Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2011-01-01
A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Experimental Facilities and Modelling for Rarefied Aerodynamics
2011-01-01
aerodynamic forces and moments that act on an object moving in the gas . The aerodynamics of rarefied gases also investigates the flow of gases in...Originally, theoretical models for rarefied gas flows were developed in the frame of the molecular kinetic theory. Thus the first self-consistent descriptions...method [7-11]. 3.0 EXPERIMENTAL FACILITIES FOR RAREFIED FLOWS 3.1 Overview Rarefied - gas (vacuum) wind tunnel is a wind tunnel operating at low pressures
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
A Generic Nonlinear Aerodynamic Model for Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2014-01-01
A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
Efficient Global Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
Rarefield-Flow Shuttle Aerodynamics Flight Model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1994-01-01
A model of the Shuttle Orbiter rarefied-flow aerodynamic force coefficients has been derived from the ratio of flight acceleration measurements. The in-situ, low-frequency (less than 1Hz), low-level (approximately 1 x 10(exp -6) g) acceleration measurements are made during atmospheric re-entry. The experiment equipment designed and used for this task is the High Resolution Accelerometer Package (HiRAP), one of the sensor packages in the Orbiter Experiments Program. To date, 12 HiRAP re-entry mission data sets spanning a period of about 10 years have been processed. The HiRAP-derived aerodynamics model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as function of angle of attack, body-flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle of attack are also presented, along with flight-derived rarefied-flow transition bridging formulae. Comparisons are made between the aerodynamics model, data from the latest Orbiter Operational Aerodynamic Design Data Book, applicable computer simulations, and wind-tunnel data.
Parameter identification and modeling of longitudinal aerodynamics
NASA Technical Reports Server (NTRS)
Aksteter, J. W.; Parks, E. K.; Bach, R. E., Jr.
1995-01-01
Using a comprehensive flight test database and a parameter identification software program produced at NASA Ames Research Center, a math model of the longitudinal aerodynamics of the Harrier aircraft was formulated. The identification program employed the equation error method using multiple linear regression to estimate the nonlinear parameters. The formulated math model structure adhered closely to aerodynamic and stability/control theory, particularly with regard to compressibility and dynamic manoeuvring. Validation was accomplished by using a three degree-of-freedom nonlinear flight simulator with pilot inputs from flight test data. The simulation models agreed quite well with the measured states. It is important to note that the flight test data used for the validation of the model was not used in the model identification.
Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1994-01-01
A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.
Flight Test Maneuvers for Efficient Aerodynamic Modeling
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2011-01-01
Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Chin, Suei; Lan, C. Edward
1990-01-01
Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.
Rarefied-flow Shuttle aerodynamics model
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, Kevin T.; Moats, Christina D.
1993-01-01
A rarefied-flow shuttle aerodynamic model spanning the hypersonic continuum to the free molecule-flow regime was formulated. The model development has evolved from the High Resolution Accelerometer Package (HiRAP) experiment conducted on the Orbiter since 1983. The complete model is described in detail. The model includes normal and axial hypersonic continuum coefficient equations as functions of angle-of-attack, body flap deflection, and elevon deflection. Normal and axial free molecule flow coefficient equations as a function of angle-of-attack are presented, along with flight derived rarefied-flow transition bridging formulae. Comparisons are made with data from the Operational Aerodynamic Design Data Book (OADDB), applicable wind-tunnel data, and recent flight data from STS-35 and STS-40. The flight-derived model aerodynamic force coefficient ratio is in good agreement with the wind-tunnel data and predicts the flight measured force coefficient ratios on STS-35 and STS-40. The model is not, however, in good agreement with the OADDB. But, the current OADDB does not predict the flight data force coefficient ratios of either STS-35 or STS-40 as accurately as the flight-derived model. Also, the OADDB differs with the wind-tunnel force coefficient ratio data.
NASA Technical Reports Server (NTRS)
Messina, Michael D.
1995-01-01
The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.
Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database
NASA Technical Reports Server (NTRS)
Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.
2011-01-01
Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.
System Identification of a Vortex Lattice Aerodynamic Model
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.
2001-01-01
The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.
Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley; Lung, Shun-fat
2008-01-01
An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.
Aerodynamics modeling of towed-cable dynamics
Kang, S.W.; Latorre, V.R.
1991-01-17
The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.
Aerodynamic tailoring of the Learjet Model 60 wing
NASA Technical Reports Server (NTRS)
Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.
1993-01-01
The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
The method based on Fourier functional analysis and indicial formulation for aerodynamic modeling as proposed by Chin and Lan is extensively examined and improved for the purpose of general applications to realistic airplane configurations. Improvement is made to automate the calculation of model coefficients, and to evaluate more accurately the indicial integral. Test data of large angle-of-attack ranges for two different models, a 70 deg. delta wing and an F-18 model, are used to further verify the applicability of Fourier functional analysis and validate the indicial formulation. The results show that the general expression for harmonic motions throughout a range of k is capable of accurately modeling the nonlinear responses with large phase lag except in the region where an inconsistent hysteresis behavior from one frequency to the other occurs. The results by the indicial formulation indicate that more accurate results can be obtained when the motion starts from a low angle of attack where hysteresis effect is not important.
Modeling Aerodynamically Generated Sound of Helicopter Rotors
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
2002-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
Aerodynamic Effects and Modeling of Damage to Transport Aircraft
NASA Technical Reports Server (NTRS)
Shah, Gautam H.
2008-01-01
A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Validation and comparison of aerodynamic modelling approaches for wind turbines
NASA Astrophysics Data System (ADS)
Blondel, F.; Boisard, R.; Milekovic, M.; Ferrer, G.; Lienard, C.; Teixeira, D.
2016-09-01
The development of large capacity Floating Offshore Wind Turbines (FOWT) is an interdisciplinary challenge for the design solvers, requiring accurate modelling of both hydrodynamics, elasticity, servodynamics and aerodynamics all together. Floating platforms will induce low-frequency unsteadiness, and for large capacity turbines, the blade induced vibrations will lead to high-frequency unsteadiness. While yawed inflow conditions are still a challenge for commonly used aerodynamic methods such as the Blade Element Momentum method (BEM), the new sources of unsteadiness involved by large turbine scales and floater motions have to be tackled accurately, keeping the computational cost small enough to be compatible with design and certification purposes. In the light of this, this paper will focus on the comparison of three aerodynamic solvers based on BEM and vortex methods, on standard, yawed and unsteady inflow conditions. We will focus here on up-to-date wind tunnel experiments, such as the Unsteady Aerodynamics Experiment (UAE) database and the MexNext international project.
Unsteady aerodynamic modeling for arbitrary motions
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Ashley, H.; Breakwell, J. V.
1977-01-01
A study is presented on the unsteady aerodynamic loads due to arbitrary motions of a thin wing and their adaptation for the calculation of response and true stability of aeroelastic modes. In an Appendix, the use of Laplace transform techniques and the generalized Theodorsen function for two-dimensional incompressible flow is reviewed. New applications of the same approach are shown also to yield airloads valid for quite general small motions. Numerical results are given for the two-dimensional supersonic case. Previously proposed approximate methods, starting from simple harmonic unsteady theory, are evaluated by comparison with exact results obtained by the present approach. The Laplace inversion integral is employed to separate the loads into 'rational' and 'nonrational' parts, of which only the former are involved in aeroelastic stability of the wing. Among other suggestions for further work, it is explained how existing aerodynamic computer programs may be adapted in a fairly straightforward fashion to deal with arbitrary transients.
Transonic limit cycle oscillation analysis using reduced order aerodynamic models
NASA Astrophysics Data System (ADS)
Dowell, E. H.; Thomas, J. P.; Hall, K. C.
2004-01-01
Limit cycle oscillations have been observed in flight operations of modern aircraft, wind tunnel experiments and mathematical models. Both fluid and structural nonlinearities are thought to contribute to these phenomena. With recent advances in reduced order aerodynamic modeling, it is now feasible to analyze limit cycle oscillations that may occur in transonic flow including the effects of structural and fluid nonlinearities. In this paper an airfoil with control surface freeplay (a common structural nonlinearity) is used to investigate transonic flutter and limit cycle oscillations. The reduced order aerodynamic model used in this paper assumes the shock motion is small and in proportion to the structural motions.
Evaluation of thermographic phosphor technology for aerodynamic model testing
Cates, M.R.; Tobin, K.W.; Smith, D.B.
1990-08-01
The goal for this project was to perform technology evaluations applicable to the development of higher-precision, higher-temperature aerodynamic model testing at Arnold Engineering Development Center (AEDC) in Tullahmoa, Tennessee. With the advent of new programs for design of aerospace craft that fly at higher speeds and altitudes, requirements for detailed understanding of high-temperature materials become very important. Model testing is a natural and critical part of the development of these new initiatives. The well-established thermographic phosphor techniques of the Applied Technology Division at Oak Ridge National Laboratory are highly desirable for diagnostic evaluation of materials and aerodynamic shapes as studied in model tests. Combining this state-of-the-art thermographic technique with modern, higher-temperature models will greatly improve the practicability of tests for the advanced aerospace vehicles and will provide higher precision diagnostic information for quantitative evaluation of these tests. The wavelength ratio method for measuring surface temperatures of aerodynamic models was demonstrated in measurements made for this project. In particular, it was shown that the appropriate phosphors could be selected for the temperature range up to {approximately}700 {degree}F or higher and emission line ratios of sufficient sensitivity to measure temperature with 1% precision or better. Further, it was demonstrated that two-dimensional image- processing methods, using standard hardware, can be successfully applied to surface thermography of aerodynamic models for AEDC applications.
Development of the X-33 Aerodynamic Uncertainty Model
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
1998-01-01
An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.
ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS
There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...
NASA Technical Reports Server (NTRS)
Friedmann, P. P.; Venkatesan, C.
1985-01-01
The aeromechanical stability of a helicopter in ground resonance was analyzed, by incorporating five different aerodynamic models in the coupled rotor/fuselage analysis. The sensitivity of the results to changes in aerodynamic modelling was carefully examined. The theoretical results were compared with experimental data and useful conclusions are drawn regarding the role of aerodynamic modeling on this aeromechanical stability problem. The aerodynamic model which provided the best all around correlation with the experimental data was identified.
Modelling of natural and bypass transition in aerodynamics
NASA Astrophysics Data System (ADS)
Fürst, Jiří; Straka, Petr; Příhoda, Jaromír
2014-03-01
Most of transition models are proposed for modelling of the bypass transition common in the internal aerodynamics especially in turbomachinery where free stream turbulence is the dominant parameter affecting the transition onset. Free-stream turbulence level in the external aerodynamics is usually noticeably lower and so the natural transition often occurs in flows around airfoils. The transition model with the algebraic equation for the intermittency coefficient proposed originally by Straka and Příhoda [3] for the bypass transition was modified for modelling of the transition at low free-stream turbulence. The modification is carried out using experimental data of Schubauer and Skramstad [18]. Further, the three-equation k-kL-ω model proposed by Walters and Cokljat [10] was used for the modelling of the transition at low free-stream turbulence. Both models were tested by means of the incompressible flow around airfoils at moderate and very low free-stream turbulence.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
Micro air vehicle motion tracking and aerodynamic modeling
NASA Astrophysics Data System (ADS)
Uhlig, Daniel V.
exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight
A quasi-steady aerodynamic model for flapping flight with improved adaptability.
Lee, Y J; Lua, K B; Lim, T T; Yeo, K S
2016-04-28
An improved quasi-steady aerodynamic model for flapping wings in hover has been developed. The purpose of this model is to yield rapid predictions of lift generation and efficiency during the design phase of flapping wing micro air vehicles. While most existing models are tailored for a specific flow condition, the present model is applicable over a wider range of Reynolds number and Rossby number. The effects of wing aspect ratio and taper ratio are also considered. The model was validated by comparing against numerical simulations and experimental measurements. Wings with different geometries undergoing distinct kinematics at varying flow conditions were tested during validation. Generally, model predictions of mean force coefficients were within 10% of numerical simulation results, while the deviations in power coefficients could be up to 15%. The deviation is partly due to the model not taking into consideration the initial shedding of the leading-edge vortex and wing-wake interaction which are difficult to account under quasi-steady assumption. The accuracy of this model is comparable to other models in literature, which had to be specifically designed or tuned to a narrow range of operation. In contrast, the present model has the advantage of being applicable over a wider range of flow conditions without prior tuning or calibration, which makes it a useful tool for preliminary performance evaluations.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.
2013-01-01
Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
Collider constraints on tuning in composite Higgs models
NASA Astrophysics Data System (ADS)
Barnard, James; White, Martin
2015-10-01
Two potential sources of tuning exist in composite Higgs models: one comes from keeping the Higgs VEV below the compositeness scale and one comes from keeping the Higgs light after constraints on the top partner masses are applied. We construct a measure that determines whether these tunings are independent or not and combines them appropriately. We perform a comprehensive scan of the parameter space for three explicit models and report the minimum tuning values compatible with existing collider constraints. Tuning values are given as functions of resonance masses and deviations to the Higgs couplings so the effect of future constraints can easily be quantified. The current minimum tuning in the minimal model is 2.5-5% and will be decreased to around 0.8-3.3% if no top partners are observed over the lifetime of the LHC
Exploring bird aerodynamics using radio-controlled models.
Hoey, Robert G
2010-12-01
A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.
Unsteady aerodynamic models for agile flight at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brunton, Steven L.
This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of
NASA Astrophysics Data System (ADS)
Azcona, José; Bouchotrouch, Faisal; González, Marta; Garciandía, Joseba; Munduate, Xabier; Kelberlau, Felix; Nygaard, Tor A.
2014-06-01
Wave tank testing of scaled models is standard practice during the development of floating wind turbine platforms for the validation of the dynamics of conceptual designs. Reliable recreation of the dynamics of a full scale floating wind turbine by a scaled model in a basin requires the precise scaling of the masses and inertias and also the relevant forces and its frequencies acting on the system. The scaling of floating wind turbines based on the Froude number is customary for basin experiments. This method preserves the hydrodynamic similitude, but the resulting Reynolds number is much lower than in full scale. The aerodynamic loads on the rotor are therefore out of scale. Several approaches have been taken to deal with this issue, like using a tuned drag disk or redesigning the scaled rotor. This paper describes the implementation of an alternative method based on the use of a ducted fan located at the model tower top in the place of the rotor. The fan can introduce a variable force that represents the total wind thrust by the rotor. A system controls this force by varying the rpm, and a computer simulation of the full scale rotor provides the desired thrust to be introduced by the fan. This simulation considers the wind turbine control, gusts, turbulent wind, etc. The simulation is performed in synchronicity with the test and it is fed in real time by the displacements and velocities of the platform captured by the acquisition system. Thus, the simulation considers the displacements of the rotor within the wind field and the calculated thrust models the effect of the aerodynamic damping. The system is not able currently to match the effect of gyroscopic momentum. The method has been applied during a test campaign of a semisubmersible platform with full catenary mooring lines for a 6MW wind turbine in scale 1/40 at Ecole Centrale de Nantes. Several tests including pitch free decay under constant wind and combined wave and wind cases have been performed. Data
NASA Technical Reports Server (NTRS)
Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian
2015-01-01
NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.
Near-wall aerodynamics of idealized model foot motion
NASA Astrophysics Data System (ADS)
Kubota, Yoshi; Hall, Joseph; Higuchi, Hiroshi; Sheth, Ritesh; Glauser, Mark; Khalifa, Ezzat
2006-11-01
The air quality is affected by amounts and types of contaminant particles suspended in the air. The particulate matter reaches the respiratory system in an indoor environment by fist becoming detached, resupended and then entrained in the human micro-environment. The resuspension phenomena from the floor occur through either a ballistic mechanism, where kinetic energy is transferred to dust particles through direct contact, or an aerodynamic mechanism, where dust particles are resuspended by the flow generated by the body. In this study we focus on the aerodynamic resuspension of particles caused by walking. The foot motion is idealized and is either towards or away from a floor. A circular disk and an elongated plate having the equivalent area to that of a human foot are used. The foot motion is driven vertically by a linear servo motor that controls the velocity, acceleration, stroke and deceleration. The model velocity is based on the real foot motion. In addition to flow visualization, flowfield measurements were conducted with PIV. In the downstroke, results show a vortex impacting the wall creating the strong wall jet. In upstroke, the vortex generated behind the idealized foot exhibits the large magnitude of velocity. Experiment is continuing with a model more closely to simulating shoe geometry as well as incorporating the real foot kinetics. The results will be compared with the numerical simulation and analytical results.
Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes
NASA Astrophysics Data System (ADS)
Wu, Teng; Kareem, Ahsan
2013-11-01
Accurate modeling of wind-induced loads on bridge decks is critical to ensure the functionality and survivability of long-span bridges. Over the last few decades, several schemes have emerged to model bridge behavior under winds from an aerodynamic/aeroelastic perspective. A majority of these schemes rely on the quasi-steady (QS) theory. This paper systematically compares and assesses the efficacy of five analytical models available in the literature with a new model presented herein. These models include: QS theory-based model, corrected QS theory-based model, linearized QS theory-based model, semi-empirical linear model, hybrid model, and the proposed modified hybrid model. The ability of these models to capture fluid memory and nonlinear effects either individually or collectively is examined. In addition, their ability to include the effects of turbulence in the approach flow on the bridge behavior is assessed. All models are compared in a consistent manner by utilizing the time domain approach. The underlying role of each model in capturing the physics of bridge behavior under winds is highlighted and the influence of incoming turbulence and its interaction with the bridge deck is examined. A discussion is included that focuses on a number of critical parameters pivotal to the effectiveness of corresponding models.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Influence of Wake Models on Calculated Tiltrotor Aerodynamics
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2001-01-01
The tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single,l/4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will examine the influence of wake models on calculated tiltrotor aerodynamics, comparing calculations of performance and airloads with TRAM DNW measurements. The calculations will be performed using the comprehensive analysis CAMRAD II.
NASA Technical Reports Server (NTRS)
Morelli, E. A.; Proffitt, M. S.
1999-01-01
The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.
Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing
NASA Technical Reports Server (NTRS)
Hartman, Christopher L.
2010-01-01
An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.
Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
2000-01-01
A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.
Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.
2012-01-01
Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.
Model-based fault detection and identification with online aerodynamic model structure selection
NASA Astrophysics Data System (ADS)
Lombaerts, T.
2013-12-01
This publication describes a recursive algorithm for the approximation of time-varying nonlinear aerodynamic models by means of a joint adaptive selection of the model structure and parameter estimation. This procedure is called adaptive recursive orthogonal least squares (AROLS) and is an extension and modification of the previously developed ROLS procedure. This algorithm is particularly useful for model-based fault detection and identification (FDI) of aerospace systems. After the failure, a completely new aerodynamic model can be elaborated recursively with respect to structure as well as parameter values. The performance of the identification algorithm is demonstrated on a simulation data set.
Aerodynamic Properties Analysis of Rapid Prototyped Models Versus Conventional Machined Models
NASA Technical Reports Server (NTRS)
Springer, A.; Cooper, K.
1998-01-01
Initial studies of the aerodynamic characteristics of proposed launch vehicles can be made more accurately if lower cost, high fidelity aerodynamic models are available for wind tunnel testing early in the design phase. This paper discusses the results of a study undertaken at NASA's Marshall Space Flight Center to determine if four rapid prototyping methods using a variety of materials are suitable for the design and manufacturing of high speed wind tunnel models in direct testing applications. It also gives an analysis of whether these materials and processes are of sufficient strength and fidelity to withstand the testing environment. In addition to test data, costs and turn-around times for the various models are given. Based on the results of this study, it can be concluded that rapid prototyping models show promise in limited direct application for preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.
Tuning the Model Predictive Control of a Crude Distillation Unit.
Yamashita, André Shigueo; Zanin, Antonio Carlos; Odloak, Darci
2016-01-01
Tuning the parameters of the Model Predictive Control (MPC) of an industrial Crude Distillation Unit (CDU) is considered here. A realistic scenario is depicted where the inputs of the CDU system have optimizing targets, which are provided by the Real Time Optimization layer of the control structure. It is considered the nominal case, in which both the CDU model and the MPC model are the same. The process outputs are controlled inside zones instead of at fixed set points. Then, the tuning procedure has to define the weights that penalize the output error with respect to the control zone, the weights that penalize the deviation of the inputs from their targets, as well as the weights that penalize the input moves. A tuning approach based on multi-objective optimization is proposed and applied to the MPC of the CDU system. The performance of the controller tuned with the proposed approach is compared through simulation with the results of an existing approach also based on multi-objective optimization. The simulation results are similar, but the proposed approach has a computational load significantly lower than the existing method. The tuning effort is also much lower than in the conventional practical approaches that are usually based on ad-hoc procedures.
The Benchmark Active Controls Technology Model Aerodynamic Data
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.
1997-01-01
The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface
Correlation-based Transition Modeling for External Aerodynamic Flows
NASA Astrophysics Data System (ADS)
Medida, Shivaji
Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that
Modeling and simulation of coaxial helicopter rotor aerodynamics
NASA Astrophysics Data System (ADS)
Gecgel, Murat
A framework is developed for the computational fluid dynamics (CFD) analyses of a series of helicopter rotor flowfields in hover and in forward flight. The methodology is based on the unsteady solutions of the three-dimensional, compressible Navier-Stokes equations recast in a rotating frame of reference. The simulations are carried out by solving the developed mathematical model on hybrid meshes that aim to optimally exploit the benefits of both the structured and the unstructured grids around complex configurations. The computer code is prepared for parallel processing with distributed memory utilization in order to significantly reduce the computational time and the memory requirements. The developed model and the simulation methodology are validated for single-rotor-in-hover flowfields by comparing the present results with the published experimental data. The predictive merit of different turbulence models for complex helicopter aerodynamics are tested extensively. All but the kappa-o and LES results demonstrate acceptable agreement with the experimental data. It was deemed best to use the one-equation Spalart-Allmaras turbulence model for the subsequent rotor flowfield computations. First, the flowfield around a single rotor in forward flight is simulated. These time---accurate computations help to analyze an adverse effect of increasing the forward flight speed. A dissymmetry of the lift on the advancing and the retreating blades is observed for six different advance ratios. Since the coaxial rotor is proposed to mitigate the dissymmetry, it is selected as the next logical step of the present investigation. The time---accurate simulations are successfully obtained for the flowfields generated by first a hovering then a forward-flying coaxial rotor. The results for the coaxial rotor in forward flight verify the aerodynamic balance proposed by the previously published advancing blade concept. The final set of analyses aims to investigate if the gap between the
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2015-01-01
An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.
Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
Unsteady aerodynamic modeling for arbitrary motions. [for active control techniques
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1977-01-01
Results indicating that unsteady aerodynamic loads derived under the assumption of simple harmonic motions executed by airfoil or wing can be extended to arbitrary motions are summarized. The generalized Theodorsen (1953) function referable to loads due to simple harmonic oscillations of a wing section in incompressible flow, the Laplace inversion integral for unsteady aerodynamic loads, calculations of root loci of aeroelastic loads, and analysis of generalized compressible transient airloads are discussed.
A-Priori Tuning of Modified Magnussen Combustion Model
NASA Technical Reports Server (NTRS)
Norris, A. T.
2016-01-01
In the application of CFD to turbulent reacting flows, one of the main limitations to predictive accuracy is the chemistry model. Using a full or skeletal kinetics model may provide good predictive ability, however, at considerable computational cost. Adding the ability to account for the interaction between turbulence and chemistry improves the overall fidelity of a simulation but adds to this cost. An alternative is the use of simple models, such as the Magnussen model, which has negligible computational overhead, but lacks general predictive ability except for cases that can be tuned to the flow being solved. In this paper, a technique will be described that allows the tuning of the Magnussen model for an arbitrary fuel and flow geometry without the need to have experimental data for that particular case. The tuning is based on comparing the results of the Magnussen model and full finite-rate chemistry when applied to perfectly and partially stirred reactor simulations. In addition, a modification to the Magnussen model is proposed that allows the upper kinetic limit for the reaction rate to be set, giving better physical agreement with full kinetic mechanisms. This procedure allows a simple reacting model to be used in a predictive manner, and affords significant savings in computational costs for simulations.
Computational modeling of aerodynamic characteristics in sprayed and spiraled precalciner
NASA Astrophysics Data System (ADS)
Li, Xiangguo; Ma, Baoguo; Hu, Zhenwu
2008-08-01
Based on the structural and work characteristics of a spiraled and sprayed precalciner, the RNG k- ɛ model and the SIMPLE method were used to simulate the aerodynamic characteristics in a sprayed and spiraled precalciner. The simulation results demonstrate that the flow area of airflow was increased abruptly due to the reduced part of the bottom of precalciners, which attributed to a sprayed effect. With the mix of the tertiary air with the swirl flow and secondary air, a high-speed zone was formed in the opposite side of the inlet of tertiary air, in which the highest speed was 32.97 m/s. Moreover, the inlet of raw meal designed in the high-speed zone can be propitious to the decentralization of the raw meal. A back-flow zone was formed near the side of the inlet of tertiary air, in which the velocity was negative. From the analysis of the results, the flow field of the precalciner is composed of a sprayed zone, a high-speed zone, a back-flow zone and cylinder zone; moreover, the simulation results agree with those of the engineering compared to the in situ results. The results also showed that the CFD method can be used to give the basis for optimizing the geometrical design and flow parameters of a precalciner.
Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.
NASA Technical Reports Server (NTRS)
Batterson, J. G.
1986-01-01
The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.
NASA Technical Reports Server (NTRS)
Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.
2005-01-01
This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.
Aerodynamics of a Gulfstream G550 Nose Landing Gear Model
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Khorrami, Mehdi R.; Choudhari, Meelan M.
2009-01-01
In this paper we discuss detailed steady and unsteady aerodynamic measurements of a Gulfstream G550 nose landing gear model. The quarter-scale, high-fidelity model includes part of the lower fuselage and the gear cavity. The full model configuration allowed for removal of various gear components (e.g. light cluster, steering mechanism, hydraulic lines, etc.) in order to document their effects on the local flow field. The measurements were conducted at a Reynolds number of 7.3 x 10(exp 4) based on the shock strut (piston) diameter and a freestream Mach number of 0.166. Additional data were also collected at lower Mach numbers of 0.12 and 0.145 and correspondingly lower Reynolds numbers. The boundary layer on the piston was tripped to enable turbulent flow separation, so as to better mimic the conditions encountered during flight. Steady surface pressures were gathered from an extensive number of static ports on the wheels, door, fuselage, and within the gear cavity. To better understand the resultant flow interactions between gear components, surface pressure fluctuations were collected via sixteen dynamic pressure sensors strategically placed on various subcomponents of the gear. Fifteen of the transducers were flush mounted on the gear surface at fixed locations, while the remaining one was a mobile transducer that could be placed at numerous varying locations. The measured surface pressure spectra are mainly broadband in nature, lacking any local peaks associated with coherent vortex shedding. This finding is in agreement with off-surface flow measurements using PIV that revealed the flow field to be a collection of separated shear layers without any dominant vortex shedding processes.
Stop search with acceptable fine-tuning in Susy models
NASA Astrophysics Data System (ADS)
Ćiçi, Ali; Ün, Cem Salih; Kirca, Zerrin
2017-02-01
Supersymmetry (SUSY) is one of the forefront candidates for the models beyond the Standard Model (SM) in resolving the gauge hierarchy problem by proposing new supersymmetric partners for the SM fields. In SUSY, stop, the supersymmetric partner of top quark, is of a special importance, since it cancels the largest quadratic contributions to the Higgs boson mass from top quark loop. Despite heavy stop mass requirement from the Higgs boson searches and fine-tuning demands, it is still possible to find stops of mass about a few hundred GeV, even as light as top quark. In this study, we search for light stop solutions within the SUSY Grand Unified Theory (GUT) models in light of acceptable fine-tuning and current experimental constraints. Afterwards, we analyze the possible signals through which the implications can be tested at the Large Hadron Collider (LHC) experiments.
NASA Technical Reports Server (NTRS)
Truscott, Starr; Parkinson, J B; Ebert, John W , Jr; Valentine, E Floyd
1938-01-01
The present tests illustrate how the aerodynamic drag of a flying boat hull may be reduced by following closely the form of a low drag aerodynamic body and the manner in which the extent of the aerodynamic refinement is limited by poorer hydrodynamic performance. This limit is not sharply defined but is first evidenced by an abnormal flow of water over certain parts of the form accompanied by a sharp increase in resistance. In the case of models 74-A and 75, the resistance (sticking) occurs only at certain combinations of speed, load, and trim and can be avoided by proper control of the trim at high water speeds. Model 75 has higher water resistance at very high speeds than does model 74-A. With constant speed propellers and high takeoff speeds, it appears that the form of model 75 would give slightly better takeoff performance. Model 74-A, however, has lower aerodynamic drag than does model 75 for the same volume of hull.
Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Tobak, M.; Malcolm, G. N.
1980-01-01
This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.
Modeling aerodynamic discontinuities and the onset of chaos in flight dynamical systems
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Uenal, A.
1986-01-01
Various representations of the aerodynamic contribution to the aircraft's equation of motion are shown to be compatible within the common assumption of their Frechet differentiability. Three forms of invalidating Frechet differentiality are identified, and the mathematical model is amended to accommodate their occurrence. Some of the ways in which chaotic behavior may emerge are discussed, first at the level of the aerodynamic contribution to the equation of motion, and then at the level of the equations of motion themselves.
The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models
NASA Technical Reports Server (NTRS)
Hill, Melissa A.; Jackson, E. Bruce
2007-01-01
It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.
Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2001-01-01
Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.
Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2016-01-01
An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
Application of CFD techniques toward the validation of nonlinear aerodynamic models
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Katz, J.
1985-01-01
Applications of Computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gasdynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.
Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2014-01-01
Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.
NASA Technical Reports Server (NTRS)
Nelson, D. P.; Morris, P. M.
1980-01-01
The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.
Simulation and Big Data Challenges in Tuning Building Energy Models
Sanyal, Jibonananda; New, Joshua Ryan
2013-01-01
EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.
NASA Technical Reports Server (NTRS)
Springer, Anthony M.
1998-01-01
The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
A CFD-informed quasi-steady model of flapping wing aerodynamics.
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J
2015-11-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
Optimal Tuning for Disturbance Suppression Mechanism for Model Predictive Control
NASA Astrophysics Data System (ADS)
Tange, Yoshio; Nakazawa, Chikashi
Disturbance suppression is one of most required performances in process control. We recently proposed a new disturbance suppression mechanism applicable for model predictive control in order to enhance disturbance suppression performance for ramp-like disturbances. The proposed method utilized the prediction error of controlled values and generates a disturbance compensation signal by a constant gain feedback. In this paper, we propose an improved version of the disturbance suppression mechanism by applying a low-pass filter and parameter tuning methods by which we can make the mechanism more tolerant to various disturbances such as ramp, step, and other supposable ones. We also show numerical simulation results with an oil distillation tower plant.
Analytical aerodynamic model of a high alpha research vehicle wind-tunnel model
NASA Technical Reports Server (NTRS)
Cao, Jichang; Garrett, Frederick, Jr.; Hoffman, Eric; Stalford, Harold
1990-01-01
A 6 DOF analytical aerodynamic model of a high alpha research vehicle is derived. The derivation is based on wind-tunnel model data valid in the altitude-Mach flight envelope centered at 15,000 ft altitude and 0.6 Mach number with Mach range between 0.3 and 0.9. The analytical models of the aerodynamics coefficients are nonlinear functions of alpha with all control variable and other states fixed. Interpolation is required between the parameterized nonlinear functions. The lift and pitching moment coefficients have unsteady flow parts due to the time range of change of angle-of-attack (alpha dot). The analytical models are plotted and compared with their corresponding wind-tunnel data. Piloted simulated maneuvers of the wind-tunnel model are used to evaluate the analytical model. The maneuvers considered are pitch-ups, 360 degree loaded and unloaded rolls, turn reversals, split S's, and level turns. The evaluation finds that (1) the analytical model is a good representation at Mach 0.6, (2) the longitudinal part is good for the Mach range 0.3 to 0.9, and (3) the lateral part is good for Mach numbers between 0.6 and 0.9. The computer simulations show that the storage requirement of the analytical model is about one tenth that of the wind-tunnel model and it runs twice as fast.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.
Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.
1990-01-01
The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.
Post-Stall Aerodynamic Modeling and Gain-Scheduled Control Design
NASA Technical Reports Server (NTRS)
Wu, Fen; Gopalarathnam, Ashok; Kim, Sungwan
2005-01-01
A multidisciplinary research e.ort that combines aerodynamic modeling and gain-scheduled control design for aircraft flight at post-stall conditions is described. The aerodynamic modeling uses a decambering approach for rapid prediction of post-stall aerodynamic characteristics of multiple-wing con.gurations using known section data. The approach is successful in bringing to light multiple solutions at post-stall angles of attack right during the iteration process. The predictions agree fairly well with experimental results from wind tunnel tests. The control research was focused on actuator saturation and .ight transition between low and high angles of attack regions for near- and post-stall aircraft using advanced LPV control techniques. The new control approaches maintain adequate control capability to handle high angle of attack aircraft control with stability and performance guarantee.
Peformance Tuning and Evaluation of a Parallel Community Climate Model
Drake, J.B.; Worley, P.H.; Hammond, S.
1999-11-13
The Parallel Community Climate Model (PCCM) is a message-passing parallelization of version 2.1 of the Community Climate Model (CCM) developed by researchers at Argonne and Oak Ridge National Laboratories and at the National Center for Atmospheric Research in the early to mid 1990s. In preparation for use in the Department of Energy's Parallel Climate Model (PCM), PCCM has recently been updated with new physics routines from version 3.2 of the CCM, improvements to the parallel implementation, and ports to the SGIKray Research T3E and Origin 2000. We describe our experience in porting and tuning PCCM on these new platforms, evaluating the performance of different parallel algorithm options and comparing performance between the T3E and Origin 2000.
NASA Technical Reports Server (NTRS)
Petot, D.; Loiseau, H.
1982-01-01
Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.
Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles
NASA Astrophysics Data System (ADS)
Goon'ko, Yu. P.
A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.
Moniuszko, Justyna; Maryniak, Jerzy; Ladyżyńska-Kozdraś, Edyta
2010-01-01
Based on a model of a parachute jumper, for various body configurations in a sitting position, tests were carried out in an aerodynamic tunnel. Aerodynamic characteristics and dimensionless aerodynamic forces' coefficients were calculated. The tests were carried out for various configurations of the jumper's body. A universal mathematical model of a parachute jumper's body was prepared, thus enabling the analysis of the jumper's movement with a closed parachute in any position. In order to build the model, a digitized model of a jumper allowing changing the body configuration, making appropriate changes of the moment of inertia, distribution of the center of mass and the aerodynamic characteristics was adopted. Dynamic movement equations were derived for a jumper in a relative reference system. The mathematical model was formulated for a jumper with a variable body configuration during the flight, which can be realized through a change of the position and the speed of the parachute jumper's limbs. The model allows analyzing the motion of the jumper with a closed parachute. It is an important jump phase during an assault with delayed parachute opening in sports type jumping, e.g., Skydiving and in emergency jumps from higher altitudes for the parachute's opening to be safe.
NASA Astrophysics Data System (ADS)
Cheng, Bo; Hu, Zheng; Deng, Xinyan
2010-11-01
Body movements of flying animals change their effective wing kinematics and influence aerodynamic forces. Our previous studies found that substantial aerodynamic damping was produced by flapping wings during body rotation through a passive mechanism we termed flapping counter-torque (FCT). Here we present the aerodynamic damping produced by flapping wings during body translations, which we termed flapping counter-forces (FCFs). Analytical models were derived and the aerodynamic effect of spanwise flow and wing-wake interaction were also explored. The FCFs are dependent on body velocities, wing beat amplitude and frequency. Aerodynamic force and PIV measurements were compared with the analytical models. The experiments were conducted on a pair of dynamically scaled robotic model wings in an oil tank. Experiments in air using a pair of high frequency flapping wing further validate the models. Complete 6-DOF flight dynamic model was derived.
Structural Verification and Modeling of a Tension Cone Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; Cruz, Juan R.; Braun, Robert D.
2010-01-01
Verification analyses were conducted on membrane structures pertaining to a tension cone inflatable aerodynamic decelerator using the analysis code LS-DYNA. The responses of three structures - a cylinder, torus, and tension shell - were compared against linear theory for various loading cases. Stress distribution, buckling behavior, and wrinkling behavior were investigated. In general, agreement between theory and LS-DYNA was very good for all cases investigated. These verification cases exposed the important effects of using a linear elastic liner in membrane structures under compression. Finally, a tension cone wind tunnel test article is modeled in LS-DYNA for which preliminary results are presented. Unlike data from supersonic wind tunnel testing, the segmented tension shell and torus experienced oscillatory behavior when subjected to a steady aerodynamic pressure distribution. This work is presented as a work in progress towards development of a fluid-structures interaction mechanism to investigate aeroelastic behavior of inflatable aerodynamic decelerators.
System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality
NASA Technical Reports Server (NTRS)
Buehrle, Ralph David
1997-01-01
The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal
Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Cruz, Christopher I.
1992-01-01
A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
Technology Transfer Automated Retrieval System (TEKTRAN)
Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...
Scalable tuning of building models to hourly data
Garrett, Aaron; New, Joshua Ryan
2015-03-31
Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less
Scalable tuning of building models to hourly data
Garrett, Aaron; New, Joshua Ryan
2015-03-31
Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.
Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
Fintelman, D M; Sterling, M; Hemida, H; Li, F-X
2014-06-03
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.
Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines
NASA Astrophysics Data System (ADS)
Luhmann, B.; Cheng, P. W.
2014-06-01
A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body
Innovative modeling of Tuned Liquid Column Damper motion
NASA Astrophysics Data System (ADS)
Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A.
2015-06-01
In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Since the apparent effect of sloshing is the deviation of the natural frequency from the theoretical one, the authors propose a fractional differential equation of motion. The latter choice is supported by the fact that the introduction a fractional derivative of order α alters simultaneously both the resonant frequency and the degree of damping of the system. It will be shown, through an extensive experimental analysis, how the proposed model accurately describes liquid surface displacements.
Harinath, Eranda; Mann, George K I
2008-06-01
This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1995-01-01
Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578
Nabawy, Mostafa R A; Crowther, William J
2014-05-06
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.
Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.
Yang, Mingzhi; Du, Juntao; Li, Zhiwei; Huang, Sha; Zhou, Dan
2017-01-01
A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.
Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements
Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan
2017-01-01
A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441
NASA Technical Reports Server (NTRS)
Larson, R. S.; Nelson, D. P.; Stevens, B. S.
1979-01-01
Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.
Signal-tuned Gabor functions as models for stimulus-dependent cortical receptive fields.
Torreão, José R A; Victer, Silvia M C; Amaral, Marcos S
2014-05-01
We propose and analyze a model, based on signal-tuned Gabor functions, for the receptive fields and responses of V1 cells. Signal-tuned Gabor functions are gaussian-modulated sinusoids whose parameters are obtained from a given, spatial, or spectral "tuning" signal. These functions can be proven to yield exact representations of their tuning signals and have recently been proposed as the kernels of a variant Gabor transform-the signal-tuned Gabor transform (STGT)-which allows the accurate detection of spatial and spectral events. Here we show that by modeling the receptive fields of simple and complex cells as signal-tuned Gabor functions and expressing their responses as STGTs, we are able to replicate the properties of these cells when tested with standard grating and slit inputs, at the same time emulating their stimulus-dependent character as revealed by recent neurophysiological studies.
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1985-01-01
A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
An aerodynamic model for one and two degree of freedom wing rock of slender delta wings
NASA Technical Reports Server (NTRS)
Hong, John
1993-01-01
The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.
Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System
NASA Technical Reports Server (NTRS)
Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.
2011-01-01
The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.
Bird Flight as a Model for a Course in Unsteady Aerodynamics
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael
2014-11-01
Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.
Component-based model to predict aerodynamic noise from high-speed train pantographs
NASA Astrophysics Data System (ADS)
Latorre Iglesias, E.; Thompson, D. J.; Smith, M. G.
2017-04-01
At typical speeds of modern high-speed trains the aerodynamic noise produced by the airflow over the pantograph is a significant source of noise. Although numerical models can be used to predict this they are still very computationally intensive. A semi-empirical component-based prediction model is proposed to predict the aerodynamic noise from train pantographs. The pantograph is approximated as an assembly of cylinders and bars with particular cross-sections. An empirical database is used to obtain the coefficients of the model to account for various factors: incident flow speed, diameter, cross-sectional shape, yaw angle, rounded edges, length-to-width ratio, incoming turbulence and directivity. The overall noise from the pantograph is obtained as the incoherent sum of the predicted noise from the different pantograph struts. The model is validated using available wind tunnel noise measurements of two full-size pantographs. The results show the potential of the semi-empirical model to be used as a rapid tool to predict aerodynamic noise from train pantographs.
Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas
2012-01-01
In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.
Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Raveh, Daniella E.
2001-01-01
A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Karpel, Mordechay
1989-01-01
Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6
NASA Technical Reports Server (NTRS)
Jermey, C.; Schiff, L. B.
1985-01-01
A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.
A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 2. User’s Manual
1980-07-01
Laboratories SUMMARY The use of a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate ...computer program calculates the loads and motion of helicopter rotors and airframe. First the trim soilution is obtained; then the flutter, flight...dynamics, and/or transient behavior can be calculated . Either a new job can be initiated, or further calculations can be performed for an old job. For a new
Comparison of aerodynamic models for Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.
2014-06-01
Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.
Helicopter flight dynamics simulation with refined aerodynamic modeling
NASA Astrophysics Data System (ADS)
Theodore, Colin Rhys
This dissertation describes the development of a coupled rotor-fuselage flight dynamic simulation that includes a maneuvering free wake model and a coupled flap-lag-torsion flexible blade representation. This mathematical model is used to investigate effects of main rotor inflow and blade modeling on various flight dynamics characteristics for both articulated and hingeless rotor helicopters. The inclusion of the free wake model requires the development of new numerical procedures for the calculation of trim equilibrium positions, for the extraction of high-order, constant coefficient linearized models, and for the calculation of the free flight responses to arbitrary pilot inputs. The free wake model, previously developed by other investigators at the University of Maryland, is capable of modeling the changes in rotor wake geometry resulting from maneuvers, and the effects of such changes on the main rotor inflow. The overall flight dynamic model is capable of simulating the helicopter behavior during maneuvers that can be arbitrarily large. The combination of sophisticated models of rotor wake and blade flexibility enables the flight dynamics model to capture the effects of maneuvers with unprecedented accuracy for simulations based on first principles: this is the main contribution of the research presented in this dissertation. The increased accuracy brought about by the free wake model significantly improves the predictions of the helicopter trim state for both helicopter configurations considered in this study. This is especially true in low speed flight and hover. The most significant improvements are seen in the predictions of the main rotor collective and power required by the rotor, which can be significantly underpredicted using traditional linear inflow models. Results show that the free-flight on-axis responses to pilot inputs can be predicted with good accuracy with a relatively unsophisticated models that do not include either a free wake nor a
NASA Astrophysics Data System (ADS)
Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.
2016-06-01
Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.
Uncovering the aerodynamics of the smallest insects using numerical and physical models
NASA Astrophysics Data System (ADS)
Miller, Laura
2011-11-01
A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. The smallest flying insects have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, three-dimensional direct numerical simulations are used to compute the lift and drag forces generated by flexible wings to reveal the aerodynamics of these tiny fliers. Results are validated against dynamically scaled physical models. At the lowest Reynolds numbers relevant to insect flight, the relative forces required to rotate the wings and fling them apart become substantially greater. Wing flexibility can reduce these forces and improve efficiency in some situations.
Optical Model Reduction and Robust Feedback Control for Aerodynamics
2010-03-29
the distance minimization (7) is then the minimal distance from T to Hilbert-Schmidt operators of rank n. In other terms, we have min HSs S T s...coefficien chord (su A The NAC rolled flow at the flow t Model E Surface S ction, we co r is a model is
NASA Technical Reports Server (NTRS)
Hoad, D. R.
1974-01-01
An investigation of a four-engine externally blown flap (EBF) powered-lift transport was conducted in the Langley V/STOL tunnel to determine the effect of different engine configurations on the longitudinal aerodynamic characteristics. The different engine configurations were simulated by five different sets of propulsion simulators on a single aircraft model. Longitudinal aerodynamic data were obtained for each simulator on each flap deflection corresponding to cruise, take-off, and landing at a range of angles of attack and various thrust coefficients. The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag characteristics of the five simulators tested in the take-off and landing configurations. The poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mismatch of engine-model sizes or poor engine location and orientation. Isolated engine wake surveys indicated that a reasonable assessment of the aerodynamic characteristics of an engine-wing-flap configuration could be made if qualitative information were available which defined the engine wake characteristics. All configurations could be trimmed easily with relatively small horizontal-tail incidence angles; however, the take-off landing configurations required a high-lift tail.
Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Luo, J.
1996-01-01
The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Nakata, Toshiyuki; Liu, Hao
2012-02-22
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.
CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Rege, Alok Ashok
The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better
Modification of k-ω turbulence model for predicting airfoil aerodynamic performance
NASA Astrophysics Data System (ADS)
Peng, Bo; Yan, Hao; Fang, Hong; Wang, Ming
2015-06-01
Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is conducted with k-ω turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-ω model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating region when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-ω turbulence model.
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint
Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.
2015-04-02
In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.
Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech
NASA Astrophysics Data System (ADS)
Erath, Byron D.; Hemsing, Frank S.
2016-03-01
Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.
Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1998-01-01
This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.
Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics
NASA Technical Reports Server (NTRS)
Hanke, Jeremy L.
2011-01-01
The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space.
Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.
2004-01-01
Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a
Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge
NASA Astrophysics Data System (ADS)
Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min
2013-09-01
A two-dimensional air plasma kinetics model (16 species and 44 processes) for nanosecond discharge under atmospheric pressure was developed to reveal the spatial and temporal distribution of discharge characteristics of a surface dielectric barrier discharge (SDBD) actuator. An energy transfer model, including two channels for energy release from external power source to gas, was developed to couple plasma with hydrodynamics directly in the same dimension. The governing equations included the Poisson equation for the electric potential, continuity equations for each species, electron energy equations for electrons taking part in reactions, and Navier-Stokes equations for non-isothermal fluid. The model was validated through current-voltage profile and electron temperature obtained from experiments. Calculations for discharge characteristics as well as the responses of fluid field from tens of nanoseconds to tens of seconds were performed. Results have shown that local air is heated to 1170 K within tens of nanoseconds and then decreases to 310 K at the end of a discharge period. 30% of the total power is transferred from electric field to electrons while only 20% of this energy is then released to gas through quenching processes. 9% of the total energy is released through ion collision. A micro-shock wave is formed and propagates at the speed of sound. High local density gradient and dynamic viscosity induces vortexes which whirl the heated air downstream. The combined effects of heating convection and vortexes in repetitive pulse discharges lead to the formation of a steady jet, in agreement with experimental results.
Aerodynamics on a transport aircraft type wing-body model
NASA Technical Reports Server (NTRS)
Schmitt, V.
1982-01-01
The DFLR-F4 wing-body combination is studied. The 1/38 model is formed by a 9.5 aspect ratio transonic wing and an Airbus A 310 fuselage. The F4 wing geometrical characteristics are described and the main experimental results obtained in the S2MA wind tunnel are discussed. Both wing-fuselage interferences and viscous effects, which are important on the wing due to a high rear loading, are investigated by performing 3D calculations. An attempt is made to find their limitations.
NASA Astrophysics Data System (ADS)
Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda
2016-04-01
Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns
Current Trends in Modeling Research for Turbulent Aerodynamic Flows
NASA Technical Reports Server (NTRS)
Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi
2007-01-01
The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.; Rumsey, Christopher L.
2007-01-01
The selection of inflow values at boundaries far upstream of an aircraft is considered, for one- and two-equation turbulence models. Inflow values are distinguished from the ambient values near the aircraft, which may be much smaller. Ambient values should be selected first, and inflow values that will lead to them after the decay second; this is not always possible, especially for the time scale. The two-equation decay during the approach to the aircraft is shown; often, the time scale has been set too short for this decay to be calculated accurately on typical grids. A simple remedy for both issues is to impose floor values for the turbulence variables, outside the viscous sublayer, and it is argued that overriding the equations in this manner is physically justified. Selecting laminar ambient values is easy, if the boundary layers are to be tripped, but a more common practice is to seek ambient values that will cause immediate transition in boundary layers. This opens up a wide range of values, and selection criteria are discussed. The turbulent Reynolds number, or ratio of eddy viscosity to laminar viscosity has a huge dynamic range that makes it unwieldy; it has been widely mis-used, particularly by codes that set upper limits on it. The value of turbulent kinetic energy in a wind tunnel or the atmosphere is also of dubious value as an input to the model. Concretely, the ambient eddy viscosity must be small enough to preserve potential cores in small geometry features, such as flap gaps. The ambient frequency scale should also be small enough, compared with shear rates in the boundary layer. Specific values are recommended and demonstrated for airfoil flows
Validation of aerodynamic parameters at high angles of attack for RAE high incidence research models
NASA Technical Reports Server (NTRS)
Ross, A. Jean; Edwards, Geraldine F.; Klein, Vladislav; Batterson, James G.
1987-01-01
Two series of free-flight tests have been conducted for combat aircraft configuration research models in order to investigate flight behavior near departure conditions as well as to obtain response data from which aerodynamic characteristics can be derived. The structure of the mathematical model and values for the mathematical derivatives have been obtained through an analysis of the first series, using stepwise regression. The results thus obtained are the bases of the design of active control laws. Flight test results for a novel configuration are compared with predicted responses.
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
Analytical model of rotor wake aerodynamics in ground effect
NASA Technical Reports Server (NTRS)
Saberi, H. A.
1983-01-01
The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
Duncan, Comer; Zhai, Guangnian; Scherer, Ronald
2006-11-01
The penalty immersed boundary (PIB) method, originally introduced by Peskin (1972) to model the function of the mammalian heart, is tested as a fluid-structure interaction model of the closely coupled dynamics of the vocal folds and aerodynamics in phonation. Two-dimensional vocal folds are simulated with material properties chosen to result in self-oscillation and volume flows in physiological frequency ranges. Properties of the glottal flow field, including vorticity, are studied in conjunction with the dynamic vocal fold motion. The results of using the PIB method to model self-oscillating vocal folds for the case of 8 cm H20 as the transglottal pressure gradient are described. The volume flow at 8 cm H20, the transglottal pressure, and vortex dynamics associated with the self-oscillating model are shown. Volume flow is also given for 2, 4, and 12 cm H2O, illustrating the robustness of the model to a range of transglottal pressures. The results indicate that the PIB method applied to modeling phonation has good potential for the study of the interdependence of aerodynamics and vocal fold motion.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
Actuator and aerodynamic modeling for high-angle-of-attack aeroservoelasticity
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
1993-01-01
Accurate prediction of airframe/actuation coupling is required by the imposing demands of modern flight control systems. In particular, for agility enhancement at high angle of attack and low dynamic pressure, structural integration characteristics such as hinge moments, effective actuator stiffness, and airframe/control surface damping can have a significant effect on stability predictions. Actuator responses are customarily represented with low-order transfer functions matched to actuator test data, and control surface stiffness is often modeled as a linear spring. The inclusion of the physical properties of actuation and its installation on the airframe is therefore addressed using detailed actuator models which consider the physical, electrical, and mechanical elements of actuation. The aeroservoelastic analysis procedure is described in which the actuators are modeled as detailed high-order transfer functions and as approximate low-order transfer functions. The impacts of unsteady aerodynamic modeling on aeroservoelastic stability are also investigated by varying the order of approximation, or number of aerodynamic lag states, in the analysis. Test data from a thrust-vectoring configuration of an F/A-l8 aircraft are compared to predictions to determine the effects on accuracy as a function of modeling complexity.
Unsteady transonic aerodynamics
Nixon, D.
1989-01-01
Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.
Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.
2012-01-01
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.
Performance-based parameter tuning method of model-driven PID control systems.
Zhao, Y M; Xie, W F; Tu, X W
2012-05-01
In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method.
SUSY models under siege: LHC constraints and electroweak fine-tuning
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Mickelson, Dan; Padeffke-Kirkland, Maren
2014-06-01
Recent null results from LHC8 supersymmetry (SUSY) searches along with the discovery of a standard model (SM)-like Higgs boson with mass mh≃125.5 GeV indicates sparticle masses in the TeV range, causing tension with conventional measures of electroweak fine-tuning. We propose a simple fine-tuning rule which should be followed under any credible evaluation of fine-tuning. We believe that overestimates of electroweak fine-tuning by conventional measures all arise from violations of this rule. We show that to gain accord with the fine-tuning rule, then both the Higgs mass and the traditional ΔBG fine-tuning measures reduce to the model-independent electroweak fine-tuning measure ΔEW. This occurs by combining dependent contributions to mZ or mh into independent units. Then, using ΔEW, we evaluate EW fine-tuning for a variety of SUSY models including mSUGRA, NUHM1, NUHM2, mGMSB, mAMSB, hyper-charged AMSB, gaugino AMSB and nine cases of mixed moduli-anomaly (mirage) mediated SUSY breaking models while respecting LHC Higgs mass and B-decay constraints (we do not impose LHC8 sparticle mass constraints due to the possibility of compressed spectra within many of these models). We find mSUGRA, mGMSB and the AMSB models all to be highly fine-tuned. The NUHM1 model is moderately fine-tuned while NUHM2 which allows for radiatively driven naturalness (RNS) allows for fine-tuning at a meager 10% level in the case where m(Higgsinos)˜100-200 GeV and the TeV-scale top squarks are well mixed. Models with RNS may or may not be detectable at LHC14. A √s ˜500 GeV e+e- collider will be required to make a definitive search for the requisite light Higgsinos.
Study of aerodynamic structure of flow in a model of vortex furnace using Stereo PIV method
NASA Astrophysics Data System (ADS)
Anufriev, I. S.; Kuibin, P. A.; Shadrin, E. Yu.; Sharaborin, D. K.; Sharypov, O. V.
2016-07-01
The aerodynamic structure of flow in a lab model of a perspective design of vortex furnace was studied. The chamber has a horizontal rotation axis, tangential inlet for fuel-air jets and vertical orientation of secondary injection nozzles. The Stereo PIV method was used for visualization of 3D velocity field for selected cross sections of the vortex combustion chamber. The experimental data along with "total pressure minimum" criterion were used for reconstruction of the vortex core of the flow. Results fit the available data from LDA and simulation.
NASA Technical Reports Server (NTRS)
Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan
2016-01-01
The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
NASA Astrophysics Data System (ADS)
Liu, Z. Y. C.; Shirzaei, M.
2015-12-01
Impact craters on the terrestrial planets are typically surrounded by a continuous ejecta blanket that the initial emplacement is via ballistic sedimentation. Following an impact event, a significant volume of material is ejected and falling debris surrounds the crater. Aerodynamics rule governs the flight path and determines the spatial distribution of these ejecta. Thus, for the planets with atmosphere, the preserved ejecta deposit directly recorded the interaction of ejecta and atmosphere at the time of impact. In this study, we develop a new framework to establish links between distribution of the ejecta, age of the impact and the properties of local atmosphere. Given the radial distance of the continuous ejecta extent from crater, an inverse aerodynamic modeling approach is employed to estimate the local atmospheric drags and density as well as the lift forces at the time of impact. Based on earlier studies, we incorporate reasonable value ranges for ejection angle, initial velocity, aerodynamic drag, and lift in the model. In order to solve the trajectory differential equations, obtain the best estimate of atmospheric density, and the associated uncertainties, genetic algorithm is applied. The method is validated using synthetic data sets as well as detailed maps of impact ejecta associated with five fresh martian and two lunar impact craters, with diameter of 20-50 m, 10-20 m, respectively. The estimated air density for martian carters range 0.014-0.028 kg/m3, consistent with the recent surface atmospheric density measurement of 0.015-0.020 kg/m3. This constancy indicates the robustness of the presented methodology. In the following, the inversion results for the lunar craters yield air density of 0.003-0.008 kg/m3, which suggest the inversion results are accurate to the second decimal place. This framework will be applied to older martian craters with preserved ejecta blankets, which expect to constrain the long-term evolution of martian atmosphere.
Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.
Computer graphics in aerodynamic analysis
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.
1984-01-01
The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.
Simple lumped circuit model applied to field flatness tuning of four-rod radio frequency quadrupoles
NASA Astrophysics Data System (ADS)
Tan, C. Y.; Schmidt, J. S.; Schempp, A.
2014-01-01
The field flatness of any radio frequency quadrupole (RFQ) is an important parameter that needs to be carefully tuned because it can affect beam transmission efficiency. In four-rod RFQs, the heights of a set of tuning plates determine the quality of the field flatness. The goals of this paper are (a) to show that by using a lumped circuit model of a four-rod RFQ, the field flatness profile for any tuning plate height distribution can be quickly calculated, (b) to derive a perturbative solution of the model so that insights into the physics of the tuning process and its effects can be understood, and (c) to compare the predicted field profiles to measurements.
Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.
2014-06-01
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.
Sun, Mao; Tang, Jian
2002-01-01
A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.
Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Gonsalez, Jose C.
1999-01-01
As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.
1994-01-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Foster, John V.
2007-01-01
A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.
Wang, Bo; Truhlar, Donald G
2013-02-12
Tuned and balanced redistributed charge schemes have been developed for modeling the electrostatic fields of bonds that are cut by a quantum mechanical-molecular mechanical boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. First, the charge is balanced by adjusting the charge on the MM boundary atom to conserve the total charge of the entire QM/MM system. In the balanced smeared redistributed charge (BSRC) scheme, the adjusted MM boundary charge is smeared with a smearing width of 1.0 Å and is distributed in equal portions to the midpoints of the bonds between the MM boundary atom and the MM atoms bonded to it; in the balanced redistributed charge-2 (BRC2) scheme, the adjusted MM boundary charge is distributed as point charges in equal portions to the MM atoms that are bonded to the MM boundary atom. The QM subsystem is capped by a fluorine atom that is tuned to reproduce the sum of partial atomic charges of the uncapped portion of the QM subsystem. The new aspect of the present study is a new way to carry out the tuning process; in particular, the CM5 charge model, rather than the Mulliken population analysis applied in previous studies, is used for tuning the capping atom that terminates the dangling bond of the QM region. The mean unsigned error (MUE) of the QM/MM deprotonation energy for a 15-system test suite of deprotonation reactions is 2.3 kcal/mol for the tuned BSRC scheme (TBSRC) and 2.4 kcal/mol for the tuned BRC2 scheme (TBRC2). As was the case for the original tuning method based on Mulliken charges, the new tuning method performs much better than using conventional hydrogen link atoms, which have an MUE on this test set of about 7 kcal/mol. However, the new scheme eliminates the need to use small basis sets, which can be problematic, and it allows one to be more consistent by tuning the parameters with whatever basis set is appropriate for applications. (Alternatively, since the tuning parameters and partial charges
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Foster, John V.
1998-01-01
As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.
NASA Technical Reports Server (NTRS)
Goldstein, M.; Rosenbaum, B.
1973-01-01
A model based on Lighthill's theory for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. It does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic turbulence by the more realistic one of axisymmetric turbulence. In the course of the analysis, a hierarchy of equations is developed wherein each succeeding equation involves more assumptions than the preceding equation but requires less experimental information for its use. The implications of the model for jet noise are discussed. It is shown that for the particular turbulence data considered anisotropy causes the high-frequency self-noise to be beamed downstream.
Computation of rotor aerodynamic loads with a constant vorticity contour free wake model
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Wachspress, Daniel A.; Boschitsch, Alexander H.
1991-01-01
An analytical method is presented which facilitates the study of isolated rotors with an improved approach to wake simulation. Vortex filaments are simulated along contours of constant sheet strength for the sheet of vorticity resulting from each rotor blade. Curved vortex elements comprise the filaments which can be distorted by the local velocity field. Called the Constant Vorticity Contour wake model, the approach permits the simulation of the blades' wakes corresponding to the full span of the rotor blade. The discretization of the wake of the rotor blade produces spacing and structure that are consistent with the spatial and temporal variations in the loading. A vortex-lattice aerodynamic model of the blade is also included which introduces a finite-element structural model of the blade and consideration of the force and moment trim analysis. Results of the present version of the simulation, called RotorCRAFT, are found to correlate well with H-34 flight-test data.
NASA Technical Reports Server (NTRS)
Levine, J. J.
1999-01-01
This paper presents the terms of an Educational grant for Model Building 101. The terms of the grant includes the following: 1) 4 Training sessions of one week each (5 days/6 nights) at: Dryden, Langley, Lewis, and the California Museum of Science and Industry; 2) The sessions were to be attended by local educators, solicited and secured by NASA; 3) The cooperative program of MB101 and NASA was to set up a course for middle school students to learn aerodynamics through the building and flying of specialized small model airplanes. This program was already operating successfully on a local level through MB101 in Marietta, Georgia and was published monthly in Model Builder Magazine. MB101 supplies information for schools and groups throughout the country; and 4) Video and art department facilities of NASA were promised to be made available to MB101 for the preparation of instructional videos and preparation of training manuals.
1998-09-01
The CMARC panel-code is evaluated for the development of an aerodynamic model of the Naval Postgraduate School FROG Unmanned Air Vehicle (UAV). CMARC...model of the NPS FROG UAV is developed to obtain stability derivative data at the cruise flight condition. Emphasis is placed on comparing the CMARC data
A stochastic aerodynamic model for stationary blades in unsteady 3D wind fields
NASA Astrophysics Data System (ADS)
Fluck, Manuel; Crawford, Curran
2016-09-01
Dynamic loads play an important roll in the design of wind turbines, but establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally expensive task. Conventional (deterministic) methods to analyze long term loads, which rely on the repeated analysis of multiple different wind samples, are usually too expensive to be included in optimization routines. We present a new stochastic approach, which solves the aerodynamic system equations (Lagrangian vortex model) in the stochastic space, and thus arrive directly at a stochastic description of the coupled loads along a turbine blade. This new approach removes the requirement of analyzing multiple different realizations. Instead, long term loads can be extracted from a single stochastic solution, a procedure that is obviously significantly faster. Despite the reduced analysis time, results obtained from the stochastic approach match deterministic result well for a simple test-case (a stationary blade). In future work, the stochastic method will be extended to rotating blades, thus opening up new avenues to include long term loads into turbine optimization.
A method of infrared imaging missile's aerodynamic heating modeling and simulations
NASA Astrophysics Data System (ADS)
Cao, Chunqin; Xiang, Jingbo; Zhang, Xiaoyang; Wang, Weiqiang
2013-09-01
The infrared (IR) imaging missile's dome will be heated when fly at high speed in the atmosphere because of the friction of the air flow blocking. The detector's performance will be decline if the dome surface is heated to a certain temperature. In this paper, we find a right way to evaluate the aerothermal effects in the imaging and information processing algorithm. Which have three steps including the aerothermal radiation calculation, quantization and image reconstruction. Firstly, the aerothermal radiation is calculated by using a combination of both methods of theoretical analysis and experiment data. Secondly, the relationship between aerothermal radiation and IR images background mean gray and noise can be calculated through the analysis of the experiment data. At last, we can rebuild an aerodynamic heating effect of infrared images fusion with target and decoy, which can be used for virtual prototyping platform missile trajectory simulation. It can be found that the above constructed images have good agreements with the actual image according to comparison between the simulation data and experiment data. It is an economic method that can solve the lab aerodynamic heating simulation and modeling problems.
Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics
NASA Astrophysics Data System (ADS)
McWilliam, Michael K.; Crawford, Curran
2014-06-01
This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane.
Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Mineck, R. E.; Freeman, C. E.
1976-01-01
An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations.
CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.
Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C
2013-09-01
The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Petoshin, V. I.; Chasovnikov, E. A.
2011-05-01
Aerodynamic loads in problems of flight dynamics of passenger aircraft in stalled flow regimes are described using a mathematical model that includes an ordinary linear first-order differential equation. A procedure for determining the parameters of the mathematical model is proposed which is based on approximating experimental frequency characteristics with the frequency characteristics of the linearized mathematical model. The mathematical model was verified by tests of a modern passenger aircraft model in a wind tunnel.
NASA Technical Reports Server (NTRS)
Jacobs, P. F.; Flechner, S. G.
1976-01-01
A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.
NASA Astrophysics Data System (ADS)
Shimada, Kenji; Ishihara, Takeshi
2012-01-01
It is well known that a bluff body cross-section exhibits various kinds of aerodynamic instabilities such as vortex-induced vibration, galloping and torsional flutter. Since these cross-sections are used in long-span bridges and tall buildings, it is important to predict their occurrence in wind resistant structural design. In this paper, the authors make a series of comparisons of unsteady wind forces, unsteady pressure distributions and free vibration responses between previously conducted studies and an unsteady two-dimensional k-ɛ model for rectangular cross-sections with cross-sectional ratios of 2 and 4 in a smooth uniform flow in order to verify computational predictability of aerodynamic instabilities. As a result, the computation successfully predicted the onset velocities and responses of these aerodynamic instabilities for these cross-sectional ratios, which are common to tall buildings and long bridges.
NASA Astrophysics Data System (ADS)
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Tuning, Validation, and Uncertainty Estimates for a Sound Exposure Model
2011-09-01
3 1. Bathymetry and Sea Surface...............................................................3 2. Sound Speed Profiles...EXECUTION A. ENVIRONMENTAL MODEL 1. Bathymetry and Sea Surface Bathymetry data was added to the NSPE model from the 3 arc-second U.S. Coastal...Other model inputs included bathymetry from the U.S. Coastal Relief Model, and sound speed profiles from Expendable Bathythermographs (XBT) and
Resonance tuning in a neuro-musculo-skeletal model of the forearm.
Verdaasdonk, B W; Koopman, H F J M; Van der Helm, F C T
2007-02-01
In rhythmic movements, humans activate their muscles in a robust and energy efficient way. These activation patterns are oscillatory and seem to originate from neural networks in the spinal cord, called central pattern generators (CPGs). Evidence for the existence of CPGs was found for instance in lampreys, cats and rats. There are indications that CPGs exist in humans as well, but this is not proven yet. Energy efficiency is achieved by resonance tuning: the central nervous system is able to tune into the resonance frequency of the limb, which is determined by the local reflex gains. The goal of this study is to investigate if the existence of a CPG in the human spine can explain the resonance tuning behavior, observed in human rhythmic limb movement. A neuro-musculo-skeletal model of the forearm is proposed, in which a CPG is organized in parallel to the local reflexloop. The afferent and efferent connections to the CPG are based on clues about the organization of the CPG, found in literature. The model is kept as simple as possible (i.e., lumped muscle models, groups of neurons are lumped into half-centers, simple reflex model), but incorporates enough of the essential dynamics to explain behavior-such as resonance tuning-in a qualitative way. Resonance tuning is achieved above, at and below the endogenous frequency of the CPG in a highly non-linear neuro- musculo-skeletal model. Afferent feedback of muscle lengthening to the CPG is necessary to accomplish resonance tuning above the endogenous frequency of the CPG, while feedback of muscle velocity is necessary to compensate for the phase lag, caused by the time delay in the loop coupling the limb to the CPG. This afferent feedback of muscle lengthening and velocity represents the Ia and II fibers, which-according to literature-is the input to the CPG. An internal process of the CPG, which integrates the delayed muscle lengthening and feeds it to the half-center model, provides resonance tuning below the
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear
Vortexlet models of flapping flexible wings show tuning for force production and control.
Mountcastle, A M; Daniel, T L
2010-12-01
Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.
1983-08-01
Aerodynamic Characteristics of Cruciform Missiles to High Angles of Attack Including Effects of Roll Angle and Control ...Deflections. NEAR TR 152, Nov., 1977. 2. Smith, C.A., and Nielsen, J.N.: Prediction of Aerodynamic Characteristics of Cruciform Missiles to High Angles... characteristics of body- tail and canard ( wing )- body- tail missiles . Under the same contract, the data base will be incorporated into
NASA Technical Reports Server (NTRS)
Ciffone, D. L.; Robinson, G. H.
1973-01-01
An analysis of the influence of engine response characteristics on the approach and landing of an externally blown flap aircraft was conducted using flight simulator facilities. The configuration of the aerodynamic model is described. The aerodynamic characteristics as a function of angle of attack, thrust coefficient, and flap deflection are presented in tabular form and as graphs.
NASA Astrophysics Data System (ADS)
Gaunaa, Mac; Heinz, Joachim; Skrzypiński, Witold
2016-09-01
The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic loading well. In some conditions the deviation of the predicted loadings can be quite significant, having a large influence on for instance the integral aerodynamic moments around the blade centre of mass; which is very important for single blade installation applications. The main features of these deviations, however, have a systematic behaviour on all force components, which in this paper is employed to formulate the first version of an engineering correction method to the crossflow principle applicable for wind turbine blades. The new correction model improves the agreement with CFD results for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works.
NASA Technical Reports Server (NTRS)
Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat
1994-01-01
A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.
Towards a predictive vortex model for 2D non-linear aerodynamics
NASA Astrophysics Data System (ADS)
Darakananda, Darwin; Eldredge, Jeff D.
2014-11-01
In previous work (Hemati et al 2014), we presented a framework in which a low-order point vortex model can be optimized to capture the non-linear aerodynamics of a wing undergoing arbitrary rigid body motion. Rather than determine the time-varying vortex strengths with the Kutta condition, these strengths were chosen to minimize the difference between the force predicted by the model and pre-existing empirical data. Here, we present ongoing extensions of this model. With the help of tools from dynamical systems theory, we develop a means to incrementally optimize the model against new data. This opens the possibility for using the model in a dynamic estimator context. Self-sustained vortex shedding from wings is achieved using a criterion based on the leading edge suction parameter. We demonstrate the model on a variety of canonical problems, including pitch-up, oscillatory heaving and pitching, and impulsive translation of a plate at various angles of attack. This work has been supported by AFOSR, under Award FA9550-11-1-0098.
Nery, Gesner A; Martins, Márcio A F; Kalid, Ricardo
2014-03-01
This paper describes the development of a method to optimally tune constrained MPC algorithms with model uncertainty. The proposed method is formulated by using the worst-case control scenario, which is characterized by the Morari resiliency index and the condition number, and a given nonlinear multi-objective performance criterion. The resulting constrained mixed-integer nonlinear optimization problem is solved on the basis of a modified version of the particle swarm optimization technique, because of its effectiveness in dealing with this kind of problem. The performance of this PSO-based tuning method is evaluated through its application to the well-known Shell heavy oil fractionator process.
Model-Based Self-Tuning Multiscale Method for Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2006-01-01
A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.
2012-09-01
deterioration, wear, and fouling that turbomachinery will incur over time with usage. _____________________ Jeffrey B. Armstrong et al. This is an open...serve as a guide for the development and implementation of self-tuning engine models for turbomachinery diagnostics, prognostics, and health
Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model
NASA Astrophysics Data System (ADS)
Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon
2012-11-01
Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).
A versatile low-dimensional vortex model for investigating unsteady aerodynamics
NASA Astrophysics Data System (ADS)
Darakananda, Darwin; Eldredge, Jeff D.
2016-11-01
In previous work, we demonstrated a hybrid vortex sheet/point vortex model that captures the non-linear aerodynamics of a plate translating at a high angle of attack. We used vortex sheets to model the shear layers emerging from the plate, and point vortices to capture the effect of the coherent vortex structures. In this work, we introduce modifications that allow the model to work for a larger range of plate kinematics over longer periods of time. First, following the example of Ramesh et al., we relax the Kutta condition at the leading edge and determine vorticity flux based on a suction parameter instead. To prevent the vortex sheet from becoming unstable near the resulting singular edge, we explicitly filter out short-wave disturbances along the sheet while redistributing the sheet's control points. Second, by looking for intersections between the vortex sheets and any repelling Lagrangian coherent structures, the model can detect the formation of new coherent vortices. Trailing portions of the sheets that become dynamically distinct from the shear layers are rolled up into point vortices. We test these modifications on a variety of problems, including pitch-up, impulsive translation at low angles of attack, as well as flow response to pulse actuation near the leading edge. This work has been supported by AFOSR, under award FA9550-14-1-0328.
Identification of an unsteady aerodynamic model up to high angle of attack regime
NASA Astrophysics Data System (ADS)
Fan, Yigang
1997-12-01
The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described and analyzed. The corresponding data reduction methods are developed on the basis of multirate digital signal processing techniques. Since the model is sting-mounted to the support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify the frequencies of the elastic modes of sting. Then the sampling rate conversion systems are built up in digital domain to resample the data at a lower rate without introducing distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR) filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics responses to the programmed motions from the resampled measurements. These data reduction procedures are also illustrated through examples. The results obtained from the harmonic oscillatory tests are then illustrated and the associated flow mechanisms are discussed. Since no significant hysteresis loops are observed for the lift and the drag coefficients for the current angle of attack range and the tested reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the current oscillatory tests. However, large hysteresis loops are observed for pitch moment coefficient in the current tests. This observation suggests that at current flow conditions, pitch moment has large pitch rate dotalpha dependencies. Then the nondimensional maximum pitch rate \\ qsb{max} is introduced to characterize these harmonic oscillatory motions. It is found that at current flow conditions, all the hysteresis loops of pitch moment coefficient with same \\ qsb{max} are tangential to one another at both top and bottom of the loops, implying approximately same maximum offset of these loops from static values. Several cases are also illustrated. Based on the results obtained and
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer
1997-01-01
The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.
Tuning Membrane Thickness Fluctuations in Model Lipid Bilayers
Ashkar, Rana; Nagao, Michihiro; Butler, Paul D.; Woodka, Andrea C.; Sen, Mani K.; Koga, Tadanori
2015-01-01
Membrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters. PMID:26153707
Computational modeling of aerodynamics in the fast forward flight of hummingbirds
NASA Astrophysics Data System (ADS)
Song, Jialei; Luo, Haoxiang; Tobalske, Bret; Hedrick, Tyson
2015-11-01
Computational models of the hummingbird at flight speed 8.3 m/s is built based on high-speed imaging of the real bird flight in the wind tunnel. The goal is to understand the lift and thrust production of the wings at the high advance ratio (flight speed to the average wingtip speed) around 1. Both the full 3D CFD model based on an immersed-boundary method and the blade-element model based on quasi-steady flow assumption were adopted to analyze the aerodynamics. The result shows that while the weight support is generated during downstroke, little negative weight support is produced during upstroke. On the other hand, thrust is generated during both downstroke and upstroke, which allows the bird to overcome drag induced at fast flight. The lift and thrust characteristics are closely related to the instantaneous wing position and motion. In addition, the flow visualization shows that the leading-edge vortex is stable during most of the wing-beat, which may have contributed to the lift and thrust enhancement. NSF CBET-0954381.
NASA Astrophysics Data System (ADS)
Rinehart, Taylor Jay
Wind turbine sizes have been steadily increasing to reduce the cost of generating electricity using wind energy. The increased wind turbine blade size has led to increased interest in the accurate prediction of the aerodynamics of large wind turbine blades. In this work, two-dimensional simulations of wind turbine airfoils and three-dimensional simulations of the Sandia 100 m wind turbine blade were conducted. The focus of the simulations was to evaluate improvements in turbulence modeling for wind turbine applications. The flow field was modeled using a Reynolds-Averaged Navier-Stokes flow solver. The turbulence model included transition modeling to capture the significant regions of laminar flow found on wind turbine airfoils and wind turbine blades. The turbulence model was also modified to increase sensitivity to adverse pressure gradients. The effects of modifying the turbulence modeling were quantified using lift and drag for two-dimensional simulations while wind turbine thrust and power were used as metrics for three-dimensional simulations. The two-dimensional studies showed that the adverse pressure gradient correction lowered lift predictions post-stall by about 13%, significantly reducing lift over-prediction and bringing simulations closer to experimental results. Transition modeling lowered drag predictions by 30% to 50% at low angles of attack bringing the predicted values into good agreement with experimental results. The addition of transition modeling in the three-dimensional simulations increased the predicted thrust by 1% to 3% and predicted power by 3% to 6%. The extent of laminar flow was visualized using intermittency. Laminar flow was observed on large portions of the Sandia 100 m blade at normal operating conditions. A preliminary study on the effects of leading edge tubercles on the Sandia 100 m blade was performed, no significant changes in wind turbine performance were observed at nominal operating conditions.
A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique
NASA Astrophysics Data System (ADS)
Kim, J. G.; Hovland, P. D.
2001-05-01
Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.
Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung
2015-07-30
A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.
Aerodynamic wake study: oscillating model wind turbine within a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Feist, Christopher J.
An experimental investigation on the aerodynamic wake behind a pitching and/or heaving model wind turbine was performed. The study was split into two quasi-coupled phases; the first phase characterized the motion of an offshore floating wind turbine subjected to linear wave forcing, the second phase replicated specific motion cases, which were driven by results from phase I, on a model wind turbine within a turbulent boundary layer. Wake measurements were made in an effort to quantify fluctuations in the flow associated with the motion of the turbine. Weak differences were observed in the mean, streamwise velocity and turbulent fluctuations between the static and oscillating turbine cases. These weak differences were a result of opposing trends in the velocity quantities based on turbine motion phases. The wake oscillations created by the turbine motion was characteristic of a 2D wave (with convection in the x plane and amplitude in the z plane) with a relatively small amplitude as compared to urms..
Latest results from the EU project AVATAR: Aerodynamic modelling of 10 MW wind turbines
NASA Astrophysics Data System (ADS)
Ceyhan, J. G. Schepers O.; Boorsma, K.; Gonzalez, A.; Munduate, X.; Pires, O.; Sørensen, N..; Ferreira, C.; Sieros, G.; Madsen, J.; Voutsinas, S.; Lutz, T.; Barakos, G.; Colonia, S.; Heißelmann, H.; Meng, F.; Croce, A.
2016-09-01
This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up to a Reynolds number of 15 Million. These measurements are compared with measurements in the LM wind tunnel for Reynolds numbers of 3 and 6 Million and with calculational results. In the analysis of results special attention is paid to high Reynolds numbers effects. CFD calculations on airfoil performance showed an unexpected large scatter which eventually was reduced by paying even more attention to grid independency and domain size in relation to grid topology. Moreover calculations are presented on flow devices (leading and trailing edge flaps and vortex generators). Finally results are shown between results from 3D rotor models where a comparison is made between results from vortex wake methods and BEM methods at yawed conditions.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
NASA Astrophysics Data System (ADS)
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier
2010-05-01
Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations.
Aerodynamic characteristics of a 1/6-scale powered model of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Mineck, R. E.; Freeman, C. E.
1977-01-01
A wind-tunnel investigation was conducted to determine the effects of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft (RSRA). For the investigation, a 1/6-scale model with a four-blade articulated main rotor was used. Tests were conducted with and without the main rotor. Both the helicopter and the compound helicopter were tested. The latter configuration included the auxiliary thrust engines and the variable-incidence wing. Data were obtained over ranges of angle of attack, angle of sideslip, and main-rotor collective pitch angle at several main-rotor advance ratios. Results are presented for the total loads on the airframe as well as the loads on the rotor, the wing, and the tail. The results indicated that without the effect of the rotor wake, the RSRA had static longitudinal and directional stability and positive effective dihedral. With the effect of the main rotor and its wake, the RSRA exhibited longitudinal instability but retained static directional stability and positive effective dihedral.
Acoustic and aerodynamic study of a pusher-propeller aircraft model
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Horne, W. Clifton
1990-01-01
An aerodynamic and acoustic study was made of a pusher-propeller aircraft model in the NASA-Ames 7 x 10 ft Wind Tunnel. The test section was changed to operate as an open jet. The 591 mm diameter unswept propeller was operated alone and in the wake of three empennages: an I tail, Y tail, and a V tail. The radiated noise and detailed wake properties were measured. Results indicate that the unsteady blade loading caused by the blade interactions with the wake mean velocity distribution had a strong effect on the harmonics of blade passage noise. The blade passage harmonics above the first were substantially increased in all horizontal directions by the empennage/propeller interaction. Directivity in the plane of the propeller was maximum perpendicular to the blade surface. Increasing the tail loading caused the propeller harmonics to increase 3 to 5 dB for an empennage/propeller spacing of 0.38 mean empennage chords. The interaction noise became weak as empennage propeller spacing was increased beyond 1.0 mean empennage chord lengths. Unlike the mean wake deficit, the wake turbulence had only a small effect on the propeller noise, that effect being a small increase in the broadband noise.
Acoustic and aerodynamic testing of a scale model variable pitch fan
NASA Technical Reports Server (NTRS)
Jutras, R. R.; Kazin, S. B.
1974-01-01
A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.
NASA Technical Reports Server (NTRS)
Lummus, J. R.; Joyce, G. T.; Omalley, C. D.
1980-01-01
The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.
MAESTRO — A model and expert system tuning resource for operators
NASA Astrophysics Data System (ADS)
Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Coffield, Fred; Chambers, Frank
1990-08-01
We have developed MAESTRO, a model and expert system tuning resource for operators. It provides a unified software environment for optimizing the performance of large, complex machines, in particular the Advanced Test Accelerator and Experimental Test Accelerator at Lawrence Livermore National Laboratory. The system incorporates three approaches to tuning: - a mouse-based manual interface to select and control magnets and to view displays of machine performance; - an automation based on "cloning the operator" by implementing the strategies and reasoning used by the operator; and - an automation based on a simulator model which, when accurately matched to the machine, allows downloading of optimal sets of parameters and permits diagnosing errors in the beam line. The latter two approaches are based on the artificial-intelligence technique known as Expert Systems.
Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei
2017-01-01
Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements. PMID:28129365
Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei; Li, Zhiwei
2017-01-01
Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-08-26
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wells, W. R.; Keskar, D. A.
1979-01-01
A simple vortex system, used to model unsteady aerodynamic effects into the rigid body longitudinal equations of motion of an aircraft, is described. The equations are used in the development of a parameter extraction algorithm. Use of the two parameter-estimation modes, one including and the other omitting unsteady aerodynamic modeling, is discussed as a means of estimating some acceleration derivatives. Computer generated data and flight data, used to demonstrate the use of the parameter-extraction algorithm are studied.
Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft
NASA Technical Reports Server (NTRS)
Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)
2000-01-01
The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.
NASA Technical Reports Server (NTRS)
Aiken, T. N.
1973-01-01
An investigation was made of the static, wind-on aerodynamic and static noise characteristics of an augmentor wing having lobe type nozzles. The study was made in the Ames 7-by 10-Foot No. 1 Wind Tunnel using a small-scale, quasi-two-dimensional model. Several configurations of lobe nozzles as well as a normal slot nozzle were tested. Results indicate that lobe nozzles offer improved static and wind-on aerodynamics and reduced static noise relative to slot nozzles. Best wind-on performance was obtained when the tertiary gap was closed even though the static thrust augmentation was maximum with the gap open. Static thrust augmentation, wind-on lift and drag, and static noise directivity are presented as well as typical static and wind-on exit velocity profiles, surface pressure distributions and noise spectrums. The data are presented with limited discussion.
NASA Astrophysics Data System (ADS)
Raskin, Boris
Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.
Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji
2013-01-01
Muscle activity is the final signal for motion control from the brain. Based on this biological characteristic, Electromyogram (EMG) signals have been applied to various systems that interface human with external environments such as external devices. In order to use EMG signals as input control signal for this kind of system, the current EMG driven torque estimation models generally employ the mathematical model that estimates the nonlinear transformation function between the input signal and the output torque. However, these models need to estimate too many parameters and this process cause its estimation versatility in various conditions to be poor. Moreover, as these models are designed to estimate the joint torque, the input EMG signals are tuned out of consideration for the physiological synergetic contributions of multiple muscles for motion control. To overcome these problems of the current models, we proposed a new tuning model based on the synergy control mechanism between multiple muscles in the cortico-spinal tract. With this synergetic tuning model, the estimated contribution of multiple muscles for the motion control is applied to tune the EMG signals. Thus, this cortico-spinal control mechanism-based process improves the precision of torque estimation. This system is basically a forward dynamics model that transforms EMG signals into the joint torque. It should be emphasized that this forward dynamics model uses a musculo-skeletal model as a constraint. The musculo-skeletal model is designed with precise musculo-skeletal data, such as origins and insertions of individual muscles or maximum muscle force. Compared with the mathematical model, the proposed model can be a versatile model for the torque estimation in the various conditions and estimates the torque with improved accuracy. In this paper, we also show some preliminary experimental results for the discussion about the proposed model.
Model-based auralizations of violin sound trends accompanying plate-bridge tuning or holding.
Bissinger, George; Mores, Robert
2015-04-01
To expose systematic trends in violin sound accompanying "tuning" only the plates or only the bridge, the first structural acoustics-based model auralizations of violin sound were created by passing a bowed-string driving force measured at the bridge of a solid body violin through the dynamic filter (DF) model radiativity profile "filter" RDF(f) (frequency-dependent pressure per unit driving force, free-free suspension, anechoic chamber). DF model auralizations for the more realistic case of a violin held/played in a reverberant auditorium reveal that holding the violin greatly diminishes its low frequency response, an effect only weakly compensated for by auditorium reverberation.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen
2017-01-01
This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.
NASA Technical Reports Server (NTRS)
Mann, M. J.; Langhans, R. A.
1977-01-01
The effects of wing trailing-edge control surfaces on the static transonic aerodynamic characteristics of a transport configuration with a supercritical wing were studied. The configuration was tested with both an area-ruled fuselage and a cylindrical fuselage. The Mach number range was from 0.80 to 0.96 and the angle of attack range was from -1 deg to 12 deg. The Reynolds number was 1,580,000 based on the mean aerodynamic chord. Tabular data are presented.
NASA Astrophysics Data System (ADS)
Farjoud, Alireza; Taylor, Russell; Schumann, Eric; Schlangen, Timothy
2014-02-01
This paper is focused on modelling, design, and testing of semi-active magneto-rheological (MR) engine and transmission mounts used in the automotive industry. The purpose is to develop a complete analysis, synthesis, design, and tuning tool that reduces the need for expensive and time-consuming laboratory and field tests. A detailed mathematical model of such devices is developed using multi-physics modelling techniques for physical systems with various energy domains. The model includes all major features of an MR mount including fluid dynamics, fluid track, elastic components, decoupler, rate-dip, gas-charged chamber, MR fluid rheology, magnetic circuit, electronic driver, and control algorithm. Conventional passive hydraulic mounts can also be studied using the same mathematical model. The model is validated using standard experimental procedures. It is used for design and parametric study of mounts; effects of various geometric and material parameters on dynamic response of mounts can be studied. Additionally, this model can be used to test various control strategies to obtain best vibration isolation performance by tuning control parameters. Another benefit of this work is that nonlinear interactions between sub-components of the mount can be observed and investigated. This is not possible by using simplified linear models currently available.
A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading
NASA Astrophysics Data System (ADS)
Alghafir, M. N.; Dunne, J. F.
2012-02-01
A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.
NASA Technical Reports Server (NTRS)
McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.
1960-01-01
The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.
Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount
NASA Technical Reports Server (NTRS)
Lutze, Frederick H.; Fan, Yigang
1999-01-01
A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.
Computational aerodynamics and design
NASA Technical Reports Server (NTRS)
Ballhaus, W. F., Jr.
1982-01-01
The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348
Nonlinear aerodynamic wing design
NASA Technical Reports Server (NTRS)
Bonner, Ellwood
1985-01-01
The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.
NASA Technical Reports Server (NTRS)
Salters, L. B., Jr.; Schmeer, J. W.
1973-01-01
The aerodynamic and propulsion characteristics of a 1/6-scale propulsive-wing V/STOL air-powered model was investigated over the Mach number range from 0.40 to 0.96 and at angles of attack from -5 deg to 15 deg for several fan rotational speeds. Three fanduct-exit configurations were tested, including two exit areas. The model with 25-percent-thick wing had a drag-rise Mach number of 0.85, which is typical of aircraft with thinner, conventional, unswept wings.
NASA Technical Reports Server (NTRS)
Robinson, Ross B.; Morris, Odell A.
1960-01-01
An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.
The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.
NASA Technical Reports Server (NTRS)
Hartman, Edwin P
1935-01-01
Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.
Some aspects of the aerodynamics of separating strap-ons
NASA Astrophysics Data System (ADS)
Biswas, K. K.; Krishnan, C. G.
1994-11-01
An aerodynamics model for analyzing strap-on separation is proposed. This model comprises both interference aerodynamics and free-body aerodynamics. The interference aerodynamics is primarily due to the close proximity of core and strap-ons. The free-body aerodynamics is solely due to the body geometry of the strap-ons. Using this aerodynamic model, the dynamics of separating strap-ons has been simulated in a six-degree-of-freedom mode to determine if a collision occurs. This aerodynamic model is very handy for various off-design studies relating to separating strap-ons.
Neurofitter: A Parameter Tuning Package for a Wide Range of Electrophysiological Neuron Models
Van Geit, Werner; Achard, Pablo; De Schutter, Erik
2007-01-01
The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model. We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC) model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application. PMID:18974796
Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis
NASA Astrophysics Data System (ADS)
Xu, Guangzhong; Zhang, Nong; Roser, Holger M.
2015-12-01
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.
Water model tuning for improved reproduction of rotational diffusion and NMR spectral density.
Takemura, Kazuhiro; Kitao, Akio
2012-06-07
A water model for molecular simulation was optimized to improve the reproduction of translational and rotational diffusion of pure water and proteins. The SPC/E(b) model was developed from the original SPC/E model with a slight increase of the O-H bond length of 1%. This tuning has significantly improved the translational and rotational diffusion when compared to the experimental values, whereas only small changes were observed in the other thermodynamic properties examined. The overall tumbling correlation times (τ(p)) from ubiquitin, protein G, bovine pancreatic trypsin inhibitor, and barstar C42/80A were successfully reproduced using the SPC/E(b) model. Calculated site-specific spectral densities of the main chain amide bond rotation in ubiquitin and protein G were in good agreement with those derived from nuclear magnetic resonance reduced spectral density mapping. The SPC/E(bT) model was also developed with temperature-dependent bond-length tuning to facilitate reproduction of the experimental τ(p) around room temperature.
Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data
NASA Technical Reports Server (NTRS)
Bosworth, John T.
1992-01-01
Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.
NASA Astrophysics Data System (ADS)
Ferreira, C.; Gonzalez, A.; Baldacchino, D.; Aparicio, M.; Gómez, S.; Munduate, X.; Garcia, N. R.; Sørensen, J. N.; Jost, E.; Knecht, S.; Lutz, T.; Chassapogiannis, P.; Diakakis, K.; Papadakis, G.; Voutsinas, S.; Prospathopoulos, J.; Gillebaart, T.; van Zuijlen, A.
2016-09-01
The FP7 AdVanced Aerodynamic Tools for lArge Rotors - Avatar project aims to develop and validate advanced aerodynamic models, to be used in integral design codes for the next generation of large scale wind turbines (10-20MW). One of the approaches towards reaching rotors for 10-20MW size is the application of flow control devices, such as flaps. In Task 3.2: Development of aerodynamic codes for modelling of flow devices on aerofoils and, rotors of the Avatar project, aerodynamic codes are benchmarked and validated against the experimental data of a DU95W180 airfoil in steady and unsteady flow, for different angle of attack and flap settings, including unsteady oscillatory trailing-edge-flap motion, carried out within the framework of WP3: Models for Flow Devices and Flow Control, Task 3.1: CFD and Experimental Database. The aerodynamics codes are: AdaptFoil2D, Foil2W, FLOWer, MaPFlow, OpenFOAM, Q3UIC, ATEFlap. The codes include unsteady Eulerian CFD simulations with grid deformation, panel models and indicial engineering models. The validation cases correspond to 18 steady flow cases, and 42 unsteady flow cases, for varying angle of attack, flap deflection and reduced frequency, with free and forced transition. The validation of the models show varying degrees of agreement, varying between models and flow cases.
Unsteady aerodynamics of blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.
1989-01-01
The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.
Energy savings modelling of re-tuning energy conservation measures in large office buildings
Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng
2014-10-20
Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy
Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Diebler, Corey G.
2005-01-01
A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.
1975-11-01
further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for
NASA Technical Reports Server (NTRS)
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
1980-06-01
The perturbation velozity components are due to the blade degrees of freedom, the shaft motion, and the aerodynamic gust velocity: -tA 4- + V(. o ) -A...gimballed, and teetering rotors with an arbitrary number of blades. The rotor degrees of freedom included are blade flap/lag bending, rigid pitch and elastic...tunnel is also covered. The aircraft degrees of freedom included are the six rigid body motions, elastic airframe motions, and the rotor/engine speed
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.
1983-01-01
Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.
Tuning a physically-based model of the air-sea gas transfer velocity
NASA Astrophysics Data System (ADS)
Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.
Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Gromke, Christof
2011-01-01
A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case.
NASA Technical Reports Server (NTRS)
Nelson, D. P.; Morris, P. M.
1980-01-01
Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.
A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.; Mcnally, B. D.
1989-01-01
This paper describes a flight-test methodology for developing a data base to be used to identify an aerodynamic model of a V/STOL fighter aircraft. The aircraft serves as a test bed at NASA Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight and back to hover, STOL operation, and normal cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight-test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver are illustrated.
A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Mcnally, B. David
1988-01-01
Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normaL cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.
Payload vehicle aerodynamic reentry analysis
NASA Astrophysics Data System (ADS)
Tong, Donald
An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.
Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.
Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B
2014-11-10
Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.
Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.
Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B
2015-01-15
Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.
A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1982-01-01
The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.
NASA Astrophysics Data System (ADS)
Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.
2015-02-01
Some results of the complex experimental and numerical study of aerodynamics and transfer processes in a vortex furnace, whose design was improved via the distributed tangential injection of fuel-air flows through the upper and lower burners, were presented. The experimental study of the aerodynamic characteristics of a spatial turbulent flow was performed on the isothermal laboratory model (at a scale of 1 : 20) of an improved vortex furnace using a laser Doppler measurement system. The comparison of experimental data with the results of the numerical modeling of an isothermal flow for the same laboratory furnace model demonstrated their agreement to be acceptable for engineering practice.
NASA Technical Reports Server (NTRS)
Ferris, J. C.
1986-01-01
A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.
NASA Technical Reports Server (NTRS)
Jacobs, P. F.
1985-01-01
An investigation was conducted in the Langley 8 Foot Transonic Pressure Tunnel to determine the effect of aileron deflections on the aerodynamic characteristics of a subsonic energy efficient transport (EET) model. The semispan model had an aspect ratio 10 supercritical wing and was configured with a conventionally located set of ailerons (i.e., a high speed aileron located inboard and a low speed aileron located outboard). Data for the model were taken over a Mach number range from 0.30 to 0.90 and an angle of attack range from approximately -2 deg to 10 deg. The Reynolds number was 2.5 million per foot for Mach number = 0.30 and 4 million per foot for the other Mach numbers. Model force and moment data, aileron effectiveness parameters, aileron hinge moment data, otherwise pressure distributions, and spanwise load data are presented.
NASA Technical Reports Server (NTRS)
Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene
2005-01-01
Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.
The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Walker, Eric L.
2011-01-01
The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.
Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay
2012-01-01
An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.
NASA Astrophysics Data System (ADS)
Toyota, Kenjiro; Dastoor, Ashu P.; Ryzhkov, Andrei
2016-12-01
Turbulence controls the vertical transfer of momentum, heat and trace constituents in the atmospheric boundary layer. In the lowest 10% of this layer lies the surface boundary layer (SBL) where the vertical fluxes of transferred quantities have been successfully parameterized using the Monin-Obukhov similarity theory in weather forecast, climate and atmospheric chemistry models. However, there is a large degree of empiricism in the stability-correction parameterizations used to formulate eddy diffusivity and aerodynamic resistance particularly under strongly stable ambient conditions. Although the influence of uncertainties in stability-correction parameterizations on eddy diffusivity is actively studied in boundary-layer meteorological modeling, its impact on dry deposition in atmospheric chemistry modeling is not well characterized. In this study, we address this gap by providing the mathematical basis for the relationship between the formulations of vertical surface flux used in meteorological and atmospheric chemistry modeling communities, and by examining the sensitivity of the modeled dry deposition velocities in statically stable SBL to the choice of stability-correction parameterizations used in three operational and/or research environmental models (GEM/GEM-MACH, ECMWF IFS and CMAQ-MM5). Aerodynamic resistances (ra) calculated by the three sets of parameterizations are notably different from each other and are also different from those calculated by a "z-less" scaling formulation under strongly stable conditions (the bulk Richardson number > 0.2). Furthermore, we show that many atmospheric chemistry models calculate ra using formulations which are inconsistent with the derivation of micro-meteorological parameters. Finally, practical implications of the differences in stability-correction algorithms are discussed for the computations of dry deposition velocities of SO2, O3 and reactive bromine compounds for specific cases of stable SBL.
NASA Technical Reports Server (NTRS)
Dawson, John R; Hartman, Edwin P
1938-01-01
Four models of outboard floats (N.A.C.A. models 51-A, 51-B, 51-C, and 51-D) were tested in the N.A.C.A. tank to determine their hydrodynamic characteristics and in the 20-foot wind tunnel to determine their aerodynamic drag. The results of the tests, together with comparisons of them, are presented in the form of charts. From the comparisons, the order of merit of the models is estimated for each factor considered. The best compromise between the various factors seems to be given by model 51-D. This model is the only one in the series with a transverse step.
NASA Technical Reports Server (NTRS)
Trescot, C. D., Jr.; Brown, C. A., Jr.; Howell, D. T.
1974-01-01
An investigation has been made in the Langley Unitary Plan wind tunnel to determine the effects of Reynolds number and sting-support interference on the static aerodynamic characteristics of a 140 deg-included-angle cone. Base pressures and forces and moments of the model were measured at Mach numbers of 1.50, 2.00, 2.94, and 4.00 for ratios of sting diameter to model diameter that varied from 0.125 to 0.500 through an angle-of-attack range from about minus 4 deg to 13 deg. The Reynolds number, based on model diameter 4.80 in. was varied from 161,000 to 415,000.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1983-01-01
Wind tunnel model tests were conducted to demonstrate the aerodynamic performance improvements of a refined actuated inlet ejector nozzle. Models of approximately one-tenth scale were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise and supersonic cruise. Variations of model components provided a performance evaluation of ejector inlet and exit area, forebody boattail angle and ejector inlet operation in the open and closed mode. Approximately 700 data points were acquired at Mach numbers of 0, 0.36, 0.9, 1.2, and 2.0 for a wide range of nozzle flow conditions. Results show that relative to two ejector nozzles previously tested performance was improved significantly at takeoff and subsonic cruise performance, a C sub f of 0.982, was attained equal to the high performance of the previous tests. The established advanced supersonic transport propulsion study performance goals were met or closely approached at takeoff and supersonic cruise.
Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model
NASA Technical Reports Server (NTRS)
Applin, Zachary T.; Gentry, Garl L., Jr.
1990-01-01
Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.
Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.
2016-01-01
Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.
Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi
2014-01-01
We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820
Hierarchical Bayesian modeling and Markov chain Monte Carlo sampling for tuning-curve analysis.
Cronin, Beau; Stevenson, Ian H; Sur, Mriganka; Körding, Konrad P
2010-01-01
A central theme of systems neuroscience is to characterize the tuning of neural responses to sensory stimuli or the production of movement. Statistically, we often want to estimate the parameters of the tuning curve, such as preferred direction, as well as the associated degree of uncertainty, characterized by error bars. Here we present a new sampling-based, Bayesian method that allows the estimation of tuning-curve parameters, the estimation of error bars, and hypothesis testing. This method also provides a useful way of visualizing which tuning curves are compatible with the recorded data. We demonstrate the utility of this approach using recordings of orientation and direction tuning in primary visual cortex, direction of motion tuning in primary motor cortex, and simulated data.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
Scheinker, Alexander; Baily, Scott; Young, Daniel; Kolski, Jeffrey S.; Prokop, Mark
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic field cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.
Zheng, Qi; Peng, Limin
2016-01-01
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure. PMID:28008212
The aerodynamic and acoustic characteristics of an over-the-wing target-type thrust reverser model
NASA Technical Reports Server (NTRS)
Falarski, M. D.
1976-01-01
A static test of a large-scale, over-the-wing (OTW) powered-lift model was performed. The OTW propulsion system had been modified to incorporate a simple target-type thrust reverser as well as the normal rectangular OTW exhaust nozzle. Tests were performed in both the reverse thrust and approach configurations. The thrust reverser noise created by jet turbulence mixing and the OTW approach noise were both low frequency and broadband. When scaled to a 45,400-kg (100,000-lb) aircraft, the thrust reverser and approach configurations produced peak 152-m (500-ft) sideline perceived noise levels of 110 and 105 PNdB, respectively. The aerodynamic performance of the model showed that 50% or greater reverser effectiveness can be achieved without experiencing ingestion of exhaust gas or ground debris into the engine inlets.
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Shah, Gautam H.
1990-01-01
The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.
NASA Technical Reports Server (NTRS)
Frassinelli, Mark C.; Carson, George T., Jr.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.
Wang, Ji Kang; Sun, Mao
2005-10-01
The aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. Available morphological and stroke-kinematic parameters of dragonfly (Aeshna juncea) are used for the model dragonfly. Six advance ratios (J; ranging from 0 to 0.75) and, at each J, four forewing-hindwing phase angle differences (gamma(d); 180 degrees, 90 degrees, 60 degrees and 0 degree) are considered. The mean vertical force and thrust are made to balance the weight and body-drag, respectively, by adjusting the angles of attack of the wings, so that the flight could better approximate the real flight. At hovering and low J (J=0, 0.15), the model dragonfly uses separated flows or leading-edge vortices (LEV) on both the fore- and hindwing downstrokes; at medium J (J=0.30, 0.45), it uses the LEV on the forewing downstroke and attached flow on the hindwing downstroke; at high J (J=0.6, 0.75), it uses attached flows on both fore- and hindwing downstrokes. (The upstrokes are very lightly loaded and, in general, the flows are attached.) At a given J, at gamma(d)=180 degrees, there are two vertical force peaks in a cycle, one in the first half of the cycle, produced mainly by the hindwing downstroke, and the other in the second half of the cycle, produced mainly by the forewing downstroke; at gamma(d)=90 degrees, 60 degrees and 0 degree, the two force peaks merge into one peak. The vertical force is close to the resultant aerodynamic force [because the thrust (or body-drag) is much smaller than vertical force (or the weight)]. 55-65% of the vertical force is contributed by the drag of the wings. The forewing-hindwing interaction is detrimental to the vertical force (and resultant force) generation. At hovering, the interaction reduces the mean vertical force (and resultant force) by 8-15%, compared with that without interaction; as J increases, the reduction generally decreases (e.g. at J=0.6 and
NASA Astrophysics Data System (ADS)
Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.
2016-06-01
A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.
Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions
NASA Technical Reports Server (NTRS)
Favaregh, Noah M.
2010-01-01
The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.
Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy.
Vidal, Franck P; Villard, Pierre-Frédéric; Lutton, Evelyne
2012-10-01
We present and analyze the behavior of an evolutionary algorithm designed to estimate the parameters of a complex organ behavior model. The model is adaptable to account for patient's specificities. The aim is to finely tune the model to be accurately adapted to various real patient datasets. It can then be embedded, for example, in high fidelity simulations of the human physiology. We present here an application focused on respiration modeling. The algorithm is automatic and adaptive. A compound fitness function has been designed to take into account for various quantities that have to be minimized. The algorithm efficiency is experimentally analyzed on several real test cases: 1) three patient datasets have been acquired with the "breath hold" protocol, and 2) two datasets corresponds to 4-D CT scans. Its performance is compared with two traditional methods (downhill simplex and conjugate gradient descent): a random search and a basic real-valued genetic algorithm. The results show that our evolutionary scheme provides more significantly stable and accurate results.
Gravity and Macro-Model Tuning for the Geosat Follow-on Spacecraft
NASA Technical Reports Server (NTRS)
Lemoine, Frank G.; Rowlands, David D.; Marr, Gregory C.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.
1999-01-01
The US Navy's GEOSAT Follow-On (GFO) spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. The spacecraft tracking complement consisted of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). The spacecraft has been tracked by the international satellite laser ranging network since April 22, 1998, and an average of 7.4 passes per day have been obtained from US and participating foreign stations. Since the predicted radial orbit error due to the gravity field is two to three cm, the largest contributor to the high SLR residuals (7-10 cm RMS for five day arcs) is the mismodelling of the non-conservative forces, not withstanding the development of a three-dimensional eight-panel model and an analytical attitude model for the GFO spacecraft. The SLR residuals show a clear correlation with beta-prime (solar elevation) angle, peaking in mid-August 1998 when the beta-prime angle reached -80 to -90 degrees. In this paper we discuss the tuning of the non-conservative force model, for GFO and report the subsequent addition of the GFO tracking data to the Earth gravity model solutions.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.
2013-01-01
The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from
Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings
Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng
2012-06-01
Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for
NASA Astrophysics Data System (ADS)
Namba, Masanobu; Nishino, Ryohei
The purpose of this paper is to study the effect of neighboring blade rows on the unsteady aerodynamic response of oscillating cascade blades on the basis of a genuine three-dimensional model. To this end, mathematical formulations based on the lifting surface theory are developed for a pair of contra-rotating annular cascades of oscillating blades. The mechanism of frequency scattering of blade loadings and mode scattering of acoustic waves resulting from interaction between the blade rows in relative rotational motions is mathematically explained. Simultaneous integral equations for all frequency components of blade loadings are derived from the flow tangency condition on the blade surfaces of both blade rows. The validity of the computation codes is verified.
NASA Technical Reports Server (NTRS)
Monta, W. J.
1977-01-01
An experimental investigation was conducted on a model of a wing control version of the Sparrow III type missile to determine the static aerodynamic characteristics over an angle of attack range from 0 deg to 40 deg for Mach numbers from 1.50 to 4.60.
Testing URMEL-3D by modeling a ferrite-tuned rf cavity
Browman, M.J.; Cooper, R.K.; Friedrichs, C.C.; Weiland, T.
1987-01-01
We have tested the rf cavity codes collectively known as URMEL-3D by studying the tuning of the fundamental mode of the Advanced Hadron Facility (AHF) booster cavity. Because of computer costs and turnaround time, we limited ourselves to problem sizes between 30,000 and 35,000 mesh points, which meant we had to use a simplified model of the coupling capacitor. Because we did not know a priori how to model this capacitor, we used its shape as a parameter to be varied. We generated three different models for the cavity, varying the details of the coupling capacitor, and plotted the variation of the fundamental frequency as a function of the permeability of the ferrite. The three resulting curves had similar shapes, and one of them fit the experimental data. Not only is this the first time the codes have been used on such a complicated geometry, it is also the first time the codes have been used with such high permeabilities (..mu..) and permittivities (epsilon). The results obtained with such a relatively coarse mesh indicate that the codes are working well and that they should be useful in the design of rf cavities.
NASA Astrophysics Data System (ADS)
Layden, A.; MacCallum, S.; Merchant, C.
2015-10-01
FLake, a 1-dimensional freshwater lake model, is tuned for 244 globally distributed large lakes using lake surface water temperatures (LSWTs) derived from Along-Track Scanning Radiometers (ATSRs). The model, tuned using only 3 lake properties; lake depth, albedo (snow and ice) and light extinction co-efficient, substantially improves the measured biases in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes. The daily mean absolute differences (MAD) and the spread of differences (±2 standard deviations) across the trial seasonally ice covered lakes (lakes with a lake-mean LSWT remaining below 1 °C for part of the annual cycle) is reduced from 3.01± 2.25 °C (pre-tuning) to 0.84 ± 0.51 °C (post-tuning). For non-seasonally ice-covered trial lakes (lakes with a lake-mean LSWT remaining above 1 °C throughout its annual cycle), the average daily mean absolute difference (MAD) is reduced from 3.55 ± 3.20 °C to 0.96 ± 0.63 °C. The post tuning results for the trial lakes (35 lakes) are highly representative of the post tuning results of the 244 lakes. The sensitivity of the summer LSWTs of deeper lakes to changes in the timing of ice-off is demonstrated. The modelled summer LSWT response to changes in ice-off timing is found to be strongly affected by lake depth and latitude, explaining 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p =0.003) of the variance. The tuning approach undertaken in this study, overcomes the obstacle of the lack of available lake characteristic information (snow and ice albedo and light extinction co-efficient) for individual lakes. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction co-efficient for the 244 lakes provide guidance for improving LSWTs modelling in FLake.
Complier-Directed Automatic Performance Tuning (TUNE) Final Report
Chame, Jacqueline
2013-06-07
TUNE was created to develop compiler-directed performance tuning technology targeting the Cray XT4 system at Oak Ridge. TUNE combines compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation. The goal of this performance-tuning technology is to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, TUNE aims to make compiler technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.
Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi
2014-01-01
We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver.
Aerodynamic optimization of an HSCT configuration using variable-complexity modeling
NASA Technical Reports Server (NTRS)
Hutchison, M. G.; Mason, W. H.; Grossman, B.; Haftka, R. T.
1993-01-01
An approach to aerodynamic configuration optimization is presented for the high-speed civil transport (HSCT). A method to parameterize the wing shape, fuselage shape and nacelle placement is described. Variable-complexity design strategies are used to combine conceptual and preliminary-level design approaches, both to preserve interdisciplinary design influences and to reduce computational expense. Conceptual-design-level (approximate) methods are used to estimate aircraft weight, supersonic wave drag and drag due to lift, and landing angle of attack. The drag due to lift, wave drag and landing angle of attack are also evaluated using more detailed, preliminary-design-level techniques. New, approximate methods for estimating supersonic wave drag and drag due to lift are described. The methodology is applied to the minimization of the gross weight of an HSCT that flies at Mach 2.4 with a range of 5500 n.mi. Results are presented for wing planform shape optimization and for combined wing and fuselage optimization with nacelle placement. Case studies include both all-metal wings and advanced composite wings.
Modeling of space shuttle SRB aft ends for inherent aerodynamic bias determination
NASA Astrophysics Data System (ADS)
González, David R.; Stapf, Sean P.; Gebhard, Thomas J.
2007-04-01
The Air Force's 45th Space Wing is in charge of operating the Range Safety System (RSS) for all launches that take place on the Eastern Range. If initiated, the RSS currently implemented on the Space Transportation System after launch would provide for the partial destruction of the solid rocket boosters (SRBs) to terminate thrust. The majority of the risk from the large explosive debris created comes from the aft ends of the SRBs, which fall largely intact along with the remaining propellant. Historically, no impact data on such a scenario has been available and in support of the Space Shuttle Return-to-Flight schedule, aerodynamic and trajectory analyses were performed to characterize any pitch angle biases associated with the aft end's descent after initiating the linear shaped charges (LSCs) on the SRBs. Results show the aft end has a bias towards impacting at +/-5, 70, or 175 degrees and takes an average of 10 seconds to stabilize into any one of these orientations after being separated from the SRB forward body.
NASA Astrophysics Data System (ADS)
Kuzishchin, V. F.; Tsarev, V. S.
2014-04-01
The problem of automatically tuning controllers in an operating control system is considered. Two methods for quickly determining the model parameters with calculating the plant model and the optimal controller tuning parameters in real time are proposed for the preliminary controller tuning stage: from the experimentally obtained plant response to an impulse disturbance and from two periods of self-oscillations excited in the mode of two-position control. The PID controller tunings are determined using the calculation algorithm of indirect frequency optimality indicators. The results from checking the serviceability of the proposed method in a system fitted with an industry-grade controller are presented.
The aerodynamics of small Reynolds numbers
NASA Technical Reports Server (NTRS)
Schmitz, F. W.
1980-01-01
Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.
NASA Technical Reports Server (NTRS)
Letko, W.
1956-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the aerodynamic characteristics of the Army Chemical Corps model E-112 bomblets with span-chord ratio of 2:1. A detailed analysis has not been made; however, the results showed that all the models were spirally unstable and that a large gap between the model tips and end plates tended to reduce the instability.
NASA Technical Reports Server (NTRS)
Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.
1992-01-01
A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Noderer, Keith D.
1996-01-01
A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.
Tuning surface reactivity by finite size effects: role of orbital symmetry in the d - band model
NASA Astrophysics Data System (ADS)
Snijders, Paul; Yin, Xiangshi; Cooper, Valentino; Weitering, Hanno
Catalytic activity depends sensitively on the strength of the interactions between reactant molecules and catalyst surface: too weak and the catalyst cannot capture enough molecules to react; too strong and the reaction products do not desorb, blocking further reactions. The ability to control the binding strength of molecules to metal surfaces is thus fundamental to the design of efficient and selective catalysts. Catalyst design often relies on increasing the interaction strength on relatively non-reactive materials by introducing active sites. Here, we present a complementary approach: we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time. While bulk Pd(111) is reactive toward oxygen, we find that Pd films thinner than 6 atom layers are surprisingly inert to oxidation. This observation can be explained with the d-band model only when it is applied to the orbitals directly involved in the bonding. The insight into orbital specific contributions to surface reactivity could be useful in the design of catalysts. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Determining aerodynamic coefficients from high speed video of a free-flying model in a shock tunnel
NASA Astrophysics Data System (ADS)
Neely, Andrew J.; West, Ivan; Hruschka, Robert; Park, Gisu; Mudford, Neil R.
2008-11-01
This paper describes the application of the free flight technique to determine the aerodynamic coefficients of a model for the flow conditions produced in a shock tunnel. Sting-based force measurement techniques either lack the required temporal response or are restricted to large complex models. Additionally the free flight technique removes the flow interference produced by the sting that is present for these other techniques. Shock tunnel test flows present two major challenges to the practical implementation of the free flight technique. These are the millisecond-order duration of the test flows and the spatial and temporal nonuniformity of these flows. These challenges are overcome by the combination of an ultra-high speed digital video camera to record the trajectory, with spatial and temporal mapping of the test flow conditions. Use of a lightweight model ensures sufficient motion during the test time. The technique is demonstrated using the simple case of drag measurement on a spherical model, free flown in a Mach 10 shock tunnel condition.
NASA Astrophysics Data System (ADS)
Zhu, Xiaowei; Iungo, G. Valerio; Leonardi, Stefano; Anderson, William
2017-02-01
For a horizontally homogeneous, neutrally stratified atmospheric boundary layer (ABL), aerodynamic roughness length, z_0, is the effective elevation at which the streamwise component of mean velocity is zero. A priori prediction of z_0 based on topographic attributes remains an open line of inquiry in planetary boundary-layer research. Urban topographies - the topic of this study - exhibit spatial heterogeneities associated with variability of building height, width, and proximity with adjacent buildings; such variability renders a priori, prognostic z_0 models appealing. Here, large-eddy simulation (LES) has been used in an extensive parametric study to characterize the ABL response (and z_0) to a range of synthetic, urban-like topographies wherein statistical moments of the topography have been systematically varied. Using LES results, we determined the hierarchical influence of topographic moments relevant to setting z_0. We demonstrate that standard deviation and skewness are important, while kurtosis is negligible. This finding is reconciled with a model recently proposed by Flack and Schultz (J Fluids Eng 132:041203-1-041203-10, 2010), who demonstrate that z_0 can be modelled with standard deviation and skewness, and two empirical coefficients (one for each moment). We find that the empirical coefficient related to skewness is not constant, but exhibits a dependence on standard deviation over certain ranges. For idealized, quasi-uniform cubic topographies and for complex, fully random urban-like topographies, we demonstrate strong performance of the generalized Flack and Schultz model against contemporary roughness correlations.
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
NASA Astrophysics Data System (ADS)
Suzuki, Kensuke
A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.
A Hierarchical Statistical Model of Natural Images Explains Tuning Properties in V2.
Hosoya, Haruo; Hyvärinen, Aapo
2015-07-22
Previous theoretical and experimental studies have demonstrated tight relationships between natural image statistics and neural representations in V1. In particular, receptive field properties similar to simple and complex cells have been shown to be inferable from sparse coding of natural images. However, whether such a relationship exists in higher areas has not been clarified. To address this question for V2, we trained a sparse coding model that took as input the output of a fixed V1-like model, which was in its turn fed a large variety of natural image patches as input. After the training, the model exhibited response properties that were qualitatively and quantitatively compatible with three major neurophysiological results on macaque V2, as follows: (1) homogeneous and heterogeneous integration of local orientations (Anzai et al., 2007); (2) a wide range of angle selectivities with biased sensitivities to one component orientation (Ito and Komatsu, 2004); and (3) exclusive length and width suppression (Schmid et al., 2014). The reproducibility was stable across variations in several model parameters. Further, a formal classification of the internal representations of the model units offered detailed interpretations of the experimental data, emphasizing that a novel type of model cell that could detect a combination of local orientations converging toward a single spatial point (potentially related to corner-like features) played an important role in reproducing tuning properties compatible with V2. These results are consistent with the idea that V2 uses a sparse code of natural images. Significance statement: Sparse coding theory has successfully explained a number of receptive field properties in V1; but how about in V2? This question has recently become important since a variety of properties distinct from V1 have been discovered in V2, and thus a more integrative understanding is called for. Our study shows that a hierarchical sparse coding model of
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Fung, Jimmy
1998-01-01
This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.
NASA Technical Reports Server (NTRS)
See, M. J.; Cozzolongo, J. V.
1983-01-01
A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1972-01-01
An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.
NASA Technical Reports Server (NTRS)
Ganzer, Victor M
1944-01-01
Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such
Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model
Neymotin, Samuel A.; Hilscher, Markus M.; Moulin, Thiago C.; Skolnick, Yosef; Lazarewicz, Maciej T.; Lytton, William W.
2013-01-01
channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases. PMID:24204609
Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.
Neymotin, Samuel A; Hilscher, Markus M; Moulin, Thiago C; Skolnick, Yosef; Lazarewicz, Maciej T; Lytton, William W
2013-01-01
Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.
NASA Astrophysics Data System (ADS)
Morse, Robert P.; Roper, Peter
2000-05-01
Analog electrical stimulation of the cochlear nerve (the nerve of hearing) by a cochlear implant is an effective method of providing functional hearing to profoundly deaf people. Recent physiological and computational experiments have shown that analog cochlear implants are unlikely to convey certain speech cues by the temporal pattern of evoked nerve discharges. However, these experiments have also shown that the optimal addition of noise to cochlear implant signals can enhance the temporal representation of speech cues [R. P. Morse and E. F. Evans, Nature Medicine 2, 928 (1996)]. We present a simple model to explain this enhancement of temporal representation. Our model derives from a rate equation for the mean threshold-crossing rate of an infinite set of parallel discriminators (level-crossing detectors); a system that well describes the time coding of information by a set of nerve fibers. Our results show that the optimal transfer of information occurs when the threshold level of each discriminator is equal to the root-mean-square noise level. The optimal transfer of information by a cochlear implant is therefore expected to occur when the internal root-mean-square noise level of each stimulated fiber is approximately equal to the nerve threshold. When interpreted within the framework of aperiodic stochastic resonance, our results indicate therefore that for an infinite array of discriminators, a tuning of the noise is still necessary for optimal performance. This is in contrast to previous results [Collins, Chow, and Imhoff, Nature 376, 236 (1995); Chialvo, Longtin, and Müller-Gerking, Phys. Rev. E 55, 1798 (1997)] on arrays of FitzHugh-Nagumo neurons.
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
NASA Technical Reports Server (NTRS)
Vicker, Darby
2006-01-01
A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.
Kiraz, A; Karadağ, Y; Muradoğlu, M
2008-11-14
Large spectral tuning of a water-glycerol microdroplet standing on a superhydrophobic surface by local heating with a focused infrared laser is studied both experimentally by optical spectroscopy and computationally using a lumped system formulation of the mass and heat transfer between the microdroplet and the chamber. The effects of optical scattering force, chamber humidity, size of microdroplet and laser power on the tuning mechanism are examined. The reversibility of the tuning mechanism is also studied. In spite of its negligibly small volatility compared to that of water, irreversibility is found to be mainly caused by evaporation of glycerol. It is also found that reversibility increases dramatically with the relative water and glycerol humidities, and spectral tuning can be made almost fully reversible when the chamber is saturated with glycerol vapor and the relative water humidity approaches unity. Some hysteresis effects are observed, especially in large microdroplets, and this behavior is attributed to the whispering-gallery mode resonances in laser absorption. The time response of the tuning mechanism is also analyzed both experimentally and computationally. The technique presented can find applications in optical communication systems, and can be used in fundamental studies in cavity quantum electrodynamics and in characterizing liquid aerosols on a surface.
NASA Technical Reports Server (NTRS)
Kral, Linda D.; Ladd, John A.; Mani, Mori
1995-01-01
The objective of this viewgraph presentation is to evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody. The one-equation models have replaced the algebraic models as the baseline turbulence models. The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Sparlart-Allmaras model is not grid dependent like the Baldwin-Barth model. No general turbulence model exists for all engineering applications. The Spalart-Allmaras one-equation model and the Chien k-epsilon models are the preferred turbulence models. Although the two-equation models often better predict the flow field, they may take from two to five times the CPU time. Future directions are in further benchmarking the Menter blended k-w/k-epsilon and algorithmic improvements to reduce CPU time of the two-equation model.
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Swihert, John M
1958-01-01
A brief investigation of a target-type thrust reverser on a single-engine fighter model has been conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.05.At Mach numbers of 0.80, 0.92, and 1.05, a hydrogen peroxide turbojet-engine simulator was operated with the thrust reverser extended. The angle of attack was varied from 0 degrees to 5 degrees at these Mach numbers. The Reynolds number of the free stream, based on the mean aerodynamic chord, was about 5 x 10(6). It was estimated that reversed jet operations separated the model boundary-layer flow over the upper surface of the horizontal tail and upper part of the afterbody. This resulted in a positive pitch increment due to reversed jet operation. Jet-on operation also tended to stabilize the severe lateral oscillations which occurred with the reverser extended and the jet off. It appeared that these jet-off oscillations were the result of an alternating separation and reattachment of the flow on the rearmost portions of the fuselage afterbody.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
Improved two-equation k-omega turbulence models for aerodynamic flows
NASA Technical Reports Server (NTRS)
Menter, Florian R.
1992-01-01
Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows
NASA Technical Reports Server (NTRS)
Menter, Florian R.
1993-01-01
Two new versions of the kappa-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original kappa-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50% of the boundary-layer but changes gradually to the standard kappa-epsilon model (in a kappa- omega formulation) towards the boundary-layer edge. The free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is a variation of the BSL model with the additional ability to account for the transport of the principal turbulent shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear-stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original kappa-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values but show better agreement with experimental data for adverse pressure gradient boundary-layer flows.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Carson, George T., Jr.
1985-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.
NASA Astrophysics Data System (ADS)
Abaimov, N. A.; Ryzhkov, A. F.
2015-11-01
Problems requiring solution in development of modern highly efficient gasification reactor of a promising high power integrated gasification combined-cycle plant are formulated. The task of creating and testing a numerical model of an entrained-flow reactor for thermochemical conversion of pulverized coal is solved. The basic method of investigation is computational fluid dynamics. The submodel of thermochemical processes, including a single-stage scheme of volatile substances outlet and three heterogeneous reactions of carbon residue conversion (complete carbon oxidation, Boudouard reaction and hydrogasification), is given. The mass loss rate is determined according to the basic assumptions of the diffusion-kinetic theory. The equations applied for calculation of the process of outlet of volatile substances and three stages of fuel gasifi-cation (diffusion of reagent gas toward the surface of the coal particle, heterogeneous reactions of gas with carbon on its surface, and homogeneous reactions beyond the particle surface) are presented. The universal combined submodel Eddy Dissipation/Finite Rate Chemistry with standard (built-in) constants is used for numerical estimates. Aerodynamic mechanisms of action on thermochemical processes of solid fuel gasification are studied, as exemplified by the design upgrade of a cyclone reactor of preliminary thermal fuel preparation. Volume concentrations of combustible gases and products of complete combustion in the syngas before and after primary air and pulverized coal flows' redistribution are given. Volume concentrations of CO in syngas at different positions of tangential secondary air inlet nozzle are compared.
NASA Technical Reports Server (NTRS)
Graves, E. B.
1972-01-01
A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
NASA Astrophysics Data System (ADS)
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Adcock, J. B.; Witkowski, D. P.; Wright, F. L.
1995-01-01
A high Reynolds number investigation of a commercial transport model was conducted in the National Transonic Facility (NTF) at Langley Research Center. This investigation was part of a cooperative effort to test a 0.03-scale model of a Boeing 767 airplane in the NTF over a Mach number range of 0.70 to 0.86 and a Reynolds number range of 2.38 to 40.0 x 10(exp 6) based on the mean aerodynamic chord. One of several specific objectives of the current investigation was to evaluate the level of data repeatability attainable in the NTF. Data repeatability studies were performed at a Mach number of 0.80 with Reynolds numbers of 2.38, 4.45, and 40.0 x 10(exp 6) and also at a Mach number of 0.70 with a Reynolds number of 40.0 x 10(exp 6). Many test procedures and data corrections are addressed in this report, but the data presented do not include corrections for wall interference, model support interference, or model aeroelastic effects. Application of corrections for these three effects would not affect the results of this study because the corrections are systematic in nature and are more appropriately classified as sources of bias error. The repeatability of the longitudinal stability-axis force and moment data has been accessed. Coefficients of lift, drag, and pitching moment are shown to repeat well within the pretest goals of plus or minus 0.005, plus or minus 0.0001, and plus or minus 0.001, respectively, at a 95-percent confidence level over both short- and near-term periods.
Free Wake Techniques for Rotor Aerodynamic Analylis. Volume 2: Vortex Sheet Models
NASA Technical Reports Server (NTRS)
Tanuwidjaja, A.
1982-01-01
Results of computations are presented using vortex sheets to model the wake and test the sensitivity of the solutions to various assumptions used in the development of the models. The complete codings are included.
Electrical and kinetic model of an atmospheric rf device for plasma aerodynamics applications
Pinheiro, Mario J.; Martins, Alexandre A.
2010-08-15
The asymmetrically mounted flat plasma actuator is investigated using a self-consistent two-dimensional fluid model at atmospheric pressure. The computational model assumes the drift-diffusion approximation and uses a simple plasma kinetic model. It investigated the electrical and kinetic properties of the plasma, calculated the charged species concentrations, surface charge density, electrohydrodynamic forces, and gas speed. The present computational model contributes to understand the main physical mechanisms, and suggests ways to improve its performance.
Pardo, R.C.; Zinkann, G.P.
1995-08-01
A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.
Helmer, Markus; Kozyrev, Vladislav; Stephan, Valeska; Treue, Stefan; Geisel, Theo; Battaglia, Demian
2016-01-01
Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the measured responses to a small subset of discrete stimuli in the relevant dimension. However, as neuronal responses are irregular and experimental measurements noisy, it is often difficult to determine reliably the appropriate model from the data. We illustrate this general problem by fitting diverse models to representative recordings from area MT in rhesus monkey visual cortex during multiple attentional tasks involving complex composite stimuli. We find that all models can be well-fitted, that the best model generally varies between neurons and that statistical comparisons between neuronal responses across different experimental conditions are affected quantitatively and qualitatively by specific model choices. As a robust alternative to an often arbitrary model selection, we introduce a model-free approach, in which features of interest are extracted directly from the measured response data without the need of fitting any model. In our attentional datasets, we demonstrate that data-driven methods provide descriptions of tuning curve features such as preferred stimulus direction or attentional gain modulations which are in agreement with fit-based approaches when a good fit exists. Furthermore, these methods naturally extend to the frequent cases of uncertain model selection. We show that model-free approaches can identify attentional modulation patterns, such as general alterations of the irregular shape of tuning curves, which cannot be captured by fitting stereotyped conventional models. Finally, by comparing datasets across different conditions, we demonstrate effects of attention that are cell- and even stimulus
Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1985-01-01
An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.
NASA Technical Reports Server (NTRS)
Zahm, A F
1924-01-01
This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.
Feedback Control for Aerodynamics (Preprint)
2006-09-01
AFRL-VA-WP-TP-2006-348 FEEDBACK CONTROL FOR AERODYNAMICS (PREPRINT) R. Chris Camphouse, Seddik M. Djouadi, and James H. Myatt...CONSTRUCTION FOR THE DESIGN OF BOUNDARY FEEDBACK CONTROLS FROM REDUCED ORDER MODELS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 0601102F 5d. PROJECT NUMBER...
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave transitionally in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Spalart, Philippe R.
2008-01-01
The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave 'transitionally' in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Huffman, J. K.
1972-01-01
An investigation has been conducted to determine the effects of wing camber and twist on the longitudinal aerodynamic characteristics of a wingbody configuration. Three wings were used each having the same planform (aspect ratio of 2.5 and leading-edge sweep angle of 44 deg.) but differing in amounts of camber and twist (wing design lift coefficient). The wing design lift coefficients were 0, 0.35, and 0.70. The investigation was conducted over a Mach number range from 0.20 to 0.70 at angles of attack up to about 22 deg. The effect of wing strakes on the aerodynamic characteristics of the cambered wings was also studied. A comparison of the experimentally determined aerodynamic characteristics with theoretical estimates is also included.
NASA Technical Reports Server (NTRS)
Gibson, A. F.
1983-01-01
A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.
Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl
1996-01-01
A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.
Comparison of Aerodynamic Resistance Parameterizations and Implications for Dry Deposition Modeling
Nitrogen deposition data used to support the secondary National Ambient Air Quality Standards and critical loads research derives from both measurements and modeling. Data sets with spatial coverage sufficient for regional scale deposition assessments are currently generated fro...
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
The presentation begins with a brief description of the motivation and approach that has been taken for this research. This will be followed by a description of the Volterra Theory of Nonlinear Systems and the CAP-TSD code which is an aeroelastic, transonic CFD (Computational Fluid Dynamics) code. The application of the Volterra theory to a CFD model and, more specifically, to a CAP-TSD model of a rectangular wing with a NACA 0012 airfoil section will be presented.
Unsteady Aerodynamic Models for Flight Control of Agile Micro Air Vehicles
2010-08-13
MONITOR’S REPORT NUMBER(S) AFRL-OSR-VA-TR-2011-0251 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13...the model in [18] must be calibrated to experimental data, and often does not match data it was not specifically calibrated against [9]. The model [41...strategies have a serious limitation in that they need to be calibrated for a particular angle of attack, and are not immediately suitable for
Aerodynamic effects of flexibility in flapping wings.
Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P
2010-03-06
Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small
Pickup, B.A.; Thomson, S.L.
2012-01-01
The influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vocal folds. The models were fabricated using flexible, materially-linear silicone compounds with Young’s modulus values comparable to that of vocal fold tissue. The models included a two-layer design to simulate the vocal fold layered structure. The respective Young’s moduli of elasticity of the “left” and “right” vocal fold models were varied to create asymmetric conditions. High-speed videokymography was used to measure maximum vocal fold excursion, vibration frequency, and left-right phase shift, all of which were significantly influenced by asymmetry. Onset pressure, a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analysis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold model. Potential applications to various clinical conditions are mentioned, and suggestions for future related studies are presented. PMID:19664777
Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.
2016-01-01
A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples.
NASA Technical Reports Server (NTRS)
Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.
1987-01-01
An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between
The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J
NASA Technical Reports Server (NTRS)
House, R O
1938-01-01
The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.
Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model
NASA Technical Reports Server (NTRS)
Levin, Alan D.; Smith, Ronald C.; Wood, Richard D.
1985-01-01
A semispan wing/body model with a powered propeller was tested to provide data on a total powerplant installation drag penalty of advanced propfan-powered aircraft. The test objectives were to determine the total power plant installation drag penalty on a representative propfan aircraft; to study the effect of configuration modifications on the installed powerplant drag; and to determine performance characteristics of an advanced design propeller which was mounted on a representative nacelle in the presence of a wing.
Modeling the transient aerodynamic effects during the motion of a flexible trailing edge
NASA Astrophysics Data System (ADS)
Wolff, T.; Seume, J. R.
2016-09-01
Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.
Aerodynamic Characteristics of a Canard and an Outboard-Tail Airplane Model at High Subsonic Speeds
NASA Technical Reports Server (NTRS)
Fournier, Paul G.
1961-01-01
An investigation has been made in the Langley high-speed 7- by 10-foot tunnel through a range of Mach numbers from 0.60 to 0.95 of the static longitudinal and lateral stability and control characteristics of a canard airplane configuration and an outboard-tail configuration. The canard model had a twisted wing with approximately 67 deg of sweepback and an aspect ratio of 2.91 and was tested with three trapezoidal canard surfaces having ratios of exposed area to wing area of 0.032, 0.076, and 0.121. The canard model had a single body-mounted vertical tail. The outboard-tail model had its horizontal- and vertical-tail surfaces mounted on slender bodies attached to the wing tips and located to the rear and outboard of the 67 deg sweptback wing of aspect ratio 1.00. The data, which are presented with limited analysis, provide information at high subsonic speeds on these two types of high-speed airplanes which have previously been tested at supersonic speeds and reported in NACA RM L58BO7 and NACA RM L58E20.
2015-01-05
canopies , often referred to as parafoils. No numerical studies, however, have fully investigated the 3-D aerodynamic performance of these bleed-air actuators...Simulation results are presented for a finite span, ram-air canopy geometry and several configurations amenable for comparison with wind tunnel
On the Aerodynamic Characteristics over Idealized Two-Dimensional Urban Street Canyon Models
NASA Astrophysics Data System (ADS)
Leung, K. K.; Liu, C. H.
2012-04-01
There are numerous anthropogenic pollutant sources in the atmospheric boundary layer (ABL) nowadays, which mainly attributed to human activities in urban areas. Hence, how urban morphology affects the heat and mass transfer in built environment is a popular research problem in the urban climate community. However, our understanding of street-level transport processes is rather limited. Laboratory experiments often serve as complementary solutions to modeling results. Although there are laboratory results available for the mass transfer over idealized urban roughness, the transport processes are not examined in details. In this paper, we attempt to demystify the pollutant removal mechanism from urban areas to the urban ABL. Laboratory measurements, which were conducted in the wind tunnel in Mechanical Engineering, The University of Hong Kong, and computational fluid dynamics (CFD) is used concurrently. The spatial air pollutant transport from the street region to the urban ABL was represented by means of water evaporation method from the soaked filter paper applied on the surfaces of the building facades and ground surface. Street canyon models of building-height-to-street-width (aspect) ratios in the range of 0.125 to 2 are carried out. The local mass transfer velocity along the street canyons was measured and archived a good comparison with the outside literature. Besides, both the laboratory and CFD results show that the pollutant removal from 2D street canyons increases with decreasing ARs. It arrives a local maximum then decreases thereafter. In the comparison between laboratory and CFD results, the difference in the size of the street canyon models, also known as scaling effects, is needed to be considered. Therefore, despite of representing the transfer behavior by the local pollutant exchange rate, scaled local/overall pollutant removal coefficient is proposed for a comparison of pollutant removal performance in a more reasonable manner. Such effect is found
Flow Induced Vibration and Glottal Aerodynamics in a Three-Dimensional Laryngeal Model
NASA Astrophysics Data System (ADS)
Zheng, Xudong; Xue, Qian; Mittal, Rajat; Bielamowicz, Steven
2009-11-01
Three-dimensional effects associated with phonation remain unclear due to the lack of capability of simulating 3D fluid-tissue interaction in the past. To advance the state-of-the-art in this arena, an immersed-boundary method based flow solver coupled with a finite-element solid dynamics solver is employed to conduct high-fidelity direct-numerical simulations of phonation in a 3D model of the human larynx. Three-dimensional vibration patterns are captured along with turbulence effects and three-dimensional vortex structures in the glottal jet. Results from these simulations are presented.
Aerodynamic characteristics of a large scale model with a swept wing and augmented jet flap
NASA Technical Reports Server (NTRS)
Falarski, M. D.; Koenig, D. G.
1971-01-01
Data of tests of a large-scale swept augmentor wing model in the 40- by 80-foot wind tunnel are presented. The data includes longitudinal characteristics with and without a horizontal tail as well as results of preliminary investigation of lateral-directional characteristics. The augmentor flap deflection was varied from 0 deg to 70.6 deg at isentropic jet thrust coefficients of 0 to 1.47. The tests were made at a Reynolds number from 2.43 to 4.1 times one million.
Aerodynamic Analyses Requiring Advanced Computers, Part 1
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Kelley, Henry L.
2000-01-01
Two large-scale, two-dimensional helicopter tail boom models were used to determine the effects of passive venting on boom down loads and side forces in hovering crosswind conditions. The models were oval shaped and trapezoidal shaped. Completely porous and solid configurations, partial venting in various symmetric and asymmetric configurations, and strakes were tested. Calculations were made to evaluate the trends of venting and strakes on power required when applied to a UH-60 class helicopter. Compared with the UH-60 baseline, passive venting reduced side force but increased down load at flow conditions representing right sideward flight. Selective asymmetric venting resulted in side force benefits close to the fully porous case. Calculated trends on the effects of venting on power required indicated that the high asymmetric oval configuration was the most effective venting configuration for side force reduction, and the high asymmetric with a single strake was the most effective for overall power reduction. Also, curves of side force versus flow angle were noticeable smoother for the vented configurations compared with the solid baseline configuration; this indicated a potential for smoother flight in low-speed crosswind conditions.
Hara, Yuko; Pestilli, Franco; Gardner, Justin L.
2014-01-01
Single-unit measurements have reported many different effects of attention on contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on visibility), while functional imaging measurements have more uniformly reported increases in response across all contrasts (additive-offset). The normalization model of attention elegantly predicts the diversity of effects of attention reported in single-units well-tuned to the stimulus, but what predictions does it make for more realistic populations of neurons with heterogeneous tuning? Are predictions in accordance with population-scale measurements? We used functional imaging data from humans to determine a realistic ratio of attention-field to stimulus-drive size (a key parameter for the model) and predicted effects of attention in a population of model neurons with heterogeneous tuning. We found that within the population, neurons well-tuned to the stimulus showed a response-gain effect, while less-well-tuned neurons showed a contrast-gain effect. Averaged across the population, these disparate effects of attention gave rise to additive-offsets in contrast-response, similar to reports in human functional imaging as well as population averages of single-units. Differences in predictions for single-units and populations were observed across a wide range of model parameters (ratios of attention-field to stimulus-drive size and the amount of baseline response modifiable by attention), offering an explanation for disparity in physiological reports. Thus, by accounting for heterogeneity in tuning of realistic neuronal populations, the normalization model of attention can not only predict responses of well-tuned neurons, but also the activity of large populations of neurons. More generally, computational models can unify physiological findings across different scales of measurement, and make links to behavior, but only if factors such as heterogeneous tuning within a population are properly accounted for
Flow aerodynamics modeling of an MHD swirl combustor - Calculations and experimental verification
NASA Technical Reports Server (NTRS)
Gupta, A. K.; Beer, J. M.; Louis, J. F.; Busnaina, A. A.; Lilley, D. G.
1981-01-01
The paper describes a computer code for calculating the flow dynamics of a constant-density flow in the second-stage trumpet shaped nozzle section of a two-stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite-difference computer code has been developed for the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for the efficient solution of the equations. The code produces as output the flow field map of the nondimensional stream function, axial and swirl velocity. It was found that the best location for seed injection to obtain a uniform distribution at the combustor exit is in the central location for seed injected at the entrance to the second stage combustor.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)
2002-01-01
Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.
NASA Technical Reports Server (NTRS)
Fournier, P. G.; Goodson, K. W.
1974-01-01
A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.
NASA Technical Reports Server (NTRS)
Campbell, R. L.
1982-01-01
Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.
Spatial signal amplification in cell biology: A lattice-gas model for self-tuned phase ordering
NASA Astrophysics Data System (ADS)
Ferraro, T.; de Candia, A.; Gamba, A.; Coniglio, A.
2008-09-01
Experiments show that the movement of eukaryotic cells is regulated by a process of phase separation of two competing enzymes on the cell membrane, that effectively amplifies shallow external gradients of chemical attractant. Notably, the cell is able to self-tune the final enzyme concentrations to an equilibrium state of phase coexistence, for a wide range of the average attractant concentration. We propose a simple lattice model in which, together with a short-range attraction between enzymes, a long-range repulsion naturally arises from physical considerations, that easily explains such observed behavior.
Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications
NASA Astrophysics Data System (ADS)
Corke, Thomas C.; Post, Martiqua L.; Orlov, Dmitriy M.
2009-01-01
The term “plasma actuator” has been a part of the fluid dynamics flow control vernacular for more than a decade. A particular type of plasma actuator that has gained wide use is based on a single dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures. For these actuators, the mechanism of flow control is through a generated body force vector that couples with the momentum in the external flow. The body force can be derived from first principles and the plasma actuator effect can be easily incorporated into flow solvers so that their placement and operation can be optimized. They have been used in a wide range of applications that include bluff body wake control; lift augmentation and separation control on a variety of lifting surfaces ranging from fixed wings with various degrees of sweep, wind turbine rotors and pitching airfoils simulating helicopter rotors; flow separation and tip-casing clearance flow control to reduce losses in turbines, to control flow surge and stall in compressors; and in exciting instabilities in boundary layers at subsonic to supersonic Mach numbers for turbulent transition control. New applications continue to appear through programs in a growing number of US universities and government laboratories, as well as in Germany, France, England, Netherland, Russia, Japan and China. This paper provides an overview of the physics, design and modeling of SDBD plasma actuators. It then presents their use in a number of applications that includes both numerical flow simulations and experiments together.
NASA Astrophysics Data System (ADS)
ELGAMMI, MOUTAZ; SANT, TONIO
2016-09-01
This paper investigates a new approach to model the stochastic variations in the aerodynamic loads on yawed wind turbines experienced at high angles of attack. The method applies the one-dimensional Langevin equation in conjunction with known mean and standard deviation values for the lift and drag data. The method is validated using the experimental data from the NREL Phase VI rotor in which the mean and standard deviation values for the lift and drag are derived through the combined use of blade pressure measurements and a free-wake vortex model. Given that direct blade pressure measurements are used, 3D flow effects arising from the co-existence of dynamic stall and stall delay are taken into account. The model is an important step towards verification of several assumptions characterized as the estimated standard deviation, Gaussian white noise of the data and the estimated drift and diffusion coefficients of the Langevin equation. The results using the proposed assumptions lead to a good agreement with measurements over a wide range of operating conditions. This provides motivation to implement a general fully independent theoretical stochastic model within a rotor aerodynamics model, such as the free-wake vortex or blade-element momentum code, whereby the mean lift and drag coefficients can be estimated using 2D aerofoil data with correction models for 3D dynamic stall and stall delay phenomena, while the corresponding standard derivations are estimated through CFD.
Tencate, Alister J; Kalivas, John H; White, Alexander J
2016-05-19
New multivariate calibration methods and other processes are being developed that require selection of multiple tuning parameter (penalty) values to form the final model. With one or more tuning parameters, using only one measure of model quality to select final tuning parameter values is not sufficient. Optimization of several model quality measures is challenging. Thus, three fusion ranking methods are investigated for simultaneous assessment of multiple measures of model quality for selecting tuning parameter values. One is a supervised learning fusion rule named sum of ranking differences (SRD). The other two are non-supervised learning processes based on the sum and median operations. The effect of the number of models evaluated on the three fusion rules are also evaluated using three procedures. One procedure uses all models from all possible combinations of the tuning parameters. To reduce the number of models evaluated, an iterative process (only applicable to SRD) is applied and thresholding a model quality measure before applying the fusion rules is also used. A near infrared pharmaceutical data set requiring model updating is used to evaluate the three fusion rules. In this case, calibration of the primary conditions is for the active pharmaceutical ingredient (API) of tablets produced in a laboratory. The secondary conditions for calibration updating is for tablets produced in the full batch setting. Two model updating processes requiring selection of two unique tuning parameter values are studied. One is based on Tikhonov regularization (TR) and the other is a variation of partial least squares (PLS). The three fusion methods are shown to provide equivalent and acceptable results allowing automatic selection of the tuning parameter values. Best tuning parameter values are selected when model quality measures used with the fusion rules are for the small secondary sample set used to form the updated models. In this model updating situation, evaluation of
Active Control of Aerodynamic Noise Sources
NASA Technical Reports Server (NTRS)
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Numerical modeling of aerodynamics of airfoils of micro air vehicles in gusty environment
NASA Astrophysics Data System (ADS)
Gopalan, Harish
The superior flight characteristics exhibited by birds and insects can be taken as a prototype of the most perfect form of flying machine ever created. The design of Micro Air Vehicles (MAV) which tries mimic the flight of birds and insects has generated a great deal of interest as the MAVs can be utilized for a number of commercial and military operations which is usually not easily accessible by manned motion. The size and speed of operation of a MAV results in low Reynolds number flight, way below the flying conditions of a conventional aircraft. The insensitivity to wind shear and gust is one of the required factors to be considered in the design of airfoil for MAVs. The stability of flight under wind shear is successfully accomplished in the flight of birds and insects, through the flapping motion of their wings. Numerous studies which attempt to model the flapping motion of the birds and insects have neglected the effect of wind gust on the stability of the motion. Also sudden change in flight conditions makes it important to have the ability to have an instantaneous change of the lift force without disturbing the stability of the MAV. In the current study, two dimensional rigid airfoil, undergoing flapping motion is studied numerically using a compressible Navier-Stokes solver discretized using high-order finite difference schemes. The high-order schemes in space and in time are needed to keep the numerical solution economic in terms of computer resources and to prevent vortices from smearing. The numerical grid required for the computations are generated using an inverse panel method for the streamfunction and potential function. This grid generating algorithm allows the creation of single-block orthogonal H-grids with ease of clustering anywhere in the domain and the easy resolution of boundary layers. The developed numerical algorithm has been validated successfully against benchmark problems in computational aeroacoustics (CAA), and unsteady viscous
Uncertainty in Computational Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.
2003-01-01
An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.
NASA Technical Reports Server (NTRS)
Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.
2016-01-01
A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.
NASA Technical Reports Server (NTRS)
Enomoto, F.; Keller, P.
1984-01-01
The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.
NASA Astrophysics Data System (ADS)
Schächter, Levi
2008-07-01
An analytic quasi-static model is developed for the analysis of the tune-shift associated with the presence of an electron cloud in a damping ring. The essential assumption is that in its direction of motion, a bunch experiences a uniform cloud density but the latter varies from one bunch to another. A second important component of the model is the life-time since it controls the build-up, the equilibrium as well as the decay of the cloud. It is demonstrated analytically that in case of a train of positron bunches, electrons may be trapped in the vertical direction for the entire train duration. Assuming that the ring is dominated by vertical magnetic fields due to either bends or wigglers, we found excellent agreement between the theoretical predictions and the experimental results reported at Cornell Electron/Positron Storage Ring. The ratio between the vertical and horizontal tune-shifts is shown to be indicative of the distribution of the cloud in the beam-chamber.
NASA Astrophysics Data System (ADS)
Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.
2005-07-01
Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.
PID controller tuning for the first-order-plus-dead-time process model via Hermite-Biehler theorem.
Roy, Anindo; Iqbal, Kamran
2005-07-01
This paper discusses PID stabilization of a first-order-plus-dead-time (FOPDT) process model using the stability framework of the Hermite-Biehler theorem. The FOPDT model approximates many processes in the chemical and petroleum industries. Using a PID controller and first-order Padé approximation for the transport delay, the Hermite-Biehler theorem allows one to analytically study the stability of the closed-loop system. We derive necessary and sufficient conditions for stability and develop an algorithm for selection of stabilizing feedback gains. The results are given in terms of stability bounds that are functions of plant parameters. Sensitivity and disturbance rejection characteristics of the proposed PID controller are studied. The results are compared with established tuning methods such as Ziegler-Nichols, Cohen-Coon, and internal model control.
Vertical Landing Aerodynamics of Reusable Rocket Vehicle
NASA Astrophysics Data System (ADS)
Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi
The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.
NASA Technical Reports Server (NTRS)
Kuhn, Richard E; Draper, John W
1956-01-01
This report presents the results of an investigation conducted in the Langley 300 mph 7- by 10-foot wind tunnel for the purpose of determining the aerodynamic characteristics of a model wing-propeller combination, and of the wing and propeller separately at angles of attack up to 90 degrees. The tests covered thrust coefficients corresponding to free-stream velocities from zero forward speed to the normal range of cruising speeds. The results indicate that increasing the thrust coefficient increases the angle of attack for maximum lift and greatly diminishes the usual reduction in lift above the angle of attack for maximum lift.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.
Workshop on Aircraft Surface Representation for Aerodynamic Computation
NASA Technical Reports Server (NTRS)
Gregory, T. J. (Editor); Ashbaugh, J. (Editor)
1980-01-01
Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Joslyn, H. D.; Blair, M. F.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.
Introduction. Computational aerodynamics.
Tucker, Paul G
2007-10-15
The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.
Aerodynamics of a rolling airframe missile
NASA Astrophysics Data System (ADS)
Tisserand, L. E.
1981-05-01
For guidance-related reasons, there is considerable interest in rolling missiles having single-plane steering capability. To aid the aerodynamic design of these airframes, a unique investigation into the aerodynamics of a rolling, steering missile has been carried out. It represents the first known attempt to measure in a wind tunnel the aerodynamic forces and moments that act on a spinning body-canard-tail configuration that exercises canard steering in phase with body roll position. Measurements were made with the model spinning at steady-state roll rates ranging from 15 to 40 Hz over an angle-of-attack range up to about 16 deg. This short, exploratory investigation has demonstrated that a better understanding and a more complete definition of the aerodynamics of rolling, steering vehicles can be developed by way of simulative wind-tunnel testing.
Uniaxial aerodynamic attitude control of artificial satellites
NASA Technical Reports Server (NTRS)
Sazonov, V. V.
1983-01-01
Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.
TUNE: Compiler-Directed Automatic Performance Tuning
Hall, Mary
2014-09-18
This project has developed compiler-directed performance tuning technology targeting the Cray XT4 Jaguar system at Oak Ridge, which has multi-core Opteron nodes with SSE-3 SIMD extensions, and the Cray XE6 Hopper system at NERSC. To achieve this goal, we combined compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation, which have been developed by the PIs over the past several years. We examined DOE Office of Science applications to identify performance bottlenecks and apply our system to computational kernels that operate on dense arrays. Our goal for this performance-tuning technology has been to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, we aim to make our technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.
NASA Technical Reports Server (NTRS)
Grunwald, Kalman J.
1961-01-01
Results are presented of a wind-tunnel investigation of the aerodynamic stability, control, and performance characteristics of a model of a four-propeller tilt-wing VTOL airplane employing flaps and speed brakes through the transition speed range. The results indicate that the wing was stalled for steady level flight for all conditions of the investigation; however, the flapped configuration did produce a higher maximum lift. The effectiveness of the flap in delaying the stall in the present investigation was not as great as in some previous investigations because the flap used was smaller than that used previously. The wing stall resulted in an appreciable reduction of aileron effectiveness during the transition. Out of ground effect the low horizontal tail did not appear to be in an adverse flow field as had been expected and showed no erratic changes in effectiveness; however, in ground effect a large nose-down moment was experienced by the model. In general, the lateral aerodynamic data indicate that the configuration is directionally stable and possesses positive dihedral effect throughout the transition, and the data show no signs of erratic flow at the vertical tails.
Ong, M L; Ng, E Y K
2005-12-01
In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.
Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM
NASA Technical Reports Server (NTRS)
Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia
2015-01-01
Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.
Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM
NASA Astrophysics Data System (ADS)
Aleinov, I. D.; Kiang, N. Y.; Romanou, A.
2015-12-01
Planetary carbon cycle involves multiple phenomena, acting at varietyof temporal and spacial scales. The typical times range from minutesfor leaf stomata physiology to centuries for passive soil carbon poolsand deep ocean layers. So, finding a satisfactory equilibrium statebecomes a challenging and computationally expensive task. Here wepresent the spin-up processes for different configurations of theGISS Carbon Cycle model from the model forced with MODIS observed LeafArea Index (LAI) and prescribed ocean to the prognostic LAI and to themodel fully coupled to the dynamic ocean and ocean biology. Weinvestigate the time it takes the model to reach the equilibrium anddiscuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model(GISS ModelE2) is currently equipped with all major algorithms necessary forthe simulation of the Global Carbon Cycle. The terrestrial part ispresented by Ent Terrestrial Biosphere Model (Ent TBM), which includesleaf biophysics, prognostic phenology and soil biogeochemistry module(based on Carnegie-Ames-Stanford model). The ocean part is based onthe NASA Ocean Biogeochemistry Model (NOBM). The transport ofatmospheric CO2 is performed by the atmospheric part of ModelE2, whichemploys quadratic upstream algorithm for this purpose.
Sataric, Miljko V; Sekulic, Dalibor L; Zdravkovic, Slobodan; Ralevic, Nebojsa M
2017-03-12
It appears that so-called post-translational modifications of tubulin heterodimers are mostly focussed at positions of amino acid sequences of carboxy-terminal tails. These changes have very profound effects on microtubule functions especially in connection with cellular traffic in terms of motor proteins. In this study, we elaborated the biophysical model aimed to explain the strategy governing these subtle interplays between structural and functional properties of microtubules. We relied onto Langevin equations including fluctuation-dissipation processes. In that context we found out that small interaction between a charged motor neck domain and oppositely charged carboxy-terminal tail of the α-tubulin plays the decisive role in tuning kinesin-1 motor processivity along microtubules.
ERIC Educational Resources Information Center
Weltner, Klaus
1990-01-01
Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)
NASA Technical Reports Server (NTRS)
Fournier, P. G.; Sleeman, W. C., Jr.
1972-01-01
A low speed wind tunnel test was conducted in the Langley V/STOL tunnel to determine the static longitudinal and lateral stability characteristics of a general research model which simulated an advance configuration for a commercial transport airplane with a T tail. The model had a 42 deg swept, aspect ratio 6.78 wing with a supercritical airfoil and a high lift system which consisted of a leading edge slat and a double slotted flap. Various slat and flap deflection combinations represented clean, take off, and landing configurations. Effects on the longitudinal and lateral aerodynamic characteristics were determined for two flow through, simulated engine nacelles located on the sides of the fuselage near the rear of the model.
NASA Technical Reports Server (NTRS)
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Tavakoli-Kakhki, Mahsan; Haeri, Mohammad
2011-07-01
Fractional order PI and PID controllers are the most common fractional order controllers used in practice. In this paper, a simple analytical method is proposed for tuning the parameters of these controllers. The proposed method is useful in designing fractional order PI and PID controllers for control of complicated fractional order systems. To achieve the goal, at first a reduction technique is presented for approximating complicated fractional order models. Then, based on the obtained reduced models some analytical rules are suggested to determine the parameters of fractional order PI and PID controllers. Finally, numerical results are given to show the efficiency of the proposed tuning algorithm.
NASA Technical Reports Server (NTRS)
Parkinson, John B; Olson, Roland E; House, Rufus O
1939-01-01
Three models of V-bottom floats for twin-float seaplanes (N.A.C.A. models 57-A, 57-B, and 57-C) having angles of dead rise of 20 degrees, 25 degrees, and thirty degrees, respectively, were tested in the N.A.C.A. tank and in the N.A.C.A. 7- by 10-foot wind tunnel. Within the range investigated, the effect of angle of dead rise on water resistance was found to be negligible at speeds up to and including the hump speed, and water resistance was found to increase with angle of dead rise at planing speeds. The height of the spray at the hump speed decreased with increase in angle of dead rise and the aerodynamic drag increased with dead rise. Lengthening the forebody of model 57-B decreased the water resistance and the spray at speeds below the hump speed. Spray strips provided an effective means for the control of spray with the straight V sections used in the series but considerably increased the aerodynamic drag. Charts for the determination of the water resistance and the static properties of the model with 25 degrees dead rise and for the aerodynamic drag of all the models are included for use in design.
On the derivation and tuning of phase oscillator models for lamprey central pattern generators.
Várkonyi, Péter L; Kiemel, Tim; Hoffman, Kathleen; Cohen, Avis H; Holmes, Philip
2008-10-01
Using phase response curves and averaging theory, we derive phase oscillator models for the lamprey central pattern generator from two biophysically-based segmental models. The first one relies on network dynamics within a segment to produce the rhythm, while the second contains bursting cells. We study intersegmental coordination and show that the former class of models shows more robust behavior over the animal's range of swimming frequencies. The network-based model can also easily produce approximately constant phase lags along the spinal cord, as observed experimentally. Precise control of phase lags in the network-based model is obtained by varying the relative strengths of its six different connection types with distance in a phase model with separate coupling functions for each connection type. The phase model also describes the effect of randomized connections, accurately predicting how quickly random network-based models approach the determinisitic model as the number of connections increases.
NASA Technical Reports Server (NTRS)
Mineck, R. E.
1977-01-01
Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.
1988-01-01
An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.
Fine-tuning of DDES and IDDES formulations to the k-ω shear stress transport model
NASA Astrophysics Data System (ADS)
Gritskevich, M. S.; Garbaruk, A. V.; Menter, F. R.
2013-06-01
Modifications are proposed of two recently developed hybrid CFD (computational fluid dynamics) strategies, Delayed Detached Eddy Simulation (DDES), and DDES with Improved wall-modeling capability (IDDES). The modifications are aimed at fine-tuning of these approaches to the k-ω SST (shear stress transport) background RANS (Reynolds-averaged Navier-Stokes) model. The first one includes recalibrated empirical constants in the shielding function of the Spalart-Allmaras (SA) based DDES which are shown to be suboptimal (not providing a needed level of elimination of the Model Stress Depletion (MSD)) for the SST-based DDES model. For the SST-IDDES variant, in addition to that, a simplification of the original SA-based formulation is proposed, which does not cause any visible degradation of the model performance. Both modifications are extensively tested on a range of attached and separated flows (developed channel, backward-facing step, periodic hills, wall-mounted hump, and hydrofoil with trailing edge separation).
NASA Astrophysics Data System (ADS)
Amiraux, Mathieu
Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes
X-34 Vehicle Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.
1998-01-01
The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.
NASA Technical Reports Server (NTRS)
Ramsey, P.; Robertson, M. K.
1973-01-01
A test of a 0.004-scale MCR 0074 Baseline Launch Configuration Space Shuttle model was conducted in the NASA-MSFC 14 x 14-inch Trisonic Wind Tunnel (MSFC TWT 566). The objective of the test was to determine the effects of model parametric variations on aerodynamic static stability characteristics over a Mach number range from 0.6 to 4.96. Angles-of-attack from minus 10 deg to plus 10 deg at 0 deg sideslip and angles-of-sideslip from minus 10 deg to plus 10 deg at minus 5 deg, 0 deg, and plus 5 deg angle-of-attack were investigated. The basic configuration investigated was the integrated vehicle consisting of the orbiter, and external tank, and two solid rocket boosters. It was designated 03T9S3.
Aerodynamic Simulation of Ice Accretion on Airfoils
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2015-01-01
A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.
NASA Technical Reports Server (NTRS)
Newsom, William A., Jr.
1960-01-01
An investigation has been made to study the effect of ground proximity on the aerodynamic characteristics of two jet vertical-take-off-and-landing airplane models in which the fuselage remains in a horizontal attitude for the take-off and landing. The first model (called the tilt-wing model) had a tilting wing-engine assembly which was set at 90 deg incidence for the take-off and landing. The second model, called the deflected-jet model) had a cascade of retractable turning vanes to deflect the exhaust of the horizontally mounted jet engines downward for vertical take-off and landing while the entire model remained in a horizontal attitude. With the models at various heights above the ground in the take-off and landing configuration, the lift, drag, and pitching moment were measured and tuft surveys were made to determine the flow field caused by the jet exhaust. The tilt-wing model experienced a loss of lift of less than 3 percent near the ground. The deflected-jet model, however, suffered losses in lift as high as 45 percent near the ground because of a low pressure region under the model caused by the entrainment of air by the jet exhaust as it spread out along the ground. This loss in lift for the deflected-jet configuration could probably be reduced to less than 5 percent by the use of a longer landing gear and a high wing location.
Fundamental Aspects of the Aerodynamics of Turbojet Engine Combustors
NASA Technical Reports Server (NTRS)
Barrere, M.
1978-01-01
Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture, the recirculation zone where primary combustion occurs, the secondary combustion zone, and the dilution zone were examined. An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit. The aerodynamics of afterburn chambers are discussed. A model which can be used to investigate the evolution of temperature, pressure, and rate and efficiency of combustion the length of the chamber was developed.
Unsteady Aerodynamic Force Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2016-01-01
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection
NASA Technical Reports Server (NTRS)
Mercer, C. E.; Carson, G. T., Jr.
1979-01-01
The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.
NASA Technical Reports Server (NTRS)
Parkinson, John B; Olson, Roland E; Draley, Eugene C; Luoma, Arvo A
1943-01-01
A series of related forms of flying-boat hulls representing various degrees of compromise between aerodynamic and hydrodynamic requirements was tested in Langley Tank No. 1 and in the Langley 8-foot high-speed tunnel. The purpose of the investigation was to provide information regarding the penalties in water performance resulting from further aerodynamic refinement and, as a corollary, to provide information regarding the penalties in range or payload resulting from the retention of certain desirable hydrodynamic characteristics. The information should form a basis for over-all improvements in hull form.
NASA Astrophysics Data System (ADS)
Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Jonathan
2011-10-01
High spectral resolution lidars (HSRLs) designed for aerosol and cloud remote sensing are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the frequency of maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the airarm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.
Matausek, M R; Ribić, A I
2009-10-01
This paper presents an effective design and robust tuning method for the control structure based on a series PD controller and a simple Disturbance Observer. All elements of the proposed controller are directly obtained from the low-order Integrating First-Order Plus Dead-Time (IFOPDT) model, used to approximate essential dynamic characteristics of lag-dominant stable, integrating and unstable plants. The structure of the proposed controller is an effective, easy to implement and tune, extension of the series PID controller. For the same robustness, a better disturbance rejection response is obtained by the proposed controller than that of the PID, by adjusting only two parameters with a clear meaning. A comparison with well-tuned PIDs, done by simulations, and the experimental results, obtained on a real thermal power plant, confirm that high performance and robustness are obtained, for dynamic characteristics common to industrial processes.
Automated parameter tuning applied to sea ice in a global climate model
NASA Astrophysics Data System (ADS)
Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.
2017-03-01
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow
Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.
2013-01-01
In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.
Powered-Lift Aerodynamics and Acoustics. [conferences
NASA Technical Reports Server (NTRS)
1976-01-01
Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more
NASA Astrophysics Data System (ADS)
Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Ermakov, A. M.
2015-01-01
The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines have been numerically solved using multiblock computational technologies. The obtained solution has been used to analyze subsonic flow past a thick (37.5% chord) airfoil with slot suction in circular vortex cells intended for the Ecology and Progress (Ekologiya i Progress, EKIP) aircraft project in comparison to a distributed (from the central body surface) suction at fixed values of the total volume flow rate (0.02121) and Reynolds number (105) in a range of Mach numbers from 0 to 0.4. This analysis revealed a significant (up to tenfold) decrease in the bow drag (determined with allowance for the energy losses) and a large (by an order of magnitude) increase in the aerodynamic efficiency of the thick airfoil containing vortex cells with slot suction, which reached up to 160.
NASA Technical Reports Server (NTRS)
Stimpert, D. L.
1978-01-01
An acoustic and aerodynamic test program was conducted on a 1/6.25 scale model of the Quiet, Clean, Short-Haul Experimental Engine (QCSEE) forward thrust over-the-wing (OTW) nozzle and OTW thrust reverser. In reverse thrust, the effect of reverser geometry was studied by parametric variations in blocker spacing, blocker height, lip angle, and lip length. Forward thrust nozzle tests determined the jet noise levels of the cruise and takeoff nozzles, the effect of opening side doors to achieve takeoff thrust, and scrubbing noise of the cruise and takeoff jet on a simulated wing surface. Velocity profiles are presented for both forward and reverse thrust nozzles. An estimate of the reverse thrust was made utilizing the measured centerline turning angle.
Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo
2016-11-01
The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses.
Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia.
Francis, Olivia L; Milford, Terry-Ann M; Beldiman, Cornelia; Payne, Kimberly J
2016-03-01
Many leukemias are characterized by well-known mutations that drive oncogenesis. Mice engineered with these mutations provide a foundation for understanding leukemogenesis and identifying therapies. However, data from whole genome studies provide evidence that malignancies are characterized by multiple genetic alterations that vary between patients, as well as inherited genetic variation that can also contribute to oncogenesis. Improved outcomes will require precision medicine approaches-targeted therapies tailored to malignancies in each patient. Preclinical models that reflect the range of mutations and the genetic background present in patient populations are required to develop and test the combinations of therapies that will be used to provide precision medicine therapeutic strategies. Patient-derived xenografts (PDX) produced by transplanting leukemia cells from patients into immune deficient mice provide preclinical models where disease mechanisms and therapeutic efficacy can be studied in vivo in context of the genetic variability present in patient tumors. PDX models are possible because many elements in the bone marrow microenvironment show cross-species activity between mice and humans. However, several cytokines likely to impact leukemia cells are species-specific with limited activity on transplanted human leukemia cells. In this review we discuss the importance of PDX models for developing precision medicine approaches to leukemia treatment. We illustrate how PDX models can be optimized to overcome a lack of cross-species cytokine activity by reviewing a recent strategy developed for use with a high-risk form of B-cell acute lymphoblastic leukemia (B-ALL) that is characterized by overexpression of CRLF2, a receptor component for the cytokine, TSLP.
Tuning a RANS k-e model for jet-in-crossflow simulations.
Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan; DeChant, Lawrence Justin
2013-09-01
We develop a novel calibration approach to address the problem of predictive ke RANS simulations of jet-incrossflow. Our approach is based on the hypothesis that predictive ke parameters can be obtained by estimating them from a strongly vortical flow, specifically, flow over a square cylinder. In this study, we estimate three ke parameters, C%CE%BC, Ce2 and Ce1 by fitting 2D RANS simulations to experimental data. We use polynomial surrogates of 2D RANS for this purpose. We conduct an ensemble of 2D RANS runs using samples of (C%CE%BC;Ce2;Ce1) and regress Reynolds stresses to the samples using a simple polynomial. We then use this surrogate of the 2D RANS model to infer a joint distribution for the ke parameters by solving a Bayesian inverse problem, conditioned on the experimental data. The calibrated (C%CE%BC;Ce2;Ce1) distribution is used to seed an ensemble of 3D jet-in-crossflow simulations. We compare the ensemble's predictions of the flowfield, at two planes, to PIV measurements and estimate the predictive skill of the calibrated 3D RANS model. We also compare it against 3D RANS predictions using the nominal (uncalibrated) values of (C%CE%BC;Ce2;Ce1), and find that calibration delivers a significant improvement to the predictive skill of the 3D RANS model. We repeat the calibration using surrogate models based on kriging and find that the calibration, based on these more accurate models, is not much better that those obtained with simple polynomial surrogates. We discuss the reasons for this rather surprising outcome.
Tuning hERG out: Antitarget QSAR Models for Drug Development
Braga, Rodolpho C.; Alves, Vinícius M.; Silva, Meryck F. B.; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander; Andrade, Carolina H.
2015-01-01
Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of hERG K+ channels that can potentially lead to severe heart arrhythmia and death. As hERG safety testing is a mandatory FDA-required procedure, there is a considerable interest for developing predictive computational tools to identify and filter out potential hERG blockers early in the drug discovery process. In this study, we aimed to generate predictive and well-characterized quantitative structure–activity relationship (QSAR) models for hERG blockage using the largest publicly available dataset of 11,958 compounds from the ChEMBL database. The models have been developed and validated according to OECD guidelines using four types of descriptors and four different machine-learning techniques. The classification accuracies discriminating blockers from non-blockers were as high as 0.83–0.93 on external set. Model interpretation revealed several SAR rules, which can guide structural optimization of some hERG blockers into non-blockers. We have also applied the generated models for screening the World Drug Index (WDI) database and identify putative hERG blockers and non-blockers among currently marketed drugs. The developed models can reliably identify blockers and non-blockers, which could be useful for the scientific community. A freely accessible web server has been developed allowing users to identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://labmol.farmacia.ufg.br/predherg). PMID:24805060
Applied computational aerodynamics
Henne, P.A.
1990-01-01
The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.
LANDSAT-D MSS/TM tuned orbital jitter analysis model LDS900
NASA Technical Reports Server (NTRS)
Pollak, T. E.
1981-01-01
The final LANDSAT-D orbital dynamic math model (LSD900), comprised of all test validated substructures, was used to evaluate the jitter response of the MSS/TM experiments. A dynamic forced response analysis was performed at both the MSS and TM locations on all structural modes considered (thru 200 Hz). The analysis determined the roll angular response of the MSS/TM experiments to improve excitation generated by component operation. Cross axis and cross experiment responses were also calculated. The excitations were analytically represented by seven and nine term Fourier series approximations, for the MSS and TM experiment respectively, which enabled linear harmonic solution techniques to be applied to response calculations. Single worst case jitter was estimated by variations of the eigenvalue spectrum of model LSD 900. The probability of any worst case mode occurrence was investigated.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
Turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Daniels, W. A.
1992-01-01
Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.
Tan, Cheston; Poggio, Tomaso
2016-01-01
Faces are an important and unique class of visual stimuli, and have been of interest to neuroscientists for many years. Faces are known to elicit certain characteristic behavioral markers, collectively labeled "holistic processing", while non-face objects are not processed holistically. However, little is known about the underlying neural mechanisms. The main aim of this computational simulation work is to investigate the neural mechanisms that make face processing holistic. Using a model of primate visual processing, we show that a single key factor, "neural tuning size", is able to account for three important markers of holistic face processing: the Composite Face Effect (CFE), Face Inversion Effect (FIE) and Whole-Part Effect (WPE). Our proof-of-principle specifies the precise neurophysiological property that corresponds to the poorly-understood notion of holism, and shows that this one neural property controls three classic behavioral markers of holism. Our work is consistent with neurophysiological evidence, and makes further testable predictions. Overall, we provide a parsimonious account of holistic face processing, connecting computation, behavior and neurophysiology.
Model-Based, Multiscale Self-Tuning Controller Developed for Active Combustion Control
NASA Technical Reports Server (NTRS)
Le, Dzu K.
2005-01-01
New challenges concerning system health-monitoring and life-extending robust controls for the Ultra-Efficient Engine Technology Project, as well as other advanced engine and power system concepts at NASA and elsewhere, have renewed the control community s interest in smart, model-based methods. In particular, these challenges have further motivated efforts at the NASA Glenn Research Center to exploit the versatility and superiority of the dynamic features extraction of multiscale analysis for controls--such as with "wavelets" and "wavelet filter-banks.' The accomplishments reported herein pertain to the active suppression of combustion instabilities in liquid-fuel combustors via fuel modulation. The fundamentals and initial success of this innovation were reported for a unique demonstration of active combustion control (a research collaboration of NASA Glenn with Pratt & Whitney and the United Technologies Research Center, UTRC). This demonstration, conducted in 2002 at UTRC on the NASA single nozzle rig (SNR) combustor, was the first known suppression of high-frequency instability with a liquid-fueled combustor. The SNR is based on a high-powered military engine combustor that exhibited well-known instabilities.
Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test
Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan
2016-01-01
GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602
Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test.
Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan
2016-12-07
GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results.
Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Hess, J. R.; Bear, R. L.
1982-01-01
A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.
Modelling climate control on cropland and grassland development using phenologically tuned variables
NASA Astrophysics Data System (ADS)
Horion, Stephanie; Tychon, Bernard; Cornet, Yves
2010-05-01
Many studies already investigated the impact of climate change and climate variability on vegetation at global and continental scales. Using time series of remote sensing and climate data, Nemani et al. (2003) analyzed trends in Net Primary Production in relation with changes in climate and showed that, between 1982 and 1999, primary productivity increased by 6% globally in response to climate change. This study also stressed the need to take into account the spatial variability of climatic constraints to plant growth when analyzing the climate change impact on vegetation. Others authors described different phenomenon linked with climate change such as increases of seasonal NDVI amplitude and growing season duration in the Northern high latitude or changes in circumpolar photosynthetic activities. Understanding the interactions between climate and vegetation is also a key issue in our PhD research. Our objective is to identify the meteorological factors which limit the development of croplands and grasslands in relation with their geographical localization. For that purpose, we acquired 10-daily time series of the Normalized Difference Vegetation Index, NDVI, derived from SPOT-VEGETATION and 7 meteorological parameters (Tmean, Tmin, Tmax, Rain, Rad, ETP, Rain-ETP) derived from ERA40 re-analyses and the operational ECMWF (European Centre for Medium-Range Weather Forecast) atmospheric model. Cross-correlations between NDVI and each one of the meteorological parameters were analysed for a set of 25 regions over Europe and Africa: 15 agricultural regions and 10 regions covered by grassland or savannas. Unlike others studies, we did not consider the vegetation globally but we focussed on two types of vegetation: croplands and grasslands. This is quite important considering the role of phenology on the vegetation cycle and its relation with climate. Moreover the analysis was not realised using yearly estimates but using 10-daily products. In order to avoid stationarity
NASA Astrophysics Data System (ADS)
Kuzishchin, V. F.; Petrov, S. V.
2012-10-01
The problem of obtaining the mathematical model of a plant in the course of adaptively tuning the operating automatic closed-loop control systems is considered. A new method is proposed for calculating the parameters of a model with four free coefficients represented by two inertial sections with a time delay. The model parameters are calculated from the data of experiments on determining two points of a plant's complex frequency response. The results from checking the performance of the method in combination with obtaining information on the plant dynamics by applying the Fourier transform to the impulse transient response of the system are presented. The PID controller is tuned using a parameter scanning algorithm with directly checking the amplitude-frequency response of the closed-loop system, using which the stability margin can be calculated and different quality criteria can be applied.
Bat flight generates complex aerodynamic tracks.
Hedenström, A; Johansson, L C; Wolf, M; von Busse, R; Winter, Y; Spedding, G R
2007-05-11
The flapping flight of animals generates an aerodynamic footprint as a time-varying vortex wake in which the rate of momentum change represents the aerodynamic force. We showed that the wakes of a small bat species differ from those of birds in some important respects. In our bats, each wing generated its own vortex loop. Also, at moderate and high flight speeds, the circulation on the outer (hand) wing and the arm wing differed in sign during the upstroke, resulting in negative lift on the hand wing and positive lift on the arm wing. Our interpretations of the unsteady aerodynamic performance and function of membranous-winged, flapping flight should change modeling strategies for the study of equivalent natural and engineered flying devices.
Aerodynamic investigations of a disc-wing
NASA Astrophysics Data System (ADS)
Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin
2017-01-01
The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.
Unstructured mesh algorithms for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.
Transpiration effects in perforated plate aerodynamics
NASA Astrophysics Data System (ADS)
Szwaba, R.; Ochrymiuk, T.
2016-10-01
Perforated walls find a wide use as a method of flow control and effusive cooling. Experimental investigations of the gas flow past perforated plate with microholes (110μm) were carried out. The wide range of pressure at the inlet were investigated. Two distinguishable flow regimes were obtained: laminar and turbulent regime.The results are in good agreement with theory, simulations and experiments on large scale perforated plates and compressible flows in microtubules. Formulation of the transpiration law was associated with the porous plate aerodynamics properties. Using a model of transpiration flow the “aerodynamic porosity” could be determined for microholes.
Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.
2013-10-01
Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.
NASA Technical Reports Server (NTRS)
Dwoyer, D. L.; Newman, P. A.; Thames, F. C.; Melson, N. D.
1981-01-01
The problem of predicting aerodynamic loads on the insulating tiles of the space shuttle thermal protection system (TPS) is discussed and seen to require a method for predicting pressure and mass flux in the gaps between tiles. A mathematical model of the tile-gap flow is developed, based upon a slow viscous (Stokes) flow analysis, and is verified against experimental data. The tile-gap pressure field is derived from a solution of the two-dimensional Laplace equation; the mass-flux vector is then calculated from the pressure gradient. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is given. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is given. The flow model shows tile-gap mass flux to be very sensitive to the gap width indicating a need for coupling the TPS flow and tile displacement calculation. Analytical and experimental work to improve TPS flow predictions and a possible shuttle TPS hardware modification are recommended.
Cochlear microphonic broad tuning curves
NASA Astrophysics Data System (ADS)
Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani
2015-12-01
It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the
NASA Technical Reports Server (NTRS)
Pei, Jing; Wall, John
2013-01-01
This paper describes the techniques involved in determining the aerodynamic stability derivatives for the frequency domain analysis of the Space Launch System (SLS) vehicle. Generally for launch vehicles, determination of the derivatives is fairly straightforward since the aerodynamic data is usually linear through a moderate range of angle of attack. However, if the wind tunnel data lacks proper corrections then nonlinearities and asymmetric behavior may appear in the aerodynamic database coefficients. In this case, computing the derivatives becomes a non-trivial task. Errors in computing the nominal derivatives could lead to improper interpretation regarding the natural stability of the system and tuning of the controller parameters, which would impact both stability and performance. The aerodynamic derivatives are also provided at off nominal operating conditions used for dispersed frequency domain Monte Carlo analysis. Finally, results are shown to illustrate that the effects of aerodynamic cross axis coupling can be neglected for the SLS configuration studied
3-D Navier-Stokes Analysis of Blade Root Aerodynamics for a Tiltrotor Aircraft In Cruise
NASA Technical Reports Server (NTRS)
Romander, Ethan
2006-01-01
The blade root area of a tiltrotor aircraft's rotor is constrained by a great many factors, not the least of which is aerodynamic performance in cruise. For this study, Navier-Stokes CFD techniques are used to study the aerodynamic performance in cruise of a rotor design as a function of airfoil thickness along the blade and spinner shape. Reducing airfoil thickness along the entire blade will be shown to have the greatest effect followed by smaller but still significant improvements achieved by reducing the thickness of root airfoils only. Furthermore, altering the shape of the spinner will be illustrated as a tool to tune the aerodynamic performance very near the blade root.
Recent Experiments at the Gottingen Aerodynamic Institute
NASA Technical Reports Server (NTRS)
Ackeret, J
1925-01-01
This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).
Investigation of Factors Affecting Aerodynamic Performance of Nebulized Nanoemulsion
Kamali, Hosein; Abbasi, Shayan; Amini, Mohammad Ali; Amani, Amir
2016-01-01
This work aimed to prepare a nanoemulsion preparation containing budesonide and assess its aerodynamic behavior in comparison with suspension of budesonide. In-vitro aerodynamic performance of the corresponding micellar solution (ie. nanoemulsion preparation without oil) was investigated too. Nanoemulsions of almond oil containing budesonide, as a hydrophobic model drug molecule, were prepared and optimized. Then, the effect of variation of surfactant/co-surfactant concentration on the aerodynamic properties of the nebulized aerosol was studied. The results indicated that the most physically stable formulation makes the smallest aerodynamic size. The concentration of co-surfactant was also shown to be critical in determination of aerodynamic size. Furthermore, the optimized sample, with 3% w/w almond oil, 20% w/w Tween 80+Span 80 and 2% w/w ethanol showed a smaller MMAD in comparison with the commercially available suspension and the micellar solution. PMID:28243265
A flight experiment to measure rarefied-flow aerodynamics
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.
1990-01-01
A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.
Launch vehicle aerodynamic data base development comparison with flight data
NASA Technical Reports Server (NTRS)
Hamilton, J. T.; Wallace, R. O.; Dill, C. C.
1983-01-01
The aerodynamic development plan for the Space Shuttle integrated vehicle had three major objectives. The first objective was to support the evolution of the basic configuration by establishing aerodynamic impacts to various candidate configurations. The second objective was to provide continuing evaluation of the basic aerodynamic characteristics in order to bring about a mature data base. The third task was development of the element and component aerodynamic characteristics and distributed air loads data to support structural loads analyses. The complexity of the configurations rendered conventional analytic methods of little use and therefore required extensive wind tunnel testing of detailed complex models. However, the ground testing and analyses did not predict the aerodynamic characteristics that were extracted from the Space Shuttle flight test program. Future programs that involve the use of vehicles similar to the Space Shuttle should be concerned with the complex flow fields characteristics of these types of complex configurations.
NASA Technical Reports Server (NTRS)
Potter, J. Leith
1992-01-01
Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.
NASA Astrophysics Data System (ADS)
Cain, T.; Owen, R.; Walton, C.
2005-02-01
The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.
Advanced Aerodynamic Control Effectors
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.
1999-01-01
A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.
Aerodynamic Leidenfrost effect
NASA Astrophysics Data System (ADS)
Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David
2016-12-01
When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
Orion Crew Module Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.
2011-01-01
The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.
Aerodynamics of the hovering hummingbird.
Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R
2005-06-23
Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar-avian-body plan.
Perching aerodynamics and trajectory optimization
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2007-04-01
Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
NASA Technical Reports Server (NTRS)
Cole, Jennifer Hansen
2010-01-01
This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.
NASA Technical Reports Server (NTRS)
Kelly, Thomas C.
1961-01-01
Aerodynamic loads results have been obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.80 to 1.20 for a 1/10-scale model of the upper three stages of the Scout vehicle. Tests were conducted through an angle-of-attack range from -8 deg to 8 deg at an average test Reynolds number per foot of about 4.0 x 10(exp 6). Results indicated that the peak negative pressures associated with expansion corners at the nose and transition flare exhibit sizeable variations which occur over a relatively small Mach number range. The magnitude of the variations may cause the critical local loading condition for the full-scale vehicle to occur at a Mach number considerably lower than that at which the maximum dynamic pressure occurs in flight. The addition of protuberances simulating antennas and wiring conduits had slight, localized effects. The lift carryover from the nose and transition flare on the cylindrical portions of the model generally increased with an increase in Mach number.
Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang
2012-12-20
We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.
Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage
NASA Technical Reports Server (NTRS)
Boyd, David D., Jr.
1999-01-01
A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.
On Cup Anemometer Rotor Aerodynamics
Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio
2012-01-01
The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638
On cup anemometer rotor aerodynamics.
Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio
2012-01-01
The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.
NASA Technical Reports Server (NTRS)
Hoad, D. R.
1975-01-01
A wind-tunnel investigation was conducted to determine the effect of deflecting the engine exit of a four-engine double-slotted flap transport to provide STOL performance. Longitudinal aerodynamic data were obtained at various engine exit positions and deflections. The data were obtained at three flap deflections representing cruise, take-off, and landing conditions for a range of angles of attack and various thrust coefficients. Downwash angles at the location of the horizontal tail were measured. The data are presented without analysis or discussion. Photographs of the test configurations are shown.
2012-09-01
14 Figure 9. UCAV 1303 Model with Dimensions (Inches). From [1]. ..............................15 Figure 10. A Small Rubber Tube Placed over the...DC motor. A third motor is enclosed in a waterproofed mechanism which supports roll motions. The model is supported in the inverted position in order...entire system, from tunnel velocity to model motion, is driven by a PC based LabVIEW software. B. THE UCAV 1303 MODEL In order to perform a flow
Aerodynamic characteristics of reentry vehicles at supersonic velocities
NASA Astrophysics Data System (ADS)
Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.; Dyad'kin, A. A.; Kazakov, M. I.; Krylov, A. N.; Skorovarov, A. Yu.
2015-09-01
Models of promising reentry vehicles, experimental equipment, and test program are described. The method used to determine the total aerodynamic characteristics of these models on the AB-313 mechanical balance in the T-313 supersonic wind tunnel and the method used for simulations are presented. The aerodynamic coefficients of the examined objects in wide ranges of Mach numbers and angles of attack are obtained. The experimental data are compared with the results of simulations.
Read, Jenny C. A.
2010-01-01
Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations. PMID:20421992
Nozzle Aerodynamic Stability During a Throat Shift
NASA Technical Reports Server (NTRS)
Kawecki, Edwin J.; Ribeiro, Gregg L.
2005-01-01
An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.
Freight Wing Trailer Aerodynamics
Graham, Sean; Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
TAD- THEORETICAL AERODYNAMICS PROGRAM
NASA Technical Reports Server (NTRS)
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
POET: Parameterized Optimization for Empirical Tuning
Yi, Q; Seymour, K; You, H; Vuduc, R; Quinlan, D
2007-01-29
The excessive complexity of both machine architectures and applications have made it difficult for compilers to statically model and predict application behavior. This observation motivates the recent interest in performance tuning using empirical techniques. We present a new embedded scripting language, POET (Parameterized Optimization for Empirical Tuning), for parameterizing complex code transformations so that they can be empirically tuned. The POET language aims to significantly improve the generality, flexibility, and efficiency of existing empirical tuning systems. We have used the language to parameterize and to empirically tune three loop optimizations-interchange, blocking, and unrolling-for two linear algebra kernels. We show experimentally that the time required to tune these optimizations using POET, which does not require any program analysis, is significantly shorter than that when using a full compiler-based source-code optimizer which performs sophisticated program analysis and optimizations.
Prediction of Aerodynamic Loading
1977-02-01
predictable even with knowledge of the motion and the quasi- steady aerodynamic coefficients . It sems likely that the unsteady boundary-layer...build up, which are explainable 41 terams of the stability coefficients . More research is needed on the former type of undemanded manoeuvre. In some...drag 81, 82... B5 body sections I. kg lift St strdke 1M kg m pitching moment N kg normal force T kg axial force a 0 angle of attack Coefficie its: CD, cD
Auto-tuning of cascade control systems.
Song, Sihai; Cai, Wenjian; Wang, Ya-Gang
2003-01-01
In this paper, a novel auto-tuning method for a cascade control system is proposed. By employing a simple relay feedback test, both inner and outer loop model parameters can be simultaneously identified. Consequently, well-established proportional-integral-derivative (PID) tuning rules can be applied to tune both loops. Compared with existing methods, the new method is simpler and yet more effective. It can be directly integrated into commercially available industrial auto-tuning systems. Some examples are given to illustrate the effectiveness and robustness of the proposed method.
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
NASA Technical Reports Server (NTRS)
Alford, William J; King, Thomas, Jr
1957-01-01
An investigation was made at high subsonic speeds in the Langley high-speed 7- by 10-foot tunnel to determine the static aerodynamic forces and moments on a missile model during simulated launching from the midsemispan location of a 45 degree sweptback wing-fuselage-pylon combination. The results indicated significant variations in all the aerodynamic components with changes in chordwise location of the missile. Increasing the angle of attack caused increases in the induced effects on the missile model because of the wing-fuselage-pylon combination. Increasing the Mach number had little effect on the variations of the missile aerodynamic characteristics with angle of attack except that nonlinearities were incurred at smaller angles of attack for the higher Mach numbers. The effects of finite wing thickness on the missile characteristics, at zero angle of attack, increase with increasing Mach number. The effects of the pylon on the missile characteristics were to causeincreases in the rolling-moment variation with angle of attack and a negative displacement of the pitching-moment curves at zero angle of attack. The effects of skewing the missile in the lateral direction relative to and sideslipping the missile with the wing-fuselage-pylon combination were to cause additional increments in side force at zero angle of attack. For the missile yawing moments the effects of changes in skew or sideslip angles were qualitatively as would be expected from consideration of the isolated missile characteristics, although there existed differences in theyawing-moment magnitudes.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
NASA Astrophysics Data System (ADS)
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
NASA Technical Reports Server (NTRS)
Hooks, I.; Homan, D.; Romere, P. O.
1985-01-01
The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
PID Tuning Using Extremum Seeking
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to open the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9
NASA Technical Reports Server (NTRS)
Dvorak, Frank A.; Dash, Sanford M.
1987-01-01
Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.
Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2012-01-01
This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.
An automatically tuning intrusion detection system.
Yu, Zhenwei; Tsai, Jeffrey J P; Weigert, Thomas
2007-04-01
An intrusion detection system (IDS) is a security layer used to detect ongoing intrusive activities in information systems. Traditionally, intrusion detection relies on extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been deployed for intrusion detection. An IDS is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current systems depends on the system operators in working out the tuning solution and in integrating it into the detection model. In this paper, an automatically tuning IDS (ATIDS) is presented. The proposed system will automatically tune the detection model on-the-fly according to the feedback provided by the system operator when false predictions are encountered. The system is evaluated using the KDDCup'99 intrusion detection dataset. Experimental results show that the system achieves up to 35% improvement in terms of misclassification cost when compared with a system lacking the tuning feature. If only 10% false predictions are used to tune the model, the system still achieves about 30% improvement. Moreover, when tuning is not delayed too long, the system can achieve about 20% improvement, with only 1.3% of the false predictions used to tune the model. The results of the experiments show that a practical system can be built based on ATIDS: system operators can focus on verification of predictions with low confidence, as only those predictions determined to be false will be used to tune the detection model.
Biological and aerodynamic problems with the flight of animals
NASA Technical Reports Server (NTRS)
Holst, E. V.; Kuchemann, D.
1980-01-01
Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.
Chame, J.; Chen, C.; Dongarra, J.; Hall, M.; Hollingsworth, J. K.; Hovland, P.; Moore, S.; Seymour, K.; Shin, J.; Tiwari, A.; Williams, S.; You, H.; Bailey, D. H.
2008-01-01
The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.
1986-01-01
Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);
Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...
2016-10-03
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less
NASA Technical Reports Server (NTRS)
Wornom, Dewey E.
1960-01-01
Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.
Doubrawa, P.; Barthelmie, R. J.; Wang, H.; Churchfield, M. J.
2016-10-03
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochastic shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.
Aerodynamic characteristics of the HL-20
NASA Astrophysics Data System (ADS)
Ware, George M.; Cruz, Christopher I.
1993-09-01
Wind tunnel tests were made from subsonic to hypersonic speeds to define the aerodynamic characteristics of the HL-20 lifting-body configuration. The data have been assembled into an aerodynamic database for flight analysis of this proposed vehicle. The wind tunnel data indicates that the model is longitudinally and laterally stable (about a center-of-gravity location of 0.54 body length) over the test range from Mach 20 to 0.3. At hypersonic speeds, the HL-20 model trimmed at a lift/drag (L/D) ratio of 1.4. This value gives the vehicle a crossrange capability similar to that of the space shuttle. At subsonic speeds, the HL-20 has a trimmed L/D ratio of about 3.6. Replacing the flat-plate outboard fins with fins having an airfoil shape increased the maximum subsonic trimmed L/D to 4.2.
Aerodynamic Simulation of Runback Ice Accretion
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.
2010-01-01
This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.
Aerodynamic considerations in open shelters. Final report
Hickman, R.G.
1984-11-01
Aerodynamic factors are addressed bearing on the suitability of open structures as blast shelters. Blast closures and attenuator designs are discussed. The research on shelter filling is reviewed; this includes both experimental and theoretical work on scale models and full-scale structures of large dimensions. Shock-dominated and pressure-gradient-dominated shelter-filling mechanisms are described and their potential effects on people are discussed.
The aerodynamics of hovering flight in Drosophila.
Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H
2005-06-01
Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight
NASA Technical Reports Server (NTRS)
Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)
1992-01-01
The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.
Modal forced vibration analysis of aerodynamically excited turbosystems
NASA Technical Reports Server (NTRS)
Elchuri, V.
1985-01-01
Theoretical aspects of a new capability to determine the vibratory response of turbosystems subjected to aerodynamic excitation are presented. Turbosystems such as advanced turbopropellers with highly swept blades, and axial-flow compressors and turbines can be analyzed using this capability. The capability has been developed and implemented in the April 1984 release of the general purpose finite element program NASTRAN. The dynamic response problem is addressed in terms of the normal modal coordinates of these tuned rotating cyclic structures. Both rigid and flexible hubs/disks are considered. Coriolis and centripetal accelerations, as well as differential stiffness effects are included. Generally non-uniform steady inflow fields and uniform flow fields arbitrarily inclined at small angles with respect to the axis of rotation of the turbosystem are considered sources of aerodynamic excitation. The spatial non-uniformities are considered to be small deviations from a principally uniform inflow. Subsonic and supersonic relative inflows are addressed, with provision for linearly interpolating transonic airloads.