematical behaviors. For several well observed CME events we derive the kinematical evolution by combining remote sensing and in situ data. The observed kinematical behavior is compared to results from current empirical and numerical propagation models. For this we mainly use the drag based model DBM as well as the MHD model ENLIL. We aim to obtain the distance regime at which the solar wind drag force is dominating the CME propagation and quantify differences between different model results. This work has received funding from the FWF: V195-N16, and the European Commission FP7 Projects eHEROES (284461, www.eheroes.eu) and COMESEP (263252, www.comesep.eu).

  13. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  14. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-01

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.

  15. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  16. Uncertainty-Based Approach for Dynamic Aerodynamic Data Acquisition and Analysis

    NASA Technical Reports Server (NTRS)

    Heim, Eugene H. D.; Bandon, Jay M.

    2004-01-01

    Development of improved modeling methods to provide increased fidelity of flight predictions for aircraft motions during flight in flow regimes with large nonlinearities requires improvements in test techniques for measuring and characterizing wind tunnel data. This paper presents a method for providing a measure of data integrity for static and forced oscillation test techniques. Data integrity is particularly important when attempting to accurately model and predict flight of today s high performance aircraft which are operating in expanded flight envelopes, often maneuvering at high angular rates at high angles-of-attack, even above maximum lift. Current aerodynamic models are inadequate in predicting flight characteristics in the expanded envelope, such as rapid aircraft departures and other unusual motions. Present wind tunnel test methods do not factor changes of flow physics into data acquisition schemes, so in many cases data are obtained over more iterations than required, or insufficient data may be obtained to determine a valid estimate with statistical significance. Additionally, forced oscillation test techniques, one of the primary tools used to develop dynamic models, do not currently provide estimates of the uncertainty of the results during an oscillation cycle. A method to optimize the required number of forced oscillation cycles based on decay of uncertainty gradients and balance tolerances is also presented.

  17. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-05-01

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578

  18. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2014-05-01

    This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.

  19. Bifurcations in unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Unal, A.

    1986-01-01

    Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

  20. Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures

    NASA Technical Reports Server (NTRS)

    Larson, R. S.; Nelson, D. P.; Stevens, B. S.

    1979-01-01

    Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

  1. A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Mcnally, B. David

    1988-01-01

    Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normaL cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.

  2. Current Trends in Modeling Research for Turbulent Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi

    2007-01-01

    The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.

  3. Aerodynamic performance of a scale-model, counter-rotating unducted fan

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas J.

    1987-01-01

    The aerodynamic performance of a scale model, counter-rotating unducted fan has been determined and the results are discussed. Experimental investigations were conducted using the scale model propulsor simulator and uniquely shaped fan blades. The blades, designed for a high disk loading at Mach 0.72 at 35,000 feet altitude maximum climb condition are aft-mounted on the simulator in a pusher configuration. Data are compared with analytical predictions at the design point and show good agreement.

  4. Flap noise and aerodynamic results for model QCSEE over-the-wing configurations

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Burns, R.; Groesbeck, D. E.

    1977-01-01

    Noise spectra in three dimensions and aerodynamic data were measured for a model of the NASA quiet clean short-haul experimental engine (QCSEE) over-the-wing configuration. The effects of flap length, nozzle exhaust velocity, and nozzle geometry were determined using a single nozzle and wing-flap segment. The scaled-up model data is representative of full scale flap noise with the QCSEE engine.

  5. Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1997-01-01

    An important put of building mathematical models based on measured date is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. An expression is developed for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates when the output residuals are colored. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle. As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, whereas conventional parameter accuracy measures were optimistic.

  6. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.

    PubMed

    Zbikowski, Rafał

    2002-02-15

    This theoretical paper discusses recent advances in the fluid dynamics of insect and micro air vehicle (MAV) flight and considers theoretical analyses necessary for their future development. The main purpose is to propose a new conceptual framework and, within this framework, two analytic approaches to aerodynamic modelling of an insect-like flapping wing in hover in the context of MAVs. The motion involved is periodic and is composed of two half-cycles (downstroke and upstroke) which, in hover, are mirror images of each other. The downstroke begins with the wing in the uppermost and rearmost position and then sweeps forward while pitching up and plunging down. At the end of the half-cycle, the wing flips, so that the leading edge points backwards and the wing's lower surface becomes its upper side. The upstroke then follows by mirroring the downstroke kinematics and executing them in the opposite direction. Phenomenologically, the interpretation of the flow dynamics involved, and adopted here, is based on recent experimental evidence obtained by biologists from insect flight and related mechanical models. It is assumed that the flow is incompressible, has low Reynolds number and is laminar, and that two factors dominate: (i) forces generated by the bound leading-edge vortex, which models flow separation; and (ii) forces due to the attached part of the flow generated by the periodic pitching, plunging and sweeping. The first of these resembles the analogous phenomenon observed on sharp-edged delta wings and is treated as such. The second contribution is similar to the unsteady aerodynamics of attached flow on helicopter rotor blades and is interpreted accordingly. Theoretically, the fluid dynamic description is based on: (i) the superposition of the unsteady contributions of wing pitching, plunging and sweeping; and (ii) adding corrections due to the bound leading-edge vortex and wake distortion. Viscosity is accounted for indirectly by imposing the Kutta condition

  7. Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System

    NASA Technical Reports Server (NTRS)

    Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.

    2011-01-01

    The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.

  8. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  9. Identification of an unsteady aerodynamic model up to high angle of attack regime

    NASA Astrophysics Data System (ADS)

    Fan, Yigang

    1997-12-01

    The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described and analyzed. The corresponding data reduction methods are developed on the basis of multirate digital signal processing techniques. Since the model is sting-mounted to the support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify the frequencies of the elastic modes of sting. Then the sampling rate conversion systems are built up in digital domain to resample the data at a lower rate without introducing distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR) filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics responses to the programmed motions from the resampled measurements. These data reduction procedures are also illustrated through examples. The results obtained from the harmonic oscillatory tests are then illustrated and the associated flow mechanisms are discussed. Since no significant hysteresis loops are observed for the lift and the drag coefficients for the current angle of attack range and the tested reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the current oscillatory tests. However, large hysteresis loops are observed for pitch moment coefficient in the current tests. This observation suggests that at current flow conditions, pitch moment has large pitch rate dotalpha dependencies. Then the nondimensional maximum pitch rate \\ qsb{max} is introduced to characterize these harmonic oscillatory motions. It is found that at current flow conditions, all the hysteresis loops of pitch moment coefficient with same \\ qsb{max} are tangential to one another at both top and bottom of the loops, implying approximately same maximum offset of these loops from static values. Several cases are also illustrated. Based on the results obtained and

  10. Bird Flight as a Model for a Course in Unsteady Aerodynamics

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael

    2014-11-01

    Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.

  11. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.

    PubMed

    Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M

    2016-06-30

    Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms.

  12. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.

    PubMed

    Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M

    2016-01-01

    Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms. PMID:27359331

  13. Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.

    1995-01-01

    Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.

  14. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  15. Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Feist, Christopher J.

    An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..

  16. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  17. Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.

  18. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The use of a computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. The program calculates the loads and motion of helicopter rotors and airframe. First the trim solution is obtained, then the flutter, flight dynamics, and/or transient behavior can be calculated. Either a new job can be initiated or further calculations can be performed for an old job.

  19. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  20. Aerodynamic and base heating studies on space shuttle configurations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Heating rate and pressure measurements were obtained on a 25-O space shuttle model in a vacuum chamber. Correlation data on windward laminar and turbulent boundary layers and leeside surfaces of the space shuttle orbiter are included.

  1. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    PubMed

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case.

  2. Uncovering the aerodynamics of the smallest insects using numerical and physical models

    NASA Astrophysics Data System (ADS)

    Miller, Laura

    2011-11-01

    A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. The smallest flying insects have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, three-dimensional direct numerical simulations are used to compute the lift and drag forces generated by flexible wings to reveal the aerodynamics of these tiny fliers. Results are validated against dynamically scaled physical models. At the lowest Reynolds numbers relevant to insect flight, the relative forces required to rotate the wings and fling them apart become substantially greater. Wing flexibility can reduce these forces and improve efficiency in some situations.

  3. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  4. Longitudinal aerodynamic characteristics of an externally blown flap powered lift model with several propulsive system simulators

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1974-01-01

    An investigation of a four-engine externally blown flap (EBF) powered-lift transport was conducted in the Langley V/STOL tunnel to determine the effect of different engine configurations on the longitudinal aerodynamic characteristics. The different engine configurations were simulated by five different sets of propulsion simulators on a single aircraft model. Longitudinal aerodynamic data were obtained for each simulator on each flap deflection corresponding to cruise, take-off, and landing at a range of angles of attack and various thrust coefficients. The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag characteristics of the five simulators tested in the take-off and landing configurations. The poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mismatch of engine-model sizes or poor engine location and orientation. Isolated engine wake surveys indicated that a reasonable assessment of the aerodynamic characteristics of an engine-wing-flap configuration could be made if qualitative information were available which defined the engine wake characteristics. All configurations could be trimmed easily with relatively small horizontal-tail incidence angles; however, the take-off landing configurations required a high-lift tail.

  5. Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1998-01-01

    This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.

  6. Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Hemsing, Frank S.

    2016-03-01

    Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.

  7. Aerodynamic flight evaluation analysis and data base update

    NASA Technical Reports Server (NTRS)

    Boyle, W. W.; Miller, M. S.; Wilder, G. O.; Reheuser, R. D.; Sharp, R. S.; Bridges, G. I.

    1989-01-01

    Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests were conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base. The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall's 14-inch Trisonic Wind Tunnel. The effects on the axial force (CAF), normal force (CNF), pitching moment (CMF), side force (CY), wing shear force (CSR), wing torque moment (CTR), and wing bending moment (CBR) coefficients were investigated for a number of candidate LRB configurations. The aero effects due to LRB protuberances, ET/LRB separation distance, and aft skirts were also gathered from the tests. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries. The test results found in Phases 1 and 2 of wind tunnel testing are discussed and compared. Preliminary LRB lateral/directional data results and trends are given. The protuberance and gap/skirt effects are discussed. The base pressure/plume effects study is discussed and results are given.

  8. Analytical modeling of circuit aerodynamics in the new NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Towne, C. E.; Povinelli, L. A.; Kunik, W. G.; Muramoti, K. K.; Hughes, C. E.; Levy, R.

    1985-01-01

    Rehabilitation and extention of the capability of the altitude wind tunnel (AWT) was analyzed. The analytical modelling program involves the use of advanced axisymmetric and three dimensional viscous analyses to compute the flow through the various AWT components. Results for the analytical modelling of the high speed leg aerodynamics are presented; these include: an evaluation of the flow quality at the entrance to the test section, an investigation of the effects of test section bleed for different model blockages, and an examination of three dimensional effects in the diffuser due to reentry flow and due to the change in cross sectional shape of the exhaust scoop.

  9. Analytical modeling of circuit aerodynamics in the new NASA Lewis wind tunnel

    NASA Technical Reports Server (NTRS)

    Towne, C. E.; Povinelli, L. A.; Kunik, W. G.; Muramoto, K. K.; Hughes, C. E.; Levy, R.

    1985-01-01

    Rehabilitation and extention of the capability of the altitude wind tunnel (AWT) was analyzed. The analytical modeling program involves the use of advanced axisymmetric and three dimensional viscous analyses to compute the flow through the various AWT components. Results for the analytical modeling of the high speed leg aerodynamics are presented; these include: an evaluation of the flow quality at the entrance to the test section, an investigation of the effects of test section bleed for different model blockages, and an examination of three dimensional effects in the diffuser due to reentry flow and due to the change in cross sectional shape of the exhaust scoop.

  10. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  11. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  12. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine. PMID:23363200

  13. Glottal aerodynamics in compliant, life-sized vocal fold models

    NASA Astrophysics Data System (ADS)

    McPhail, Michael; Dowell, Grant; Krane, Michael

    2013-11-01

    This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.

  14. Aerodynamics on a transport aircraft type wing-body model

    NASA Technical Reports Server (NTRS)

    Schmitt, V.

    1982-01-01

    The DFLR-F4 wing-body combination is studied. The 1/38 model is formed by a 9.5 aspect ratio transonic wing and an Airbus A 310 fuselage. The F4 wing geometrical characteristics are described and the main experimental results obtained in the S2MA wind tunnel are discussed. Both wing-fuselage interferences and viscous effects, which are important on the wing due to a high rear loading, are investigated by performing 3D calculations. An attempt is made to find their limitations.

  15. Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.; Rumsey, Christopher L.

    2007-01-01

    The selection of inflow values at boundaries far upstream of an aircraft is considered, for one- and two-equation turbulence models. Inflow values are distinguished from the ambient values near the aircraft, which may be much smaller. Ambient values should be selected first, and inflow values that will lead to them after the decay second; this is not always possible, especially for the time scale. The two-equation decay during the approach to the aircraft is shown; often, the time scale has been set too short for this decay to be calculated accurately on typical grids. A simple remedy for both issues is to impose floor values for the turbulence variables, outside the viscous sublayer, and it is argued that overriding the equations in this manner is physically justified. Selecting laminar ambient values is easy, if the boundary layers are to be tripped, but a more common practice is to seek ambient values that will cause immediate transition in boundary layers. This opens up a wide range of values, and selection criteria are discussed. The turbulent Reynolds number, or ratio of eddy viscosity to laminar viscosity has a huge dynamic range that makes it unwieldy; it has been widely mis-used, particularly by codes that set upper limits on it. The value of turbulent kinetic energy in a wind tunnel or the atmosphere is also of dubious value as an input to the model. Concretely, the ambient eddy viscosity must be small enough to preserve potential cores in small geometry features, such as flap gaps. The ambient frequency scale should also be small enough, compared with shear rates in the boundary layer. Specific values are recommended and demonstrated for airfoil flows

  16. Analytical model of rotor wake aerodynamics in ground effect

    NASA Technical Reports Server (NTRS)

    Saberi, H. A.

    1983-01-01

    The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.

  17. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  18. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.

    PubMed

    Duncan, Comer; Zhai, Guangnian; Scherer, Ronald

    2006-11-01

    The penalty immersed boundary (PIB) method, originally introduced by Peskin (1972) to model the function of the mammalian heart, is tested as a fluid-structure interaction model of the closely coupled dynamics of the vocal folds and aerodynamics in phonation. Two-dimensional vocal folds are simulated with material properties chosen to result in self-oscillation and volume flows in physiological frequency ranges. Properties of the glottal flow field, including vorticity, are studied in conjunction with the dynamic vocal fold motion. The results of using the PIB method to model self-oscillating vocal folds for the case of 8 cm H20 as the transglottal pressure gradient are described. The volume flow at 8 cm H20, the transglottal pressure, and vortex dynamics associated with the self-oscillating model are shown. Volume flow is also given for 2, 4, and 12 cm H2O, illustrating the robustness of the model to a range of transglottal pressures. The results indicate that the PIB method applied to modeling phonation has good potential for the study of the interdependence of aerodynamics and vocal fold motion.

  19. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed in this paper using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated in this paper by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-18 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  20. Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1993-01-01

    Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.

  1. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  2. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research aircraft was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW aircraft and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  3. Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.

    2012-01-01

    An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.

  4. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  5. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  6. Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing

    NASA Astrophysics Data System (ADS)

    Jin-Bi, Zhang; Lei, Ding; Ying-Ping, Wang; Li, Zhang; Jin-Lei, Wu; Hai-Yang, Zheng; Li, Fang

    2016-03-01

    Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascertaining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio, which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5:1 in consideration of the experimental errors. Project supported by the National Natural Science Foundation of China (Grant No. 41275132).

  7. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  8. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    PubMed Central

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  9. Modeling of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1999-01-01

    Aerodynamic equations for the longitudinal motion of an aircraft with a horizontal tail were developed. In this development emphasis was given on obtaining model structure suitable for model identification from experimental data. The resulting aerodynamic models included unsteady effects in the form of linear indicial functions. These functions represented responses in the lift on the wing and tail alone, and interference between those two lifting surfaces. The effect of the wing on the tail was formulated for two different expressions concerning the downwash angle at the tail. The first expression used the Cowley-Glauert approximation known-as "lag-in-downwash," the second took into account growth of the wing circulation and delay in the development of the lift on the tail. Both approaches were demonstrated in two examples using the geometry of a fighter aircraft and a large transport. It was shown that the differences in the two downwash formulations would increase for an aircraft with long tail arm performing low-speed, rapid maneuvers.

  10. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.

    PubMed

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistic model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  11. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing.

    PubMed

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistic model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful.

  12. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    PubMed Central

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  13. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  14. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  15. Moving-model technique used in automobile aerodynamics for measurement of ground effects

    NASA Astrophysics Data System (ADS)

    Papenfuss, H. D.; Kronast, M.

    1991-05-01

    Efforts are currently underway in many laboratories to simulate correctly the ground effects which occur in windtunnels used for studies in automobile aerodynamics. An experimental approach which is sometimes used, the moving belt technique, is both complicated and expensive. On the other hand, if the model is rapidly accelerated along a stationary rail by a pneumatic launch system, the relative motion between the car and the road is simulated in an optimum manner with less effort and lower costs. The practical advantages and disadvantages of the moving-model technique in comparison with the moving belt in a windtunnel are discussed. Using a two-dimensional model car, the effect of the ground on the body pressure distribution was investigated. In addition, the distribution of the pressure on the surface of the ground board and the velocity profiles underneath the model were measured.

  16. Recent NASA Research on Aerodynamic Modeling of Post-Stall and Spin Dynamics of Large Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Foster, John V.

    2007-01-01

    A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.

  17. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  18. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Riley, Jim

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  19. The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models.

    PubMed Central

    Srygley, Robert B.

    2004-01-01

    Bates hypothesized that some butterfly species that are palatable gain protection from predation by appearing similar to distasteful butterflies. When undisturbed, distasteful butterflies fly slowly and in a straight line, and palatable Batesian mimics also adopt this nonchalant behaviour. When seized by predators, distasteful butterflies are defended by toxic or nauseous chemicals. Lacking chemical defences, Batesian mimics depend on flight to escape attacks. Here, I demonstrate that flight in warning-coloured mimetic butterflies and their distasteful models is more costly than in closely related non-mimetic butterflies. The increased cost is the result of differences in both wing shape and kinematics. Batesian mimics and their models slow the angular velocity of their wings to enhance the colour signal but at an aerodynamic cost. Moreover, the design for flight in Batesian mimics has an additional energetic cost over that of its models. The added cost may cause Batesian mimics to be rare, explaining a general pattern that Bates first observed. PMID:15156916

  20. Condense Course for Middle School Children to Learn Aerodynamics through Building and Flying Model Aircraft

    NASA Technical Reports Server (NTRS)

    Levine, J. J.

    1999-01-01

    This paper presents the terms of an Educational grant for Model Building 101. The terms of the grant includes the following: 1) 4 Training sessions of one week each (5 days/6 nights) at: Dryden, Langley, Lewis, and the California Museum of Science and Industry; 2) The sessions were to be attended by local educators, solicited and secured by NASA; 3) The cooperative program of MB101 and NASA was to set up a course for middle school students to learn aerodynamics through the building and flying of specialized small model airplanes. This program was already operating successfully on a local level through MB101 in Marietta, Georgia and was published monthly in Model Builder Magazine. MB101 supplies information for schools and groups throughout the country; and 4) Video and art department facilities of NASA were promised to be made available to MB101 for the preparation of instructional videos and preparation of training manuals.

  1. Recent Dynamic Measurements and Considerations for Aerodynamic Modeling of Fighter Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Foster, John V.

    1998-01-01

    As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.

  2. A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields

    NASA Astrophysics Data System (ADS)

    Fluck, Manuel; Crawford, Curran

    2016-09-01

    Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization.

  3. Aerodynamic Parameter Identification of a Venus Lander

    NASA Astrophysics Data System (ADS)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  4. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    NASA Astrophysics Data System (ADS)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  5. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    NASA Astrophysics Data System (ADS)

    Kolář, Jan

    2012-04-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  6. A quasi-steady aerodynamic model for flapping flight with improved adaptability.

    PubMed

    Lee, Y J; Lua, K B; Lim, T T; Yeo, K S

    2016-06-01

    An improved quasi-steady aerodynamic model for flapping wings in hover has been developed. The purpose of this model is to yield rapid predictions of lift generation and efficiency during the design phase of flapping wing micro air vehicles. While most existing models are tailored for a specific flow condition, the present model is applicable over a wider range of Reynolds number and Rossby number. The effects of wing aspect ratio and taper ratio are also considered. The model was validated by comparing against numerical simulations and experimental measurements. Wings with different geometries undergoing distinct kinematics at varying flow conditions were tested during validation. Generally, model predictions of mean force coefficients were within 10% of numerical simulation results, while the deviations in power coefficients could be up to 15%. The deviation is partly due to the model not taking into consideration the initial shedding of the leading-edge vortex and wing-wake interaction which are difficult to account under quasi-steady assumption. The accuracy of this model is comparable to other models in literature, which had to be specifically designed or tuned to a narrow range of operation. In contrast, the present model has the advantage of being applicable over a wider range of flow conditions without prior tuning or calibration, which makes it a useful tool for preliminary performance evaluations. PMID:27121547

  7. A quasi-steady aerodynamic model for flapping flight with improved adaptability.

    PubMed

    Lee, Y J; Lua, K B; Lim, T T; Yeo, K S

    2016-06-01

    An improved quasi-steady aerodynamic model for flapping wings in hover has been developed. The purpose of this model is to yield rapid predictions of lift generation and efficiency during the design phase of flapping wing micro air vehicles. While most existing models are tailored for a specific flow condition, the present model is applicable over a wider range of Reynolds number and Rossby number. The effects of wing aspect ratio and taper ratio are also considered. The model was validated by comparing against numerical simulations and experimental measurements. Wings with different geometries undergoing distinct kinematics at varying flow conditions were tested during validation. Generally, model predictions of mean force coefficients were within 10% of numerical simulation results, while the deviations in power coefficients could be up to 15%. The deviation is partly due to the model not taking into consideration the initial shedding of the leading-edge vortex and wing-wake interaction which are difficult to account under quasi-steady assumption. The accuracy of this model is comparable to other models in literature, which had to be specifically designed or tuned to a narrow range of operation. In contrast, the present model has the advantage of being applicable over a wider range of flow conditions without prior tuning or calibration, which makes it a useful tool for preliminary performance evaluations.

  8. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  9. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  10. Iterative learning control applied to a non-linear vortex panel model for improved aerodynamic load performance of wind turbines with smart rotors

    NASA Astrophysics Data System (ADS)

    Blackwell, Mark W.; Tutty, Owen R.; Rogers, Eric; Sandberg, Richard D.

    2016-01-01

    The inclusion of smart devices in wind turbine rotor blades could, in conjunction with collective and individual pitch control, improve the aerodynamic performance of the rotors. This is currently an active area of research with the primary objective of reducing the fatigue loads but mitigating the effects of extreme loads is also of interest. The aerodynamic loads on a wind turbine blade contain periodic and non-periodic components and one approach is to consider the application of iterative learning control algorithms. In this paper, the control design is based on a simple, in relative terms, computational fluid dynamics model that uses non-linear wake effects to represent flow past an airfoil. A representation for the actuator dynamics is included to undertake a detailed investigation into the level of control possible and on how performance can be effectively measured.

  11. Partitioning of flight data for aerodynamic modeling of aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Klein, Vladislav

    1987-01-01

    It is sometimes necessary to determine aerodynamic model structure and estimate associated stability and control derivatives for airplanes from flight data that cover a large range of angle of attack or sideslip. One method of dealing with that problem is through data partitioning. The main purpose of this paper is to provide an explanation of a data partitioning procedure and its application and to discuss both the power and limitations of that procedure for the analysis of large maneuvers of aircraft. The partitioning methodology is shown to provide estimates for coefficients of those regressors that are well excited in the aircraft motion. In particular, primary lateral stability and damping derivatives are identified throughout the maneuver ranges.

  12. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    PubMed

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  13. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  14. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  15. Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.

    1992-01-01

    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.

  16. Parametric Study of Urban-Like Topographic Statistical Moments Relevant to a Priori Modelling of Bulk Aerodynamic Parameters

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaowei; Iungo, G. Valerio; Leonardi, Stefano; Anderson, William

    2016-08-01

    For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, z_0 , is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of z_0 based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies - the topic of this study - exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic z_0 models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and z_0 ) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting z_0 . We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1-041203-10, 2010), who demonstrate that z_0 can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.

  17. Determining aerodynamic coefficients from high speed video of a free-flying model in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Neely, Andrew J.; West, Ivan; Hruschka, Robert; Park, Gisu; Mudford, Neil R.

    2008-11-01

    This paper describes the application of the free flight technique to determine the aerodynamic coefficients of a model for the flow conditions produced in a shock tunnel. Sting-based force measurement techniques either lack the required temporal response or are restricted to large complex models. Additionally the free flight technique removes the flow interference produced by the sting that is present for these other techniques. Shock tunnel test flows present two major challenges to the practical implementation of the free flight technique. These are the millisecond-order duration of the test flows and the spatial and temporal nonuniformity of these flows. These challenges are overcome by the combination of an ultra-high speed digital video camera to record the trajectory, with spatial and temporal mapping of the test flow conditions. Use of a lightweight model ensures sufficient motion during the test time. The technique is demonstrated using the simple case of drag measurement on a spherical model, free flown in a Mach 10 shock tunnel condition.

  18. On the correlation of output rate and aerodynamic characteristics in vibrating-mesh-based aqueous aerosol delivery.

    PubMed

    Beck-Broichsitter, Moritz; Oesterheld, Nina; Knuedeler, Marie-Christine; Seeger, Werner; Schmehl, Thomas

    2014-01-30

    Aerosolization of aqueous formulations is of special interest for inhalative drug delivery, where an adequate nebulizer performance represents a prerequisite for improving pulmonary therapy. The present study investigated the interplay of output rate and aerodynamic characteristics of different excipient-based formulations and its impact on the atomization process by vibrating-mesh technology (i.e. eFlow(®)rapid). Output rate and aerodynamic characteristics were manipulated by both dynamic viscosity and conductivity of the applied formulation. Supplementation with sucrose and sodium chloride caused a decline (down to ∼0.2 g/min) and elevation (up to ∼1.0 g/min) of the nebulizer output rate, respectively. However, both excipients were capable of decreasing the aerodynamic diameter of produced aerosol droplets from >7.0 μm to values of ≤5.0 μm. Thus, the correlation of output rate and aerodynamic characteristics resulted in linear fits of opposite slopes (R(2)>0.85). Finally, the overall number of delivered aerosol droplets per time was almost constant for sucrose (≤1×10(8) droplets/s), while for sodium chloride a concentration-dependent increase was observed (up to ∼3×10(8) droplets/s). Overall, the current findings illustrated the influence of formulation parameters on the aerosolization process performed by vibrating-mesh technology. Moreover, concentration and charge distribution of aerosol populations supposedly modify the final characteristics of the delivered aerosols.

  19. Aerodynamic characteristics of a large-scale hybrid upper surface blown flap model having four engines

    NASA Technical Reports Server (NTRS)

    Carros, R. J.; Boissevain, A. G.; Aoyagi, K.

    1975-01-01

    Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.

  20. Linearized Poststall Aerodynamic and Control Law Models of the X-31A Aircraft and Comparison with Flight Data

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer

    1997-01-01

    The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.

  1. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.

  2. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.

    PubMed

    Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung

    2015-07-30

    A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model.

  3. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.

    PubMed

    Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung

    2015-08-01

    A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model. PMID:26226478

  4. A flight experiment to measure rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.

    1990-01-01

    A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

  5. Jet exhaust and support interference effects on the transonic aerodynamic characteristics of a fighter model with two widely spaced engines

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1976-01-01

    Jet exhaust, nozzle installation, and model support interference effects on the longitudinal aerodynamic characteristics of a twin-engine fighter model were determined. Realistic jet exhaust nozzle configurations and a reference configuration with a simulated vertical-tail support were tested. Free-stream Mach number was varied from 0.6 to 1.2, and model angle of attack from 0 deg to 9 deg. The jet exhaust affected drag more than it affected lift and pitching moment. The largest effects occurred at a Mach number of 0.9 and for the afterburning mode of exhaust nozzle operation. The combined differences between the aerodynamic characteristics of the realistic and reference configurations (which were due to afterbody and nozzle contours, jet operation, and simulated reference support interference) were considerably different from those for the jet interference alone.

  6. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    NASA Astrophysics Data System (ADS)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  7. Comparison of aerodynamically and model-derived roughness lengths (zo) over diverse surfaces, central Mojave Desert, California, USA

    USGS Publications Warehouse

    MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.

    2004-01-01

    The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such

  8. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  9. Aerodynamics of Shuttle Orbiter at high altitudes

    NASA Technical Reports Server (NTRS)

    Rault, Didier F. G.

    1993-01-01

    The high-altitude/high-Knudsen number aerodynamics of the Shuttle Orbiter are computed from Low-Earth Orbit down to 100 km using three-dimensional direct simulation Monte Carlo and free molecule codes. Results are compared with Blanchard's latest Shuttle aerodynamic model, which is based on in-flight accelerometer measurements, and bridging formula models. Good comparison is observed, except for the normal force and pitching moment coefficients. The present results were obtained for a generic Shuttle geometry configuration corresponding to a zero deflection for all control surfaces.

  10. Acoustic and aerodynamic study of a pusher-propeller aircraft model

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Horne, W. Clifton

    1990-01-01

    An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.

  11. Transient aerodynamic forces on a fighter model during simulated approach and landing with thrust reversers

    NASA Technical Reports Server (NTRS)

    Humphreys, A. P.; Paulson, J. W., Jr.; Kemmerly, G. T.

    1988-01-01

    Previous wind tunnel tests of fighter configurations have shown that thrust reverser jets can induce large, unsteady aerodynamic forces and moments during operation in ground proximity. This is a concern for STOL configurations using partial reversing to spoil the thrust while keeping the engine output near military (MIL) power during landing approach. A novel test technique to simulate approach and landing was developed under a cooperative Northrop/NASA/USAF program. The NASA LaRC Vortex Research Facility was used for the experiments in which a 7-percent F-18 model was moved horizontally at speeds of up to 100 feet per second over a ramp simulating an aircraft to ground rate of closure similar to a no-flare STOL approach and landing. This paper presents an analysis of data showing the effect of reverser jet orientation and jet dynamic pressure ratio on the transient forces for different angles of attack, and flap and horizontal tail deflection. It was found, for reverser jets acting parallel to the plane of symmetry, that the jets interacted strongly with the ground, starting approximately half a span above the ground board. Unsteady rolling moment transients, large enough to cause the probable upset of an aircraft, and strong normal force and pitching moment transients were measured. For jets directed 40 degrees outboard, the transients were similar to the jet-off case, implying only minor interaction.

  12. Acoustic and aerodynamic testing of a scale model variable pitch fan

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.

  13. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

    PubMed

    Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier

    2010-05-01

    Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations. PMID:21117769

  14. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  15. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.

  16. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.

    PubMed

    Faulhammer, Eva; Wahl, Verena; Zellnitz, Sarah; Khinast, Johannes G; Paudel, Amrit

    2015-08-01

    This study aims to investigate the effect of carrier characteristics and dosator capsule filling operation on the in vitro deposition of mixtures containing salbutamol sulphate (SS) and lactose and mannitol as model carrier materials. The carrier surfaces of lactose and mannitol were modified via wet decantation. The impact of the decantation process on the properties of carriers was investigated by laser diffraction, density and powder flow measurements, N2 physisorption, small and wide angle X-ray scattering (SWAXS) and scanning electron microscopy (SEM). Differences in carrier type and untreated and decanted materials were identified and the SAXS measurements proved to be a promising technology confirming the successful removal of fines. Adhesive carrier API mixtures with carrier-to-API ratio of 99:1 wt% were prepared, mixture homogeneity was tested and subsequently the mixtures were filled into capsules at different process settings. Finally, the influence of the decantation process on the in vitro performance of the adhesive mixtures was tested with a next generation impactor. For lactose, the decantation decreased the fine particle fraction (FPF) of SS, whereas the FPF of mannitol as a carrier was only affected by the capsule filling process. In summary, the DPI formulation based on untreated lactose, especially by capsule filling using a dosing chamber to powder layer (compression) ratio of 1:2, proved to be superior in terms of the dosing accuracy (RSD<0.8%) and the in vitro aerodynamic performance (FPF of 12%).

  17. Computational Design and Analysis of a Micro-Tab Based Aerodynamic Loads Control System for Lifting Surfaces

    SciTech Connect

    Van Dam, C P; Nakafuji, D Y; Bauer, C; Chao, D; Standish, K

    2002-11-01

    A computational design and analysis of a microtab based aerodynamic loads control system is presented. The microtab consists of a small tab that emerges from a wing approximately perpendicular to its surface in the vicinity of its trailing edge. Tab deployment on the upper side of the wing causes a decrease in the lift generation whereas deployment on the pressure side causes an increase. The computational methods applied in the development of this concept solve the governing Reynolds-averaged Navier-Stokes equations on structured, overset grids. The application of these methods to simulate the flows over lifting surface including the tabs has been paramount in the development of these devices. The numerical results demonstrate the effectiveness of the microtab and that it is possible to carry out a sensitivity analysis on the positioning and sizing of the tabs before they are implemented in successfully controlling the aerodynamic loads.

  18. The compressible aerodynamics of rotating blades based on an acoustic formulation

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.

  19. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  20. Aerodynamic Modeling of Oscillating Wing in Hypersonic Flow: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Hou, Ying-Yu; Ji, Chen; Liu, Zi-Qiang

    2016-06-01

    Various approximations to unsteady aerodynamics are examined for the unsteady aerodynamic force of a pitching thin double wedge airfoil in hypersonic flow. Results of piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and CFD method are compared in the same motion and Mach number effects. The results indicate that, for this thin double wedge airfoil, Newtonian impact theory is not suitable for these Mach number, while piston theory and Van Dyke’s second-order theory are in good agreement with CFD method for Ma<7.

  1. [Effects of dynamic aerodynamic parameters on simulating the land-atmosphere flux exchange in maize field: a case study of BATS1e model].

    PubMed

    Cai, Fu; Ming, Hui-qing; Li, Rong-ping; Zhou, Guang-sheng

    2013-08-01

    Based on the continuous observations on the land-atmosphere flux exchange and the meteorological and biological elements in a maize field at the Jinzhou Agricultural Ecosystem Research Station in Liaoning Province of Northeast China from 2006 to 2008, and by using the dynamic roughness (z0) and zero-displacement (d) parameterization scheme considering the effects of leaf area index, canopy height and wind speed at different developmental stages of maize, the BATS1e model was modified, and applied to investigate the effects of dynamic aerodynamic parameters on the flux exchange between maize agroecosystem and atmosphere. Compared with the original model, the drag coefficient (C(D)) simulated by the modified model increased, and its diurnal variation was more obvious with increasing vegetation coverage, which was more accordant with practical circumstances. The simulation accuracies of sensible heat (H), latent heat (lambdaE) and soil heat flux were improved in varying degree, and the Nash-Sutcliffes (NSs) were increased by 0.0569, 0.0194 and 0. 0384, with the improvement quantities in the growth season being 0.9%, 1.1% and 1.2% of global radiation, respectively. The dynamic parameterizations of z0 and d played a more remarkable role to increase the simulation accuracies of H and lambdaE with the actual observation of soil water content introduced into the improved model. This research proved that more reasonable dynamic aerodynamic parameterizations could fulfill an obvious function to improve the land surface processes simulation.

  2. A longitudinal aerodynamic data repeatability study for a commercial transport model test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.; Adcock, J. B.; Witkowski, D. P.; Wright, F. L.

    1995-01-01

    A high Reynolds number investigation of a commercial transport model was conducted in the National Transonic Facility (NTF) at Langley Research Center. This investigation was part of a cooperative effort to test a 0.03-scale model of a Boeing 767 airplane in the NTF over a Mach number range of 0.70 to 0.86 and a Reynolds number range of 2.38 to 40.0 x 10(exp 6) based on the mean aerodynamic chord. One of several specific objectives of the current investigation was to evaluate the level of data repeatability attainable in the NTF. Data repeatability studies were performed at a Mach number of 0.80 with Reynolds numbers of 2.38, 4.45, and 40.0 x 10(exp 6) and also at a Mach number of 0.70 with a Reynolds number of 40.0 x 10(exp 6). Many test procedures and data corrections are addressed in this report, but the data presented do not include corrections for wall interference, model support interference, or model aeroelastic effects. Application of corrections for these three effects would not affect the results of this study because the corrections are systematic in nature and are more appropriately classified as sources of bias error. The repeatability of the longitudinal stability-axis force and moment data has been accessed. Coefficients of lift, drag, and pitching moment are shown to repeat well within the pretest goals of plus or minus 0.005, plus or minus 0.0001, and plus or minus 0.001, respectively, at a 95-percent confidence level over both short- and near-term periods.

  3. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  4. Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount

    NASA Technical Reports Server (NTRS)

    Lutze, Frederick H.; Fan, Yigang

    1999-01-01

    A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.

  5. Low-Speed Aerodynamic and Hydrodynamic Characteristics of a Proposed Supersonic Multijet Water-Based Hydro-Ski Aircraft with Upward-Rotating Engines

    NASA Technical Reports Server (NTRS)

    Petynia, William W.; Croom, Delwin R.; Davenport, Edwin E.

    1958-01-01

    The low-speed aerodynamic and hydrodynamic characteristics of a proposed multijet water-based aircraft configuration for supersonic operation have been investigated. The design features include upward-rotating engines, body indentation, a single hydro-ski, and a wing with an aspect ratio of 3.0, a taper ratio of 0.143, 36.90 sweepback of the quarter-chord line, and NACA 65AO04 airfoil sections. For the aerodynamic investigation, with the flaps retracted, the model was longitudinally and directionally stable up to the stall. The all-movable horizontal tail was capable of trimming the model up to a lift coefficient of approximately 0.87. All flap configurations investigated had a tendency to become longitudinally unstable at stall. The effectiveness of the all-movable horizontal tail increased with increasing lift coefficient for all flap configurations investigated; however, with the large static margin of the configuration with the center of gravity at 0.25 mean aerodynamic chord, the all-movable horizontal tail was not powerful enough to trim all the various flapped configurations investigated throughout the angle-of-attack range. For the hydrodynamic investigation, longitudinal stability during take-offs and landings was satisfactory. Decreasing the area of the hydro-ski 60 percent increased the maximum resistance and emergence speed 40 and 70 percent, respectively. Without the jet exhaust, the resistance was reduced by simulating the vertical-lift component of the forward engines rotated upward. However, the jet exhaust of the forward engines increased the maximum resistance approximately 60 percent. The engine inlets and horizontal tail were free from spray for all loads investigated and for both hydro-ski sizes.

  6. Flutter suppression and gust alleviation using active controls - Review of developments and applications based on the aerodynamic energy concept

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    The state of the art of the aerodynamic energy concept, involving the use of active controls for flutter suppression, is reviewed. Applications of the concept include the suppression of external-store flutter of three different configurations of the YF-17 flutter model using a single trailing edge control surface activated by a single fixed-gain control law. Consideration is also given to some initial results concerning the flutter suppression of the 1/20 scale low speed wind-tunnel model of the Boeing 2707-300 supersonic transport using an activated trailing edge control surface.

  7. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  8. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  9. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  10. A program to evaluate a control system based on feedback of aerodynamic pressure differentials

    NASA Technical Reports Server (NTRS)

    Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.

  11. NASP aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  12. Aerodynamic database development of the ESA intermediate experimental vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Marino, Giuliano; Rufolo, Giuseppe C.

    2014-01-01

    This work deals with the aerodynamic database development of the Intermediate Experiment Vehicle. The aerodynamic analysis, carried out for the whole flight scenario, relies on computational fluid dynamics, wind tunnel test, and engineering-based design data generated during the project phases, from rarefied flow conditions, to hypersonic continuum flow up to reach subsonic speeds regime. Therefore, the vehicle aerodynamic database covers the range of Mach number, angle of attack, sideslip and control surface deflections foreseen for the vehicle nominal re-entry. In particular, the databasing activities are developed in the light of build-up approach. This means that all aerodynamic force and moment coefficients are provided by means of a linear summation over certain number of incremental contributions such as, for example, effect of sideslip angle, aerodynamic control surface effectiveness, etc. Each force and moment coefficient is treated separately and appropriate equation is provided, in which all the pertinent contributions for obtaining the total coefficient for any selected flight conditions appear. To this aim, all the available numerical and experimental aerodynamic data are gathered in order to explicit the functional dependencies from each aerodynamic model addend through polynomial expressions obtained with the least squares method. These polynomials are function of the primary variable that drives the phenomenon whereas secondary dependencies are introduced directly into its unknown coefficients which are determined by means of best-fitting algorithms.

  13. Results of the AVATAR project for the validation of 2D aerodynamic models with experimental data of the DU95W180 airfoil with unsteady flap

    NASA Astrophysics Data System (ADS)

    Ferreira, C.; Gonzalez, A.; Baldacchino, D.; Aparicio, M.; Gómez, S.; Munduate, X.; Garcia, N. R.; Sørensen, J. N.; Jost, E.; Knecht, S.; Lutz, T.; Chassapogiannis, P.; Diakakis, K.; Papadakis, G.; Voutsinas, S.; Prospathopoulos, J.; Gillebaart, T.; van Zuijlen, A.

    2016-09-01

    The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC, ATEFlap. The codes include unsteady Eulerian CFD simulations with grid deformation, panel models and indicial engineering models. The validation cases correspond to 18 steady flow cases, and 42 unsteady flow cases, for varying angle of attack, flap deflection and reduced frequency, with free and forced transition. The validation of the models show varying degrees of agreement, varying between models and flow cases.

  14. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  15. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  16. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  17. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  18. Numerical simulation and validation of helicopter blade-vortex interaction using coupled CFD/CSD and three levels of aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Amiraux, Mathieu

    Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes

  19. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  20. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  1. Improved two-equation k-omega turbulence models for aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Menter, Florian R.

    1992-01-01

    Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows.

  2. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  3. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  4. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1981-01-01

    A subsonic/supersonic/hypersonic aerodynamic analysis was developed by integrating the Aerodynamic Preliminary Analysis System (APAS), and the inviscid force calculation modules of the Hypersonic Arbitrary Body Program. APAS analysis was extended for nonlinear vortex forces using a generalization of the Polhamus analogy. The interactive system provides appropriate aerodynamic models for a single input geometry data base and has a run/output format similar to a wind tunnel test program. The user's manual was organized to cover the principle system activities of a typical application, geometric input/editing, aerodynamic evaluation, and post analysis review/display. Sample sessions are included to illustrate the specific task involved and are followed by a comprehensive command/subcommand dictionary used to operate the system.

  5. Error Estimate of the Ares I Vehicle Longitudinal Aerodynamic Characteristics Based on Turbulent Navier-Stokes Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2011-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.

  6. Effects of wing deformation on aerodynamic performance of a revolving insect wing

    NASA Astrophysics Data System (ADS)

    Noda, Ryusuke; Nakata, Toshiyuki; Liu, Hao

    2014-12-01

    Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces, which is of highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime, we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model. To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold: acceleration and steady rotation, which are based on hovering wing kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase, which results in a significant wing deformation. While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration. During the phase of steady rotation, the flexible wing model generates more vertical force at higher angles of attack (40°-60°) but less horizontal force than those of a rigid wing model. This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip, which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force. Moreover, our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics: the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation, which is mainly induced by

  7. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 1: Flow aerodynamics in a vortex furnace

    NASA Astrophysics Data System (ADS)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-02-01

    Some results of the complex experimental and numerical study of aerodynamics and transfer processes in a vortex furnace, whose design was improved via the distributed tangential injection of fuel-air flows through the upper and lower burners, were presented. The experimental study of the aerodynamic characteristics of a spatial turbulent flow was performed on the isothermal laboratory model (at a scale of 1 : 20) of an improved vortex furnace using a laser Doppler measurement system. The comparison of experimental data with the results of the numerical modeling of an isothermal flow for the same laboratory furnace model demonstrated their agreement to be acceptable for engineering practice.

  8. An Investigation of the Impact of Aerodynamic Model Fidelity on Close-In Combat Effectiveness Prediction in Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene

    2005-01-01

    Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.

  9. Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Menter, Florian R.

    1993-01-01

    Two new versions of the kappa-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original kappa-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50% of the boundary-layer but changes gradually to the standard kappa-epsilon model (in a kappa- omega formulation) towards the boundary-layer edge. The free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is a variation of the BSL model with the additional ability to account for the transport of the principal turbulent shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear-stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original kappa-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values but show better agreement with experimental data for adverse pressure gradient boundary-layer flows.

  10. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  11. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  12. Computational aerodynamics and supercomputers

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1984-01-01

    Some of the progress in computational aerodynamics over the last decade is reviewed. The Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans are described.

  13. Model aerodynamic test results for a refined actuated inlet ejector nozzle at simulated takeoff and cruise conditions

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1983-01-01

    Wind tunnel model tests were conducted to demonstrate the aerodynamic performance improvements of a refined actuated inlet ejector nozzle. Models of approximately one-tenth scale were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise and supersonic cruise. Variations of model components provided a performance evaluation of ejector inlet and exit area, forebody boattail angle and ejector inlet operation in the open and closed mode. Approximately 700 data points were acquired at Mach numbers of 0, 0.36, 0.9, 1.2, and 2.0 for a wide range of nozzle flow conditions. Results show that relative to two ejector nozzles previously tested performance was improved significantly at takeoff and subsonic cruise performance, a C sub f of 0.982, was attained equal to the high performance of the previous tests. The established advanced supersonic transport propulsion study performance goals were met or closely approached at takeoff and supersonic cruise.

  14. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  15. Aerodynamic and electrostatic properties of model dry powder aerosols: a comprehensive study of formulation factors.

    PubMed

    Telko, M J; Hickey, A J

    2014-12-01

    The impact of formulation variables on aerodynamic and electrostatic properties of dry powder aerosol particles is of great importance to the development of efficient and reproducible inhaler products. Systematic evaluation requires a well-designed series of experiments using appropriate methods. A factorial experimental design was employed. In broad terms, the conditions considered were two drugs, albuterol and budesonide, in combination with different excipients, drug concentrations, delivered doses, and metering system (capsule composition) and sampled under different flow conditions using standard entrainment tubes. Samples were collected in an electrical low-pressure impactor, to evaluate distribution of electrostatic properties, and an Andersen eight-stage nonviable cascade impactor, to estimate aerodynamic particle size distribution, concurrently. The deposition studies allowed calculation of approximate per particle charge levels for drug. The results showed very high particle charge levels, often in the 1,000-10,000 of elementary charges per particle range, orders of magnitude higher than charge levels predicted by the Boltzmann charge distribution. The charge levels are considerably higher than had previously been estimated (200e per particle).

  16. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  17. Hydrodynamic and Aerodynamic Tests of Four Models of Outboard Floats : (N.A.C.A. Models 51-A, 51-B, 51-C, and 51-D)

    NASA Technical Reports Server (NTRS)

    Dawson, John R; Hartman, Edwin P

    1938-01-01

    Four models of outboard floats (N.A.C.A. models 51-A, 51-B, 51-C, and 51-D) were tested in the N.A.C.A. tank to determine their hydrodynamic characteristics and in the 20-foot wind tunnel to determine their aerodynamic drag. The results of the tests, together with comparisons of them, are presented in the form of charts. From the comparisons, the order of merit of the models is estimated for each factor considered. The best compromise between the various factors seems to be given by model 51-D. This model is the only one in the series with a transverse step.

  18. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  19. Aerodynamic characteristics of an NASA supercritical-wing research airplane model with and without fuselage area-rule additions at Mach 0.25 to 1.00

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Harris, C. D.

    1972-01-01

    Transonic pressure tunnel tests at Mach numbers from 0.25 to 1.00 were performed to determine the effects of area-rule additions to the sides of the fuselage on the aerodynamic characteristics of a 0.087 scale model of an NASA supercritical-wing research airplane. Presented are the longitudinal aerodynamic force and moment characteristics for horizontal-tail deflection angles of -2.5 deg and -5 deg with the side fuselage area-rule additions on and off the model. The effects of the side fuselage area-rule additions on selected wing and fuselage pressure distributions at near-cruise conditions are also presented.

  20. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  1. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  2. Unsteady aerodynamic characteristics of a fighter model undergoing large-amplitude pitching motions at high angles of attack

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Shah, Gautam H.

    1990-01-01

    The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.

  3. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  4. Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions

    NASA Technical Reports Server (NTRS)

    Favaregh, Noah M.

    2010-01-01

    The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.

  5. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.

    PubMed

    Wang, Ji Kang; Sun, Mao

    2005-10-01

    The aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. Available morphological and stroke-kinematic parameters of dragonfly (Aeshna juncea) are used for the model dragonfly. Six advance ratios (J; ranging from 0 to 0.75) and, at each J, four forewing-hindwing phase angle differences (gamma(d); 180 degrees, 90 degrees, 60 degrees and 0 degree) are considered. The mean vertical force and thrust are made to balance the weight and body-drag, respectively, by adjusting the angles of attack of the wings, so that the flight could better approximate the real flight. At hovering and low J (J=0, 0.15), the model dragonfly uses separated flows or leading-edge vortices (LEV) on both the fore- and hindwing downstrokes; at medium J (J=0.30, 0.45), it uses the LEV on the forewing downstroke and attached flow on the hindwing downstroke; at high J (J=0.6, 0.75), it uses attached flows on both fore- and hindwing downstrokes. (The upstrokes are very lightly loaded and, in general, the flows are attached.) At a given J, at gamma(d)=180 degrees, there are two vertical force peaks in a cycle, one in the first half of the cycle, produced mainly by the hindwing downstroke, and the other in the second half of the cycle, produced mainly by the forewing downstroke; at gamma(d)=90 degrees, 60 degrees and 0 degree, the two force peaks merge into one peak. The vertical force is close to the resultant aerodynamic force [because the thrust (or body-drag) is much smaller than vertical force (or the weight)]. 55-65% of the vertical force is contributed by the drag of the wings. The forewing-hindwing interaction is detrimental to the vertical force (and resultant force) generation. At hovering, the interaction reduces the mean vertical force (and resultant force) by 8-15%, compared with that without interaction; as J increases, the reduction generally decreases (e.g. at J=0.6 and

  6. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  7. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  8. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  9. Modeling an increase in the lift and aerodynamic efficiency of a thick Göttingen airfoil with optimum arrangement

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Sudakov, A. G.; Usachov, A. E.; Kharchenko, V. B.

    2015-06-01

    The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow line have been numerically solved jointly with the energy equation. The obtained solution has been used to calculate subsonic flow (at M = 0.05 and 5° angle of attack) past a thick (24% chord) Göttingen airfoil with variable arrangement of a small-sized (about 10% chord) circular vortex cell with fixed distributed suction Cq = 0.007 from the surface of a central body. It is established that the optimum arrangement of the vortex cell provides a twofold decrease in the bow drag coefficient Cx, a threefold increase in the lift coefficient Cy, and an about fivefold increase in the aerodynamic efficiency at Re = 105 in comparison to the smooth airfoil.

  10. The aerodynamics of hovering flight in Drosophila.

    PubMed

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2005-06-01

    Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight

  11. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  12. CFD Analysis Based Evaluation of Aerodynamic Characteristics for Supersonic Biplane with Finite Span Length

    NASA Astrophysics Data System (ADS)

    Yonezawa, Masahito; Obayashi, Shigeru

    The supersonic biplane is well known as the airfoil that has zero wave drag at the supersonic speed. This paper investigates aerodynamic characteristics of the supersonic biplane with the finite span length and effects of the aspect and taper ratios by comparing with the two-dimensional supersonic biplane which has the infinite span length using the computational fluid dynamics. The rectangular wing was employed to examine the effect of the aspect ratio and tapered wing was employed to inspect the effect of the taper ratio. Both the rectangular wing and the two-dimensional supersonic biplane choke at the high angle of attack. The drag of the three-dimensional wing becomes smaller when it has a higher aspect ratio. The drag polar curve of the three-dimensional wing approaches asymptotically to the drag polar curve of the two-dimensional supersonic biplane when it has a higher taper ratio. The drag of the tapered wing becomes smaller when it has an adequate taper ratio.

  13. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  14. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  15. Modeling of space shuttle SRB aft ends for inherent aerodynamic bias determination

    NASA Astrophysics Data System (ADS)

    González, David R.; Stapf, Sean P.; Gebhard, Thomas J.

    2007-04-01

    The Air Force's 45th Space Wing is in charge of operating the Range Safety System (RSS) for all launches that take place on the Eastern Range. If initiated, the RSS currently implemented on the Space Transportation System after launch would provide for the partial destruction of the solid rocket boosters (SRBs) to terminate thrust. The majority of the risk from the large explosive debris created comes from the aft ends of the SRBs, which fall largely intact along with the remaining propellant. Historically, no impact data on such a scenario has been available and in support of the Space Shuttle Return-to-Flight schedule, aerodynamic and trajectory analyses were performed to characterize any pitch angle biases associated with the aft end's descent after initiating the linear shaped charges (LSCs) on the SRBs. Results show the aft end has a bias towards impacting at +/-5, 70, or 175 degrees and takes an average of 10 seconds to stabilize into any one of these orientations after being separated from the SRB forward body.

  16. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.

    PubMed

    Pickup, B A; Thomson, S L

    2009-10-16

    The influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vocal folds. The models were fabricated using flexible, materially-linear silicone compounds with Young's modulus values comparable to that of vocal fold tissue. The models included a two-layer design to simulate the vocal fold layered structure. The respective Young's moduli of elasticity of the "left" and "right" vocal fold models were varied to create asymmetric conditions. High-speed videokymography was used to measure maximum vocal fold excursion, vibration frequency, and left-right phase shift, all of which were significantly influenced by asymmetry. Onset pressure, a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analysis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold model. Potential applications to various clinical conditions are mentioned, and suggestions for future related studies are presented.

  17. Influence of Asymmetric Stiffness on the Structural and Aerodynamic Response of Synthetic Vocal Fold Models

    PubMed Central

    Pickup, B.A.; Thomson, S.L.

    2012-01-01

    The influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vocal folds. The models were fabricated using flexible, materially-linear silicone compounds with Young’s modulus values comparable to that of vocal fold tissue. The models included a two-layer design to simulate the vocal fold layered structure. The respective Young’s moduli of elasticity of the “left” and “right” vocal fold models were varied to create asymmetric conditions. High-speed videokymography was used to measure maximum vocal fold excursion, vibration frequency, and left-right phase shift, all of which were significantly influenced by asymmetry. Onset pressure, a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analysis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold model. Potential applications to various clinical conditions are mentioned, and suggestions for future related studies are presented. PMID:19664777

  18. Full-scale measurements of aerodynamic induction in a rotor plane

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner Chr; Hansen, Kurt S.

    2014-12-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented.

  19. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.

    PubMed

    Sun, Mao; Wu, Jiang Hao

    2003-09-01

    Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion were studied using the method of computational fluid dynamics. The Navier-Stokes equations were solved numerically. The solution provided the flow velocity and pressure fields, from which the vorticity wake structure and the unsteady aerodynamic forces and torques were obtained (the inertial torques due to the acceleration of the wing-mass were computed analytically). From the flow-structure and force information, insights were gained into the unsteady aerodynamic force generation. On the basis of the aerodynamic and inertial torques, the mechanical power was obtained, and its properties were investigated. The unsteady force mechanisms revealed previously for hovering (i.e. delayed stall, rapid acceleration at the beginning of the strokes and fast pitching-up rotation at the end of the strokes) apply to forward flight. Even at high advance ratios, e.g. J=0.53-0.66 (J is the advance ratio), the leading edge vortex does not shed (at such advance ratios, the wing travels approximately 6.5 chord lengths during the downstroke). At low speeds (J approximately equal to 0.13), the lift (vertical force) for weight support is produced during both the down- and upstrokes (the downstroke producing approximately 80% and the upstroke producing approximately 20% of the mean lift), and the lift is contributed mainly by the wing lift; the thrust that overcomes the body drag is produced during the upstroke, and it is contributed mainly by the wing drag. At medium speeds (J approximately equal to 0.27), the lift is mainly produced during the downstroke and the thrust mainly during the upstroke; both of them are contributed almost equally by the wing lift and wing drag. At high speeds (J approximately equal to 0.53), the lift is mainly produced during the downstroke and is mainly contributed by the wing drag; the thrust is produced during both the down- and upstrokes, and in

  20. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  1. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  2. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  3. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  4. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Wong, C. W.; Wang, L.; Lu, Z.; Zhu, Y.; Zhou, Y.

    2015-08-01

    This paper presents an experimental investigation on the response of the slope seeking with extended Kalman filter (EKF) deployed in a closed-loop system for airfoil aerodynamics control. A novel dielectric barrier discharge (DBD) plasma actuator was used to manipulate the flow around the NACA 0015 airfoil. Experiments were performed under different freestream velocities U ∞, covering the chord Reynolds number Re from 4.4 × 104 to 7.7 × 104. Firstly, the advantages of applying this DBD plasma actuator (hereafter called sawtooth plasma actuator) on the airfoil were examined in an open-loop system at Re = 7.7 × 104. The sawtooth plasma actuator led to a delay in the stall angle α stall by 5° and an increase in the maximum lift coefficient by about 9 %. On the other hand, at the same input power, the traditional DBD plasma actuator managed a delay in α stall by only 3° and an increase in by about 3 %. Secondly, the convergence time t c of the lift force F L at Re from 4.4 × 104 to 7.7 × 104 was investigated for two closed-loop systems. It has been demonstrated that the t c was about 70 % less under the slope seeking with EKF than that under the conventional slope seeking with high-pass (HP) and low-pass (LP) filters at Re = 7.7 × 104. The reduction in t c was also observed at a different Re. Finally, the slope seeking with EKF showed excellent robustness over a moderate Re range; that is, the voltage amplitude determined by the control algorithm promptly responded to a change in Re, much faster than that of the conventional slope seeking with HP and LP filters.

  5. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  6. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  7. Flow Induced Vibration and Glottal Aerodynamics in a Three-Dimensional Laryngeal Model

    NASA Astrophysics Data System (ADS)

    Zheng, Xudong; Xue, Qian; Mittal, Rajat; Bielamowicz, Steven

    2009-11-01

    Three-dimensional effects associated with phonation remain unclear due to the lack of capability of simulating 3D fluid-tissue interaction in the past. To advance the state-of-the-art in this arena, an immersed-boundary method based flow solver coupled with a finite-element solid dynamics solver is employed to conduct high-fidelity direct-numerical simulations of phonation in a 3D model of the human larynx. Three-dimensional vibration patterns are captured along with turbulence effects and three-dimensional vortex structures in the glottal jet. Results from these simulations are presented.

  8. Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code

    SciTech Connect

    Sullivan, W. N.; Leonard, T. M.

    1980-11-01

    An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

  9. Modeling of Aircraft Unsteady Aerodynamic Characteristics/Part 3 - Parameters Estimated from Flight Data. Part 3; Parameters Estimated from Flight Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1996-01-01

    A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

  10. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  11. A title-gap flow model for use in aerodynamic loads assessment of space shuttle thermal protection system: Parallel gap faces

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L.; Newman, P. A.; Thames, F. C.; Melson, N. D.

    1981-01-01

    The problem of predicting aerodynamic loads on the insulating tiles of the space shuttle thermal protection system (TPS) is discussed and seen to require a method for predicting pressure and mass flux in the gaps between tiles. A mathematical model of the tile-gap flow is developed, based upon a slow viscous (Stokes) flow analysis, and is verified against experimental data. The tile-gap pressure field is derived from a solution of the two-dimensional Laplace equation; the mass-flux vector is then calculated from the pressure gradient. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is given. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is given. The flow model shows tile-gap mass flux to be very sensitive to the gap width indicating a need for coupling the TPS flow and tile displacement calculation. Analytical and experimental work to improve TPS flow predictions and a possible shuttle TPS hardware modification are recommended.

  12. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    NASA Astrophysics Data System (ADS)

    Wolff, T.; Seume, J. R.

    2016-09-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.

  13. Aerodynamic results of a separation test (CA20) conducted at the Boeing transonic wind tunnel using 0.030-scale models of the configuration 140A/B (modified) SSV orbiter (model no. 45-0) and the Boeing 747 carrier (model no. AX 1319 I-1), volume 1. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Dziubala, T.; Esparza, V.; Gillins, R. L.; Petrozzi, M.

    1975-01-01

    A Rockwell built 0.030-scale 45-0 modified Space Shuttle Orbiter Configuration 14?A/B model and a Boeing built 0.030-scale 747 carrier model were tested to provide six component force and moment data for each vehicle in proximity to the other at a matrix of relative positions, attitudes and test conditions (angles of attack and sideslip were varied). Orbiter model support system tare effects were determined for corrections to obtain support-free aerodynamics. In addition to the balance force data, pressures were measured. Pressure orifices were located at the base of the Orbiter, on either side of the vertical blade strut, and at the mid-root chord on either side of the vertical tail. Strain gages were installed on the Boeing 747 vertical tail to indicate buffet onset. Photographs of aerodynamic configurations tested are shown.

  14. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  15. Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Hui; Wu, Han; Lai, Jiang; Sheng, Hong-Zhi

    2014-12-01

    The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study. A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads: the aerodynamic loads can change the position of vehicle system (consequently the contact relations), the wheel/rail normal contact forces, the gravitational restoring forces/moments and the creep forces/moments. A mathematical model for hunting stability incorporating such influences was developed. A computer program capable of incorporating the effects of aerodynamic loads based on the model was written, and the critical speeds were calculated using this program. The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method, the results were also compared with the situations without aerodynamic loads. It is shown that the most dominant factors affecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not. The damping of yaw damper is the most dominant influencing factor for linear critical speeds, while the damping of lateral damper is most dominant for nonlinear ones. When the influences of aerodynamic loads are considered, the linear critical speeds decrease with the rise of crosswind velocity, whereas it is not the case for the nonlinear critical speeds. The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads. Combined actions of aerodynamic loads and suspension parameters also affect the critical speeds. The effects of such joint action are more obvious for nonlinear critical speeds.

  16. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  17. Studying surface glow discharge for application in plasma aerodynamics

    NASA Astrophysics Data System (ADS)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  18. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  19. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  20. The applicability of turbulence models to aerodynamic and propulsion flowfields at McDonnell-Douglas Aerospace

    NASA Technical Reports Server (NTRS)

    Kral, Linda D.; Ladd, John A.; Mani, Mori

    1995-01-01

    The objective of this viewgraph presentation is to evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody. The one-equation models have replaced the algebraic models as the baseline turbulence models. The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Sparlart-Allmaras model is not grid dependent like the Baldwin-Barth model. No general turbulence model exists for all engineering applications. The Spalart-Allmaras one-equation model and the Chien k-epsilon models are the preferred turbulence models. Although the two-equation models often better predict the flow field, they may take from two to five times the CPU time. Future directions are in further benchmarking the Menter blended k-w/k-epsilon and algorithmic improvements to reduce CPU time of the two-equation model.

  1. Determining the Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1995-01-01

    An important part of building mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. In this work, an expression for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates with colored residuals is developed and validated. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle (HARV). As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, while conventional parameter accuracy measures were optimistic.

  2. Nonlinear problems in flight dynamics involving aerodynamic bifurcations

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.

    1985-01-01

    Aerodynamic bifurcation is defined as the replacement of an unstable equilibrium flow by a new stable equilibrium flow at a critical value of a parameter. A mathematical model of the aerodynamic contribution to the aircraft's equations of motion is amended to accommodate aerodynamic bifurcations. Important bifurcations such as, the onset of large-scale vortex-shedding are defined. The amended mathematical model is capable of incorporating various forms of aerodynamic responses, including those associated with dynamic stall of airfoils.

  3. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  4. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  5. Subsonic and supersonic static aerodynamic characteristics of a family of bulbous base cones measured with a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.

    1972-01-01

    Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.

  6. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  7. Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Goldstein, M., E.

    1974-01-01

    An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

  8. Motion transitions of falling plates via quasisteady aerodynamics.

    PubMed

    Hu, Ruifeng; Wang, Lifeng

    2014-07-01

    In this paper, we study the dynamics of freely falling plates based on the Kirchhoff equation and the quasisteady aerodynamic model. Motion transitions among fluttering, tumbling along a cusp-like trajectory, irregular, and tumbling along a straight trajectory are obtained by solving the dynamical equations. Phase diagrams spanning between the nondimensional moment of inertia and aerodynamic coefficients or aspect ratio are built to identify regimes for these falling styles. We also investigate the stability of fixed points and bifurcation scenarios. It is found that the transitions are all heteroclinic bifurcations and the influence of the fixed-point stability is local.

  9. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  10. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    PubMed

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  11. Numerical Study on the Flow Mechanism of Base Aerodynamic Force Acting on the Vertical Landing Rocket

    NASA Astrophysics Data System (ADS)

    Fujimatsu, Nobuyoshi; Suzuki, Kojiro

    The base flow field of a vertical landing rocket in ground effect is numerically studied to clarify the mechanism of downward force acting on the body. Two characteristic patterns in the pressure distribution on the base surface are successfully captured as observed in the experiments. When the distance between the base and the ground surface is small, vorticies generated in the shear layer of the jet boundary interact with both the ground and base surfaces. The base pressure near the axis of the base is significantly reduced and large downward force appears due to vortical structure in the base region. When the distance is large, the vorticies are convected along the ground surface and the base pressure near the edge of the vehicle base is reduced due to suction of the ambient air. The numerical results indicate that unsteady motion of such vortices plays an important role in formation of the flow patterns described above.

  12. Exploring the aerodynamic drag of a moving cyclist

    NASA Astrophysics Data System (ADS)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power consumption of cycling. We use an energy-based approach to model the power input for driving a bike at a constant speed. This approach uses a numerical simulation of the slowing down of a bike moving without pedaling which is implementable with standard spreadsheet software. The simulation can be compared directly to simple measurements with real bikes as well as to an analytic solution of the underlying differential equation. It is possible to derive realistic values for the aerodynamic drag coefficient {{c}\\text{D}} and the total power consumption within a secondary physics course. We also report experiences from teaching such a course to class 8 students.

  13. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  14. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  15. Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models

    NASA Technical Reports Server (NTRS)

    Tanuwidjaja, A.

    1982-01-01

    Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.

  16. Electrical and kinetic model of an atmospheric rf device for plasma aerodynamics applications

    SciTech Connect

    Pinheiro, Mario J.; Martins, Alexandre A.

    2010-08-15

    The asymmetrically mounted flat plasma actuator is investigated using a self-consistent two-dimensional fluid model at atmospheric pressure. The computational model assumes the drift-diffusion approximation and uses a simple plasma kinetic model. It investigated the electrical and kinetic properties of the plasma, calculated the charged species concentrations, surface charge density, electrohydrodynamic forces, and gas speed. The present computational model contributes to understand the main physical mechanisms, and suggests ways to improve its performance.

  17. Development of a model of entrained flow coal gasification and study of aerodynamic mechanisms of action on gasifier operation

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Ryzhkov, A. F.

    2015-11-01

    Problems requiring solution in development of modern highly efficient gasification reactor of a promising high power integrated gasification combined-cycle plant are formulated. The task of creating and testing a numerical model of an entrained-flow reactor for thermochemical conversion of pulverized coal is solved. The basic method of investigation is computational fluid dynamics. The submodel of thermochemical processes, including a single-stage scheme of volatile substances outlet and three heterogeneous reactions of carbon residue conversion (complete carbon oxidation, Boudouard reaction and hydrogasification), is given. The mass loss rate is determined according to the basic assumptions of the diffusion-kinetic theory. The equations applied for calculation of the process of outlet of volatile substances and three stages of fuel gasifi-cation (diffusion of reagent gas toward the surface of the coal particle, heterogeneous reactions of gas with carbon on its surface, and homogeneous reactions beyond the particle surface) are presented. The universal combined submodel Eddy Dissipation/Finite Rate Chemistry with standard (built-in) constants is used for numerical estimates. Aerodynamic mechanisms of action on thermochemical processes of solid fuel gasification are studied, as exemplified by the design upgrade of a cyclone reactor of preliminary thermal fuel preparation. Volume concentrations of combustible gases and products of complete combustion in the syngas before and after primary air and pulverized coal flows' redistribution are given. Volume concentrations of CO in syngas at different positions of tangential secondary air inlet nozzle are compared.

  18. Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Carson, George T., Jr.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.

  19. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  20. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  1. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  2. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  3. Development of a Computer-Aided-Design-Based Geometry and Mesh Movement Algorithm for Three-Dimensional Aerodynamic Shape Optimization

    NASA Astrophysics Data System (ADS)

    Truong, Anh Hoang

    This thesis focuses on the development of a Computer-Aided-Design (CAD)-based geometry parameterization method and a corresponding surface mesh movement algorithm suitable for three-dimensional aerodynamic shape optimization. The geometry parameterization method includes a geometry control tool to aid in the construction and manipulation of a CAD geometry through a vendor-neutral application interface, CAPRI. It automates the tedious part of the construction phase involving data entry and provides intuitive and effective design variables that allow for both the flexibility and the precision required to control the movement of the geometry. The surface mesh movement algorithm, on the other hand, transforms an initial structured surface mesh to fit the new geometry using a discrete representation of the new CAD surface provided by CAPRI. Using a unique mapping procedure, the algorithm not only preserves the characteristics of the original surface mesh, but also guarantees that the new mesh points are on the CAD geometry. The new surface mesh is then smoothed in the parametric space before it is transformed back into three-dimensional space. The procedure is efficient in that all the processing is done in the parametric space, incurring minimal computational cost. The geometry parameterization and mesh movement tools are integrated into a three-dimensional shape optimization framework, with a linear-elasticity volume-mesh movement algorithm, a Newton-Krylov flow solver for the Euler equations, and a gradient-based optimizer. The validity and accuracy of the CAD-based optimization algorithm are demonstrated through a number of verification and optimization cases.

  4. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  5. Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Spalart, Philippe R.

    2008-01-01

    The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave transitionally in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.

  6. Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Spalart, Philippe R.

    2008-01-01

    The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave 'transitionally' in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.

  7. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  8. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  9. Vortex modeling for rotor aerodynamics - The 1991 Alexander A. Nikolsky Lecture

    NASA Technical Reports Server (NTRS)

    Gray, Robin B.

    1992-01-01

    The efforts toward realistic vortex modeling for rotary wings which began under the guidance of professor A. A. Nikolsky of Princeton University in 1955-1956 are discussed. Attention is given to Nikolsky's flow-visualization studies and major theoretical considerations for vortex modeling. More recent efforts by other researchers have led to models of increasing complexity. The neglect of compressibility and viscous effects in the classical approach is noted to be a major limiting factor in full-scale rotor applications of the classical vortex theory; it has nevertheless been valuable for the delineation of problem areas and the guiding of both experimental and theoretical investigations.

  10. Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl

    1996-01-01

    A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.

  11. Comparison of Aerodynamic Resistance Parameterizations and Implications for Dry Deposition Modeling

    EPA Science Inventory

    Nitrogen deposition data used to support the secondary National Ambient Air Quality Standards and critical loads research derives from both measurements and modeling. Data sets with spatial coverage sufficient for regional scale deposition assessments are currently generated fro...

  12. Modeling transonic aerodynamic response using nonlinear systems theory for use with modern control theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    The presentation begins with a brief description of the motivation and approach that has been taken for this research. This will be followed by a description of the Volterra Theory of Nonlinear Systems and the CAP-TSD code which is an aeroelastic, transonic CFD (Computational Fluid Dynamics) code. The application of the Volterra theory to a CFD model and, more specifically, to a CAP-TSD model of a rectangular wing with a NACA 0012 airfoil section will be presented.

  13. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  14. Engineering methodology to estimate the aerodynamic heating to the base of the Aeroassist Flight Experiment vehicle

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay; Warmbrod, John; Seaford, Mark

    1989-01-01

    An engineering methodology has been developed to predict the convective heating and pressure environments to the base surfaces of the Aeroassist Flight Experiment (AFE) vehicle during its earth aeropass. Data obtained from prior flight vehicles, wind tunnel tests, CFD analysis of AFE, and simple one-dimensional isentropic flow expansion relationships along with standard aeroheating methods were employed. With the exception of one corner, the AFE base surfaces are immersed in separated flow and are, therefore, exposed to heating and pressure that are small compared to the front face of the aerobrake.

  15. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  16. Aerodynamic and Aeroelastic Insights using Eigenanalysis

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Dowell, Earl H.

    1999-01-01

    This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

  17. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    NASA Technical Reports Server (NTRS)

    Emanuel, G.; Rasmussen, M. L.

    1991-01-01

    Research efforts related to the development of a unified aerospace plane analysis based on waverider technology are summarized. Viscous effects on the forebodies of cone-derived waverider configurations were studied. A simple means for determining the average skin friction coefficient of laminar boundary layers was established. This was incorporated into a computer program that provides lift and drag coefficients and lift/drag ratio for on-design waveriders when the temperature and Reynolds number based on length are specified. An effort was made to carry out parabolized Navier-Stokes (PNS) calculations for cone-derived waveriders. When the viscous terms were turned off (in the Euler mode) computations for elliptic cone-derived waveriders could be carried out for a wide range of on-design and off-design situations. Work related to waveriders derived from power law shocks is described in some detail.

  18. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  19. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  20. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  1. Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Mineck, R. E.

    1978-01-01

    A wind-tunnel model test at advance ratios from 0 to 0.3 with and without auxiliary jet engine thrust is reported. At each advance ratio and engine thrust, both the control power and the aircraft stability were measured. The results indicate that there is a cross-coupling for collective pitch and longitudinal cyclic pitch inputs. The control power for these inputs increased with advance ratio. There was also cross-coupling for differential collective pitch inputs. The airframe was longitudinally unstable, but the instability was less at the highest advance ratio tested. The airframe showed both positive effective dihedral and positive directional stability.

  2. The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J

    NASA Technical Reports Server (NTRS)

    House, R O

    1938-01-01

    The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.

  3. Study of the blade/vortex interaction: Acoustics, aerodynamics and models

    NASA Astrophysics Data System (ADS)

    Gnemmi, P.; Haertig, J.; Johe, C.; Schaffar, M.

    1992-04-01

    A program for calculating the load noise of a helicopter rotor was developed. The method, which requires the knowledge of the local blade load values, was extended to calculate the two dimensional flow around a foil in a field of vortices. A three dimensional method based on the lifting surface theory was developed to simulate the turbulent field developed by a pitch oscillating foil and interacting with another foil placed downstream. The calculated and the measured lift evolution values were compared. The flow velocity was measured by laser velocimetry and the configuration of the rotational flow field was obtained.

  4. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails. Supplement 2; Tabulated Data for the Model with Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with twin vertical tails are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static-pressure coefficients measured on the wing, body, and one of the vertical tails for angles of attack from -4 degrees to 16 degree angles of sideslip of 0 degrees and 5.3 degrees, and nominal canard deflections of O degrees and 10 degrees. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model are shown and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given. Detailed descriptions of the model and experiments and a brief discussion of some of the results are given. Tabulated results of measurements of the aerodynamic loads on the same canard model but having a single vertical tail instead of twin vertical tails are presented.

  5. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  6. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  7. Flow aerodynamics modeling of an MHD swirl combustor - Calculations and experimental verification

    NASA Technical Reports Server (NTRS)

    Gupta, A. K.; Beer, J. M.; Louis, J. F.; Busnaina, A. A.; Lilley, D. G.

    1981-01-01

    The paper describes a computer code for calculating the flow dynamics of a constant-density flow in the second-stage trumpet shaped nozzle section of a two-stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite-difference computer code has been developed for the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for the efficient solution of the equations. The code produces as output the flow field map of the nondimensional stream function, axial and swirl velocity. It was found that the best location for seed injection to obtain a uniform distribution at the combustor exit is in the central location for seed injected at the entrance to the second stage combustor.

  8. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  9. Adjoint-based optimization for the understanding of the aerodynamics of a flapping plate

    NASA Astrophysics Data System (ADS)

    Wei, Mingjun; Xu, Min

    2015-11-01

    An adjoint-based optimization is applied on a rigid flapping plate and a flexible flapping plate for drag reduction and for propulsive efficiency. Non-cylindrical calculus is introduced to handle the moving boundary. The rigid plate has a combined plunging and pitching motion with incoming flow, the control parameter is the phase delay which is considered first as a constant then as an arbitrary time-varying function. The optimal controls with different cost functions provide different strategies to reach maximum drag reduction or propulsive efficiency. The flexible plate has plunging, pitching, and deformation which is defined by the first two natural modes. With the same optimization goals, the control is instead the amplitude and phase delay of the pitching, the first eigen mode, and the second eigen mode. Similar analyses are taken to understand the conditions for drag reduction and propulsive efficiency when flexibility is involved. It is also shown that the flexibility plays a more important role at lower Reynolds number. Supported by AFOSR.

  10. Aerodynamic Spring and Damping of Free-Pitching Tips on a Semispan Wing

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Martin, Daniel M.

    1992-01-01

    A test was conducted in the NASA Ames 7- by 10-Foot Wind Tunnel to derive aerodynamic spring and damping estimates for free-pitching tips on a semispan wing. The test model was a rectangular planform semispan wing with wing tips that had a single rigid-body pitch degree of freedom with respect to the inboard wing. A number of different tip planform geometries were tested, incorporating a range of quarter-chord sweep angles and taper ratios. The wing-tip dynamic response characteristics were measured at several wing angles of attack and tunnel dynamic pressures. The tip oscillations were initiated by releasing the tips from prescribed angles of attack. A new method to isolate Coulomb damping from aerodynamic damping from these tip-motion time histories is developed and applied. Correlations were performed between the experimentally derived wing-tip aerodynamic spring and damping values and predictions from a semiempirical analysis based on steady-state tip aerodynamic loads.

  11. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  12. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  13. Low-speed aerodynamic characteristics of a 42 deg swept high-wing model having a double-slotted flap system and a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Goodson, K. W.

    1974-01-01

    A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.

  14. AirDyn: an instrumented model-scale helicopter for measuring unsteady aerodynamic loading in airwakes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

    2011-04-01

    This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

  15. Aerodynamics of Small Vehicles

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  16. Aerodynamic Forces on a Vibrating Unstaggered Cascade

    NASA Technical Reports Server (NTRS)

    Soehngen, H.

    1957-01-01

    The unsteady aerodynamic forces, [based on two-dimensional incompressible flow considerations], are determined for an unstaggered cascade, the blades of which are vibrating in phase in an approach flow parallel to the blades.

  17. Application of a Comprehensive Analytical Model of Rotor Aerodynamics and Dynamics (CAMRAD) to the McDonnell Douglas AH-64A helicopter

    NASA Technical Reports Server (NTRS)

    Callahan, Cynthia B.; Bassett, Duane E.

    1988-01-01

    A model of the AH-64A helicopter was generated in a Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD) in an effort to validate its analytical capabilities for modeling a current advanced Army helicopter. The initial phase of the effort involved the generation of CAMRAD input files necessary for the complete aerodynamic, structural, and dynamic definition of the production AH-64A helicopter. The input files were checked by making comparisons of CAMRAD full helicopter trim and main rotor blade natural frequency predictions with those of full helicopter trim program, Blade Element Trim (BETRIM), and dynamic analysis code, Dynamic Analysis Research Tool (DART), respectively. The main thrust concerned the application of the AH-64A CAMRAD model thus developed and verified for main rotor blade structural loads predictions and comparison with DART analytical results. The investigation provided insight not only into the usefulness of CAMRAD for the AH-64A performance and dynamics prediction, but also into the limitations of the program for modeling advanced rotor and fuselage systems. The model development effort is discussed, the results of the CAMRAD correlation studies presented, and some general conclusions are offered on the applicability of CAMRAD for rotor aeroelastic loads prediction for current and future rotorcraft configurations.

  18. Predictions of the cycle-to-cycle aerodynamic loads on a yawed wind turbine blade under stalled conditions using a 3D empirical stochastic model

    NASA Astrophysics Data System (ADS)

    ELGAMMI, MOUTAZ; SANT, TONIO

    2016-09-01

    This paper investigates a new approach to model the stochastic variations in the aerodynamic loads on yawed wind turbines experienced at high angles of attack. The method applies the one-dimensional Langevin equation in conjunction with known mean and standard deviation values for the lift and drag data. The method is validated using the experimental data from the NREL Phase VI rotor in which the mean and standard deviation values for the lift and drag are derived through the combined use of blade pressure measurements and a free-wake vortex model. Given that direct blade pressure measurements are used, 3D flow effects arising from the co-existence of dynamic stall and stall delay are taken into account. The model is an important step towards verification of several assumptions characterized as the estimated standard deviation, Gaussian white noise of the data and the estimated drift and diffusion coefficients of the Langevin equation. The results using the proposed assumptions lead to a good agreement with measurements over a wide range of operating conditions. This provides motivation to implement a general fully independent theoretical stochastic model within a rotor aerodynamics model, such as the free-wake vortex or blade-element momentum code, whereby the mean lift and drag coefficients can be estimated using 2D aerofoil data with correction models for 3D dynamic stall and stall delay phenomena, while the corresponding standard derivations are estimated through CFD.

  19. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  20. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on a Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.

  1. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  2. An Overview of Ares-I CFD Ascent Aerodynamic Data Development And Analysis Based on USM3D

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad; Parlette, Edward B.

    2011-01-01

    An overview of the computational results obtained from the NASA Langley developed unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, in support of the Ares-I project within the NASA s Constellation program, are presented. The numerical data are obtained for representative flow conditions pertinent to the ascent phase of the trajectory at both wind tunnel and flight Reynolds number without including any propulsion effects. The USM3D flow solver has been designated to have the primary role within the Ares-I project in developing the computational aerodynamic data for the vehicle while other flow solvers, namely OVERFLOW and FUN3D, have supporting roles to provide complementary results for fewer cases as part of the verification process to ensure code-to-code solution consistency. Similarly, as part of the solution validation efforts, the predicted numerical results are correlated with the aerodynamic wind tunnel data that have been generated within the project in the past few years. Sample aerodynamic results and the processes established for the computational solution/data development for the evolving Ares-I design cycles are presented.

  3. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  4. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  5. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  6. Performance aerodynamics of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Arrington, J. P.; Mccandless, R. S.

    1984-01-01

    A method for predicting the performance aerodynamics of aeroassisted orbital transfer vehicles was developed based on techniques that were used in the aerodynamic databook of the Space Shuttle orbiter and theories from the Hypersonic Arbitrary Body Program. The method spans the entire flight profile of the aeroassisted orbital transfer vehicles from the extreme high altitude non-continuum regime to the highly viscous continuum regime. Results from this method are compared with flight data from the Shuttle orbiter, Apollo Capsule, and the Viking Aeroshell. Finally, performance aerodynamics are estimated for three aeroassisted orbital transfer vehicles that range from low to high lift-to-drag ratio configurations.

  7. Aerodynamic Simulation of the MEXICO Rotor

    NASA Astrophysics Data System (ADS)

    Herraez, I.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.

    2014-12-01

    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed.

  8. Effects of fluid-structure interaction on the aerodynamics of an insect wing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh Tuan; Han, Jae-Hung

    2016-04-01

    In this paper, an insect wing structure is modeled based on data obtained from measurements on real hawkmoth (Manduca Sexta) wings. The aerodynamics of insect wings is simulated by an extended unsteady vortex-lattice method. The finite-element model of a flexible hawkmoth wing is built and validated. A computer program, which couples the finite-element model with the aerodynamic model, is used to study the effects of fluid-structure interaction. Some important features due to the fluid-structure interaction in hovering and forward flight are observed in the present study.

  9. The effects of inlet turbulence and rotor/stator interactions on the aerodynamics and heat transfer of a large-scale rotating turbine model. Part 4: Aerodynamic data tabulation

    NASA Technical Reports Server (NTRS)

    Dring, R. P.; Joslyn, H. D.; Blair, M. F.

    1987-01-01

    A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.

  10. Subsonic and supersonic aerodynamic characteristics of a supersonic cruise fighter model with a twisted and cambered wing with 74 deg sweep

    NASA Technical Reports Server (NTRS)

    Morris, O. A.

    1977-01-01

    A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.

  11. Investigation of the Aerodynamic Characteristics of a Model Wing-Propeller Combination and of the Wing and Propeller Separately at Angles of Attack up to 90 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E; Draper, John W

    1956-01-01

    This report presents the results of an investigation conducted in the Langley 300 mph 7- by 10-foot wind tunnel for the purpose of determining the aerodynamic characteristics of a model wing-propeller combination, and of the wing and propeller separately at angles of attack up to 90 degrees. The tests covered thrust coefficients corresponding to free-stream velocities from zero forward speed to the normal range of cruising speeds. The results indicate that increasing the thrust coefficient increases the angle of attack for maximum lift and greatly diminishes the usual reduction in lift above the angle of attack for maximum lift.

  12. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

  13. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  14. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.

    PubMed

    Delebecque, Louis; Pelorson, Xavier; Beautemps, Denis

    2016-01-01

    The context of this study is the physical modeling of speech production. The objective is, by using a mechanical replica of the vocal tract, to test quantitatively an aerodynamic model of the interaction between the vocal folds and the vocal tract during the production of a vowel-voiceless plosive-vowel sequence. The first step is to realize acoustic and aerodynamic measurements on a speaker during the production of an /apa/ sequence. The aperture and width of the lips are also derived from a high-speed video recording of the subject's face. Theoretical models to describe the flow through the lips and the effect of an expansion of the supraglottal cavity are proposed and validated by comparison with measurements made using a self-oscillating replica of the phonatory system. Finally, using these models, numerical simulations of an /apa/ sequence are performed using the measured lip parameters as the only time-varying input parameters. The results of these simulations suggest that the realization of an occlusion of the vocal tract produces a passive increase in glottal area associated with a voice offset and that the expansion of the supraglottal cavity is responsible for the extension of the phonation up to 40 ms after closure of the lips.

  15. Workshop on Aircraft Surface Representation for Aerodynamic Computation

    NASA Technical Reports Server (NTRS)

    Gregory, T. J. (Editor); Ashbaugh, J. (Editor)

    1980-01-01

    Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.

  16. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  17. Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.

    2010-09-01

    We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

  18. Transonic-Wind-Tunnel Tests of the Aerodynamic Characteristics of a 0.15-Scale Model of the North American Aviation 255-Inch Fin-Stabilized External Store, Coord No. AF-AM-4

    NASA Technical Reports Server (NTRS)

    Fischetti, Thomas L.

    1958-01-01

    An investigation has been made in the Langley 8-foot transonic tunnels on the aerodynamic characteristics of a 0.15-scale model of the North American Aviation 255-inch fin-stabilized external store over a maximum Mach number range of 0.60 to 1.2 and on the effects of mounting lugs, of fin orientation, of fin aspect ratio, and of fixed-transition. The Reynolds number (based on a body length of 37.50 inches) varied from 9.8 x 10(exp 6) to 13.1 x 10(exp 6). The results indicate that the static margin of the finned store at low lift coefficients was only 9 percent of body length at subsonic Mach numbers and was reduced to zero at a Mach number of 1.0, Increasing the fin aspect ratio from 1.82 to 2.41 increased the subsonic static margin to 18 percent and provided a minimum margin of 9 percent near a Mach number of l.O. Store mounting lugs or fin orientation had only small effects on the aerodynamic characteristics of the basic store.

  19. The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

    NASA Technical Reports Server (NTRS)

    Muse, Thomas C.

    1941-01-01

    An investigation was made in the NACA 19-foot pressure wind tunnel to determine the effect of various win-gun installation on the aerodynamic characteristics of a model with an NACA low-drag wing. Measurements were made of lift and drag over an angle-of-attack range and for several values of dynamic pressure on a four-tenths scale model of a high-speed airplane equipped with the low-drag wing and with various wing-gun installations. Two installations were tested: one in which the blast tube and part of the gun barrel protrude ahead of the wing and another in which the guns is mounted wholly within the wing. Two types of openings for the latter installation were tested. For each installation three simulated guns were mounted in each wing. The results are given in the form of nondimensional coefficients. The installations tested appear to have little effect on the maximum-lift coefficient of the model. However, the drag coefficient shows a definite change. The least adverse effect was obtained with the completely internal mounting and small nose entrance. The results indicate that a properly designed wing-gun installation will have very little adverse effect on the aerodynamic characteristics of the low-drag wing.

  20. Results of test IA137 in the NASA/ARC 14 foot transonic wind tunnel of the 0.07 scale external tank forebody (model 68-T) to determine auxiliary aerodynamic data system feasibility

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1976-01-01

    Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.

  1. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  2. Aerodynamic Performance of Hand Launch Glider

    NASA Astrophysics Data System (ADS)

    Koike, Masaru; Ishii, Mitsuru

    In recent years Micro Air Vehicles (MAV) for disaster aerial video are developed vigorously. In order to improve aerodynamic performance of MAV wing performance in low Reynolds numbers (Re) need to be improved, but research on the theme are very rare. In category of Hand Launch Glider, a kind of model aircraft, glide performance are competed, as a result high performance airfoils in Re is around 20,000 are developed. Therefore for MAV's aerodynamic performance improvement airfoils of Hand Launch Gliders should be referred and aerodynamic characteristics of the airfoils desired to be studied. So in this research, aerodynamic characteristics of the gliders are measured in wind tunnel. And also consistency between wind tunnel test and glide test in calm air is examined to confirm reliability of wind tunnel test. Comparison of different airfoils and flow visualization are also performed.

  3. Uniaxial aerodynamic attitude control of artificial satellites

    NASA Technical Reports Server (NTRS)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  4. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  5. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  6. Aeroassist flight experiment aerodynamics and aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Brewer, Edwin B.

    1989-01-01

    The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

  7. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  8. Advanced turboprop installation aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1981-01-01

    The expected aerodynamic effects of a propfan installed on a thick supercritical wing are summarized qualitatively. Nacelle/wing and jet interactions, slipstream incremental velocity, nonuniform inflow, and swirl loss recovery are discussed.

  9. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  10. Aerodynamic Parameter Estimation for the X-43A (Hyper-X) from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Derry, Stephen D.; Smith, Mark S.

    2005-01-01

    Aerodynamic parameters were estimated based on flight data from the third flight of the X-43A hypersonic research vehicle, also called Hyper-X. Maneuvers were flown using multiple orthogonal phase-optimized sweep inputs applied as simultaneous control surface perturbations at Mach 8, 7, 6, 5, 4, and 3 during the vehicle descent. Aerodynamic parameters, consisting of non-dimensional longitudinal and lateral stability and control derivatives, were estimated from flight data at each Mach number. Multi-step inputs at nearly the same flight conditions were also flown to assess the prediction capability of the identified models. Prediction errors were found to be comparable in magnitude to the modeling errors, which indicates accurate modeling. Aerodynamic parameter estimates were plotted as a function of Mach number, and compared with estimates from the pre-flight aerodynamic database, which was based on wind-tunnel tests and computational fluid dynamics. Agreement between flight estimates and values computed from the aerodynamic database was excellent overall.

  11. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  12. Unsteady aerodynamics of insect flight.

    PubMed

    Ellington, C P

    1995-01-01

    Over the past decade, the importance of unsteady aerodynamic mechanisms for flapping insect flight has become widely recognised. Even at the fastest flight speeds, the old quasi-steady aerodynamic interpretation seems inadequate to explain the extra lift produced by the wings. Recent experiments on rigid model wings have confirmed the effectiveness of several postulated high-lift mechanisms. Delayed stall can produce extra lift for several chords of travel during the translational phases of the wingbeat. Lift can also be enhanced by circulation created during pronation and supination by rotational mechanisms: the fling/peel, the near fling/peel and isolated rotation. These studies have revealed large leading-edge vortices which contribute to the circulation around the wing, augmenting the lift. The mechanisms show distinctive patterns of vortex shedding from leading and trailing edges. The results of flow visualization experiments on tethered insects are reviewed in an attempt to identify the high-lift mechanisms actually employed. The fling/peel mechanism is clearly used by some insects. The near fling/peel is the wing motion most commonly observed, but evidence for the production of high lift remains indirect. For many insects, lift on the upstroke probably results from delayed stall instead of the flex mechanism of isolated rotation. The large leading-edge vortices from experiments on rigid model wings are greatly reduced or missing around the real insect wings, often making the identification of aerodynamic mechanisms inconclusive. A substantial spanwise flow component has been detected over the aerodynamic upper wing surface, which should transport leading-edge vorticity towards the wingtip before it has much time to roll up. This spanwise transport, arising from centrifugal acceleration, is probably a general phenomenon for flapping insect flight. It should reduce and stabilise any leading-edge vortices that are present, which is essential for preventing

  13. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  14. Low speed aerodynamic characteristics of a large scale model with a thin, highly swept, 2.67 aspect ratio wing having a cranked leading edge

    NASA Technical Reports Server (NTRS)

    Giulianetti, D. J.; Maki, R. L.

    1972-01-01

    The low speed aerodynamic characteristics of a large-scale model intended to represent advanced fixed-wing fighters have been investigated in the Ames 40 by 80 foot wind tunnel. The model possessed positive static longitudinal stability to nearly 28 deg angle of attack, the maximum tested, both with and without leading-edge flaps deflected. Lateral control with differentially deflected ailerons and a right wing spoiler simultaneously deployed as combined controls was only slightly greater than that with the differentially deflected ailerons deployed as a separate control without the spoiler. Measured lift and drag were in close agreement with that predicted by theory to about 14 deg angle of attack, including the prediction of lift due to 30 deg of trailing edge flap deflection. Estimated takeoff performance of an aircraft 4/3 the scale of the test model showed takeoff distances of less than 2000 ft.

  15. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  16. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  17. Hydrodynamic and Aerodynamic Tests of a Family of Models of Seaplane Floats with Varying Angles of Dead Rise - N.A.C.A. Models 57-A, 57-B, and 57-C

    NASA Technical Reports Server (NTRS)

    Parkinson, John B; Olson, Roland E; House, Rufus O

    1939-01-01

    Three models of V-bottom floats for twin-float seaplanes (N.A.C.A. models 57-A, 57-B, and 57-C) having angles of dead rise of 20 degrees, 25 degrees, and thirty degrees, respectively, were tested in the N.A.C.A. tank and in the N.A.C.A. 7- by 10-foot wind tunnel. Within the range investigated, the effect of angle of dead rise on water resistance was found to be negligible at speeds up to and including the hump speed, and water resistance was found to increase with angle of dead rise at planing speeds. The height of the spray at the hump speed decreased with increase in angle of dead rise and the aerodynamic drag increased with dead rise. Lengthening the forebody of model 57-B decreased the water resistance and the spray at speeds below the hump speed. Spray strips provided an effective means for the control of spray with the straight V sections used in the series but considerably increased the aerodynamic drag. Charts for the determination of the water resistance and the static properties of the model with 25 degrees dead rise and for the aerodynamic drag of all the models are included for use in design.

  18. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  19. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  20. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric

  1. Numerical simulation of the tip aerodynamics and acoustics test

    NASA Astrophysics Data System (ADS)

    Tejero E, F.; Doerffer, P.; Szulc, O.; Cross, J. L.

    2016-04-01

    The application of an efficient flow control system on helicopter rotor blades may lead to improved aerodynamic performance. Recently, our invention of Rod Vortex Generators (RVGs) has been analyzed for helicopter rotor blades in hover with success. As a step forward, the study has been extended to forward flight conditions. For this reason, a validation of the numerical modelling for a reference helicopter rotor (without flow control) is needed. The article presents a study of the flow-field of the AH-1G helicopter rotor in low-, medium- and high-speed forward flight. The CFD code FLOWer from DLR has proven to be a suitable tool for the aerodynamic analysis of the two-bladed rotor without any artificial wake modelling. It solves the URANS equations with LEA (Linear Explicit Algebraic stress) k-ω model using the chimera overlapping grids technique. Validation of the numerical model uses comparison with the detailed flight test data gathered by Cross J. L. and Watts M. E. during the Tip Aerodynamics and Acoustics Test (TAAT) conducted at NASA in 1981. Satisfactory agreements for all speed regimes and a presence of significant flow separation in high-speed forward flight suggest a possible benefit from the future implementation of RVGs. The numerical results based on the URANS approach are presented not only for a popular, low-speed case commonly used in rotorcraft community for CFD codes validation but preferably for medium- and high-speed test conditions that have not been published to date.

  2. Size effects on insect hovering aerodynamics: an integrated computational study.

    PubMed

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design. PMID:19258688

  3. Size effects on insect hovering aerodynamics: an integrated computational study.

    PubMed

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  4. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  5. Aerodynamic analysis of hypersonic waverider aircraft

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Pessin, David N.

    1993-01-01

    The purpose of this study is to validate two existing codes used by the Systems Analysis Branch at NASA ARC, and to modify the codes so they can be used to generate and analyze waverider aircraft at on-design and off-design conditions. To generate waverider configurations and perform the on-design analysis, the appropriately named Waverider code is used. The Waverider code is based on the Taylor-Maccoll equations. Validation is accomplished via a comparison with previously published results. The Waverider code is modified to incorporate a fairing to close off the base area of the waverider configuration. This creates a more realistic waverider. The Hypersonic Aircraft Vehicle Optimization Code (HAVOC) is used to perform the off-design analysis of waverider configurations generated by the Waverider code. Various approximate analysis methods are used by HAVOC to predict the aerodynamic characteristics, which are validated via a comparison with experimental results from a hypersonic test model.

  6. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  7. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on an Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails Supplement I-Tabulated Data for the Model with Single Vertical Tails. Supplement 1; Tabulated Data for the Model with Single Vertical Tail

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.

  8. Aerodynamic and Hydrodynamic Tests of a Family of Models of Flying Hulls Derived from a Streamline Body -- NACA Model 84 Series

    NASA Technical Reports Server (NTRS)

    Parkinson, John B; Olson, Roland E; Draley, Eugene C; Luoma, Arvo A

    1943-01-01

    A series of related forms of flying-boat hulls representing various degrees of compromise between aerodynamic and hydrodynamic requirements was tested in Langley Tank No. 1 and in the Langley 8-foot high-speed tunnel. The purpose of the investigation was to provide information regarding the penalties in water performance resulting from further aerodynamic refinement and, as a corollary, to provide information regarding the penalties in range or payload resulting from the retention of certain desirable hydrodynamic characteristics. The information should form a basis for over-all improvements in hull form.

  9. Fundamental Aspects of the Aerodynamics of Turbojet Engine Combustors

    NASA Technical Reports Server (NTRS)

    Barrere, M.

    1978-01-01

    Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture, the recirculation zone where primary combustion occurs, the secondary combustion zone, and the dilution zone were examined. An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit. The aerodynamics of afterburn chambers are discussed. A model which can be used to investigate the evolution of temperature, pressure, and rate and efficiency of combustion the length of the chamber was developed.

  10. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  11. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  12. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  13. Effects of a military cargo pod and tail fins on the aerodynamic characteristics of a large wide-body transport model

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.; Croom, D. R.

    1979-01-01

    Wind tunnel tests were conducted on a 0.03 scale model of a large wide-body commercial aircraft to determine the effects on the static aerodynamic characteristics resulting from the attachment of a belly pod for the long-range deployment of outsize military equipment. The effectiveness of horizontal-tip fins in augmenting directional stability was investigated. At a test Reynolds number of 1.08 x 1,000,000, the addition of the pod results in an increase in total drag of approximately 20 percent. Trim drag due to the pod is very small. Although the pod produces a significant decrease in directional stability, the addition of the tip fins restores some of the stability, particularly at the lower angles of attack.

  14. Static aerodynamic characteristics of a 0.035-scale model of a modified NKC-135 airplane at a Mach number of 0.28

    NASA Technical Reports Server (NTRS)

    Hedstrom, E.; Whitcomb, W. M.

    1977-01-01

    A 0.035-scale model fo a modified NKC-135 airplane was tested in 12-foot pressure wind tunnel to determine the effects on the static aerodynamic characteristics of modifications to the basic aircraft. Modifications investigated included: nose, lower fuselage, and upper fuselage radomes; wing pylons and pods; overwing probe; and air conditioning inlets. The investigation was performed at a Mach number of 0.28 over a Reynolds number range from 6.6 to 26.2 million per meter. Angles of attack and sideslip varied from -8 deg to 20 deg and from -18 deg to 8 deg, respectively, for various combinations of flap, aileron, and rudder deflections. A limited analysis of the test results indicates that the addition of the radomes reduces lateral-directional stability and control effectiveness of the basic aircraft.

  15. Aerodynamic characteristics of a Sparrow 3 missile model in the flow field of a generalized parent body at Mach 2.86

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.

    1984-01-01

    Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.

  16. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  17. Aerodynamics of two-dimensional slotted bluff bodies

    SciTech Connect

    Takahashi, F.; Higuchi, H.

    1988-04-30

    Aerodynamic characteristics of two-dimensional, slotted bluff bodies were experimentally investigated. Flow visualizations, base pressure measurements, mean velocity vector measurements, and drag force measurements were conducted to analyze effects of spacing ratio (i.e., porosity), curvature, and vent. Low porosity model configurations produced stable near-wake patterns with enhanced vortex sheddings of overall wake formations. Model curvature reduced drag forces and weakened the vortex sheddings. Stabilizing effect of curvature on the near-wake patterns was also found. A vent combined with large model curvature was found to control drag force effectively, as well as suppressing vortex sheddings. 10 refs., 52 figs., 1 tab.

  18. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  19. Contributions of the Stochastic Shape Wake Model to Predictions of Aerodynamic Loads and Power under Single Wake Conditions

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; Churchfield, M. J.

    2016-09-01

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. These results indicate that the stochastic shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.

  20. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  1. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds

    PubMed Central

    Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers

    2015-01-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  2. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  3. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions.

    PubMed

    Varshney, Kapil; Chang, Song; Wang, Z Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card. PMID:23767634

  4. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions.

    PubMed

    Varshney, Kapil; Chang, Song; Wang, Z Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.

  5. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Chang, Song; Wang, Z. Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.

  6. Characterization of Flapping Wing Aerodynamics and Flight Dynamics Analysis using Computational Methods

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    Insect flight comes with a lot of intricacies that cannot be explained by conventional aerodynamics. Even with their small-size, insects have the ability to generate the required aerodynamic forces using high frequency flapping motion of their wings to perform different maneuvers. The maneuverability obtained by these flyers using flapping motion belies the classical aerodynamics theory and calls for a new approach to study this highly unsteady aerodynamics. Research is on to find new ways to realize the flight capabilities of these insects and engineer a micro-flyer which would have various applications, ranging from autonomous pollination of crop fields and oil & gas exploration to area surveillance and detection & rescue missions. In this research, a parametric study of flapping trajectories is performed using a two-dimensional wing to identify the factors that affect the force production. These factors are then non-dimensionalized and used in a design of experiments set-up to conduct sensitivity analysis. A procedure to determine an aerodynamic model comprising cycle-averaged force coefficients is described. This aerodynamic model is then used in a nonlinear dynamics framework to perform flight dynamics analysis using a micro-flyer with model properties based on Drosophila. Stability analysis is conducted to determine different steady state flight conditions that could achieved by the micro-flyer with the given model properties. The effect of scaling the mass properties is discussed. An LQR design is used for closed-loop control. Open and closed-loop simulations are performed. The results show that nonlinear dynamics framework can be used to determine values for model properties of a micro-flyer that would enable it to perform different flight maneuvers.

  7. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  8. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Hoist, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  9. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  10. Dynamic stall and aerodynamic damping

    SciTech Connect

    Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

    1999-08-01

    A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

  11. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  12. Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe

    2011-08-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis aiming to design a small hypersonic flying test bed with a relatively simple vehicle architecture. Such vehicle will have to be launched with a sounding rocket and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry technologies such as boundary-layer transition and shock-shock interaction phenomena. The flight shall be conducted at hypersonic Mach number, in the range 6-8 at moderate angles of attack. In the paper some design analyses are shown as, for example, the longitudinal and lateral-directional stability analysis. A preliminary optimization of the configuration has been also done to improve the aerodynamic performance and stability of the vehicle. Several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper. The aerodynamic model of vehicle is also provided.

  13. Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge

    2003-01-01

    Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.

  14. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    PubMed

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning.

  15. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    PubMed

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. PMID:25452503

  16. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  17. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  18. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  19. Aerodynamics of saccate pollen and its implications for wind pollination.

    PubMed

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  20. Aerodynamic Performance of Electro-Active Membrane Wings

    NASA Astrophysics Data System (ADS)

    Barbu, Ioan-Alexandru; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Electro-active polymers offer due to their multivariate compliant nature a great potential for integrating the lift producing system and the control system into one. This work presents the first step in describing both the mechanical and aerodynamic performance of such materials and focuses on both understanding their behaviour in aerodynamic applications and on analysing their aerodynamic performance. Photogrammetry and load measurements are conducted in a wind tunnel for both silicone-based and acrylic-based membranes at zero prestrain supported in a perimeter reinforced frame in electrically passive, active and pulsing conditions. A wide range of fixed voltages and pulsing frequencies are considered. Due to their hyper-viscoelastic nature, both short and long term hysteresis analysis are conducted in terms of aerodynamic performance. Along with these tests, analyses of the effects of the percentage electrode area and silicone content on aerodynamic performance are conducted.

  1. Aerodynamic properties of turbulent combustion fields

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.

    1985-01-01

    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length.

  2. Experimental Hypersonic Aerodynamic Characteristics of the 2001 Mars Surveyor Precision Lander with Flap

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.

    2002-01-01

    Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.

  3. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  4. FLPP IXV Re-Entry Vehicle, Aerodynamic Characterisation

    NASA Astrophysics Data System (ADS)

    Belmont, J.-P.; Cantinaud, O.; Tribot, J.-P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and improving in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration, and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape and thick body. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD. The AEDB includes nominal aerodynamic data, a new set of free molecular aerodynamic coefficients as well as aerodynamic uncertainties. Through the phase B2/C1, complementary computations were performed (CFSE, EPFL, ASTRIUM, TAS, DAA) as well as wind tunnel tests such as ONERA S4ma, DLR H2K, DNW/NLR SST, FOI T1500. All data were analyzed and compared enabling the consolidation of the nominal aerodynamic and aerodynamic uncertainties as well. The paper presents the logic of work based on the system engineering plan with emphasis on the different prediction tools used aiming the final aerodynamic characterization of the IXV configuration.

  5. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  6. Recent Experiments at the Gottingen Aerodynamic Institute

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1925-01-01

    This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).

  7. A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies

    NASA Technical Reports Server (NTRS)

    Massman, William

    1987-01-01

    A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.

  8. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  9. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  10. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  11. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  12. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  13. Aerodynamics of the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2005-06-23

    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.

  14. Wind tunnel investigation of the aerodynamic characteristics of five forebody models at high angles of attack at Mach numbers from 0.25 to 2

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Taleghani, J.

    1975-01-01

    Five forebody models of various shapes were tested in the Ames 6- by 6-Foot Wind Tunnel to determine the aerodynamic characteristics at Mach numbers from 0.25 to 2 at a Reynolds number of 800000. At a Mach number of 0.6 the Reynolds number was varied from 0.4 to 1.8 mil. Angle of attack was varied from -2 deg to 88 deg at zero sideslip. The purpose of the investigation was to determine the effect of Mach number of the side force that develops at low speeds and zero sideslip for all of these forebody models when the nose is pointed. Test results show that with increasing Mach number the maximum side forces decrease to zero between Mach numbers of 0.8 and 1.5, depending on the nose angle; the smaller the nose angle of the higher the Mach number at which the side force exists. At a Mach number of 0.6 there is some variation of side force with Reynolds number, the variation being the largest for the more slender tangent ogive.

  15. Aerodynamic Loading Characteristics at Mach Numbers from 0.80 to 1.20 of a 1/10-Scale Three-Stage Scout Model

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas C.

    1961-01-01

    Aerodynamic loads results have been obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.80 to 1.20 for a 1/10-scale model of the upper three stages of the Scout vehicle. Tests were conducted through an angle-of-attack range from -8 deg to 8 deg at an average test Reynolds number per foot of about 4.0 x 10(exp 6). Results indicated that the peak negative pressures associated with expansion corners at the nose and transition flare exhibit sizeable variations which occur over a relatively small Mach number range. The magnitude of the variations may cause the critical local loading condition for the full-scale vehicle to occur at a Mach number considerably lower than that at which the maximum dynamic pressure occurs in flight. The addition of protuberances simulating antennas and wiring conduits had slight, localized effects. The lift carryover from the nose and transition flare on the cylindrical portions of the model generally increased with an increase in Mach number.

  16. Wind Tunnel Results of the Aerodynamic Performance of a 1/8-Scale Model of a Twin-Engine Transport with Multi-Element Wing

    NASA Technical Reports Server (NTRS)

    Laflin, Brenda E. Gile; Applin, Zachary T.; Jones, Kenneth M.

    1997-01-01

    A wind tunnel investigation was performed in the 14- by 22-Foot Subsonic Tunnel on a pressure instrumented 1/8-scale twin-engine subsonic transport to better understand the flow physics on a multi-element wing section. The wing consisted of a part-span, triple-slotted trailing edge flap, inboard leading-edge Krueger flap and an outboard leading-edge slat. The model was instrumented with flush pressure ports at the fuselage centerline and seven spanwise wing locations. The model was tested in cruise, take-off and landing configurations at dynamic pressures and Mach numbers from 10 lbf/ft(exp 2) to 50 lbf/ft(exp 2) and 0.08 to 0.17, respectively. This resulted in corresponding Reynolds numbers of 0.8 x 10(exp 5) to 1.8 x 10(exp 6). Pressure data were collected using electronically scanned pressure devices and force and moment data were collected with a six component strain gauge balance. Results are presented for various control surface deflections over an angle-of-attack range from -4 degrees to 16 degrees and sideslip angle range from -10 degrees to 10 degrees. Longitudinal and lateral directional aerodynamic data are presented as well as chordwise pressure distributions at the seven spanwise wing locations and the fuselage centerline.

  17. Tail contribution to the directional aerodynamic characteristics of a 1/6-scale model of the rotor systems research aircraft with a tail rotor

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    The results are presented of a wind tunnel investigation to determine the tail contribution to the directional aerodynamic characteristics of a 1/6-scale model of the rotor systems research aircraft (RSRA) with a tail rotor. No main rotor was used during the investigation. Data were obtained with and without the tail rotor over a range of sideslip angle and over a range of rotor collective pitch angle. The model with the tail rotor was tested at several advance ratios with and without thrust from the auxiliary thrust engines on the RSRA fuselage. Increasing the space between the tail-rotor hub and the vertical tail reduced the tail-rotor torque required at moderate to high rotor thrust. Increasing the exit dynamic pressure of the auxiliary thrust engines decreases the tail contribution to the static directional stability. The tail-rotor thrust and its interference provide a positive increment to the static directional stability. The tail contribution increases with forward speed. The adverse yawing moment of the airframe would strongly affect the thrust required of the tail rotor when the helicopter is hovering in a crosswind.

  18. "Pierce and inhale" design in capsule based dry powder inhalers: Effect of capsule piercing and motion on aerodynamic performance of drugs.

    PubMed

    Martinelli, Francesco; Balducci, Anna Giulia; Rossi, Alessandra; Sonvico, Fabio; Colombo, Paolo; Buttini, Francesca

    2015-06-20

    In this work three capsule-based dry powder inhalers, available for generics product development, were compared. Two technologically different dry powder formulations were used in order to relate the capsule piercing position and motion in the device to their aerodynamic performance. A "pierce and inhale" design, in which the capsules pierced with RS01, HandiHaler or Turbospin devices were aerosolized in the same device or transferred and aerosolized with another device, was constructed and carried out. The results obtained showed that two dry powder formulations, i.e., a drug/lactose blend or a carrier-free powder, aerosolized using capsule based inhalers, performed differently. The aerosolization of drug carrier mixture in terms of drug dispersion and emitted dose, was more sensible to the piercing and device combination than the carrier free powder. The motion of the capsule during the aerosolization boosted the powder emission, whereas the powder disaggregation was more influenced by the airflow pattern around the capsule and inside the inhaler turbulence chamber.

  19. Effects of nonlinear unsteady aerodynamics on performance, stability and control of an F-18 configuration

    NASA Astrophysics Data System (ADS)

    Lin, Guofeng

    Large-amplitude forced oscillation data for an F-18 configuration are analyzed with two modeling methods: Fourier functional analysis to form the indicial integrals, and a generalized dynamic aerodynamic model for stability and control analysis. The indicial integral is first applied to calculate the pitch damping parameter for comparison with the conventional forced oscillation test. It is shown that the reduced frequency affects the damping much more strongly than the test amplitude. Using the indicial integral models in a flight simulation code for an F-18 configuration, it is found that the configuration with unsteady aerodynamics becomes unstable in pitch if the pitch rate is high, in contrast to the quasi-steady configuration which depends mainly on the instantaneous angle of attack. In a pitch-up maneuver in the post-stall regime the configuration with unsteady aerodynamics can stay at a high pitch attitude and angle of attack without losing altitude for a much longer duration than the quasi-steady model. However, the speed will decrease faster because of higher drag. The newly developed generalized dynamic aerodynamic model is of the nonlinear algebraic form with the coefficients being determined from a set of large amplitude oscillatory experimental data by using least-square fitting. The resulting model coefficients are functions of the reduced frequency and amplitude. The new aerodynamic models have been verified with data in harmonic oscillation with a smaller amplitude and in constant pitch-rate motions. The new algebraic models are especially useful in stability and control analysis, and are used in bifurcation analysis and control studies for the same F-18 HARV configuration. The results show significant differences in the equilibrium surfaces and dynamic stability. It is also shown that control gains developed with the conventional quasi-steady aerodynamic data may not be adequate when the effect of unsteady aerodynamics is significant. A numerical

  20. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    developed based on a set of 82 experimental measurements and also compared to existing predictions tools. Two reference predictions found in the literature yielded 76% and 54% discrepancy with respect to experimental testing, whereas the proposed ice roughness prediction model resulted in a 31% minimum accuracy in prediction. It must be noted that the accuracy of the proposed model is within the ice shape reproduction uncertainty of icing facilities. Based on the new ice roughness prediction model and the CSR heat transfer scaling method, an icing heat transfer model was developed. The approach achieved high accuracy in heat transfer prediction compared to experiments conducted at the AERTS facility. The discrepancy between predictions and experimental results was within +/-15%, which was within the measurement uncertainty range of the facility. By combining both the ice roughness and heat transfer predictions, and incorporating the modules into an existing ice prediction tool (LEWICE), improved prediction capability was obtained, especially for the glaze regime. With the available ice shapes accreted at the AERTS facility and additional experiments found in the literature, 490 sets of experimental ice shapes and corresponding aerodynamics testing data were available. A physics-based performance degradation empirical tool was developed and achieved a mean absolute deviation of 33% when compared to the entire experimental dataset, whereas 60% to 243% discrepancies were observed using legacy drag penalty prediction tools. Rotor torque predictions coupling Blade Element Momentum Theory and the proposed drag performance degradation tool was conducted on a total of 17 validation cases. The coupled prediction tool achieved a 10% predicting error for clean rotor conditions, and 16% error for iced rotor conditions. It was shown that additional roughness element could affect the measured drag by up to 25% during experimental testing, emphasizing the need of realistic ice structures