Science.gov

Sample records for aerodynamic performance characteristics

  1. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  2. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  3. NASA VCE test bed engine aerodynamic performance characteristics and test results

    NASA Technical Reports Server (NTRS)

    French, M. W.; Allen, C. L.

    1981-01-01

    The Core Driven Fan Stage (CDFS) Variable Cycle Engine (VCE) has been identified as a leading candidate for advanced supersonic cruise aircraft. A scale demonstrator version of this engine has been designed and tested. This testbed engine features a split fan with double bypass capability, variable forward and aft mixers, and a variable area low pressure turbine nozzle to permit exploration and optimization of the cycle in both single and double bypass modes. This paper presents the aerodynamic performance characteristics and experimental results obtained from both the core engine and full engine tests.

  4. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  5. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  6. Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Smith, Ronald C.; Wood, Richard D.

    1985-01-01

    A semispan wing/body model with a powered propeller was tested to provide data on a total powerplant installation drag penalty of advanced propfan-powered aircraft. The test objectives were to determine the total power plant installation drag penalty on a representative propfan aircraft; to study the effect of configuration modifications on the installed powerplant drag; and to determine performance characteristics of an advanced design propeller which was mounted on a representative nacelle in the presence of a wing.

  7. Aerodynamic Performance and Flow-Field Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1995-01-01

    The component integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the straight-wing and cranked-wing shapes. Both shapes were conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 1.6 to 4.63 at a Reynolds number of 2.0 x 10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Experimental data showed that no significant performance degradations, in terms of maximum lift-to-drag ratios, occur at off-design Mach numbers for the waverider shapes and the integrated configurations. A comparison of the fully-integrated waverider vehicles to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders, with the most significant degradation resulting from aftbody closure and the addition of control surfaces. Both fully-integrated configurations were longitudinally unstable over the Mach number range studied with the selected center of gravity location and for unpowered conditions. The cranked-wing configuration provided better lateral-directional stability characteristics than the straight-wing configuration.

  8. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  9. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  10. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  11. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  12. Aerodynamic characteristics of aerofoils I

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.

  13. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2001-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  14. Analysis of Performance of Jet Engine from Characteristics of Components I : Aerodynamic and Matching Characteristics of Turbine Component Determined with Cold Air

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1947-01-01

    The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.

  15. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  16. Influence of hinge point on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Wu, P.; Li, C.

    2013-12-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon.

  17. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  18. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  19. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  20. Static Aerodynamic Performance Investigation of a Fluid Shield Nozzle

    NASA Technical Reports Server (NTRS)

    Balan, C.; Askew, J. W.

    2005-01-01

    In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation 36 Stage 3 noise goals for the High Speed Civil Transport application, General Electric Aircraft Engines conducted a design study to incorporate a fluid shield into a 36-chute suppressor exhaust-nozzle system. After a full scale preliminary mechanical design of the resulting fluid shield exhaust system, scale model aerodynamic performance tests and acoustic tests were conducted to establish both aerodynamic performance and acoustic characteristics. Data are presented as thrust coefficients, discharge coefficients, chute-base pressure drags, and plug static pressure distributions.

  1. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  2. Aerodynamic characteristics of missile configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.

  3. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  4. Aerodynamic characteristics of the Fiat UNO car

    SciTech Connect

    Costelli, A.F.

    1984-01-01

    The purpose of this article is to describe the work conducted in the aerodynamic field throughout the 4-year development and engineering time span required by the project of the UNO car. A description is given of all the parametric studies carried out. Through these studies two types of cars at present in production were defined and the characteristics of a possible future sports version laid down. A movable device, to be fitted in the back window, was also set up and patented. When actuated it reduces soiling of back window. A description is also provided of the measurements made in the car flow field and some considerations are outlined about the method applied. This method is still in development phase but it already permits some considerations and in-depth investigations to be made on the vehicle wake.

  5. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  6. Aerodynamic characteristics of a propeller powered high lift semispan wing

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Gentry, G. L., Jr.

    1992-01-01

    An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

  7. Aerodynamic Characteristics and Development of the Aerodynamic Database of the X-34 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi , Bandu N.; Brauckmann, Gregory J.

    1999-01-01

    An overview of the aerodynamic characteristics and the process of developing the preflight aerodynamic database of the NASA/ Orbital X-34 reusable launch vehicle is presented in this paper. Wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. The APAS (Aerodynamic Preliminary Analysis System) code was used for engineering level analysis and to fill the gaps in the wind tunnel test data. This aerodynamic database covers the range of Mach numbers, angles of attack, sideslip and control surface deflections anticipated in the complete flight envelope.

  8. Flipperons for Improved Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Mabe, James H.

    2008-01-01

    Lightweight, piezoelectrically actuated bending flight-control surfaces have shown promise as means of actively controlling airflows to improve the performances of transport airplanes. These bending flight-control surfaces are called flipperons because they look somewhat like small ailerons, but, unlike ailerons, are operated in an oscillatory mode reminiscent of the actions of biological flippers. The underlying concept of using flipperons and other flipperlike actuators to impart desired characteristics to flows is not new. Moreover, elements of flipperon-based active flow-control (AFC) systems for aircraft had been developed previously, but it was not until the development reported here that the elements have been integrated into a complete, controllable prototype AFC system for wind-tunnel testing to enable evaluation of the benefits of AFC for aircraft. The piezoelectric actuator materials chosen for use in the flipperons are single- crystal solid solutions of lead zinc niobate and lead titanate, denoted generically by the empirical formula (1-x)[Pb(Zn(1/3)Nb(2/3))O3]:x[PbTiO3] (where x<1) and popularly denoted by the abbreviation PZN-PT. These are relatively newly recognized piezoelectric materials that are capable of strain levels exceeding 1 percent and strain-energy densities 5 times greater than those of previously commercially available piezoelectric materials. Despite their high performance levels, (1-x)[Pb(Zn(1/3)Nb(2/3))O3]:x[PbTiO3] materials have found limited use until now because, relative to previously commercially available piezoelectric materials, they tend to be much more fragile.

  9. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  10. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Flack, Karen

    1989-01-01

    Results from the performance and test section flow calibration of the 40- by 80-Foot Wind Tunnel are presented. A flow calibration test was conducted in May and June 1987. The goal of the flow calibration test was to determine detailed spatial variations in the 40- by 80-ft test section flow quality throughout the tunnel operational envelope. Data were collected for test section speeds up to 300 knots and for air exchange rates of 0, 5, and 10 percent. The tunnel performance was also calibrated during the detailed mapping of the test section flow field. Experimental results presented indicate that the flow quality in the test section, with the exception of temperature, is relatively insensitive to the level of dynamic pressure and the air exchange rate. The dynamic pressure variation in the test section is within + or - 0.5 deg at all test section velocities. Cross-stream temperature gradients in the test section caused by the air exchange system were documented, and a correction method was established. Streamwise static pressure variation on the centerline is about 1 percent of test section dynamic pressure over 30 ft of the test section length.

  11. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  12. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  13. Aerodynamics of the Viggen 37 aircraft. Part 1: General characteristics at low speed

    NASA Technical Reports Server (NTRS)

    Karling, K.

    1986-01-01

    A description of the aerodynamics of the Viggen 37 and its performances, especially at low speeds is presented. The aerodynamic requirements for the design of the Viggen 37 aircraft are given, including the basic design, performance requirement, and aerodynamic characteristics, static and dynamic load test results and flight test results. The Viggen 37 aircraft is designed to be used for air attack, surveillance, pursuit, and training applications. It is shown that this aircraft is suitable for short runways, and has good maneuvering, acceleration, and climbing characteristics. The design objectives for this aircraft were met by utilizing the effect produced by the interference between two triangular wings, positioned in tandem.

  14. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small-and large-scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties related to minimum drag, wave drag, high angle of attack characteristics, and power-induced effects. Engine design configurations from several aircraft manufacturers are reviewed.

  15. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  16. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  17. Performance of an aerodynamic particle separator

    SciTech Connect

    Ragland, K.; Han, J.; Aerts, D.

    1996-12-31

    This compact, high-flow device aerodynamically separates small particles from a gas stream by a series of annular truncated airfoils. The operating concept, design and performance of this novel particle separator are described. Tests results using corn starch and post-cyclone coal fly ash are presented. Particle collection efficiencies of 90% for corn starch and 70% for coal fly ash were measured at inlet velocities of 80 ft s{sup {minus}1} (2,700 cfm) and (6 inches) water pressure drop with particle loading up to 4 gr ft{sup {minus}3} in air at standard conditions. Results from computer modeling using FLUENT are presented and compared to the tests. The aerodynamic particle separator is an attractive alternative to a cyclone collector.

  18. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  19. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  20. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  1. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  2. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  3. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  5. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  6. Extended mapping and characteristics techniques for inverse aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Qian, Y. J.

    1991-01-01

    Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves.

  7. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-07-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

  8. CFD calculations of S809 aerodynamic characteristics

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-01-01

    Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.

  9. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    NASA Astrophysics Data System (ADS)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  10. Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming

    The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.

  11. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  12. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  13. Measurements of the aerodynamic characteristics of the turbo-jav

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenta; Nakajima, Tomoya; Itano, Tomoaki; Sugihara-Seki, Masako

    2014-11-01

    The ``turbo-jav'' which is used for the javelic throw in the junior Olympic games has four tail fins. In order to investigate the aerodynamic characteristics of the turbo-jav with an emphasis on the effect of the fins, we performed wind tunnel tests, throwing experiments and numerical simulations of the flight for intact turbo-javs as well as turbo-javs with their fins cut. The wind tunnel tests showed that the drag and lift coefficients for the intact turbo-javs are larger than the corresponding values for the turbo-javs without fins. As the angle of attack increases from 0, the pitching moments for the intact turbo-javs decrease from 0, whereas the moments for the turbo-javs without fins increase. In accord with this property, the throwing experiments showed that intact turbo-javs fly stably with oscillating angle of attack around 0. The flight distance, the orbit and the variation of angle of attack for the intact turbo-javs launched by a launcher agree closely with the numerical simulation performed based on the wind tunnel tests. A comparison of throwing experiments by students and by the launcher suggested significant effects of the rolling motion of the turbo-jav on its flight characteristics.

  14. Nozzle and wing geometry effects on OTW aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.

    1976-01-01

    The effects of nozzle geometry and wing size on the aerodynamic performance of several 5:1 aspect ratio slot nozzles are presented for over-the-wing (OTW) configurations. Nozzle geometry variables include roof angle, sidewall cutback, and nozzle chordwise location. Wing variables include chord size, and flap deflection. Several external deflectors also were included for comparison. The data indicate that good flow turning may not necessarily provide the best aerodynamic performance. The results suggest that a variable exhaust nozzle geometry offers the best solution for a viable OTW configuration.

  15. Aerodynamics and performance testing of the VAWT

    SciTech Connect

    Klimas, P.C.

    1981-01-01

    Early investigations suggest that reductions in cost of energy (COE) and increases in reliability for VAWT systems may be brought about through relatively inexpensive changes to the current aerodynamic design. This design uses blades of symmetrical cross-section mounted such that the radius from the rotating tower centerline is normal to the blade chord at roughly the 40% chord point. The envisioned changes to this existing design are intended to: (1) lower cut-in windspeed; (2) increase maximum efficiency; (3) limit maximum aerodynamic power; and (4) limit peak aerodynamic torques. This paper describes certain experiments designed to both better understand the aerodynamics of a section operating in an unsteady, curvilinear flowfield and achieve some of the desired changes in section properties. The common goal of all of these experiments is to lower VAWT COE and increase system reliability.

  16. Effects of wing deformation on aerodynamic performance of a revolving insect wing

    NASA Astrophysics Data System (ADS)

    Noda, Ryusuke; Nakata, Toshiyuki; Liu, Hao

    2014-12-01

    Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces, which is of highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime, we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model. To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold: acceleration and steady rotation, which are based on hovering wing kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase, which results in a significant wing deformation. While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration. During the phase of steady rotation, the flexible wing model generates more vertical force at higher angles of attack (40°-60°) but less horizontal force than those of a rigid wing model. This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip, which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force. Moreover, our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics: the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation, which is mainly induced by

  17. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    ERIC Educational Resources Information Center

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  18. Aerodynamic characteristics of cruciform missiles at high angles of attack

    NASA Technical Reports Server (NTRS)

    Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.

    1987-01-01

    An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.

  19. Experimental Aerodynamic Characteristics of a Joined-wing Research Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Stonum, Ronald K.

    1989-01-01

    A wind-tunnel test was conducted at Ames Research Center to measure the aerodynamic characteristics of a joined-wing research aircraft (JWRA). This aircraft was designed to utilize the fuselage and engines of the existing NASA AD-1 aircraft. The JWRA was designed to have removable outer wing panels to represent three different configurations with the interwing joint at different fractions of the wing span. A one-sixth-scale wind-tunnel model of all three configurations of the JWRA was tested in the Ames 12-Foot Pressure Wind Tunnel to measure aerodynamic performance, stability, and control characteristics. The results of these tests are presented. Longitudinal and lateral-directional characteristics were measured over an angle of attack range of -7 to 14 deg and over an angle of sideslip range of -5 to +2.5 deg at a Mach number of 0.35 and a Reynolds number of 2.2x10(6)/ft. Various combinations of deflected control surfaces were tested to measure the effectiveness and impact on stability of several control surface arrangements. In addition, the effects on stall and post-stall aerodynamic characteristics from small leading-edge devices called vortilons were measured. The results of these tests indicate that the JWRA had very good aerodynamic performance and acceptable stability and control throughout its flight envelope. The vortilons produced a profound improvement in the stall and post-stall characteristics with no measurable effects on cruise performance.

  20. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  1. Assured Crew Return Vehicle flowfield and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James; Smith, Robert E.; Greene, Francis A.

    1990-01-01

    A lifting body has been proposed as a candidate for the Assured Crew Return Vehicle which will serve as crew rescue vehicle for the Space Station. The focus of this work is on body surface definition, surface and volume grid definition, and the computation of inviscid flowfields about the vehicle at wind-tunnel conditions. Very good agreement is shown between the computed aerodynamic characteristics of the vehicle at a freestream Mach number of 10 and those measured in wind-tunnel tests.

  2. Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks

    NASA Astrophysics Data System (ADS)

    Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko

    2016-07-01

    Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.

  3. An experimental study on aerodynamic characteristics of standard model HB-2 in high enthalpy shock tunnel HIEST

    NASA Astrophysics Data System (ADS)

    Sato, K.; Komuro, T.; Tanno, H.; Ueda, S.; Itoh, K.; Kuchiishi, S.; Watanabe, S.

    Force measurement of a standard model HB-2 was performed in high enthalpy shock tunnel HIEST to study its aerodynamic characteristics. The force measurement results were compared with that obtained in conventional 1.27m hypersonic wind tunnel HWT1. The comparison showed that HIEST results agreed well with that of HWT1 in case of low enthalpy condition. The real gas effect on aerodynamic characteristics was also studied in case of high enthalpy condition.

  4. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  5. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  6. Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Tamai, Masatoshi; He, Guowei; Hu, Hui

    2006-11-01

    The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.

  7. Aerodynamic performance of osculating-cones waveriders at high altitudes

    NASA Astrophysics Data System (ADS)

    Graves, Rick Evan

    The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement. The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at Minfinity = 4 and Reinfinity = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at Minfinity = 20 and Reinfinity = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of --5° to 10°. The effect of off-design Mach number on the performance of the high

  8. Aerodynamic performance measurements at moderate Re

    NASA Astrophysics Data System (ADS)

    Rosen, M.; McArthur, J.; Spedding, G. R.

    2004-11-01

    There has been renewed interest in the aerodynamics of lifting wings at Reynolds numbers from 10^4 to 10^5, partly due to engineering requirements of small-scale, remotely piloted aircraft, and partly because birds and bats operate in this regime. Even when the wings do not flap or pitch or plunge, the flow over the small aspect ratio wings is likely to be three-dimensional and unsteady. Wind tunnel test results are described where force measurements are combined with DPIV studies. Some problems and principles of such measurement programs will also be discussed.

  9. Theoretical and experimental investigation of supersonic aerodynamic characteristics of a twin-fuselage concept

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.; Brentner, K. S.

    1983-01-01

    A theoretical and experimental investigation has been conducted to evaluate the fundamental supersonic aerodynamic characteristics of a generic twin-body model at a Mach number of 2.70. Results show that existing aerodynamic prediction methods are adequate for making preliminary aerodynamic estimates.

  10. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  11. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  12. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  13. Theoretical study of aerodynamic characteristics of wings having vortex flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1979-01-01

    The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.

  14. Aerodynamic Performance of Two Variable-Pitch Fan Stages

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.

    1976-01-01

    The NASA-Lewis Research Center is investigating a variety of fan stages applicable for short haul aircraft. These low-pressure-ratio low-speed fan stages may require variable-pitch rotor blades to provide optimum performance for the varied flight demands and for thrust reversal on landing. A number of the aerodynamic and structural compromises relating to the variable-pitch rotor blades are discussed. The aerodynamic performance of two variable-pitch fan stages operated at several rotor blade setting angles for both forward and reverse flow application are presented. Detailed radial surveys are presented for both forward and reverse flow.

  15. Aerodynamic and Performance Measurements on a SWT-2.3-101 Wind Turbine

    SciTech Connect

    Medina, P.; Singh, M.; Johansen, J.; Jove, A.R.; Machefaux, E.; Fingersh, L. J.; Schreck, S.

    2011-10-01

    This paper provides an overview of a detailed wind turbine field experiment being conducted at NREL under U.S. Department of Energy sponsorship. The purpose of the experiment is to obtain knowledge about the aerodynamics, performance, noise emission and structural characteristics of the Siemens SWT-2.3-101 wind turbine.

  16. Aerodynamic performance of vertical and horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  17. Aerodynamic performance of flared fan nozzles used as inlets

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Keith, T. G.; Kelm, G. G.

    1976-01-01

    Tests were conducted in a low speed wind tunnel to determine the aerodynamic performance of several flared fan nozzles. Each of the flared nozzles was a downstream-facing inlet to a model fan that was used to simulate a variable pitch fan during reverse thrust operation. The total pressure recovery of each of the flared nozzles as well as that of an unflared nozzle and a serrated flare nozzle was obtained for comparison. The aerodynamic performance of a selected flared nozzle was considered in further detail. The nozzle surface pressures for a flared nozzle were also determined. Results indicated that the differences in aerodynamic performance among the nozzles were most apparent at the wind-tunnel-off condition. A nonzero free stream velocity significantly reduced the perforamnce of all the nozzles, and crosswind flow (free stream flow perpendicular to the model axis) further reduced the performance of the nozzles. The unflared nozzle and the serrated flare nozzle had reduced aerodynamic performance compared to a solid surface flared nozzle.

  18. An analytical procedure for evaluating shuttle abort staging aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Meyer, R.

    1973-01-01

    An engineering analysis and computer code (AERSEP) for predicting Space Shuttle Orbiter - HO Tank longitudinal aerodynamic characteristics during abort separation has been developed. Computed results are applicable at Mach numbers above 2 for angle-of-attack between plus or minus 10 degrees. No practical restrictions on orbiter-tank relative positioning are indicated for tank-under-orbiter configurations. Input data requirements and computer running times are minimal facilitating program use for parametric studies, test planning, and trajectory analysis. In a majority of cases AERSEP Orbiter-Tank interference predictions are as accurate as state-of-the-art estimates for interference-free or isolated-vehicle configurations. AERSEP isolated-orbiter predictions also show excellent correlation with data.

  19. X-31 aerodynamic characteristics determined from flight data

    NASA Technical Reports Server (NTRS)

    Kokolios, Alex

    1993-01-01

    The lateral aerodynamic characteristics of the X-31 were determined at angles of attack ranging from 20 to 45 deg. Estimates of the lateral stability and control parameters were obtained by applying two parameter estimation techniques, linear regression, and the extended Kalman filter to flight test data. An attempt to apply maximum likelihood to extract parameters from the flight data was also made but failed for the reasons presented. An overview of the System Identification process is given. The overview includes a listing of the more important properties of all three estimation techniques that were applied to the data. A comparison is given of results obtained from flight test data and wind tunnel data for four important lateral parameters. Finally, future research to be conducted in this area is discussed.

  20. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  1. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  2. Aerodynamic performance of a Wells air turbine

    NASA Astrophysics Data System (ADS)

    Raghunathan, S.; Tan, C. P.

    1983-06-01

    Experiments were performed in a unidirectional flow rig to assess the performance of the Wells self-rectifying air turbine. Results indicated that the efficiency of the turbine was very sensitive to the Reynolds number based on blade chord. Increase in Reynolds number by a factor of three resulted in an increase in peak efficiency from 37 to 60 percent. Increases in the solidity of the blade produced increases in pressure drop and power output but decreases in efficiency. The hub-to-tip ratio had only a weak influence on the turbine performance but is critical for starting conditions. It is concluded that a hub-to-tip ratio of 0.6 and a solidity of 0.6 are the most favorable values, taking into consideration both the starting and running performances.

  3. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  4. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  5. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  6. The aerodynamic effect of heavy rain on airplane performance

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    The National Aeronautics and Space Administration has been conducting a series of tests to determine the effect of heavy rain on airfoil aerodynamics. The results of these tests have shown that heavy rain can significantly increase drag as well as decrease lift and stall angle of attack. This paper describes a recent effort to use the heavy rain airfoil data to determine the aerodynamic effect on a conventional twin-jet transport. The paper reports on the method used to model the heavy rain aerodynamic effect and the resulting performance degradation. The heavy rain performance effect is presented in terms of the diminished climb performance associated with increasing rain rates. The effect of heavy rain on the airplane's ability to escape a performance-limiting wind shear is illustrated through a numerical simulation of a wet microburst encounter. The results of this paper accentuate the need for further testing to determine scaling relationships and flow mechanics, and the full configuration three-dimensional effects of heavy rain.

  7. Aerodynamic and acoustic performance of high Mach number inlets

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Clark, L. R.; Cherng, J. C.; Tag, I.

    1977-01-01

    Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and one with a fixed geometry (collapsing cowl) without centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of several parameters such as area ratio and length-diameter ratio were investigated. The translating centerbody inlet was found to be superior to the collapsing cowl inlet both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length-diameter ratio and area ratio effects on performance near choked flow showed the latter parameter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

  8. Aerodynamic performance of an annular classical airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  9. Wind-tunnel investigation of aerodynamic performance, steady amd vibratory loads, surface temperatures, and acoustic characteristics of a large-scale twin-engine upper-surface blown jet-flap configuration

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Static and wind-on tests were conducted to determine the aerodynamic characteristics of and the effects of jet impingement on the wing of a large scale upper surface blown configuration powered with an actual turbine engine. The wing and flaps were instrumented with experimental dual-sensing transducer units consisting of a fluctuating pressure gage, a vibratory accelerometer, and a surface mounted alumel thermocouple. Noise directivity and spectral content measurements were obtained for various flap configurations and various engine thrust settings to provide baseline noise data for other upper surface blown configurations.

  10. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  11. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  12. Characteristics of Pressure Sensitive Paint Intrusiveness Effects on Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Liu, Tianshu; Oglesby, Donald M.

    2001-01-01

    One effect of using pressure sensitive paint (PSP) is the potential intrusiveness to the aerodynamic characteristics of the model. The paint thickness and roughness may affect the pressure distribution, and therefore, the forces and moments on the wind tunnel model. A study of these potential intrusive effects was carried out at NASA Langley Research Center where a series of wind tunnel tests were conducted using the Modem Design of Experiments (MDOE) test approach. The PSP effects on the integrated forces were measured on two different models at different test conditions in both the Low Turbulence Pressure Tunnel (LTPT) and the Unitary Plan Wind Tunnel (UPWT) at Langley. The paint effect was found to be very small over a range of Reynolds numbers, Mach numbers and angles of attack. This is due to the very low surface roughness of the painted surface. The surface roughness, after applying the NASA Langley developed PSP, was lower than that of the clean wing. However, the PSP coating had a localized effects on the pressure taps, which leads to an appreciable decrease in the pressure tap reading.

  13. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  14. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  15. Aerodynamic characteristics of a monoplanar missile concept with bodies of circular and elliptical cross sections

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1977-01-01

    Experimental aerodynamic characteristics of a low-drag missile concept with a body of circular cross section were compared to one with a body of 3:1 elliptical cross section, the bodies having identical cross section area distributions. The concepts were of monowing design with constant wing span. Tail surfaces were located flush at the body base with plus or minus 30 deg dihedral. Wind tunnel tests were performed at Mach numbers from 0.5 to 4.63 and at angles of attack from about -5 deg to 28 deg.

  16. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  17. Aerodynamic Performance of Wind Turbine with Horizontal Axis

    NASA Astrophysics Data System (ADS)

    Liu, P. Q.; Zhu, J. Y.; Zhao, W. L.

    2011-09-01

    In this paper, the blade arodynamic outline of a 100 kW horizontal axis wind turbine is designed based on the strip theory using low Reynolds number and high lift airfoils. A 1/34 scale model is used to investigate the aerodynamic performance of the prototype by means of wind tunnel test. Based on some similitude criterion and reasonable correction of arodynamic coefficient, the data of prototype can be deduced from the experimente data. Comparared with the theory analysis, the power output can reach the design performance.

  18. Aerodynamic characteristics and respiratory deposition of fungal fragments

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  19. Comparison of analytical and experimental supersonic aerodynamic characteristics of a forward control missile

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1981-01-01

    Techniques to predict the aerodynamic characteristics of slender cruciform missiles have been developed and are constantly being updated and improved. This paper presents comparisons between analytical and experimental supersonic aerodynamic data for a class of canard-controlled missile configurations similar to the sidewinder missile. Three aerodynamic prediction computer codes, including program MISSILE2, a recently improved version of program MISSILE, are evaluated by comparison with the test data to assess their accuracy. The major emphasis is placed on the roll control characteristics. In addition, tail span optimization, longitudinal and lateral control, induced roll, and missile roll orientation effects are addressed.

  20. Subsonic aerodynamic characteristics of a circular body earth-to-orbit transport

    NASA Technical Reports Server (NTRS)

    Lepsch, R. A., Jr.; Macconochie, I. O.

    1986-01-01

    To reduce the weight and improve the performance of future earth-to-orbit transports, the use of circular cross sections in the fuselage bodies of these vehicles is being considered at the Langley Research Center. Structurally, circular cross sections are stronger and lighter than other shapes. A study has been made applying the circular body concept to a vertical-takeoff, delta-winged, single-stage-to-orbit transport. A 52 in., 0.022-scale model of the circular body vehicle was tested at a Mach number of 0.3 in the 7 x 10 ft High Speed Wind Tunnel at the Langley Research Center to obtain aerodynamic forces and moments. Oil-flow photographs were taken at several angles of attack to aid in the aerodynamic analysis. Model control surfaces included elevons and ailerons for the evaluation of pitch and roll characteristics and either wing-tip fins, a nose mounted dorsal fin, or a conventional vertical tail for the evaluation of yaw characteristics. Other deflecting surfaces included speedbrakes and body flaps. Basic data on longitudinal flight characteristics are shown, including lift, drag, and pitching moments. Comparisons of the directional stability and control effectiveness of the three directional control devices are also shown.

  1. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Astrophysics Data System (ADS)

    Romere, P. O.

    1982-03-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  2. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  3. Effect of Moving Surface on NACA 63218 Aerodynamic Performance

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Tayeb; Belhenniche, Mohamed; Imine, Bachir

    2015-05-01

    The main subject of this work is the numerical study control of flow separation on a NACA 63218 airfoil by using moving surface. Different numerical cases are considered: the first one is the numerical simulation of non-modified airfoil NACA 63218 according at different angle of attack and the second one a set of moving cylinder is placed on leading edge of the airfoil. The rotational velocity of the cylinder is varied to establish the effect of momentum injection on modified airfoil aerodynamic performances. The turbulence is modeled by two equations k-epsilon model.

  4. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  5. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  6. Mean streamline aerodynamic performance analysis of centrifugal compressors

    SciTech Connect

    Aungier, R.H.

    1995-07-01

    Aerodynamic performance prediction models for centrifugal compressor impellers are presented. In combination with similar procedures for stationary components, previously published in the open literature, a comprehensive mean streamline performance analysis for centrifugal compressor stages is provided. The accuracy and versatility of the overall analysis is demonstrated for several centrifugal compressor stages of various types, including comparison with intrastage component performance data. Detailed validation of the analysis against experimental data has been accomplished for over a hundred stages, including stage flow coefficients from 0.009 to 0.15 and pressure ratios up to about 3.5. Its application to turbocharger stages includes pressure ratios up to 4.2, but with test uncertainty much greater than for the data used in the detailed validation studies.

  7. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  8. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  9. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  10. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  11. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  12. Performance of SMA-reinforced composites in an aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, John; Boller, Christian

    2002-07-01

    Within the European collaborative applied fundamental research project ADAPT, fundamentals of SMA-reinforced composites were evaluated and the specific manufacturing techniques for these composites developed and realised. The involved partners are listed at the end. To demonstrate applicability of these composites a realistically scaled aerodynamic profile of around 0.5m span by 0.5m root chord was designed, manufactured and assembled. The curved skins were manufactured as SMA composites with two layers of SMA-wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and activated and excited by a shaker at its tip which allowed to test the dynamic performance of the profile under different external loading conditions with various internal actuation conditions through the SMA wires. The paper includes some background of the design and manufacturing of the aerodynamic profile and will discuss some of the results determined recently on the test rig. A view with regard to future wind tunnel testing will be given as well.

  13. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  14. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1981-01-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  15. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  16. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  17. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  18. Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.

    1989-01-01

    The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.

  19. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  20. Aerodynamic performance prediction of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Jeng, D. R.; Keith, T. G.; Aliakbarkhanafjeh, A.

    1981-01-01

    A new method for calculating the aerodynamic performance of horizontal axis wind turbines is described. The method, entitled the helical vortex method, directly calculates the local induced velocity due to helical vortices that originate at the rotor blade. Furthermore, the method does not require a specified circulation distribution. Results of the method are compared to similar results obtained from Wilson PROP code methods as well as to existing experimental data taken from a Mod-O wind turbine. It is shown that results of the proposed method agree well with experimental values of the power output both near cut-in and at rated wind speeds. Further, it is found that the method does not experience some of the numerical difficulties encountered by the PROP code when run at low wind velocities.

  1. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus).

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S

    2013-03-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188

  2. Effects of Wing Platform on the Aerodynamic Performance of Finite-Span Flapping Wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2010-11-01

    A numerical study is conducted to investigate the effects of wing platform on the aerodynamics performance of finite-span flapping wings. A three-dimensional high-order Navier-Stokes compressible flow solver was developed using the spectral difference method and dynamic grids. An AUSM^+-up Riemann solver was implemented to simulate the unsteady low Mach number flows over finite-span flapping wings with explicit third order Runge-Kutta time integration. The studied finite-span flapping wings, which include a rectangular flapping wing, an elliptic flapping wing and a bio-inspired flapping wing, have the same wing span, aspect ratio of the platform and the characteristics of the flapping motion (i.e., sinusoidal trajectory of the flapping wing tip, Strouhal number and reduced frequency). In the present study, the Strouhul number (Str) of the finite-span flapping wings was selected to be well within the optimal range usually used by flying insects and birds and swimming fishes (i.e., 0.2 < Str < 0.4). The effects of the wing platform on the aerodynamics performance of the finite-span flapping wings were elucidated in the terms of the evolutions and dynamic interaction between the leading edge vortices (LEV) and the wing tip vortices as well as the resultant aerodynamic forces (both lift and thrust) generated by the flapping wings.

  3. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus)

    PubMed Central

    Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.

    2013-01-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188

  4. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  5. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  6. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  7. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.

    PubMed

    Zhang, G Q; Yu, S C M

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  8. Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle

    PubMed Central

    Zhang, G. Q.; Yu, S. C. M.

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  9. Low-speed longitudinal and lateral-directional aerodynamic characteristics of the X-31 configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Gatlin, Gregory M.; Paulson, John W., Jr.

    1992-01-01

    An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).

  10. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Alcorn, C. W.

    1988-01-01

    This paper reports on an experimental investigation of aerodynamic characteristics of slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. In this investigation, magnetically suspending the wind tunnel models eliminates flow disturbances associated with mechanical supports. This paper reports on the drastic changes in lift, pitching moment, and drag for a slight change in base slant angle. Flow visualization with liquid crystals and oil is used to observe base flow patterns responsible for the sudden changes in aerodynamic characteristics. This paper also reports on hysteretic effects that are present and discusses computational results using VSAERO and SANDRAG.

  11. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  12. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  13. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  14. Aerodynamic characteristics of aerofoils II : continuation of report no. 93

    NASA Technical Reports Server (NTRS)

    1923-01-01

    This collection of data on aerofoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and date of test.

  15. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  16. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  17. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.

    1978-01-01

    The aerodynamic characteristics for a winged and a wingless cruciform missile are examined. The body was an ogive-cylinder with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and has cruciform tails that were trapexoidal in planform. Tests were made both with and without 72.9 deg cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 and 45 deg, angles of attack from -40 to 22 deg, and tail control deflections from 10 to -40 deg. The purpose is to determine the influence of the aerodynamic behavior on the design choice for maneuverable missiles intended primarily for air-to-air or surface-to-surface missions. The results indicate that the winged missile with its more linear aerodynamic characteristics and higher lift-curve slope, should provide the highest maneuverability over a large operational range.

  18. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  19. Aerodynamic characteristics associated with oesophageal and tracheoesophageal speech of Cantonese.

    PubMed

    Ng, Manwa L

    2011-04-01

    The present study investigated the aerodynamic differences between standard oesophageal (SE) and tracheoesophageal (TE) speech. Airflow and air pressure values below the pharyngoesophageal segment were obtained from 10 SE and 12 TE superior speakers of Cantonese. Airflow data were directly measured from sustained vowels, and sub-pharyngoesophageal segment pressure was estimated from /ip(h)ip(h)i/ syllables produced by the alaryngeal speakers. Results indicated that SE speech was associated with a lower rate of airflow and a higher pressure below the pharyngoesophageal segment than TE speech. SE and TE speakers exhibited an average airflow and sub-pharyngoesophageal segment pressure values of 70.50 mL/s and 134.15 mL/s, and 25.13 cm H(2)O and 22.61 cm H(2)O, respectively. Using the airflow and sub-pharyngoesophageal segment pressure, neoglottal resistance values were derived. The estimated neoglottal resistance was greater in SE speakers than in TE speakers. It is speculated that such difference in neoglottal resistance may be related to the use of different air reservoir mechanisms between SE and TE speakers. Such information will help speech-language pathologists design better speech therapy regimes for SE and TE speakers by understanding more about the difference between SE and TE phonation. PMID:21480810

  20. Aerodynamic characteristics of general aviation at high angle of attack with the propeller slipstream

    NASA Technical Reports Server (NTRS)

    Matsuo, N.; Hirano, S.

    1986-01-01

    The aerodynamic characteristics of the FA-300 business aircraft at high angle of attack with the propeller stream are described. The FA-300 offers two types, FA-300-700 for 340 HP, and -710 for 450 Hp of the engine. The effects of the propeller slipstream on the high angle of the attack are discussed.

  1. Comparison of theoretically predicted lateral-directional aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    NASA Technical Reports Server (NTRS)

    Griswold, M.; Roskam, J.

    1980-01-01

    An analytical method is presented for predicting lateral-directional aerodynamic characteristics of light twin engine propeller-driven airplanes. This method is applied to the Advanced Technology Light Twin Engine airplane. The calculated characteristics are correlated against full-scale wind tunnel data. The method predicts the sideslip derivatives fairly well, although angle of attack variations are not well predicted. Spoiler performance was predicted somewhat high but was still reasonable. The rudder derivatives were not well predicted, in particular the effect of angle of attack. The predicted dynamic derivatives could not be correlated due to lack of experimental data.

  2. Numerical investigations on the aerodynamic performance of wind turbine: Downwind versus upwind configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Wan, Decheng

    2015-03-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  3. Aerodynamic characteristics of the Scout 133R vehicle determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Abramson, F. B.; Muir, T. G., Jr.; Simmons, H. L.

    1972-01-01

    Bending moments and other associated parameters were measured on a Scout vehicle during a launch through high velocity horizontal winds. Comparison of the measured data with predictions revealed some unexplained discrepancies. Possible sources of error in the experimental data and predictions were considered; one of which is the predicted aerodynamic characteristics. A wind tunnel investigation was initiated, including supersonic force and pressure tests, to better define the aerodynamics. In addition to basic aerodynamic coefficients from the force test, detailed pressure and load distributions along the body were established from the pressure test. Pressure coefficients were integrated to determine normal load distributions, total normal force, and total pitching moment of the body. Comparison of the normal forces from pressure and force tests resulted in agreement within 15%. Comparison of pitching moment data from the two tests resulted in larger differences.

  4. Effect of Ground Interference on the Aerodynamic Characteristics of a 42 Degrees Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Furlong, G Chester; Bollech, Thomas V

    1951-01-01

    The effects of ground interference on the aerodynamic characteristics of a 42 degrees sweptback wing have been determined at distances above the ground 0.68 and 0.92 of the mean aerodynamic chord (measured from the 0.25 mean aerodynamic chord). The wing was tested without flaps and with inboard trailing-edge split and outboard leading-edge flaps deflected. The wing had an aspect ratio of 4, a taper ratio of 0.625, and NACA 641-112 airfoil sections perpendicular to the 0.273 chord line. The results are, in general, comparable to those reported for unswept wings. The longitudinal stability at the stall was not materially affected at the ground heights of the present tests.

  5. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    material and energy consumption profiles of tall building. To date, the increasing use of light-weight and high-strength materials in tall buildings, with greater flexibility and reduced damping, has increased susceptibility to dynamic wind load effects that limit the gains afforded by incorporating these new materials. Wind, particularly fluctuating wind and its interaction with buildings induces two main responses; alongwind - in the direction of the flow and crosswind - perpendicular to the flow. The main risk associated with this vulnerability is resonant oscillations induced by von-Karman-like vortex shedding at or near the natural frequency of the structure caused by flow separation. Dynamic wind loading effects often increase with a power of wind speed greater than 3, thus increasingly, tall buildings pay a significant price in material to increase the natural frequency and/or the damping to overcome this response. In particular, crosswind response often governs serviceability (human habitability) design criteria of slender buildings. Currently, reducing crosswind response relies on a Solid-based Aerodynamic Modification (SAM), either by changing structural or geometric characteristics such as the tower shape or through the addition of damping systems. While this approach has merit it has two major drawbacks: firstly, the loss of valuable rentable areas and high construction costs due to increased structural requirements for mass and stiffness, further contributing towards the high consumption of non-renewable resources by the commercial building sector. For example, in order to insure human comfort within an acceptable range of crosswind response induced accelerations at the top of a building, an aerodynamically efficient plan shape comes at the expense of floor area. To compensate for the loss of valuable area compensatory stories are required, resulting in an increase in wind loads and construction costs. Secondly, a limited, if at all, ability to adaptively

  6. Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.

    2000-01-01

    Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.

  7. Experimental and analytical comparison of aerodynamic characteristics of a forward-control missile

    NASA Technical Reports Server (NTRS)

    Blair, A. B.; Rapp, G. H.

    1980-01-01

    Comparisons of analytical and experimental aerodynamic data for canard controlled missile configurations are presented. Recently, techniques to estimate the longitudinal, directional and lateral aerodynamic characteristics for cruciform missiles have been developed. Nielsen Engineering and Research, Inc. (NEAR, Inc.), supported by various governmental agencies, has been the originator of many of these new computational techniques. Two of these are major computer programs currently being implemented by several research organizations. Predicted data from these two programs are compared with experimental data recently obtained at the NASA Langley Research Center Unitary Plan wind tunnel facility. Comparisons cover the supersonic Mach number regime of 1.60 to 3.50, angles-of-attack from 0 to 20 degrees and roll angles of 0, 26.57 and 45 degrees. Major emphasis is on the roll characteristics due to aileron with limited longitudinal and directional characteristics addressed.

  8. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  9. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  10. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  11. Aerodynamic characteristics of a series of airbreathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1981-01-01

    The results of an experimental program conducted in order to compile a data base useful in the application of airbreathing propulsion to missiles are presented. The configurations investigated used two-dimensional or axisymmetric twin inlets located at three alternative circumferential positions: 90, 115 and 135 deg to the vertical centerline. The effects of a wing located above the inlets and of various tail configurations were investigated, with a view to longitudinal stability/control and lateral-directional stability characteristics. It is noted that of the three tail configurations tested, the 'X' tail showed (1) the most linear pitch-moment curve, (2) control effectiveness, and (3) positive lateral-directional stability.

  12. The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness

    NASA Technical Reports Server (NTRS)

    HOCKER RAY W

    1933-01-01

    The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

  13. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  14. Experimental Hypersonic Aerodynamic Characteristics of the 2001 Mars Surveyor Precision Lander with Flap

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.

    2002-01-01

    Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.

  15. The Aerodynamic Characteristics of a Slotted Clark Y Wing as Affected by the Auxiliary Airfoil Position

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Shortal, Joseph A

    1932-01-01

    Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.

  16. Assessment of analytic methods for the prediction of aerodynamic characteristics of arbitrary bodies at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Landrum, E. J.; Miller, D. S.

    1980-01-01

    Trends toward the automation of the design process for airplanes and missiles accentuate the need for analytic techniques for the prediction of aerodynamic characteristics. A number of computer codes have been developed or are under development which show promise of significantly improving the estimation of aerodynamic characteristics for arbitrarily-shaped bodies at supersonic speeds. The programs considered range in complexity from a simple linearized solution employing slender body theory to an exact finite difference solution of the Euler equations. The results from five computer codes are compared with experimental data to determine the accuracy, range of applicability, ease of use, and computer time and cost of the programs. The results provide a useful guide for selecting the appropriate method for treating bodies at the various levels of an automated design process.

  17. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  18. Aerodynamic performance of a full-scale lifting ejector system in a STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Garland, Doug; Poppen, William A.

    1992-01-01

    The aerodynamic characteristics of an advanced lifting ejector system incorporated into a full-scale, powered, fighter aircraft model were measured at statically and at transition airspeeds in the 40- by 80- and 80- by 120-Foot Wind Tunnels at NASA-Ames. The ejector system was installed in an ejector-lift/vectored thrust STOVL (Short Take-Off Vertical Landing) fighter aircraft configuration. Ejector thrust augmentation ratios approaching 1.6 were demonstrated during static testing. Changes in the internal aerodynamics and exit flow conditions of the ejector ducts are presented for a variety of wind-off and forward-flight test conditions. Wind-on test results indicate a small decrease in ejector performance and increase in exit flow nonuniformity with forward speed. Simulated ejector start-up at high speed, nose-up attitudes caused only small effects on overall vehicle forces and moments despite the fact that the ejector inlet flow was found to induce large regions of negative pressure on the upper surface of the wing apex adjacent to the inlets.

  19. Experimental quiet engine program aerodynamic performance of Fan C

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1972-01-01

    This report presents the aerodynamic component test results of Fan C, a high-bypass-ratio, low-aerodynamic-loading, 1550 feet per second (472.4 m/sec), single-stage fan, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.60 with an adiabatic efficiency of 84.2 percent at a total fan flow of 915 lb/sec (415.0 kg/sec). It was tested with and without inlet distortion. A bypass total-pressure ratio of 1.61 and an adiabatic efficiency of 83.9 percent at a total fan flow of 921 lb/sec (417.8 kg/sec) were actually achieved. An operating margin in excess of 14.6 percent was demonstrated at design speed.

  20. Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Lucci, Barbara L.; Senyitko, Richard G.

    2002-01-01

    Turbine vane aerodynamics were measured in a three vane linear cascade. Surface pressures and blade row losses were obtained over a range of Reynolds and Mach number for three levels of turbulence. Comparisons are made with predictions using a quasi-3D Navier-Stokes analysis. Turbulence intensity measurement were made upstream and downstream of the vane. The purpose of the downstream measurements was to determine how the turbulence was affected by the strong contraction through 75 deg turning.

  1. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  2. Aerodynamic characteristics of several current helicopter tail boom cross sections including the effect of spoilers

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Kelley, H. L.

    1986-01-01

    Aerodynamic characteristics were determined of three cylindrical shapes representative of tail boom cross sections of the U.S. Army AH-64, UH-60, and UH-1H helicopters. Forces and pressures were measured in a wind-tunnel investigation at the Langley Research Center. Data were obtained for a flow incidence range from -45 to 90 deg and a dynamic pressure range from 1.5 to 50 psf. These ranges provided data representative of full-scale Reynolds numbers and the full range of flow incidence to which these helicopter tail boom shapes would be subjected at low flight speeds. The effects of protuberances such as tail rotor drive-shaft covers and spoilers were evaluated. The data indicate that significant side loads on tail booms of helicopters can be generated and that the addition of spoilers can beneficially alter the side loads. Although an increase in vertical drag occurs, the net effect through reduction of tail rotor thrust required can be an improvement in helicopter performance.

  3. Aerodynamic characteristics of bodies with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Knoche, H. G.; Schamel, W.; Esch, H.; Schneider, W.

    Systematic wind tunnel tests for a series of missile bodies were conducted by varying cross section shape and body length in the subsonic Mach number range and up to high angles of attack. Tests with a body-wing and a body-tail configuration were performed in order to investigate the body-wing and body-tail interference for bodies of revolution and bodies with rectangular cross section. At a constant angle of attack, the boxlike body supplies far more normal force than the body of revolution with the same cross section area. The boxlike body shows strong coupling effects between the pitch, yaw and roll. The interference effect of the wing and body can be described well, in the case of boxlike bodies with wings in high or low wing positions, by the known slender body interference factors, assuming the width of the box to be the diameter of an equivalent, axially symetrical body.

  4. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  5. Unsteady aerodynamic interaction effects on turbomachinery blade life and performance

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.

    1992-01-01

    This paper is an attempt to address the impact of a class of unsteady flows on the life and performance of turbomachinery blading. These class of flows to be investigated are those whose characteristic frequency is an integral multiple of rotor shaft speed. Analysis of data recorded downstream of a compressor and turbine rotor will reveal that this class of flows can be highly three-dimensional and may lead to the generation of secondary flows within downstream blading. By explicitly accounting for these unsteady flows in the design of turbomachinery blading for multistage applications, it may be possible to bring about gains in performance and blade life.

  6. Research status on aerodynamic interference effects of wind-resistant performance of pylon

    NASA Astrophysics Data System (ADS)

    LI, Shengli; Lu, Yu; Wang, Dongwei; Chen, Huai

    2011-04-01

    The aerodynamic interference effects of wind-resistant performance for pylon is one of very important problems in numerical simulation studies of wind resistant of bridges. On the basis of looking through a great deal of related literatures at home and abroad, research history, contents, method and achievements of the aerodynamic interference effects are summarized, and the existing problem for galloping, buffeting and vortex-induced vibration of pylon and directions for the next research are pointed out.

  7. Effects of Elevator Nose Shape, Gap, Balance, and Tabs on the Aerodynamic Characteristics of a Horizontal Tail Surface

    NASA Technical Reports Server (NTRS)

    Goett, Harry J; Reeder, J P

    1939-01-01

    Results are presented showing the effects of gap, elevator, nose shape, balance, cut-out, and tabs on the aerodynamic characteristics of a horizontal tail surface tested in the NACA full-scale tunnel.

  8. Aerodynamic characteristics of some lifting reentry concepts applicable to transatmospheric vehicle design studies

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The aerodynamic characteristics of some lifting reentry concepts are examined with a view to the applicability of such concepts to the design of possible transatmospheric vehicles (TAV). A considerable amount of research has been done in past years with vehicle concepts suitable for manned atmospheric-entry, atmospheric flight, and landing. Some of the features of these concepts that permit flight in or out of the atmosphere with maneuver capability should be useful in the mission requirements of TAV's. The concepts illustrated include some hypersonic-body shapes with and without variable geometry surfaces, and a blunt lifting-body configuration. The merits of these concepts relative to the aerodynamic behavior of a TAV are discussed.

  9. Application of a full potential method for predicting supersonic flow fields and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Jones, K. M.

    1983-01-01

    A nonlinear aerodynamic prediction technique which solves the conservative full potential equation has been applied to the analysis of three waverider configurations. This technique was selected based on its capability to analyze the off-design characteristics of the waveriders. Very good correlations were achieved with surface pressure data for both the Mach 4 elliptic cone waverider and the Mach 6 caret-wing derivative. Off-design Mach number and angle-of-attack pressure correlations were very good for the elliptic cone waverider. The range of correlation with data exceeded that expected based on the theory limitations. A surface pressure integration routine was demonstrated and agreement between predicted aerodynamic forces and experimental force data for the Mach 4 waverider was excellent. Analysis of a nonconical waverider configuration was initiated where a discrete input option is used to achieve the computational gridding. Preliminary analysis of this configuration indicates the correct shock location will be predicted.

  10. Supersonic aerodynamic characteristics of canard, tailless, and aft-tail configurations for 2 wing planforms

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1985-01-01

    Aerodynamic characteristics of canard, tailless, and aft tail configurations were compared in tests on a general research model (generic fuselage without canopy, inlets, or vertical tails) at Mach 1.60 and 2.00 in the Langley Unitary Plan Wind Tunnel. Two uncambered wing planforms (trapezoidal with 44 deg leading edge sweep and delta with 60 deg leading edge sweep) were tested for each configuration. The relative merits of the configurations were also determined theoretically, to evaluate the capabilities of a linear theory code for such analyses. The canard and aft tail configurations have similar measured values for lift curve slope, maximum lift drag ratio, and zero lift drag. The stability decrease as Mach number increases is greatest for the tailless configuration and least for the canard configuration. Because of very limited accuracy in predicting the aerodynamic parameter increments between configurations, the linear theory code is not adequate for determining the relative merits of canard, tailless, and aft tail configurations.

  11. X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2008-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  12. Flight Test Determined Aerodynamics Force and Moment Characteristics of the X-43A Research Vehicle at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2006-01-01

    The second flight of the HYPER-X Program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe integrated scramjet powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pull-up/push-over maneuvers performed throughout the X-43A cowl-closed descent phase. The subject flight research maneuvers were conducted in a Mach number range of 6.8 to 0.95 at altitudes from 92,000 ft to sea level. In this flight regime, the dynamic pressure varied from 1300 psf to 400 psf with angle-of-attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with pre-flight predictions based on wind tunnel test data. The X-43A flight-derived axial force was found to be 10 to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers greater than 4, the X-43A flight-derived stability and control characteristics resulted in larger than predicted static margins, with the largest discrepancy approximately 5-inches forward along the X(CG) at Mach 6. This would result in less static margin in pitch. The X-43A predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle-of-sideslip.

  13. Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis. Marl C.; White, J. Terry

    2006-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  14. An experimental and theoretical analysis of the aerodynamic characteristics of a biplane-winglet configuration. M.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gall, P. D.

    1984-01-01

    Improving the aerodynamic characteristics of an airplane with respect to maximizing lift and minimizing induced and parasite drag are of primary importance in designing lighter, faster, and more efficient aircraft. Previous research has shown that a properly designed biplane wing system can perform superiorly to an equivalent monoplane system with regard to maximizing the lift-to-drag ratio and efficiency factor. Biplanes offer several potential advantages over equivalent monoplanes, such as a 60-percent reduction in weight, greater structural integrity, and increased roll response. The purpose of this research is to examine, both theoretically and experimentally, the possibility of further improving the aerodynamic characteristics of the biplanes configuration by adding winglets. Theoretical predictions were carried out utilizing vortex-lattice theory, which is a numerical method based on potential flow theory. Experimental data were obtained by testing a model in the Pennsylvania State University's subsonic wind tunnel at a Reynolds number of 510,000. The results showed that the addition of winglets improved the performance of the biplane with respect to increasing the lift-curve slope, increasing the maximum lift coefficient, increasing the efficiency factor, and decreasing the induced drag. A listing of the program is included in the Appendix.

  15. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    region, this approach would entail a nominal performance penalty. Therefore, the chosen rotor design philosophy aims to keep the spanwise loading constant to avoid trading performance for desensitization. The rotor designs that resulted from this exercise are simulated in ANSYS CFX at different tip clearance sizes. The change in their performance with respect to tip clearance size (sensitivity) is compared both on an integral level in terms of pressure ratio and adiabatic efficiency, as well as on a detailed level in terms of aerodynamic losses and blockage associated with tip clearance flow. The sensitivity of aerodynamic stability is evaluated either directly through the simulations of the rotor characteristics up to the stall point (expensive in time and resources) for a few designs or indirectly through the position of the interface between the incoming and tip clearance flow with respect to the rotor leading edge plane. The latter approach is based on a generally observed stall criteria in modern axial compressors. The rotor designs are then assessed according to their sensitivity in comparison to that of the reference rotor design to detect features that can explain the trend in sensitivity to tip clearance size. These features can then be validated and the associated flow mechanisms explained through numerical simulations and modelling. Analysis of the database from the rotor parametric study shows that the observed trend in sensitivity cannot be explained by the shifting of the aerodynamic loading along the blade chord, as initially hypothesized based on the literature review. Instead, two flow features are found to reduce sensitivity of performance and stability to tip clearance, namely an increase in incoming meridional momentum in the tip region and a reduction/elimination of double leakage flow. Double leakage flow is the flow that exits the tip clearance of one blade and proceeds into the clearance of the adjacent blade rather than convecting downstream out

  16. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.

    PubMed

    Azuma, Akira; Okamoto, Masato

    2005-05-01

    A simple computing method based on a potential theory is developed for two-dimensional steady and unsteady deflected wings. This method of theoretical analysis is essentially related to thin and angular airfoils. Thus, the method is very simple but is effective to forecast aerodynamic forces for deflected or angular airfoils with a small camber operating in high Reynolds number flow, specifically in unsteady motion. The suction force acting on the leading edge of steady airfoils is theoretically obtained by using the Blasius formula. By Polhamus's leading edge suction analogy, the suction force is considered to be directed upward in partially separated flow for real thin airfoil with sharp leading edge. The theory can also be applied to obtain the aerodynamic characteristics of thin airfoils operating on low Reynolds number flow under some degree of approximation. This is very useful for the unsteady aerodynamic analysis because the Navier-Stokes equation can be solved by neither analytical nor numerical method for the thin and angular airfoils, which are common in the insect wing. PMID:15721036

  17. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  18. Flow fields and aerodynamic characteristics for hypersonic missiles with mid-fuselage inlets

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Johnston, P. J.; Riebe, G. D.

    1983-01-01

    A study was made to quantify forebody flow fields and to evaluate aerodynamic performance trends on a matrix of fuselage shapes for the mid-inlet/bolt-on-engine class of hypersonic airbreathing missiles for the Navy's vertical box launcher. The study indicated that inlet mass flow and pressure recovery can be increased by cambering the nose and increasing the width of the fuselage at both Mach 4 acceleration and Mach 6 cruise conditions. Aerodynamic trim predictions show that the drag at zero lift at Mach 4 decreases while the L/D max at Mach 6 increases with the nose camber, although these tendencies reverse with increasing width of maximum fuselage cross section.

  19. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  20. Effects of upper-surface nacelles on longitudinal aerodynamic characteristics of high-wing transport configuration

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of installing and streamline contouring upper-surface nacelles on the longitudinal aerodynamic characteristics of a high-wing transport configuration. Also investigated were the effects of adding a fairing under the nacelle. The investigation was conducted at free-stream Mach numbers from 0.60 to 0.83 at angles fo attack from -2 deg to 4 deg. Flow-through nacelles were used. Streamline contouring the nacelles substantially reduced the interference drag due to installing the nacelles.

  1. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  2. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    The aerodynamic characteristics for a winged and wingless cruciform missile configuration were examined. The configuration had an ogive-cylinder body with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and had cruciform tails that were trapezoidal in planform. Tests were made both with and without 72.9 degree cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 degrees and 45 degrees, angles of attack from -4 degrees to 22 degrees, and tail control deflections from 10 degrees to -40 degrees.

  3. Supersonic aerodynamic characteristics of the North American Rockwell ATP shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Pencer, B., Jr.; Founier, R. H.

    1973-01-01

    A wind tunnel study to determine the supersonic aerodynamic characteristics of a 0.01925-scale model of the space shuttle orbiter configuration is reported. The model consisted of a low-finess-ratio body with a blended 50 swept delta wing forming an ogee planform and a center-line-mounted vertical tail. Tests were made at Mach numbers from 1.90 to 4.63, at angles of attack from -6 to 30, at angles of sideslip of 0 and 3, and at a Reynolds number, based on body length, of 5.3x 1 million.

  4. Aerodynamic characteristics, including effect of body shape, of a Mach 6 aircraft concept

    NASA Technical Reports Server (NTRS)

    Riebe, G. D.

    1983-01-01

    Longitudinal aerodynamic characteristics for a hydrogen-fueled hypersonic transport concept at Mach 6 are presented. The model components consist of four bodies with identical longitudinal area distributions but different cross-sectional shapes and widths, a wing, horizontal and vertical tails, and a set of wing-mounted nacelles simulated by slid bodies on the wing upper surface. Lift-drag ratios were found to be only sightly affected by fuselage planform width or cross sectional shape. Relative distribution of fuselage volume above and below the wing was found to have an effect on the lift-drag ratio, with a higher lift drag ratio produced by the higher wing position.

  5. Low-subsonic aerodynamic characteristics of a shuttle-orbiter configuration designed for reduced length

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Spencer, B., Jr.

    1973-01-01

    An investigation has been made in a low-turbulence pressure tunnel to determine the low-subsonic aerodynamic characteristics of a 0.01875-scale model of a potential shuttle orbiter. The design has the rocket engines mounted in fairings on either side of the body on top of the wing. The wing had a leading-edge sweep of 50 and a trailing-edge sweep of minus 4. configurations investigated included engine-mounted twin dorsal tails at various rollout angles, a body-mounted center-line vertical tail, cylindrical and boattailed afterbody, and elevon and rudder at several deflections.

  6. Low-speed longitudinal aerodynamic characteristics through poststall for 21 novel planform shapes

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Mcgrath, Brian E.

    1995-01-01

    To identify planform characteristics which have promise for a highly maneuverable vehicle, an investigation was conducted in the Langley Subsonic Basic Research Tunnel to determine the low-speed longitudinal aerodynamics of 21 planform geometries. Concepts studied included twin bodies, double wings, cutout wings, and serrated forebodies. The planform models tested were all 1/4-in.-thick flat plates with beveled edges on the lower surface to ensure uniform flow separation at angle of attack. A 1.0-in.-diameter cylindrical metric body with a hemispherical nose was used to house the six-component strain gauge balance for each configuration. Aerodynamic force and moment data were obtained across an angle-of-attack range of 0 to 70 deg with zero sideslip at a free-stream dynamic pressure of 30 psf. Surface flow visualization studies were also conducted on selected configurations using fluorescent minitufts. Results from the investigation indicate that a cutout wing planform can improve lift characteristics; however, cutout size, shape, and position and wing leading-edge sweep will all influence the effectiveness of the cutout configuration. Tests of serrated forebodies identified this concept as an extremely effective means of improving configuration lift characteristics; increases of up to 25 percent in the value of maximum lift coefficient were obtained.

  7. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  8. Survey of engineering computational methods and experimental programs for estimating supersonic missile aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.

    1982-01-01

    This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.

  9. Large-scale aerodynamic characteristics of airfoils as tested in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Anderson, Raymond F

    1931-01-01

    In order to give the large-scale characteristics of a variety of airfoils in a form which will be of maximum value, both for airplane design and for the study of airfoil characteristics, a collection has been made of the results of airfoil tests made at full-scale values of the reynolds number in the variable density wind tunnel of the National Advisory Committee for Aeronautics. They have been corrected for tunnel wall interference and are presented not only in the conventional form but also in a form which facilitates the comparison of airfoils and from which corrections may be easily made to any aspect ratio. An example showing the method of correcting the results to a desired aspect ratio has been given for the convenience of designers. In addition, the data have been analyzed with a view to finding the variation of the aerodynamic characteristics of airfoils with their thickness and camber.

  10. Geometry effects on aerodynamics performance of a low aspect ratio turbine nozzle

    NASA Astrophysics Data System (ADS)

    Chen, Naixing; Zhang, Hongwu; Xu, Yanji; Huang, Weiguang

    2004-11-01

    This paper describes the influence of some geometric parameters on aerodynamics performance of a low-aspect-ratio turbine blading designed by a novel method developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. This is a part of the study on aerodynamics optimization of turbomachinery. It follows the development of the basic ideas in the turbomachinery aerodynamics research project at the institute. The present paper concentrates mainly on the effects of geometry, such as stagger angle, leading and trailing edge thickness, maximum thickness and its location on adiabatic efficiency, total pressure ratio and mass flow rate. The study was performed and assessed for a low-aspect ratio turbine nozzle using 3D steady Reynolds-averaged N.S. solver. Using the knowledge of the flow physics analysis an optimized turbine nozzle was obtained.

  11. Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.

    1995-01-01

    The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.

  12. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  13. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent

    NASA Astrophysics Data System (ADS)

    Korzun, Ashley M.

    shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.

  14. Numerical and Experimental Study on Aerodynamic Characteristics of Basic Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuya; Kawakita, Masatoshi; Iijima, Takayoshi; Koga, Mitsuhiro; Kihira, Mitsuhiko; Funaki, Jiro

    The aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 106, in a historic context closely related with the developments of airplanes and fluid machineries in the last century. However, our knowledge is not enough at low and middle Reynolds-number ranges. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore-face and after-face geometries at Reynolds number Re < 1.0×105, using two- and three-dimensional computations together with wind-tunnel and water-tank experiments. As a result, we have revealed the effect of the Reynolds number Re upon the minimum drag coefficient CDmin. Besides, we have shown the effects of attack angle α upon various aerodynamic characteristics such as the lift coefficient CL, the drag coefficient CD and the lift-to-drag ratio CL/CD at Re = 1.0×102, discussing those effects on the basis of both near-flow-field information and surface-pressure profiles. Such results suggest the importance of sharp leading edges, which implies the possibility of an inversed NACA0015. Furthermore, concerning the flat-plate airfoil, we investigate the influences of fore-face and after-face geometries upon such effects.

  15. Calculation of static longitudinal aerodynamic characteristics of STOL aircraft with upper surface blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkin, S. C., Jr.; Goodwin, F. K.; Spangler, S. B.

    1975-01-01

    An existing prediction method developed for EBF aircraft configurations was applied to USB configurations to determine its potential utility in predicting USB aerodynamic characteristics. An existing wing-flap vortex-lattice computer program was modified to handle multiple spanwise flap segments at different flap angles. A potential flow turbofan wake model developed for circular cross-section jets was used to model a rectangular cross-section jet wake by placing a number of circular jets side by side. The calculation procedure was evaluated by comparison of measured and predicted aerodynamic characteristics on a variety of USB configurations. The method is limited to the case where the flow and geometry of the configuration are symmetric about a vertical plane containing the wing root chord. Comparison of predicted and measured lift and pitching moment coefficients were made on swept wings with one and two engines per wing panel, various flap deflection angles, and a range of thrust coefficients. The results indicate satisfactory prediction of lift for flap deflections up to 55 and thrust coefficients less than 2. The applicability of the prediction procedure to USB configurations is evaluated, and specific recommendations for improvements are discussed.

  16. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  17. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  18. Effect of symmetrical vortex shedding on the longitudinal aerodynamic characteristics of wing-body-tail combinations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Nielsen, J. N.

    1975-01-01

    An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail combinations is developed. The method includes the effects of nonlinear aerodynamics of components and the interference between components. Nonlinearities associated with symmetrical vortex shedding from the nose of the body are considered as well as the nonlinearities associated with the separation vortices from the leading edges and side edges of the lifting surfaces. The wing and tail characteristics are calculated using lifting surface theories which include effects of incidence, camber, twist, and induced velocities from external sources of disturbance such as bodies and vortices. The lifting surface theories calculate the distribution of leading edge and side edge suction which is converted to vortex lift using the Polhamus suction analogy. Correlation curves are developed to determine the fraction of the theoretical suction force which is converted into vortex lift. The prediction method is compared with experimental data on a variety of aircraft configurations to assess the accuracy and limitations of the method.

  19. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  20. Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions

    NASA Astrophysics Data System (ADS)

    Stafford, J.; Jeffers, N.

    2014-07-01

    This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.

  1. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Lu, Xi-Yun

    2009-07-01

    Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight has been studied using a multiblock lattice Boltzmann method. We find that the interactions between forewing and hindwing effectively enhance the total lift force and reduce the drag force on the wings compared to two independent wings. The interaction mechanism may be associated with the triangular camber effect by modulating the relative arrangement of the forewing and hindwing. The results obtained in this Brief Report provide physical insight into the understanding of aerodynamic behaviors for gliding dragonfly flight.

  2. Effect of vane opening on aerodynamic performance of the ram-rotor test system

    NASA Astrophysics Data System (ADS)

    Han, Ji-ang; Guan, Jian; Zhong, Jingjun; Yuan, Chenguang

    2016-06-01

    In order to research the influence of adjustable vane on the aerodynamic performance of the ram-rotor test system, FLUENT software has been adopted to simulate the flow passage of the ram-rotor test system numerically. The vane opening is controlled by changing the stagger angle of the vane blades. Results show that flow uniformity of vane outlet is influenced by the vane openings, which has an impact on the aerodynamic loss to some extent. Total pressure ratio, adiabatic efficiency and mass flow rate can be regulated by different openings of the vane. Compared with -8° vane opening, top efficiency of the ram-rotor increases by about 13.8% at +6° opening. And total pressure ratio drops by 5.87%. The rising opening increases the relative Mach number at inlet of the ram-rotor and weakens the intensity of the tip clearance leakage, which comes to a decreasing aerodynamic loss.

  3. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  4. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  5. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  6. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    NASA Astrophysics Data System (ADS)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  7. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather. PMID:20938776

  8. Aerodynamic characteristics of a large-scale model with a swept wing and a jet flap having an expandable duct

    NASA Technical Reports Server (NTRS)

    Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1973-01-01

    The data from an investigation of the aerodynamic characteristics of the expandable duct-jet flap concept are presented. The investigation was made using a large-scale model in the Ames 40- by 80-foot Wind Tunnel. The expandable duct-jet flap concept uses a lower surface, split flap and an upper surface, Fowler flap to form an internal, variable area cavity for the blowing air. Small amounts of blowing are used on the knee of the upper surface flap and the knee of a short-chord, trailing edge control flap. The bulk of the blowing is at the trailing edge. The flap could extend the full span of the model wing or over the inboard part only, with blown ailerons outboard. Primary configurations tested were two flap angles, typical of takeoff and landing; symmetric control flap deflections, primarily for improved landing performance; and asymmetric aileron and control flap deflections, for lateral control.

  9. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  10. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  11. Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters

    NASA Technical Reports Server (NTRS)

    Keys, C. N.; Stephniewski, W. Z. (Editor)

    1979-01-01

    Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume.

  12. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  13. Wind tunnel investigation of aerodynamic and tail buffet characteristics of leading-edge extension modifications to the F/A-18

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    1991-01-01

    The impact of leading-edge extension (LEX) modifications on aerodynamic and vertical tail buffet characteristics of a 16-percent scale F/A-18 model has been investigated in the NASA Langley 30-foot by 60-foot tunnel. Modifications under consideration include variations in LEX chord and span, addition of upper surface fences, and removal of the LEX. Both buffeting and high-angle-of-attack aerodynamics are found to be strongly dependent upon the LEX geometry, which directly influences the strength, position, and breakdown characteristics of the vortex flow field. Concepts aimed at influencing the development of vortical flow field are considered to have much greater potential in design application than those geared toward altering already established flow fields. It is recommended that configuration effects on structural and aerodynamic characteristics be evaluated in parallel, so that trade-off studies can be conducted to ensure adequate structural fatigue life and desired high-angle-of-attack stability and control characteristics in the design of future high performance aircraft.

  14. Gap and stagger effects on the aerodynamic performance and the wake behind a biplane with endplates

    NASA Astrophysics Data System (ADS)

    Kang, Hantae

    Modern flow diagnostics applied to a very old aerodynamic problem has produced a number of intriguing new results and new insight into previous results. The aerodynamic performance and associated flow physics of the biplane with endplates as a function of variation in gap and stagger were analytically and experimentally investigated. A combination of vortex lattice method, integrated force measurement, streamwise PIV, and Trefftz plane Stereo PIV were used to better understand the flowfield around the biplane with endplates. This study was performed to determine the configuration with the optimal aerodynamic performance and to understand the fluid mechanics behind optimal and suboptimal performance of the configuration. The Vortex Lattice code (AVL) shows that the gap and stagger have the most dramatic effects out of the six parameters studied: gap, stagger, dihedral, decalage, sweep and overhang. The force balance measurements with fourteen biplane configurations of different gaps and staggers show that as gap and stagger increase, the lift efficiency also increases at all angles of attack tested at both Re 60,000 and 120,000. Using the force balance data, a generalized empirical method for the prediction of lift coefficient as a function of gap, stagger and angle of attack has been determined and validated when combined with existing relations for CL--α adjustments for AR and taper effects. The resulting empirical approach allows for a rapid determination of CL for a biplane having different gap, stagger, AR and taper without the need for a complete flowfield analysis. Two Dimensional PIV results show a distinctive pattern in the downwash angle for the different gap and stagger configurations tested. The downwash angle increases with increasing gap and stagger. It is also evident that the change in downwash angle is directly proportional to the change in lift coefficient as would be expected. Increasing gap spacing increases the downwash angle as well. Based on

  15. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  16. Performance and Design Investigation of Heavy Lift Tiltrotor with Aerodynamic Interference Effects

    NASA Technical Reports Server (NTRS)

    Yeo, Yyeonsoo; Johnson, Wayne

    2007-01-01

    The aerodynamic interference effects on tiltrotor performance in cruise are investigated using comprehensive calculations, to better understand the physics and to quantify the effects on the aircraft design. Performance calculations were conducted for 146,600-lb conventional and quad tiltrotors, which are to cruise at 300 knots at 4000 ft/95 deg F condition. A parametric study was conducted to understand the effects of design parameters on the performance of the aircraft. Aerodynamic interference improves the aircraft lift-to-drag ratio of the baseline conventional tiltrotor. However, interference degrades the aircraft performance of the baseline quad tiltrotor, due mostly to the unfavorable effects from the front wing to the rear wing. A reduction of rotor tip speed increased the aircraft lift-to-drag ratio the most among the design parameters investigated.

  17. Aerodynamic characteristics of a powered, externally blown flap STOL transport model with two engine simulator sizes

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1975-01-01

    The low-speed aerodynamic characteristics are investigated of a general research model - a swept-wing, jet-powered STOL transport with externally blown flaps. The model was tested with four-engine simulators mounted on pylons under the 9.3-percent-thick supercritical airfoil wing. Two sets of air ejectors were used to provide data with large and small engines. Tests were conducted in the Langley V/STOL tunnel over an angle-of-attack range of -4 deg to 22 deg and a thrust-coefficient range from 0 to approximately 4. The effects are described of power, wing leading-edge slat configuration, T-tail and low horizontal-tail positions, and double-slotted flap deflection. Additional untrimmed and trimmed engine-out data and tail-body data are included.

  18. Aerodynamic stability and control characteristics of TBC shuttle booster AR-11981-3

    NASA Technical Reports Server (NTRS)

    Phelps, E. R.; Watts, L. L.; Ainsworth, R. W.

    1972-01-01

    A scale model of the Boeing Company space shuttle booster configuration 3 was tested in the MSFC 14-inch trisonic wind tunnel. This test was proposed to fill-in the original test run schedule as well as to investigate the aerodynamic stability and control characteristics of the booster with three wing configurations not previously tested. The configurations tested included: (1) a cylindrical booster body with an axisymmetric nose, (2) clipped delta canards that had variable incidence from 0 deg to -60 deg, (3) different aft body mounted wing configurations, (4) two vertical fin configurations, and (5) a Grumman G-3 orbiter configuration. Tests were conducted over a Mach range from 0.6 to 5.0.

  19. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  20. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  1. Prediction of longitudinal aerodynamic characteristics of STOL configurations with externally blown high lift devices

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1976-01-01

    A theoretical method has been developed to predict the longitudinal aerodynamic characteristics of engine-wing-flap combinations with externally blown flaps (EBF) and upper surface blowing (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wake are combined to calculate the induced interference of the engine wakes on the lifting surfaces. The engine wakes may be circular, elliptic, or rectangular cross-sectional jets, and the lifting surfaces are comprised of a wing with multiple-slotted trailing-edge flaps or a deflected trailing-edge Coanda surface. Results are presented showing comparisons of measured and predicted forces, pitching moments, span-load distributions, and flow fields.

  2. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  3. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  4. Aerodynamic characteristics of a large aircraft to transport space shuttle orbiter or other external payloads

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1975-01-01

    Wind tunnel tests were conducted in the Langley V/STOL tunnel to determine the aerodynamic characteristics of a large transport aircraft designed to carry the space shuttle orbiter or orbiter booster tank. Results indicate that the transport, with or without payloads, is statically stable, the longitudinal static margins being rather excessive. Elevator power is sufficient to trim the transport up to stall except when the orbiter is mounted close to the wing. Maximum lift-drag ratios at wind tunnel Reynolds numbers vary from 12 to 14 depending on model configuration. Tests were conducted at Reynolds numbers from 1.21 x 1 million to 1.49 x 1 million with angle of attack from -2 deg to 20 deg and angle of sideslip from -5 deg to 5 deg.

  5. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  6. Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Rusak, Z.; Wasserstrom, E.

    1983-01-01

    Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result.

  7. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

    2014-12-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

  8. Effect of Length-Beam Ratio on the Aerodynamic Characteristics of Flying-Boat Hulls without Wing Interference

    NASA Technical Reports Server (NTRS)

    Lowry, John G.; Riebe, John M.

    1948-01-01

    Contains experimental results of an investigation of the aerodynamic characteristics of a family of flying boat hulls of length beam ratios 6, 9, 12, and 15 without wing interference. The results are compared with those taken on the same family of hulls in the presence of a wing.

  9. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  10. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    NASA Technical Reports Server (NTRS)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  11. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design. PMID:18503106

  12. Supersonic aerodynamic characteristics of conformal carriage monoplanar circular missile configurations with low-profile quadriform tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.

  13. Experimental study of full-scale iced-airfoil aerodynamic performance using sub-scale simulations

    NASA Astrophysics Data System (ADS)

    Busch, Greg T.

    Determining the aerodynamic effects of ice accretion on aircraft surfaces is an important step in aircraft design and certification. The goal of this work was to develop a complete sub-scale wind tunnel simulation methodology based on knowledge of the detailed iced-airfoil flowfield that allows the accurate measurement of aerodynamic penalties associated with the accretion of ice on an airfoil and to validate this methodology using full-scale iced-airfoil performance data obtained at near-flight Reynolds numbers. In earlier work, several classifications of ice shape were developed based on key aerodynamic features in the iced-airfoil flowfield: ice roughness, streamwise ice, horn ice, and tall and short spanwise-ridge ice. Castings of each of these classifications were acquired on a full-scale NACA 23012 airfoil model and the aero-dynamic performance of each was measured at a Reynolds number of 12.0 x 106 and a Mach number = 0.20. In the current study, sub-scale simple-geometry and 2-D smooth simulations of each of these castings were constructed based on knowledge of iced-airfoil flowfields. The effects of each simulation on the aerodynamic performance of an 18-inch chord NACA 23012 airfoil model was measured in the University of Illinois 3 x 4 ft. wind tunnel at a Reynolds number of 1.8 x 106 and a Mach number of 0.18 and compared with that measured for the corresponding full-scale casting at high Reynolds number. Geometrically-scaled simulations of the horn-ice and tall spanwise-ridge ice castings modeled C l,maxto within 2% and Cd,min to within 15%. Good qualitative agreement in the Cp distributions suggests that important geometric features such as horn and ridge height, surface location, and angle with respect to the airfoil chordline were appropriately modeled. Geometrically-scaled simulations of the ice roughness, streamwise ice, and short-ridge ice tended to have conservative C l,max and Cd. The aerodynamic performance of simulations of these types of

  14. Supersonic airplane design optimization method for aerodynamic performance and low sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Edwards, Thomas A.

    1992-01-01

    This paper presents a new methodology for the optimization of supersonic airplane designs to meet the dual design objectives of low sonic boom and high aerodynamic performance. Two sets of design parameters are used on an existing High Speed Civil Transport (HSCT) configuration to maximize the aerodynamic performance and minimize the sonic boom under the flight track. One set of the parameters perturbs the camber line of the wing sections to maximize the lift-over-drag ratio (L/D). A preliminary optimization run yielded a 3.75 percent improvement in L/D over a baseline low-boom configuration. The other set of parameters modifies the fuselage area to achieve a target F-function. Starting from an initial configuration with strong bow, wing, and tail shocks, a modified design with a flat-top signature is obtained. The methods presented can easily incorporate other design variables and objective functions. Extensions to the present capability in progress are described.

  15. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  16. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  17. Aerodynamic Characteristics of a Supersonic Fighter Aircraft Model at Mach 0.40 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Bare, E. A.; Arbiter, D.

    1986-01-01

    The aerodynamic characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Transonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective of this investigation was to establish an aerodynamic data base for the configuration with flow-through nacelles and representative inlets. The use of a canard for trim and the effects of fairing over the inlets were assessed. Comparisons between experimental and theoretical results were also made. The theoretical results were determined by using a potential vortex lift code for subsonic speeds and a linear aerodynamic code for supersonic speeds. This investigation was conducted at Mach numbers from 0.40 to 2.47, at angles of attack from 0 deg to about 20 deg, and at inlet capture ratios of about 0.5 to 1.4.

  18. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    NASA Astrophysics Data System (ADS)

    Meftah, S. M. A.; Belhenniche, M.; Madani Fouatih, O.; Imine, B.

    2014-03-01

    The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  19. Aerodynamic performance of a transonic low aspect ratio turbine nozzle

    SciTech Connect

    Moustapha, S.H. . Turbine Aerodynamics); Carscallen, W.E. . Combustion and Fluids Engineering Lab.); McGeachy, J.D. . Dept. of Mechanical Engineering)

    1993-07-01

    This paper presents detailed information of the three-dimensional flow field in a realistic turbine nozzle with an aspect ratio of 0.65 and a turning angle of 76 deg. The nozzle has been tested in a large-scale planar cascade over a range of exit Mach numbers from 0.3 to 1.3. The experimental results are presented in the form of nozzle passage Mach number distributions and spanwise distribution of losses and exit flow angle. Details of the flow field inside the nozzle passage are examined by means of surface flow visualization and Schlieren pictures. The performance of the nozzle is compared to the data obtained for the same nozzle tested in an annular cascade and a stage environment. Excellent agreement is found between the measured pressure distribution and the prediction of a three-dimensional Euler flow solver.

  20. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  1. Charts Showing Relations Among Primary Aerodynamic Variables for Helicopter-performance Estimation

    NASA Technical Reports Server (NTRS)

    Talkin, Herbert W

    1947-01-01

    In order to facilitate solutions of the general problem of helicopter selection, the aerodynamic performance of rotors is presented in the form of charts showing relations between primary design and performance variables. By the use of conventional helicopter theory, certain variables are plotted and other variables are considered fixed. Charts constructed in such a manner show typical results, trends, and limits of helicopter performance. Performance conditions considered include hovering, horizontal flight, climb, and ceiling. Special problems discussed include vertical climb and the use of rotor-speed-reduction gears for hovering.

  2. A performance index approach to aerodynamic design with the use of analysis codes only

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Moitra, Anutosh

    1988-01-01

    A method is described for designing an aerodynamic configuration for a specified performance vector, based on results from several similar, but not identical, trial configurations, each defined by a geometry parameter vector. The theory shows the method effective provided that: (1) the results for the trial configuration provide sufficient variation so that a linear combination of them approximates the specified performance; and (2) the difference between the performance vectors (including the specifed performance) are sufficiently small that the linearity assumption of sensitivity analysis applies to the differences. A computed example describes the design of a high supersonic Mach number missile wing body configuration based on results from a set of four trial configurations.

  3. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  4. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  5. Aerodynamic Performance Enhancement of a Finite Span Wind Turbine Blade using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Taylor, Keith; Leong, Chia Min; Amitay, Michael

    2011-11-01

    Modern wind turbines undergo significant changes in pitch angle and structural loading through a revolution. Recent developments in flow control techniques, coupled with increased interest in green energy technologies, have led to interest in applying these techniques to wind turbines, in an effort to increase power output and reduce structural stress associated with widely varying loading. This reduction in structural stress could lead to reduced operational costs associated with the maintenance cycle. The effect of active flow control on the aerodynamic and structural aspects of finite span blade was investigated experimentally. When synthetic jets were employed the effect on aerodynamic performance and structural vibrations, during static and dynamic pitch conditions, was significant. In order to investigate if the jets can be actuated for less time (reduce their power consumption), they were actuated during only a portion of the pitch cycle or using pulse modulation. The results showed that these techniques result in significant reduction in the hysteresis loop and the structural vibrations.

  6. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  7. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  8. Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor

    NASA Astrophysics Data System (ADS)

    Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco

    2016-02-01

    In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.

  9. Aerodynamic characteristics of nebulized terbutaline sulphate using the Next Generation Impactor (NGI) and CEN method.

    PubMed

    Abdelrahim, Mohamed E; Chrystyn, Henry

    2009-03-01

    Characterization of the aerosolized dose emitted from a nebulized system can be determined using CEN (prEN13544-1) methodology and more recently with a Next Generation Impactor (NGI), but evaporative effects can influence the results. We have investigated these characteristics using different flows and cooling with the NGI and compared the results to the standard CEN method using two different nebulizer systems. The NGI was operated using flows of 15 and 30 L min(-1) at room (ROOM) temperature and immediately after cooling at 5 degrees C for 90 min (COLD). Two nebulizer systems, the Sidestream jet nebulizer (SIDE) and the Aeroneb Pro (AERO), were used to nebulize terbutaline sulphate respiratory solution. The CEN method was also used to provide the aerodynamic characteristics of the aerosolized dose from these two nebulizer systems. The mean (SD) mass median aerodynamic diameter (MMAD) using 15COLD, 15ROOM, 30COLD, 30ROOM, and CEN for AERO was 5.0(0.1), 4.1(0.3), 4.4(0.2), 2.0(0.3), and 3.0(1.1) microm, respectively, and 4.2(0.4), 2.6(0.4), 3.5(0.1), 1.7(0.1), and 3.2(0.3) microm for SIDE. The fine particle fraction (FPF), using the NGI, followed the expected trend associated with the corresponding MMAD values, ranging from 48.1 to 70.5% from AERO and 57.3 to 87.8% for SIDE. The mean FPF for AERO and SIDE using the CEN methodology was 72.5 and 63.6%. Overall there was a highly significant difference (p < 0.001) between the different operating conditions for the FPF and MMAD of both nebulizer systems. All methods revealed a significant difference between AERO and SIDE except CEN. Both nebulizer systems were prone to evaporation effects during in vitro testing. Cooling and using a slow flow minimizes evaporation effects with the NGI and should be adopted as the recommended compendial method. The CEN method provides different values to those of the NGI operating conditions and could not differentiate between the two nebulizers. PMID:19392586

  10. Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades

    NASA Astrophysics Data System (ADS)

    Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

    2014-02-01

    The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating under unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.

  11. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  12. Analysis and compilation of missile aerodynamic data. Volume 2: Performance analysis

    NASA Technical Reports Server (NTRS)

    Burkhalter, J. E.

    1977-01-01

    A general analysis is given of the flight dynamics of several surface-to-air and two air-to-air missile configurations. The analysis involves three phases: vertical climb, straight and level flight, and constant altitude turn. Wind tunnel aerodynamic data and full scale missile characteristics are used where available; unknown data are estimated. For the constant altitude turn phase, a three degree of freedom flight simulation is used. Important parameters considered in this analysis are the vehicle weight, Mach number, heading angle, thrust level, sideslip angle, g loading, and time to make the turn. The actual flight path during the turn is also determined. Results are presented in graphical form.

  13. Effect of Ground Interference on the Aerodynamic and Flow Characteristics of a 42 Degree Sweptback Wing at Reynolds Numbers up to 6.8 x 10(6)

    NASA Technical Reports Server (NTRS)

    Furlong, G Chester; Bollech, Thomas V

    1955-01-01

    Report presents the results of an investigation of the effects of ground interference on the aerodynamic characteristics of a 42 degree sweptback wing at distances 0.68 and 0.92 of the mean aerodynamic chord from the simulated ground to the 0.25-chord point of the mean aerodynamic chord. Survey data behind the wing, both with and without the simulated ground, are presented in the form of contour charts of downwash, sidewash, and dynamic-pressure ratio at longitudinal stations of 2.0 and 2.8 mean aerodynamic chords behind the wing.

  14. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  15. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

  16. Improvement of Aerodynamic Performance of the Aero-Train by Controlling Wing-Wing Interaction Using Single-Slotted Flap

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Hee; Kohama, Yasuaki; Kikuchi, Satoshi; Kato, Takuma

    Aero-train is a new driving concept using aerodynamic technology under development by the Kohama Laboratory, Institute of Fluid Science, Tohoku University. It employs the wing-in-ground effect to enable travel at high speeds over land. Aero-train makes use of the ground effects of lift and side force between the wings and a U-shaped guideway for stability. The main wings have vertical wings at the tips, which are arranged in tandem to regulate the roll and yaw stability in the U-shaped guideway. However, the vertical wings deteriorate the lift-to-drag ratio of the Aero-train by aerodynamic interaction with the main wings. The present study was performed to improve the aerodynamic performance of the Aero-train by controlling wing-wing interaction. Installation of a single-slotted flap on the wings considerably improved the aerodynamic performance of the wings.

  17. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    NASA Technical Reports Server (NTRS)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  18. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  19. An experimental study of the aerodynamic characteristics of planar and non-planar outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1987-01-01

    A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.

  20. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  1. Aerodynamic characteristics of Lockheed delta-body orbiter and stage-and-one-half launch vehicle

    NASA Technical Reports Server (NTRS)

    Velligan, F. A.; Svendsen, H. O.

    1971-01-01

    An experimental wind tunnel test program was conducted to investigate the subsonic through high supersonic aerodynamic characteristics of the Lockheed delta lifting body orbiter and stage-and-one-half launch vehicle. Analyses and results of these data are presented. A 0.01-scale model of the LS 200-5 system was designed and fabricated for testing in wind tunnels. Orbiter and launch configurations were tested over a speed range of Mach 0.6 to 2.0, whereas only the orbiter was tested over a speed range of Mach 2.3 to 4.6. Six-component force and moment data, base pressures, and schlieren photos were obtained at various angles-of-attack and sideslip. A 0.03-scale model of the orbiter was also designed, fabricated, and tested in a wind tunnel. Six-component force and moment data, base pressure, and a limited amount of tuft flow visualization data were obtained on a variety of configuration combinations.

  2. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1978-01-01

    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall.

  3. Analysis of some aerodynamic characteristics due to wing-jet interaction

    NASA Technical Reports Server (NTRS)

    Fillman, G. L.; Lan, C. E.

    1979-01-01

    The results of two separate theoretical investigations are presented. A program was used which is capable of predicting the aerodynamic characteristics of both upper-surface blowing (USB) and over-wing blowing (OWB) configurations. A theoretical analysis of the effects of over-wing blowing jets on the induced drag of a 50 deg sweep back wing was developed. Experiments showed net drag reductions associated with the well known lift enhancement due to over-wing blowing. The mechanisms through which this drag reduction is brought about are presented. Both jet entrainment and the so called wing-jet interaction play important roles in this process. The effects of a rectangular upper-surface blowing jet were examined for a wide variety of planforms. The isolated effects of wing taper, sweep, and aspect ratio variations on the incremental lift due to blowing are presented. The effects of wing taper ratio and sweep angle were found to be especially important parameters when considering the relative levels of incremental lift produced by an upper-surface blowing configuration.

  4. Program VSAERO theory document: A computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Maskew, Brian

    1987-01-01

    The VSAERO low order panel method formulation is described for the calculation of subsonic aerodynamic characteristics of general configurations. The method is based on piecewise constant doublet and source singularities. Two forms of the internal Dirichlet boundary condition are discussed and the source distribution is determined by the external Neumann boundary condition. A number of basic test cases are examined. Calculations are compared with higher order solutions for a number of cases. It is demonstrated that for comparable density of control points where the boundary conditions are satisfied, the low order method gives comparable accuracy to the higher order solutions. It is also shown that problems associated with some earlier low order panel methods, e.g., leakage in internal flows and junctions and also poor trailing edge solutions, do not appear for the present method. Further, the application of the Kutta conditions is extremely simple; no extra equation or trailing edge velocity point is required. The method has very low computing costs and this has made it practical for application to nonlinear problems requiring iterative solutions for wake shape and surface boundary layer effects.

  5. The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1991-01-01

    A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.

  6. Aerodynamic characteristics of a large-scale hybrid upper surface blown flap model having four engines

    NASA Technical Reports Server (NTRS)

    Carros, R. J.; Boissevain, A. G.; Aoyagi, K.

    1975-01-01

    Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.

  7. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  8. Two-dimensional aerodynamic characteristics of the OLS/TAAT airfoil

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Cross, Jeffrey L.; Noonan, Kevin W.

    1988-01-01

    Two flight tests have been conducted that obtained extension pressure data on a modified AH-1G rotor system. These two tests, the Operational Loads Survey (OLS) and the Tip Aerodynamics and Acoustics Test (TAAT) used the same rotor set. In the analysis of these data bases, accurate 2-D airfoil data is invaluable, for not only does it allow comparison studies between 2- and 3-D flow, but also provides accurate tables of the airfoil characteristics for use in comprehensive rotorcraft analysis codes. To provide this 2-D data base, a model of the OLS/TAAT airfoil was tested over a Reynolds number range from 3 x 10 to the 6th to 7 x 10 to the 7th and between Mach numbers of 0.34 to 0.88 in the NASA Langley Research Center's 6- by 28-Inch Transonic Tunnel. The 2-D airfoil data is presented as chordwise pressure coefficient plots, as well as lift, drag, and pitching moment coefficient plots and tables.

  9. Low-speed, high-lift aerodynamic characteristics of slender, hypersonic accelerator-type configurations

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.

    1989-01-01

    Two investigations were conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a generic hypersonic accelerator-type configuration. The model was a delta wing configuration incorporating a conical forebody, a simulated wrap-around engine package, and a truncated conical aftbody. Six-component force and moment data were obtained over a range of attack from -4 to 30 degrees and for a sideslip range of + or - 20 degrees. In addition to tests of the basic configuration, component build-up tests were conducted; and the effects of power, forebody nose geometry, canard surfaces, fuselage strakes, and engines on the lower surface alone were also determined. Control power available from deflections of wing flaps and aftbody flaps was also investigated and found to be significantly increased during power-on conditions. Large yawing moments resulted from asymmetric flow fields exhibited by the forebody as revealed by both surface pressure data and flow visualization. Increasing nose bluntness reduced the yawing-moment asymmetry, and the addition of a canard eliminated the yawing-moment asymmetry.

  10. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  11. Investigation of Aerodynamic and Icing Characteristics of Recessed Fuel-Vent Configurations

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; VonGlahn, Uwe H.; Rollins, Vern G.

    1949-01-01

    An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud

  12. Experimental Investigation of the Low-Speed Aerodynamic Characteristics of a 5.8-Percent Scale Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.

    2012-01-01

    A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.

  13. Jet exhaust and support interference effects on the transonic aerodynamic characteristics of a fighter model with two widely spaced engines

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1976-01-01

    Jet exhaust, nozzle installation, and model support interference effects on the longitudinal aerodynamic characteristics of a twin-engine fighter model were determined. Realistic jet exhaust nozzle configurations and a reference configuration with a simulated vertical-tail support were tested. Free-stream Mach number was varied from 0.6 to 1.2, and model angle of attack from 0 deg to 9 deg. The jet exhaust affected drag more than it affected lift and pitching moment. The largest effects occurred at a Mach number of 0.9 and for the afterburning mode of exhaust nozzle operation. The combined differences between the aerodynamic characteristics of the realistic and reference configurations (which were due to afterbody and nozzle contours, jet operation, and simulated reference support interference) were considerably different from those for the jet interference alone.

  14. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  15. Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Yip, L. P.

    1978-01-01

    A V/STOL tunnel study was performed to determine the effects of spanwise blowing on longitudinal aerodynamic characteristics of a model using a vectored-over-wing powered lift concept. The effects of spanwise nozzle throat area, internal and external nozzle geometry, and vertical and axial location were investigated. These effects were studied at a Mach number of 0.186 over an angle-of-attack range from 14 deg to 40 deg. A high pressure air system was used to provide jet-exhaust simulation. Engine nozzle pressure ratio was varied from 1.0 (jet off) to approximately 3.75.

  16. High-attitude low-speed static aerodynamic characteristics of an F-4D fighter airplane model with leading edge slats

    NASA Technical Reports Server (NTRS)

    Monfort, J. C.; Whitcomb, W. M.

    1975-01-01

    An investigation was conducted to determine the effects of two-position leading edge slats on the low speed aerodynamic characteristics of a swept wing twin-jet supersonic fighter airplane model at high angle of attack and various Reynolds numbers. The investigation was performed at a Mach number of 0.20 over a range of angle of attack from 19 deg to 90 deg and angles of slideslip from -10 deg to 30 deg and Reynolds numbers from 1.97 to 13.12 million per meter.

  17. Algorithm for determining the aerodynamic characteristics of a freely flying object from discrete data of ballistic experiment. Part 2

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Mende, N. P.; Popov, P. A.; Sakharov, V. A.; Berdnikov, V. A.; Viktorov, V. A.; Oseeva, S. I.; Sadchikov, G. D.

    2009-04-01

    In part 1 of this paper, an algorithm for numerically solving the inverse problem of motion of a solid through the atmosphere is described that constitutes the basis for identifying the aerodynamic characteristics of an object from trajectory data and the respective identification procedure is presented. In part 2, methods evaluating the significance of desired parameters and adequacy of a mathematical model of motion, approaches to metrological certification of experimental equipment, and results of testing the algorithm are discussed.

  18. Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1976-01-01

    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.

  19. Laboratory evaluation of fan/filter units' aerodynamic and energy performance

    SciTech Connect

    Xu, Tengfang; Jeng, Ming-Shan

    2004-07-27

    The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

  20. Longitudinal Aerodynamic Characteristics of a Wing-Body-Tail Model Having a Highly Tapered, Cambered 45 degree Swept Wing of Aspect Ratio 4 at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    West, F. E., Jr.

    1959-01-01

    The longitudinal aerodynamic characteristics of a wing-body-horizontal-tail configuration designed for efficient performance at transonic speeds has been investigated at Mach numbers from 0.80 to 1.03 in the Langley 16-foot transonic tunnel. The effect of adding an outboard leading-edge chord-extension to the highly tapered 45 deg. swept wing was also obtained. The average Reynolds number for this investigation was 6.7 x 10(exp 6) based on the wing mean aerodynamic chord. The relatively low tail placement as well as the addition of a chord-extension achieved some alleviation of the pitchup tendencies of the wing-fuselage configuration. The maximum trimmed lift-drag ratio was 16.5 up to a Mach number of 0.9, with the moment center located at the quarter-chord point of the mean aerodynamic chord. For the untrimmed case, the maximum lift-drag ratio was approximately 19.5 up to a Mach number of 0.9.

  1. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  2. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  3. Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1978-01-01

    An experimental investigation was conducted to determine the effect of design changes on the aerodynamic and acoustic performance of translating centerbody sonic inlets. Scale model inlets were tested in the Lewis Research Center's V/STOL wind tunnel. The effects of centerbody position, entry lip contraction ratio, diffuser length, and diffuser area ratio on inlet total pressure recovery, distortion, and noise suppression were investigated at static conditions and at forward velocity and angle of attack. With the centerbody in the takeoff position (retracted), good aerodynamic and acoustic performance was attained at static conditions and at forward velocity. At 0 deg incidence angle with a sound pressure level reduction of 20 dB, the total pressure recovery was 0.986. Pressure recovery at 50 deg was 0.981. With the centerbody in the approach position (extended), diffuser flow separation occurred at an incidence angle of approximately 20 deg. However, good performance was attained at lower angles. With the centerbody in the takeoff position the ability of the inlet to tolerate high incidence angles was improved by increasing the lip contraction ratio. However, at static conditions with the centerbody in the approach position, an optimum lip contraction ratio appears to exist, with both thinner and thicker lips yielding reduced performance.

  4. Cooled-turbine aerodynamic performance prediction from reduced primary to coolant total-temperature-ratio results

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1976-01-01

    The prediction of the cooled aerodynamic performance, for both stators and turbines, at actual primary to coolant inlet total temperature ratios from the results obtained at a reduced total temperature ratio is described. Theoretical and available experimental results were compared for convection film and transpiration cooled stator vanes and for a film cooled, single stage core turbine. For these tests the total temperature ratio varied from near 1.0 to about 2.7. The agreement between the theoretical and the experimental results was, in general, reasonable.

  5. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  6. Aerodynamic performance of a 1.35-pressure-ratio axial-flow fan stage

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Moore, R. D.; Steinke, R. J.

    1978-01-01

    The overall blade element performances and the aerodynamic design parameters are presented for a 1.35-pressure-ratio fan stage. The fan stage was designed for a weight flow of 32.7 kilograms per second and a tip speed of 302.8 meters per second. At design speed the stage peak efficiency of 0.879 occurred at a pressure ratio of 1.329 and design flow. Stage stall margin was approximately 14 percent. At design flow rotor efficiency was 0.94 and the pressure ratio was 1.360.

  7. Prediction of the hub vortex instability within wind turbine wakes and effects of the incoming wind and turbine aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo Valerio; Viola, Francesco; Camarri, Simone; Porté-Agel, Fernando; Gallaire, Francois

    2014-11-01

    Instability of the hub vortex, which is a vorticity structure present in wind turbine near-wake and mainly oriented along the streamwise direction, is predicted from wake velocity measurements. In this work, stability analysis is performed on wind tunnel velocity measurements acquired in the wake produced from a wind turbine model immersed in a uniform flow. Turbulence effects on wake dynamics are taken into account by modeling the Reynolds stresses through eddy-viscosity models, which are calibrated on the wind tunnel data. This formulation leads to the identification of one dominant mode associated with the hub vortex instability, which is characterized by a counter-winding single-helix mode. Moreover, this analysis also predicts accurately the frequency of the hub vortex instability observed experimentally. The hub vortex instability is also investigated by considering incoming wind fields with different turbulence characteristics, different turbine aerodynamic designs and operational regimes, which affect the morphology of the wake vorticity structures and their dynamics. The ultimate goal of this work consists in providing useful information for predicting wind turbine wake dynamics and their effects on downstream wake recovery, thus to maximize wind power harvesting.

  8. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  9. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric

  10. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  11. In vitro measurements of aerodynamic characteristics of an improved tracheostoma valve for laryngectomees.

    PubMed

    Geertsema, A A; de Vries, M P; Schutte, H K; Lubbers, J; Verkerke, G J

    1998-01-01

    Tracheostoma valves are often required in the rehabilitation process of speech after total laryngectomy. Patients are thus able to speak without using their hands to close the tracheostoma. The improved Groningen tracheostoma valve consists of a "cough" valve with an integrated ("speech") valve, which closes for phonation. The cough valve opens as the result of pressure produced by the lungs during a cough. The speech valve closes by the airflow produced by the lungs, thus directing air from the lungs into the esophagus at a deliberately chosen moment. An experimental setup with a computer-based acquisition program was developed to measure the pressure at which the cough valve opened and the flow at which the speech valve closed. In addition, the airflow resistance coefficient of the tracheostoma valve was defined and measured with an open speech valve. Both dry air from a cylinder and humid expired air were used. Results showed a pressure range of 1-7 kPa to open the cough valve and a flow range of 1.2-2.7 l/s to close the speech valve. These values were readily attained during speech, while the flow range occurred above values reached in quiet breathing. The device appeared to function well in physiological ranges and was optimally adjustable to an individual setting. No significant differences were measured between air from a cylinder and humid expired air. Findings showed that methods used to obtain results could be employed as a reference method for comparing aerodynamic characteristics of tracheostoma valves. PMID:9638466

  12. Vortex shedding and aerodynamic performance of an airfoil with multi-scale trailing edge modifications

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Vassilicos, J. Christos

    2014-11-01

    An experimental investigation was conducted into the aerodynamic performance and nature of the vortex shedding generated by truncated and non-flat serrated trailing edges of a NACA 0012 wing section. The truncated trailing edge generates a significant amount of vortex shedding, whilst increasing both the maximum lift and drag coefficients, resulting in an overall reduction in the maximum lift-to-drag ratio (L/D) compared to a plain NACA0012 wing section. By decreasing the chevron angle (ϕ) of the non-flat trailing edge serrations (i.e. by making them sharper), the energy of the vortex shedding significantly decreases and L/D increase compared to a plain NACA0012 wing section. Fractal/multi-scale patterns were also investigated with a view to further improve performance. It was found that the energy of the vortex shedding increases with increasing fractal iteration if the chevron is broad (ϕ ~65°), but decreases for sharper chevrons (ϕ =45°). It is believed that if ϕ is too big, the multi-scale trailing edges are too far away from each other to interact and break down the vortex shedding mechanism. Fractal/multi-scale trailing edges are also able to improve aerodynamic performance compared to the NACA 0012 wing section.

  13. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    This paper presents the results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt and Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  14. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  15. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  16. Aerodynamic performance of a new LM 17.2 m rotor

    NASA Astrophysics Data System (ADS)

    Rasmussen, F.

    1985-03-01

    The aerodynamic properties of a 17.2 m diameter rotor mounted on a 55 kW windmill were measured. Power curves were measured for a range of blade tip angles to find the best angle in relation to energy production and stalling characteristics. With this optimum blade setting the flapwise blade root bending moment was measured as a function of wind speed. The drag coefficient at 90 deg angle of attack was calculated from measurements of the integrated value, i.e., the flapwise blade root bending moment as a function of wind speed during stand still. Profile properties are estimated from aerodynamic calculations, and the results compared to profile data from three dimensional wind tunnel measurements. The flapwise blade root bending moment versus blade angular position during one revolution was measured in skew wind and compared with calculations. The influence of surface roughnes introduced at a certain percentage of the section chord and the dependency on the Reynolds number is investigated, and discussed from observed discrepancies in the measured power curves.

  17. Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propellers

    NASA Technical Reports Server (NTRS)

    Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank

    1987-01-01

    An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.

  18. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  19. Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 1.5 and 2.0.

    NASA Technical Reports Server (NTRS)

    Kassner, D. L.; Wettlaufer, B.

    1977-01-01

    A typical missile model with nose mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained both with the model unrolled and rolled 45 deg. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 10 deg with canard deflections of 9 deg. Also, the tail arrangements studied provided ample pitch stability. there were no appreciable effects of model roll orientation.

  20. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  1. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  2. The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano

    2014-11-01

    Effects of free stream turbulence with large integral scale on the aerodynamic performance of an S809 airfoil-based wind turbine blade at low Reynolds number are studied using wind tunnel experiments. A constant chord (2-D) S809 airfoil wind turbine blade model with an operating Reynolds number of 208,000 based on chord length was tested for a range of angles of attack representative of fully attached and stalled flow as encountered in typical wind turbine operation. The smooth-surface blade was subjected to a quasi-laminar free stream with very low free-stream turbulence as well as to elevated free-stream turbulence generated by an active grid. This turbulence contained large-scale eddies with levels of free-stream turbulence intensity of up to 6.14% and an integral length scale of about 60% of chord-length. The pressure distribution was acquired using static pressure taps and the lift was subsequently computed by numerical integration. The wake velocity deficit was measured utilizing hot-wire anemometry to compute the drag coefficient also via integration. In addition, the mean flow was quantified using 2-D particle image velocimetry (PIV) over the suction surface of the blade. Results indicate that turbulence, even with very large-scale eddies comparable in size to the chord-length, significantly improves the aerodynamic performance of the blade by increasing the lift coefficient and overall lift-to-drag ratio, L/D for all angles tested except zero degrees.

  3. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  4. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  5. Effects of icing on the aerodynamic performance of high lift airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.; Phaengsook, N.; Bangalore, A.

    1993-01-01

    A 2D compressible Navier-Stokes solver capable of analyzing multi-element airfoils is described. The flow field is divided into multiple zones. In each zone, the governing equations are solved using an implicit finite difference scheme. The flow solver is validated through a study of the aerodynamic characteristics of a GA(W)-1 configuration, for which good quality measured surface pressure data and load data are available. The solver is next applied to a study of the effects of icing on an iced 5-element airfoil configuration, experimentally studied at NASA Lewis Research Center. It is demonstrated that the formation of ice over the leading edge slat and the main airfoil can lead to significant flow separation, and a significant loss in lift, compared to clean configurations.

  6. The aerodynamic design and performance of the NASA/GE E3 low pressure turbine

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Dengler, R. P.

    1984-01-01

    The aerodynamic design and scaled rig test results of the low pressure turbine (LPT) component for the NASA/General Electric Energy Efficient Engine (E3) are presented. The low pressure turbine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of its performance has been made based on a series of scaled air turbine tests which were divided into two phases: Block I (March through August, 1979) and Block II (June through September, 1981). Results from the Block II five-stage test, summarized in the paper, indicate that the E3 LPT will attain an efficiency level of 91.5 percent at the Mach 0.8/35,000 ft. max. climb altitude design point. This is relative to program goals of 91.1 percent for the E3 demonstrator engine and 91.7 percent for a fully developed flight propulsion system LPT.

  7. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  8. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  9. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Yang, C. X.; Li, S. T.

    2013-12-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia.

  10. Aerodynamic performance of a 1.25-pressure-ratio axial-flow fan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Steinke, R. J.

    1974-01-01

    Aerodynamic design parameters and overall and blade-element performances of a 1.25-pressure-ratio fan stage are reported. Detailed radial surveys were made over the stable operating flow range at rotative speeds from 70 to 120 percent of design speed. At design speed, the measured stage peak efficiency of 0.872 occurred at a weight flow of 34.92 kilograms per second and a pressure ratio of 1.242. Stage stall margin is about 20 percent based on the peak efficiency and stall conditions. The overall peak efficiency for the rotor was 0.911. The overall stage performance showed no significant change when the stators were positioned at 1, 2, or 4 chords downstream of the rotor.

  11. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  12. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  13. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  14. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  15. Aerodynamic characteristics of two single-stage-to-orbit vehicles at Mach 20.3

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.

    1977-01-01

    The hypersonic stability, control, and performance characteristics of two configurations have been determined. Each configuration had a 50 deg swept delta wing, a vertical tail, and a body flap. One model represented a control configured vehicle with a reduced level of longitudinal static stability; the other model was designed for a conventional level of stability. Data were obtained over an angle of attack range of 0 deg to 50 deg and included effects of component buildup. In addition, the effects of the vertical tail on the lateral directional characteristics were obtained.

  16. Combined experimental and numerical investigations on the roughness effects on the aerodynamic performances of LPT blades

    NASA Astrophysics Data System (ADS)

    Berrino, Marco; Bigoni, Fabio; Simoni, Daniele; Giovannini, Matteo; Marconcini, Michele; Pacciani, Roberto; Bertini, Francesco

    2016-02-01

    The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels (Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers (300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested (Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.

  17. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  18. Effect of wing aspect ratio and flap span on aerodynamic characteristics of an externally blown jet-flap STOL model

    NASA Technical Reports Server (NTRS)

    Smith, C. C., Jr.

    1973-01-01

    An investigation has been conducted to determine the effects of flap span and wing aspect ratio on the static longitudinal aerodynamic characteristics and chordwise and spanwise pressure distributions on the wing and trailing-edge flap of a straight-wing STOL model having an externally blown jet flap without vertical and horizontal tail surfaces. The force tests were made over an angle-of-attack range for several thrust coefficients and two flap deflections. The pressure data are presented as tabulated and plotted chordwise pressure-distribution coefficients for angles of attack of 1 and 16. Pressure-distribution measurements were made at several spanwise stations.

  19. Aerodynamic Characteristics of a Slender Cone-cylinder Body of Revolution at a Mach Number of 3.85

    NASA Technical Reports Server (NTRS)

    Jack, John R

    1951-01-01

    An experimental investigation of the aerodynamics of a slender cone-cylinder body of revolution was conducted at a Mach number of 3.85 for angles of attack of 0 degree to 10 degrees and a Reynolds number of 3.85x10(exp 6). Boundary-layer measurements at zero angle of attack are compared with the compressible-flow formulations for predicting laminar boundary-layer characteristics. Comparison of experimental pressure and force values with theoretical values showed relatively good agreement for small angles of attack. The measured mean skin-friction coefficients agreed well with theoretical values obtained for laminar flow over cones.

  20. Longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds. [Langley V/STOL tunnel tests

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1979-01-01

    The Langley V/STOL tunnel was used to determine the effects of vectoring exhaust flow on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration. Vectoring was accomplished by blowing from over-wing-mounted engines over a variable trailing-edge flap. Effects of varying canard geometry and wing leading-edge geometry were investigated. Wind-tunnel data were obtained at a Mach number of 0.186 for an angle-of-attack range from -20 deg to 24 deg and engine nozzle pressure ratios from 1.0 (jet off) to approximately 3.75.

  1. Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver

    NASA Technical Reports Server (NTRS)

    Kleb, William L.

    1996-01-01

    Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.

  2. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  3. Design and performance of a shape memory alloy-reinforced composite aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, J. C.; Boller, C.

    2008-04-01

    Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.

  4. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  5. Numerical study of improving aerodynamic performance of low solidity LPT cascade through increasing trailing edge thickness

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yan, Peigang; Wang, Xiangfeng; Han, Wanjin; Wang, Qingchao

    2016-08-01

    This paper presents a new idea to reduce the solidity of low-pressure turbine (LPT) blade cascades, while remain the structural integrity of LPT blade. Aerodynamic performance of a low solidity LPT cascade was improved by increasing blade trailing edge thickness (TET). The solidity of the LPT cascade blade can be reduced by about 12.5% through increasing the TET of the blade without a significant drop in energy efficiency. For the low solidity LPT cascade, increasing the TET can decrease energy loss by 23.30% and increase the flow turning angle by 1.86% for Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 2.35%. The flow control mechanism governing behavior around the trailing edge of an LPT cascade is also presented. The results show that appropriate TET is important for the optimal design of high-lift load LPT blade cascades.

  6. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  7. Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Murri, D. G.

    1981-01-01

    Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg.

  8. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckman, Gregory J.; Scallion, William I.

    2003-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.

  9. Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent

    NASA Technical Reports Server (NTRS)

    Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.

    2013-01-01

    The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the

  10. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    SciTech Connect

    Cao, H.V.; Wentz, W.H. Jr.

    1987-07-01

    Wind tunnel tests of three 20-inch diameter, zero-twist, zero-pitch wind turbine rotor models have been conducted in the WSU 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64/sub 3/-621 airfoil sections. Aerodynamic braking characteristics of a 38 percent span, 30 percent chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64/sub 3/-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64/sub 3/-621 rotor. These trends agree with analytical predictions. Results of the aileron tests show that this aileron, when deflected, produces a braking torque at all tip-speed ratios. In free-wheeling coastdowns the rotor blade stopped, then rotated backward at a tip-speed ratio of -0.6. Results of the tuft studies indicate that substantial spanwise flow develops as blade stall occurs at low tip-speed ratios.

  11. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  12. Performance of an aerodynamic yaw controller mounted on the space shuttle orbiter body flap at Mach 10

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.

    1995-01-01

    A wind-tunnel investigation of the effectiveness of an aerodynamic yaw controller mounted on the lower surface of a shuttle orbiter model body flap was conducted in the Langley 31-Inch Mach 10 Tunnel. The controller consisted of a 60 deg delta fin mounted perpendicular to the body flap lower surface and yawed 30 deg to the free stream direction. The control was tested at angles of attack from 20 deg to 40 deg at zero sideslip for a Reynolds number based on wing mean aerodynamic chord of 0.66 x 10(exp 6). The aerodynamic and control effectiveness characteristics are presented along with an analysis of the effectiveness of the controller in making a bank maneuver for Mach 18 flight conditions. The controller was effective in yaw and produced a favorable rolling moment. The analysis showed that the controller was as effective as the reaction control system in making the bank maneuver. These results warrant further studies of the aerodynamic/aerothermodynamic characteristics of the control concept for application to future transportation vehicles.

  13. Aerodynamic flow quality and acoustic characteristics of the 40- by 80-foot test section circuit of the National Full-Scale Aerodynamic Complex

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Zell, Peter T.; Soderman, Paul T.; Falarski, Michael D.; Corsiglia, Victor R.; Edenborough, H. Kipling

    1988-01-01

    The 40- by 80-foot wind tunnel circuit of the National Full-Scale Aerodynamic Complex (NFAC) has recently undergone major modifications and subsequently completed final acceptance testing. The initial testing and calibration of the wind tunnel are described and in many cases these results are compared with predictions derived from model tests and theoretical analyses. The wind tunnel meets or exceeds essentially all performance objectives. The facility runs smoothly and routinely at its maximum test-section velocity of 300 knots (Mach number = 0.45). An effective cooling air exchange system enables the wind tunnel to operate indefinitely at this maximum power condition. Throughout the operating envelope of the wind tunnel the test-section dynamic pressure is uniform to within + or - 0.5 deg, and the axial component of turbulence is generally less than 0.5 percent. Acoustic measurements indicate that, due to the low noise fans and acoustic treatment in the wind-tunnel circuit and test section, the background noise level in the test section is comparable to other large-scale acoustic wind tunnels in the United States and abroad.

  14. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Winter, York; Hedenström, Anders

    2011-10-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  15. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders

    2011-01-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  16. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.

    PubMed

    Faulhammer, Eva; Wahl, Verena; Zellnitz, Sarah; Khinast, Johannes G; Paudel, Amrit

    2015-08-01

    This study aims to investigate the effect of carrier characteristics and dosator capsule filling operation on the in vitro deposition of mixtures containing salbutamol sulphate (SS) and lactose and mannitol as model carrier materials. The carrier surfaces of lactose and mannitol were modified via wet decantation. The impact of the decantation process on the properties of carriers was investigated by laser diffraction, density and powder flow measurements, N2 physisorption, small and wide angle X-ray scattering (SWAXS) and scanning electron microscopy (SEM). Differences in carrier type and untreated and decanted materials were identified and the SAXS measurements proved to be a promising technology confirming the successful removal of fines. Adhesive carrier API mixtures with carrier-to-API ratio of 99:1 wt% were prepared, mixture homogeneity was tested and subsequently the mixtures were filled into capsules at different process settings. Finally, the influence of the decantation process on the in vitro performance of the adhesive mixtures was tested with a next generation impactor. For lactose, the decantation decreased the fine particle fraction (FPF) of SS, whereas the FPF of mannitol as a carrier was only affected by the capsule filling process. In summary, the DPI formulation based on untreated lactose, especially by capsule filling using a dosing chamber to powder layer (compression) ratio of 1:2, proved to be superior in terms of the dosing accuracy (RSD<0.8%) and the in vitro aerodynamic performance (FPF of 12%). PMID:26136200

  17. Aerodynamic characteristics of airfoils V : continuation of reports nos. 93, 124, 182, and 244

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This collection of data on airfoils has been made from published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of tests.

  18. Analysis of preflutter and postflutter characteristics with motion-matched aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1978-01-01

    The development of the equations of dynamic equilibrium for a lifting surface from Lagrange's equation is reviewed and restated for general exponential growing and decaying oscillatory motion. Aerodynamic forces for this motion are obtained from the three-dimensional supersonic kernel function that is newly generalized to complex reduced frequencies. Illustrative calculations were made for two flutter models at supersonic Mach numbers. Preflutter and postflutter motion isodecrement curves were obtained. This type of analysis can be used to predict preflutter behavior during flutter testing and to predict postflutter behavior for use in the design of flutter suppression systems.

  19. Aerodynamic characteristics of airfoils VI : continuation of reports nos. 93, 124, 182, 244, and 286

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test.

  20. Space shuttle: Aerodynamic stability, control effectiveness and drag characteristics of a shuttle orbiter configuration at Mach numbers from 0.6 to 4.96

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel from Sept. 27 to Oct. 7, 1972 on a 0.004 scale model of the NR ATP baseline shuttle orbiter configuration. Six component aerodynamic force and moment data were recorded at 0 deg sideslip angle over an angle of attack range from 0 to 20 deg for Mach numbers of 0.6 to 4.96, 20 to 40 deg for Mach numbers of 0.6, 0.9, 2.99, and 4.96, and 40 to 60 deg for Mach numbers of 2.99 and 4.96. Data were obtained over a sideslip range of -10 to 10 deg at 0, 10, and 20 deg angles of attack over the Mach range and 30 and 50 deg at Mach numbers of 2.99 and 4.96. The purpose of the test was to define the buildup, performance, stability, and control characteristics of the orbiter configuration. The model parameters, were: body alone; body-wing; body-wing-tail; elevon deflections of 0, 10, -20, and -40 deg both full and split); aileron deflections of plus or minus 10 deg (full and split); rudder flares of 10 and 40 deg, and a rudder deflection of 15 deg about the 10 and 40 deg flare positions.

  1. Aerodynamic Characteristics of a Four-Propeller Tilt-Wing VTOL Model with Twin Vertical Tails, Including Effects of Ground Proximity

    NASA Technical Reports Server (NTRS)

    Grunwald, Kalman J.

    1961-01-01

    Results are presented of a wind-tunnel investigation of the aerodynamic stability, control, and performance characteristics of a model of a four-propeller tilt-wing VTOL airplane employing flaps and speed brakes through the transition speed range. The results indicate that the wing was stalled for steady level flight for all conditions of the investigation; however, the flapped configuration did produce a higher maximum lift. The effectiveness of the flap in delaying the stall in the present investigation was not as great as in some previous investigations because the flap used was smaller than that used previously. The wing stall resulted in an appreciable reduction of aileron effectiveness during the transition. Out of ground effect the low horizontal tail did not appear to be in an adverse flow field as had been expected and showed no erratic changes in effectiveness; however, in ground effect a large nose-down moment was experienced by the model. In general, the lateral aerodynamic data indicate that the configuration is directionally stable and possesses positive dihedral effect throughout the transition, and the data show no signs of erratic flow at the vertical tails.

  2. Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner

    NASA Astrophysics Data System (ADS)

    Wu, Chengjun; Liu, Jiang; Pan, Jie

    2014-07-01

    DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

  3. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  4. On the nonlinear aerodynamic and stability characteristics of a generic chine-forebody slender-wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Brandon, Jay M.

    1987-01-01

    An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.

  5. Longitudinal aerodynamic characteristics of a generic fighter model with a wing designed for sustained transonic maneuver conditions

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1986-01-01

    A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.

  6. Experimental study of the effects of Reynolds number on high angle of attack aerodynamic characteristics of forebodies during rotary motion

    NASA Technical Reports Server (NTRS)

    Pauley, H.; Ralston, J.; Dickes, E.

    1995-01-01

    The National Aeronautics and Space Administration and the Defense Research Agency (United Kingdom) have ongoing experimental research programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is currently underway to collect an extensive database for the development of high angle of attack computational methods to predict the effects of Reynolds number on the forebody flowfield at dynamic conditions, as well as to study the use of low Reynolds number data for the evaluation of high Reynolds number characteristics. Rotary balance experiments, including force and moment and surface pressure measurements, were conducted on circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 and 90 deg angle of attack for a wide range of Reynolds numbers in order to observe the effects of laminar, transitional, and turbulent flow separation on the forebody characteristics when rolling about the velocity vector.

  7. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  8. Low-speed aerodynamic characteristics of a 17-percent-thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beaseley, W. D.

    1980-01-01

    Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg.

  9. Error Estimate of the Ares I Vehicle Longitudinal Aerodynamic Characteristics Based on Turbulent Navier-Stokes Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2011-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.

  10. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Scallion, William I.

    2004-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter. Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parametrics included angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.3 x 10(exp 6) to 3.0 x 10(exp 6) per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), deformation of the wing windward surface, and main landing gear and/or door deployment. The measured aerodynamic increments for the damage scenarios examined were generally small in magnitude, as were the flight-derived values during most of the entry prior to loss of communication. A progressive damage scenario is presented that qualitatively matches the flight observations for the STS-107 entry.

  11. Static aerodynamic characteristics of a 0.035-scale model of a modified NKC-135 airplane at a Mach number of 0.28

    NASA Technical Reports Server (NTRS)

    Hedstrom, E.; Whitcomb, W. M.

    1977-01-01

    A 0.035-scale model fo a modified NKC-135 airplane was tested in 12-foot pressure wind tunnel to determine the effects on the static aerodynamic characteristics of modifications to the basic aircraft. Modifications investigated included: nose, lower fuselage, and upper fuselage radomes; wing pylons and pods; overwing probe; and air conditioning inlets. The investigation was performed at a Mach number of 0.28 over a Reynolds number range from 6.6 to 26.2 million per meter. Angles of attack and sideslip varied from -8 deg to 20 deg and from -18 deg to 8 deg, respectively, for various combinations of flap, aileron, and rudder deflections. A limited analysis of the test results indicates that the addition of the radomes reduces lateral-directional stability and control effectiveness of the basic aircraft.

  12. Effects of measuring positions on the measured aerodynamic performance of a centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Ma, Hongwei; Zhang, Jun

    2010-04-01

    This paper performs a numerical simulation of three-dimensional flow field in a centrifugal compressor with long inlet and outlet pipes using CFX software. By arranging virtual probes at different positions in both inlet and outlet planes, the aerodynamic performance of the centrifugal compressor is measured and compared with each other. Then effects of measuring positions on measurement results are discussed. The results show that it will generate notable measuring errors of the pressure ratio and efficiency if the inlet total pressure is measured using a single-point probe. The inlet total pressure data can be accurate when they are measured using a 3-point rake. The outlet total pressure and total temperature data can not be accurate if they are respectively measured at one circumferential position even using a multi-point rake. Increasing tangential measuring positions at the outlet is effective to improve the test accuracy. When the outlet total pressure and total temperature are respectively measured at 3 tangential positions, the data can be almost accurate.

  13. The aerodynamic design and performance of the General Electric/NASA EEE fan. [Energy Efficient Engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Hager, R. D.

    1983-01-01

    The aerodynamic design and test results of the fan and quarter-stage component for the GE/NASA Energy Efficient Engine (EEE) are presented. The fan is a high bypass ratio, single-stage design having 32 part-span shrouded rotor blades, coupled with a unique quarter-stage arrangement that provides additional core-stream pressure ratio and particle separation. The fan produces a bypass pressure ratio of 1.65 at the exit of the low aspect ratio vane/frame and a core-stream pressure ratio of 1.67 at the entrance to the core frame struts. The full-scale fan vehicle was instrumented, assembled and tested as a component in November 1981. Performance mapping was conducted over a range of speeds and bypass ratios using individually-controlled bypass and core-stream discharge valves. The fan bypass and core-stream test data showed excellent results, with the fan exceeding all performance goals at the important engine operating conditions.

  14. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors

    NASA Astrophysics Data System (ADS)

    Gui, Xingmin; Zhu, Fang; Wan, Ke; Jin, Donghai

    2013-10-01

    Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

  15. Effects of forebody strakes and Mach number on overall aerodynamic characteristics of configuration with 55 deg cropped delta wing

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Rogers, Lawrence W.

    1992-01-01

    A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.

  16. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    PubMed Central

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  17. Effect of milling machine roughness and wing dihedral on the supersonic aerodynamic characteristics of a highly swept wing

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1989-01-01

    An experimental investigation was conducted to assess the effect of surface finish on the longitudinal and lateral aerodynamic characteristics of a highly-swept wing at supersonic speeds. A study of the effects of wing dihedral was also made. Included in the tests were four wing models: three models having 22.5 degrees of outboard dihedral, identical except for surface finish, and a zero-dihedral, smooth model of the same planform for reference. Of the three dihedral models, two were taken directly from the milling machine without smoothing: one having a maximum scallop height of 0.002 inches and the other a maximum scallop height of 0.005 inches. The third dihedral model was handfinished to a smooth surface. Tests were conducted in Test Section 1 of the Unitary Plan Wind Tunnel at NASA-Langley over a range of Mach numbers from 1.8 to 2.8, a range of angle of attack from -5 to 8 degrees, and at a Reynolds numbers per foot of 2 x 10(6). Selected data were also taken at a Reynolds number per foot of 6 x 10(6). Drag coefficient increases, with corresponding lift-drag ratio decreases were the primary aerodynamic effects attributed to increased surface roughness due to milling machine grooves. These drag and lift-drag ratio increments due to roughness increased as Reynolds number increased.

  18. A Method for Obtaining the Nonlinear Aerodynamic Stability Characteristics of Bodies of Revolution from Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Kirk, Donn B.

    1961-01-01

    A method is presented for obtaining the nonlinear aerodynamic stability characteristics of bodies of revolution from free-flight test.s The necessary conditions for the application of this method are: (1) that the roll rate and damping encountered in a single cycle of oscillation be small, and (2) that the resulting motion be reasonably planar. Four approximations to the nonlinear restoring moment are considered and solutions are obtained in closed form: 1. A single-term polynomial in an arbitrary power of the angle of attack. 2. A two-term polynomial having linear and cubic terms. 3. A three-term polynomial having linear, quadratic, and cubic terms. 4. A three-term polynomial having linear, quadratic, and cubic terms. An iteration procedure is formulated to allow the use of each of these approximations for obtaining the aerodynamic coefficients of bodies of revolution from free-flight test data. It is found that although the equations that are solved pertain strictly to planar motion, the solutions are applicable to motions that deviate to a fairly large degree from planar motion.

  19. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    SciTech Connect

    Berg, D.E.; Klimas, P.C.; Stephenson, W.A. )

    1989-01-01

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed. 12 refs., 10 figs.

  20. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  1. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, Dale E.; Klimas, Paul C.; Stephenson, William A.

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed.

  2. A Semigraphical Method of Applying Impact Theory to an Arbitrary Body to Obtain the Hypersonic Aerodynamic Characteristics at Angle of Attack and Sideslip

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.

    1961-01-01

    A simple semigraphical method of applying impact theory to obtain the aerodynamic characteristics of an arbitrary body at combined angle of attack and sideslip is presented. The necessary equations are derived, a general procedure for application is outlined, and the effects of graphical errors and areas of application are discussed. One of the features of the present method is the requirement of only one graphical construction for any combination of angle of attack and sideslip. As an example application the present method is applied to a blunted elliptical cone in order to obtain the longitudinal aerodynamic characteristics at an angle of attack of 40 degrees and an angle of sideslip of 0 degrees.

  3. Aerodynamic characteristics of airfoils III : continuation of reports nos. 93 and 124

    NASA Technical Reports Server (NTRS)

    1924-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this is the one most suited for international use and yet is one for which a desired transformation can be easily made. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and date of test.

  4. The Aerodynamic Characteristics of Four Full-Scale Propellers Having Different Plan Forms

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    Tests were made of four propellers, with diameters of 10 feet, having different blade plan forms. One propeller (Navy design no. 5868-r6) was of the usual present-day type and was used as a basis of comparison for the other three, which had unusual plan forms distinguished by the inward (toward the hub) location of the sections having the greatest blade width. It was found that propellers with points of maximum blade width occurring closer to the hub than on the present-day type of blade had higher peak efficiencies but lower take-off efficiencies. This results was found true for a "clean" liquid-cooled engine installation. It appears that some modification could be made to present plan forms which would produce propellers having more satisfactory aerodynamic qualities. The propellers with the inward location of the points of maximum blade width had lower thrust and power coefficients and stalled earlier than the present-day type.

  5. Transonic aerodynamic characteristics of a wing/body combination incorporating jet flaps

    NASA Technical Reports Server (NTRS)

    Holmberg, J. L.

    1975-01-01

    A 0.25-scale semispan wing/body model with two types of jet flaps was tested in the Ames 11- by 11-Foot Transonic Wind Tunnel. The objective of that testing was to measure the static aerodynamic forces and moments and wing pressure distributions on six configurations differentiated by wing camber, jet flap type, and jet flap angle. Maximum thrust coefficients were limited to 0.12. Angle of attack was varied from -4 deg to 15 deg for Mach numbers between 0.6 and 0.95 at a constant unit Reynolds number of 18.0 million/m (5.5 million/ft). More refined designs and considerably more testing will be required to establish the practicability of the total-exhausting jet flap concept.

  6. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  7. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).

    PubMed

    Bishop, Kristin L

    2007-08-01

    Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a

  8. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model

  9. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  10. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  11. Correlation Between Geometric Similarity of Ice Shapes and the Resulting Aerodynamic Performance Degradation: A Preliminary Investigation Using WIND

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Chung, James

    1999-01-01

    Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.

  12. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  13. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  14. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  15. Aerodynamic Performance of an Active Flow Control Configuration Using Unstructured-Grid RANS

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Viken, Sally A.

    2001-01-01

    This research is focused on assessing the value of the Reynolds-Averaged Navier-Stokes (RANS) methodology for active flow control applications. An experimental flow control database exists for a TAU0015 airfoil, which is a modification of a NACA0015 airfoil. The airfoil has discontinuities at the leading edge due to the implementation of a fluidic actuator and aft of mid chord on the upper surface. This paper documents two- and three-dimensional computational results for the baseline wing configuration (no control) with tile experimental results. The two-dimensional results suggest that the mid-chord discontinuity does not effect the aerodynamics of the wing and can be ignored for more efficient computations. The leading-edge discontinuity significantly affects tile lift and drag; hence, the integrity of the leading-edge notch discontinuity must be maintained in the computations to achieve a good match with the experimental data. The three-dimensional integrated performance results are in good agreement with the experiments inspite of some convergence and grid resolution issues.

  16. Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing

    NASA Astrophysics Data System (ADS)

    Lee, T.; Su, Y. Y.

    2012-11-01

    The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.

  17. Aerodynamic Performance of an Active Flow Control Configuration Using Unstructured-Grid RANS

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Viken, Sally A.

    2001-01-01

    This research is focused on assessing the value of the Reynolds-Averaged Navier-Stokes (RANS) methodology for active flow control applications. An experimental flow control database exists for a TAU0015 airfoil, which is a modification of a NACA0015 airfoil. The airfoil has discontinuities at the leading edge due to the implementation of a fluidic actuator and aft of mid chord oil the upper surface. This paper documents two- and three-dimensional computational results for the baseline wing configuration (no control) with the experimental results. The two-dimensional results suggest that the mid-chord discontinuity does not effect the aerodynamics of the wing and can be ignored for more efficient computations. The leading-edge discontinuity significantly affects the lift and drag; hence the integrity of the leading-edge notch discontinuity must be maintained in the computations to achieve a good match with the experimental data. The three-dimensional integrated performance results are in good agreement with the experiments in spite of some convergence and grid resolution issues.

  18. Aerodynamic and Acoustic Performance of Two Choked-Flow Inlets Under Static Conditions

    NASA Technical Reports Server (NTRS)

    Miller, B. A.; Abbott, J. M.

    1972-01-01

    Tests were conducted to determine the aerodynamic and acoustic performance of two choking flow inlets under static conditions. One inlet choked the flow in the cowl throat by an axial translation of the inlet centerbody. The other inlet employed a translating grid of airfoils to choke the flow. Both inlets were sized to fit a 13.97 cm diameter fan with a design weight flow of 2.49 kg/sec. The inlets were operated in both the choked and unchoked modes over a range of weight flows. Measurements were made of inlet pressure recovery, flow distortion, surface static pressure distribution, and fan noise suppression. Choking of the translating centerbody inlet reduced blade passing frequency noise by 29 db while yielding a total pressure recovery of 0.985. Noise reductions were also measured at 1/3-octave band center frequencies of 2500, 5000, and 20,000 cycles. The translating grid inlet gave a total pressure recovery of 0.968 when operating close to the choking weight flow. However, an intermittent high intensity noise source was encountered with this inlet that precluded an accurate measurement of inlet noise suppression.

  19. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  20. The equivalent angle-of-attack method for estimating the nonlinear aerodynamic characteristics of missile wings and control surfaces

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1982-01-01

    A method has been developed for estimating the nonlinear aerodynamic characteristics of missile wing and control surfaces. The method is based on the following assumption: if a fin on a body has the same normal-force coefficient as a wing alone composed of two of the same fins joined together at their root chords, then the other force and moment coefficients of the fin and the wing alone are the same including the nonlinearities. The method can be used for deflected fins at arbitrary bank angles and at high angles of attack. In the paper, a full derivation of the method is given, its accuracy demonstrated and its use in extending missile data bases is shown.

  1. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  2. Aerodynamic characteristics at low Reynolds numbers of several heat-exchanger configurations for wind-tunnel use

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Igoe, W. B.

    1979-01-01

    In response to design requirements of the National Transonic Facility, aerodynamic tests were conducted to determine the pressure-drop, flow-uniformity, and turbulence characteristics of various heat-exchanger configurations as a function of Reynolds number. Data were obtained in air with an indraft flow apparatus operated at ambient temperature and pressure. The unit Reynolds number of the tests varied from about 0.06 x 10 to 6th power to about 1.3 x 10 to 6th power per meter. The test models were designed to represent segments of full-scale tube bundles and included bundles of round tubes with plate fins in both staggered and inline tube arrays, round tubes with spiral fins, elliptical tubes with plate fins, and an inline grouping of tubes with segmented fins.

  3. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  4. PROGRAM VSAERO: A computer program for calculating the non-linear aerodynamic characteristics of arbitrary configurations: User's manual

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1982-01-01

    VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.

  5. Aerodynamic characteristics at Mach 6 of a hypersonic research airplane concept having a 70 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Clark, L. E.; Richie, C. B.

    1977-01-01

    The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.

  6. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  7. Unsteady aerodynamic characteristics of a fighter model undergoing large-amplitude pitching motions at high angles of attack

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Shah, Gautam H.

    1990-01-01

    The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.

  8. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  9. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  10. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. 1: Experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.

    1980-01-01

    The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.

  11. Applicability of commercial CFD tools for assessment of heavy vehicle aerodynamic characteristics.

    SciTech Connect

    Pointer, W. D.; Sofu, T.; Chang, J.; Weber, D.; Nuclear Engineering Division

    2008-12-01

    In preliminary validation studies, computational predictions from the commercial CFD codes Star-CD were compared with detailed velocity, pressure and force balance data from experiments completed in the 7 ft. by 10 ft. wind tunnel at NASA Ames using a Generic Conventional Model (GCM) that is representative of typical current-generation tractor-trailer geometries. Lessons learned from this validation study were then applied to the prediction of aerodynamic drag impacts associated with various changes to the GCM geometry, including the addition of trailer based drag reduction devices and modifications to the radiator and hood configuration. Add-on device studies have focused on ogive boat tails, with initial results indicating that a seven percent reduction in drag coefficient is easily achievable. Radiator and hood reconfiguration studies have focused on changing only the size of the radiator and angle of the hood components without changes to radii of curvature between the radiator grill and hood components. Initial results indicate that such changes lead to only modest changes in drag coefficient.

  12. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  13. F-5-L Boat Seaplane : performance characteristics

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    Performance characteristics for the F-5-L Boat Seaplane are given. Characteristic curves for the RAF-6 airfoil and the F-5-L wings, parasite resistance and velocity data, engine and propeller characteristics, effective and maximum horsepower, and cruising performance are discussed.

  14. Influence of heat transfer on the aerodynamic performance of a plunging and pitching NACA0012 airfoil at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Alighanbari, Hekmat; Breitsamter, Christian

    2013-02-01

    The unsteady low Reynolds number aerodynamics phenomena around flapping wings are addressed in several investigations. Elsewhere, airfoils at higher Mach numbers and Reynolds numbers have been treated quite comprehensively in the literature. It is duly noted that the influence of heat transfer phenomena on the aerodynamic performance of flapping wings configurations is not well studied. The objective of the present study is to investigate the effect of heat transfer upon the aerodynamic performance of a pitching and plunging NACA0012 airfoil in the low Reynolds number flow regime with particular emphasis upon the airfoil's lift and drag coefficients. The compressible Navier-Stokes equations are solved using a finite volume method. To consider the variation of fluid properties with temperature, the values of dynamic viscosity and thermal diffusivity are evaluated with Sutherland's formula and the Eucken model, respectively. Instantaneous and mean lift and drag coefficients are calculated for several temperature differences between the airfoil surface and freestream within the range 0-100 K. Simulations are performed for a prescribed airfoil motion schedule and flow parameters. It is learnt that the aerodynamic performance in terms of the lift CL and drag CD behavior is strongly dependent upon the heat transfer rate from the airfoil to the flow field. In the plunging case, the mean value of CD tends to increase, whereas the amplitude of CL tends to decrease with increasing temperature difference. In the pitching case, on the other hand, the mean value and the amplitude of both CD and CL decrease. A spectral analysis of CD and CL in the pitching case shows that the amplitudes of both CD and CL decrease with increasing surface temperature, whereas the harmonic frequencies are not affected.

  15. Supersonic aerodynamic characteristics of a Sparrow 3 type missile model with wing controls and comparison with existing tail-control results

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1977-01-01

    An experimental investigation was conducted on a model of a wing control version of the Sparrow III type missile to determine the static aerodynamic characteristics over an angle of attack range from 0 deg to 40 deg for Mach numbers from 1.50 to 4.60.

  16. Wind tunnel investigation of the aerodynamic characteristics of symmetrically deflected ailerons of the F-8C airplane. [conducted in the Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1977-01-01

    A .042-scale model of the F-8C airplane was investigated in a transonic wind tunnel at high subsonic Mach numbers and a range of angles of attack between-3 and 20 degrees. The effect of symmetrically deflected ailerons on the longitudinal aerodynamic characteristics was measured. Some data were also obtained on the lateral control effectiveness of asymmetrically deflected horizontal tail surfaces.

  17. Aerodynamic and inlet flow characteristics of several hypersonic airbreathing missile concepts

    NASA Technical Reports Server (NTRS)

    Dillon, J. L.; Marcum, D. C., Jr.; Johnston, P. J.; Hunt, J. L.

    1980-01-01

    Four conceptual hypersonic missile configurations were examined experimentally and theoretically. Two of the concepts employed twin module bottom-mounted engines and two were designed for upper surface inlets or engines with the intent of reducing the vehicle observables. The tests were conducted at Mach 6 and Reynolds numbers of 6 to 7.5 x 10 to the 6th per foot. Flow field surveys in the vicinity of the engine inlet were made on all configurations and force and moment tests were conducted on three of the vehicles. Stability and control characteristics of the bottom-mounted engine configurations which incorporated slender, low wings were dominated by strong vortices that promoted severe pitchup tendencies. The shock layer and flow quality in the vicinity of the bottom-mounted engine inlets were dependent on nose shape. The spatula-like upper surface engine concept demonstrated good performance and had uniform flow entering the engine inlet, while the upper surface inlet concept with a highly swept forebody incurred large gradients due to interactions with leading edge shocks.

  18. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  19. Aerodynamic Characteristics of Four Republic Airfoil Sections from Tests in Langley Two-Dimensional Low-Turbulence Tunnels

    NASA Technical Reports Server (NTRS)

    Klein, Milton M.

    1945-01-01

    Four airfoils sections, designed by the Republic Aviation Corporation for the root and tip sections of the XF-12 airplane, were tested in the Langley two-dimensional low-turbulence tunnels to obtain their aerodynamic characteristics. Lift characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, 9,000,000, and 14,000,000, whereas drag characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, and 9,000,000. Pressure distributions were obtained for one of the root sections for several angles of attack at a Reynolds number of 2,600,000. Comparison of the root section that appeared best from the tests with the corresponding NACA 65-series section shows the Republic section has a higher maximum lift and higher calculated critical speeds, but a higher minimum drag. In addition, with standard roughness applied to the leading edge, the maximum lift of the Republic airfoil is lower than that of the NACA airfoil. Comparison of the Republic tip section with the corresponding NACA 65-series section shows the Republic airfoil has a lower maximum lift and a higher minimum drag than the NACA airfoil. The calculated critical speeds of the Republic section are slightly higher than those of the NACA section.

  20. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    PubMed

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  1. Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.

    1947-01-01

    Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.

  2. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  3. The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.

  4. An investigation on the aerodynamic performance of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Vaishnav, Etesh

    Scope and Method of Study. The two dimensional unsteady flow around a vertical axis wind turbine (VAWT) comprising three rotating symmetric airfoils (NACA0018) was studied numerically with the consideration of the near wake. The flow around the wind turbine was simulated using ANSYS FLUENT 12.0.16 at Reynolds number of 106. ICEM CFD was used as a pre-processor to generate hexahedral grid and arbitrary sliding mesh technique was implemented to create a moving mesh. SST k-o turbulence model was employed for the analysis and simulation was set to run at several tip speed ratios ranging from 1 to 5. The variation of the performance coefficient (Cp) as a function of tip speed ratio (lambda) was investigated by plotting a graph between them. A validation was made by comparing CFD results with experimental results. Maximum Cp of 0.34 was obtained at lambda of 3.8. In addition, the effect of the rotor diameter on the VAWT's performance was investigated. In this regard, rotor diameter was halved and the angular velocity was doubled to keep the tip speed ratio constant. Furthermore, the effect of laminar boundary layer separation on Cp of a VAWT was studied by comparing the results of Laminar viscous model and RANS turbulence model. Apart from that, the effect of solidity on Cp was investigated by comparing the Cp obtained from six bladed turbine with the three bladed turbine. Findings and Conclusions. Influence of rotor diameter on the aerodynamic performance of a VAWT was investigated and found that Cp remained almost constant at the same value of lambda ranging from 1 to 5. This was due to the fact that the ratio of the chord length and the rotor radius were kept the same in both cases. For Laminar flow at low Reynolds number, Cp was found to be low due to the presence of leading edge separation bubble and reduced lift-to-drag ratio. Therefore, in order to increase Cp of a VAWT at low Reynolds numbers (e.g. small VAWT), different blade geometry (e.g. cambered) and

  5. Low-speed aerodynamic characteristics of a 16-percent-thick variable-geometry airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Noonan, K. W.; Mcghee, R. J.

    1978-01-01

    Tests were conducted in the Langley low-turbulence pressure tunnel to determine the aerodynamic characteristics of climb, cruise, and landing configurations. These tests were conducted over a Mach number range from 0.10 to 0.35, a chord Reynolds number range from 2.0 x 1 million to 20.0 x 1 million, and an angle-of-attack range from -8 deg to 20 deg. Results show that the maximum section lift coefficients increased in the Reynolds number range from 2.0 x 1 million to 9.0 x 1 million and reached values of approximately 2.1, 1.8, and 1.5 for the landing, climb, and cruise configurations, respectively. Stall characteristics, although of the trailing-edge type, were abrupt. The section lift-drag ratio of the climb configuration with fixed transition near the leading edge was about 78 at a lift coefficient of 0.9, a Mach number of 0.15, and a Reynolds number of 4.0 x 1 million. Design lift coefficients of 0.9 and 0.4 for the climb and cruise configurations were obtained at the same angle of attack, about 6 deg, as intended. Good agreement was obtained between experimental results and the predictions of a viscous, attached-flow theoretical method.

  6. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  7. Aerodynamic characteristics of a large scale model with a swept wing and augmented jet flap

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.

    1971-01-01

    Data of tests of a large-scale swept augmentor wing model in the 40- by 80-foot wind tunnel are presented. The data includes longitudinal characteristics with and without a horizontal tail as well as results of preliminary investigation of lateral-directional characteristics. The augmentor flap deflection was varied from 0 deg to 70.6 deg at isentropic jet thrust coefficients of 0 to 1.47. The tests were made at a Reynolds number from 2.43 to 4.1 times one million.

  8. An Investigation of the Aerodynamic Characteristics of an Airplane Equipped with Several Different Sets of Wings

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Green, M W

    1929-01-01

    This investigation was conducted by the National Advisory Committee for Aeronautics at Langley Field, Va., at the request of the Army Air Corps, for the purpose of comparing the full scale lift and drag characteristics of an airplane equipped with several sets of wings of commonly used airfoil sections. A Sperry Messenger Airplane with wings of R.A.F.-15, U.S.A.-5, U.S.A.-27, and Gottingen 387 airfoil sections was flown and the lift and drag characteristics of the airplane with each set of wings were determined by means of glide tests. The results are presented in tabular and curve form. (author)

  9. Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Abbott, Ira H

    1937-01-01

    Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

  10. Space shuttle: Aerodynamic characteristics of various MDAC space shuttle ascent configurations with parallel burn pressure-fed and SRM boosters. Volume 1: Tanks T1 and T2 ascent configurations

    NASA Technical Reports Server (NTRS)

    Jarrett, T. W.

    1972-01-01

    Various space shuttle ascent configurations were tested in a trisonic wind tunnel to determine the aerodynamic characteristics. The ascent configuration consisted of a NASA/MSC 040 orbiter in combination with various HO centerline tank and booster geometries. The aerodynamic interference between components of the space shuttle and the effect on the orbiter aerodynamics was determined. The various aerodynamic configurations tested were: (1) centerline HO tanks T1 and T2, (2) centerline HO tank T3, and (3) centerline HO tank H4.

  11. Performance characteristics of STIS detectors

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1992-01-01

    We report quantum efficiency measurements of back-illuminated, ion-implanted, laser-annealed charge coupled devices (CCD's) in the wavelength range 13-10,000 A. The equivalent quantum efficiency (EQE = effective photons detected per incident photon) ranges from a minimum of 5 percent as 1216 A to a maximum of 87 percent at 135 A. Using a simple relationship for the charge collection efficiency of the CCD pixels as a function of depth, we present a semi-empirical model with few parameters which reproduces our measurements with a fair degree of accuracy. The advantage of this model is that is can be used to predict CCD QE performance for shallow backside implanted devices without detailed solution of a system of differential equations, as in conventional approaches, and yields a simple analytic form for the charge collection efficiency which is adequate for detector calibration purposes. Making detailed assumptions about the dopant profile, we also solve the carrier density and continuity equations in order to relate our semi-empirical model parameters to surface and bulk device properties. The latter procedure helps to better establish device processing parameters for a given level of CCD QE performance.

  12. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  13. Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance. [engine performance tests to define propulsion system performance on turbofan engines

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated.

  14. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Astrophysics Data System (ADS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-09-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  15. Aerodynamic Characteristics of a Number of Modified NACA Four-Digit-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K., Jr.; Cohen, Kenneth G.

    1947-01-01

    Theoretical pressure distributions and measured lift, drag, and pitching moment characteristics at three values of Reynolds number are presented for a group of NACA four-digit-series airfoil sections modified for high-speed applications. The effectiveness of flaps applied to these airfoils and the effect of standard leading-edge roughness were also investigated at one value of Reynolds number. Results are also presented of tests of three conventional NACA four-digit-series airfoil sections.

  16. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    NASA Astrophysics Data System (ADS)

    Prospathopoulos, John M.; Papadakis, Giorgos; Sieros, Giorgos; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.; Diakakis, Kostas

    2014-06-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average CL is found to decrease up to ~24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow.

  17. Effect of Horizontal-Tail Span and Vertical Location on the Aerodynamic Characteristics of an Unswept Tail Assembly in Sideslip

    NASA Technical Reports Server (NTRS)

    Riley, Donald R

    1954-01-01

    An investigation has been conducted in the Langley stability tunnel on a vertical-tail model with a stub fuselage in combination with various horizontal tails to determine the effect of horizontal-tail span and vertical location of the horizontal tail relative to the vertical tail on the aerodynamic characteristics of an unswept tail assembly in sideslip. The results of the investigation indicated that the induced loading carried by the horizontal tail produced a rolling moment about the point of attachment to the vertical tail which was strongly influenced by horizontal-tail span and vertical locations. The greatest effect of horizontal-tail span on the rolling-moment derivative of the complete tail assembly was obtained for horizontal-tail locations near the top of the vertical tail. Span loadings which were reduced to the static-stability derivatives were calculated for each configuration tested by applying the well-known finite-step method used for wings to the intersecting surfaces of the vertical and horizontal tails. The finite-step method provides a simple and effective means of investigating the span loadings of intersecting surfaces.

  18. Effect of configuration modification on the hypersonic aerodynamic characteristics of a blended delta wing-body entry vehicle

    NASA Technical Reports Server (NTRS)

    Arrington, J. P.; Ashby, G. C., Jr.

    1972-01-01

    The longitudinal, lateral, and directional aerodynamic characteristics of a delta-wing configuration were obtained experimentally at Mach 20 in helium with Reynolds numbers, based on model length, of 1.5 million and 2.9 million and at a Mach number of 6 in air with a Reynolds number, based on model length, of 4.8 million. The angles of attack varied from 0 deg to 55 deg for two sideslip angles. The effects of the addition of dorsal fins, the removal of wing tip fins, an increase in elevon span, and changes in elevon hinge-line sweep angle are discussed. The unmodified vehicle had a maximum lift-drag ratio of 2.1 at Mach 19 and of 2.4 at Mach 6 with about the same lateral and directional stability level at both Mach numbers. As the Mach number increased from 6 to 20, the longitudinal center of pressure moved forward and more positive elevon deflection was therefore required to maintain a given trim angle. The removal of wing tip fins increased the maximum lift-drag ratio and had a negligible effect on longitudinal stability, but caused directional instability that was not corrected by the dorsal fins examined. The shape of the wing and elevon hinge-line sweep had a large influence on the induced yawing moment due to roll control.

  19. Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Carson, George T., Jr.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.

  20. Thrust-induced effects on subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration

    NASA Technical Reports Server (NTRS)

    Quinto, P. F.; Paulson, J. W., Jr.

    1983-01-01

    An investigation was conducted in the Langley 4 by 7 Meter Tunnel of the thrust induced effects on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing fighter aircraft. The investigation was conducted at Mach numbers from 0.14 to 0.17 over an angle-of-attack range from -2 deg to 26 deg. The major model variables were the spanwise blowing nozzle sweep angle and main nozzle vector angle along with trailing edge, flap deflections. The overall thrust coefficient (main and spanwise nozzles) was varied from 0 (jet off) to 2.0. The results indicate that the thrust-induced effects from the main nozzle alone were small and mainly due to boundary-layer control affecting a small area behind the nozzle. When the spanwise blowing nozzles were included, the induced effects were larger than the main nozzle alone and were due to both boundary layer control and induced circulation lift. No leading edge vortex effects were evident.

  1. Influence of orbital-maneuvering-system fairings and rudder flare on the transonic aerodynamic characteristics of a space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ellison, J. C.

    1975-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel to determine the influence of orbital-maneuvering-system fairings and a flared rudder on the aerodynamic characteristics of a space shuttle-orbiter configuration. Tests were made at Mach numbers from 0.4 to 1.2, at angles of attack from -1 deg to 24 deg, at angles of sideslip of 0 deg and 5 deg, and at a Reynolds number, based on model length, of 4 million. The model with the orbital-maneuvering-system fairings had a minimum untrimmed lift-drag ratio from 7.4 to 3.4 at Mach numbers from 0.4 to 1.2 and a maximum trimmed lift-drag ratio of about 3.55 at Mach 0.8 with the rudder flared 30 deg. The directional stability was increased at Mach 0.8 and 1.2 by addition of the orbital-maneuvering-system fairings and at Mach 1.2 by flaring the rudder.

  2. Hypersonic aerodynamic characteristics of NR-ATP orbiter, orbiter with external tank, and ascent configuration

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1973-01-01

    A scale model of the North American Rockwell ATP Orbiter with and without the external tank has been tested in a 22-inch helium tunnel at Mach 20 and a Reynolds number based on model length, of 2.14 times one million. Longitudinal and lateral-directional data were determined for the orbiter alone while only longitudinal characteristics and elevon roll effectiveness were investigated for the orbiter/tank combination. Oil flow and electron beam flow visualization studies were conducted for the orbiter alone, orbiter with external tank and the ascent configuration.

  3. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns

  4. Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Johnson, J. L., Jr.; Margason, R. J.

    1976-01-01

    The results of recent wind tunnel investigations to provide fundamental information on the upper surface blown (USB) jet flap concept demonstrated that the USB concept provides good high-lift performance. It is shown that the low speed performance is dependent upon the jet turning angle and turning efficiency and on the use of proper leading and trailing edge treatment to prevent premature flow separation. The best means of achieving good turning performance in any particular USB application must be determined from overall operational considerations in which high speed performance, structures and noise, as well as low speed performance, are evaluated. The large diving moments generated at high lift coefficients can be trimmed satisfactorily with a large, conventional horizontal tail; a high tail position is best from longitudinal stability considerations. Large rolling and yawing moments are introduced with the loss of an engine, but these moments can be trimmed satisfactorily through the use of asymmetrical boundary layer control and through the use of spoiler and rudder deflection as needed.

  5. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  6. Supersonic aerodynamic characteristics of a series of wrap-around-fin missile configurations

    NASA Technical Reports Server (NTRS)

    Fournier, R. H.

    1977-01-01

    A parametric study of wrap-around-fin missile configurations was conducted at Mach numbers from 1.60 to 2.86 in the Langley Unitary Plan wind tunnel. The fin configurations investigated included variations in chord length, leading edge sweep, thickness ratio, and leading edge shape. The investigation also included a smooth and a stepped-down afterbody required for flush retraction of the wrap-around-fin configuration. The investigation indicated no unusual longitudinal characteristics; however, all the wrap-around-fin configurations tested indicated erratic lateral behavior, particularly in the form of induced roll at zero angle of attack and irregular variations of roll with angle of attack and Mach number. The magnitude of rolling moment at an angle of attack of 0 deg is estimated to represent approximately 0.25 deg or less roll control deflection. The stepped-down afterbody has a marked effect on reducing the induced roll.

  7. Aerodynamic characteristics of two general aviation canard configurations at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Yip, L. P.

    1984-01-01

    The results of wind tunnel tests of two propeller driven canard general aviation aircraft models at high angles of attack are reported. Both tractor and pusher prop configurations were examined. Angles of attack of -6 to 40 deg were used with the pusher model at Re of 1,600,000, and from -30 to 90 deg and Re of 550,000 for the tractor model. The tests showed that the canard would stall long before the wing and produce a nose-down tendency, thus effectively keeping the aircraft out of the stall regime. However, a sequence of pilot actions or design factors such as the airfoils, relative geometry of the canard and wing, the propeller location and the center of gravity location could introduce a wide variance in stall characteristics from one aircraft to another.

  8. Longitudinal aerodynamic characteristics of an elliptical body with a horizontal tail at Mach numbers from 2.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Robins, A. W.

    1982-01-01

    Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present.

  9. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  10. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  11. Subsonic and supersonic static aerodynamic characteristics of a family of bulbous base cones measured with a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.

    1972-01-01

    Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.

  12. Wind tunnel investigation of aerodynamic characteristics of a scale model of a D5 bulldozer and an M109 self-propelled 155 mm Howitzer

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1974-01-01

    Wind tunnel tests were conducted on a scale model of a D5 bulldozer and an M109 self-propelled 155 MM howitzer to determine the aerodynamic characteristics of these typical externally-suspended heavy lift helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.5 x 10 to the 6th power.

  13. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  14. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  15. Effect of twist and camber on the low-speed aerodynamic characteristics of a powered close-coupled wing-canard configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Thomas, J. L.

    1978-01-01

    A series of wind-tunnel tests were conducted in a V/STOL tunnel to determine the low-speed longitudinal aerodynamic characteristics of a powered close-coupled wing/canard fighter configuration. The data was obtained for a high angle-of-attack maneuvering configuration and a takeoff and landing configuration. The data presented in tabulated form are intended for reference purposes.

  16. Aerodynamic characteristics of a 55 deg clipped-delta-wing orbiter model at Mach numbers from 1.60 to 4.63

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Grow, J.

    1973-01-01

    Wind tunnel tests to determine the supersonic aerodynamic characteristics of a delta wing space shuttle orbiter model were conducted. The model was tested at Mach numbers from 1.60 to 4.63, at nominal angles of attack from minus 2 degrees to plus 30 degrees, nominal sideslip angles of minus 4 degrees to plus 10 degrees, and Reynolds numbers from 1.8 to 2.5 times one million per foot.

  17. The Effect of Blade-Section Thickness Ratio on the Aerodynamic Characteristics of Related Full-Scale Propellers at Mach Numbers up to 0.65

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D; Steinberg, Seymour

    1953-01-01

    The results of an investigation of two 10-foot-diameter, two-blade NACA propellers are presented for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. These results are compared with those from previous investigations of five related NACA propellers in order to evaluate the effects of blade-section thickness ratios on propeller aerodynamic characteristics.

  18. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079

  19. In-flight measurements of the GA/W/-2 aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.; Vogel, G. M.

    1977-01-01

    Flight tests of a new 13% General Aviation Airfoil - the GA(W)-2 - gloved full span onto the existing wing of a Beech Sundowner have generated chordwise pressure distributions and wake surveys. Section lift, drag and moment coefficients derived from these measurements verify wind tunnel data and theory predicting the performance of this airfoil. The effect of steps, rivets and surface coatings upon the drag of the GA(W)-2 was also evaluated.

  20. Numerical investigation of the aerodynamic performance for the newly designed cavity vane type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Suffer, K. H.; Usubamatov, R.; Quadir, G. A.; Ismail, K. A.

    2015-05-01

    Research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The power generated by vertical axis wind turbines is strongly dependent on the aerodynamic performance of the turbines. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic (CFD) software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.

  1. Calculation of the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.; Nielsen, J. N.; Goodwin, F. K.

    1976-01-01

    A theoretical investigation was carried out to extend and improve an existing method for predicting the longitudinal characteristics of wing flap configurations with externally blown flaps (EBF). Two potential flow models were incorporated into the prediction method: a wing and flap lifting-surface model and a turbofan engine wake model. The wing-flap model uses a vortex-lattice approach to represent the wing and flaps. The jet wake model consists of a series of closely spaced vortex rings normal to a centerline which may have vertical and lateral curvature to conform to the local flow field beneath the wing and flaps. Comparisons of measured and predicted pressure distributions, span load distributions on each lifting surface, and total lift and pitching moment coefficients on swept and unswept EBF configurations are included. A wide range of thrust coefficients and flap deflection angles is considered at angles of attack up to the onset of stall. Results indicate that overall lift and pitching-moment coefficients are predicted reasonably well over the entire range. The predicted detailed load distributions are qualitatively correct and show the peaked loads at the jet impingement points, but the widths and heights of the load peaks are not consistently predicted.

  2. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  3. Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Penland, J. A.

    1975-01-01

    An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.

  4. Improving of the aerodynamic characteristics of turbine transonic nozzle vane cascades

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.

    2015-10-01

    A detailed experimental investigation of two transonic turbine nozzle vane cascades aimed at improving their characteristics is carried out. The initial cascades had a convex suction side in the outlet area between the throat and trailing edge with skew angles equal to 11° and 15°. Only the shape of this suction side part was modernized. Different approaches to modernizing the cascades were used: in the first cascade with the flow outlet angle equal to around 17° and with the reduced flow outlet velocity λ1 = 1, a rectilinear segment with the skew angle decreased to 9° was formed on the suction side near the trailing edge, and in the second cascade with the flow outlet angle equal to around 23° and λ1 = 1.11, inverse concavity was formed in the same zone of cascade outline. A smaller flow over-expansion degree downstream of the throat was obtained in both cascades, the point of maximum velocity shifted toward the trailing edge, and lower flow velocity was obtained near the trailing edge. The study results confirmed that owing to the modernization, the profile loss coefficient at 0.9 = λ1 = 1.1 has decreased by 0.4-0.6%.

  5. Spectral characteristics of the aerodynamic field of a turbulent diffusion flame at a low Froude number

    NASA Astrophysics Data System (ADS)

    Gengembre, E.; Cambray, P.; Bellet, J.-C.

    1982-09-01

    Turbulent diffusion flames, like those found in a propulsive system, are examined in the case of a low Froude number (no more than 1/100,000). The gaseous products initially have a low velocity, with an inertia which is weak compared to that of gravity. Experimental results are presented from trials run with a specially designed burner emitting fine refractory particles, i.e., propane gas laced with zirconium dioxide particles averaging 2 microns across. Laser anemometry was employed for counting the particles, in conjunction with a computer. Vertical profiles were developed of the flame, covering the velocity fluctuations and their frequency, and with three different energy inputs (15.8, 23, and 38 kW) into the flame. A characteristic low frequency peak was observed, as well as a transition zone to the turbulence. The fuel burning was confined to periodic or quasi-periodic regions of the flow. Turbulence is concluded to be confined to the final combustion phase in flames with a low Froude number.

  6. Effects of surface roughness on the aerodynamic characteristics of the Space Shuttle Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Spencer, B., Jr.

    1986-01-01

    An investigation has been conducted to determine the effects of surface roughness on two Space Shuttle Orbiter models. The tests were conducted over a Mach number range from 0.2 to 6.0 in the Langley Low Turbulance Pressure Tunnel, 8-foot Transonic Pressure Tunnel, Unitary Plan Wind Tunnel, 20-Inch Mach 6 Tunnel, and the Vought High Speed Tunnel. Analytical estimates of the degradation of the subsonic performance resulting from the roughness were made and are presented. The investigation also included tests to explore the possibility of asymmetric flow separation or attachment over the wings during transition from high to low angles of attack that might cause roll divergence.

  7. Theoretical and Experimental Comparison of Aerodynamic Characteristics for Flexible Membrane Wings with Cambered Frames

    NASA Astrophysics Data System (ADS)

    Wrist, Andrew; Hubner, James

    2015-11-01

    Flexible membrane wings of the MAV (micro air vehicle) scale can experience improved lift/drag ratios, delays in stall, and decreased time-averaged flow separation when compared to rigid wings. Previous research examined the effect of frame camber on the time-averaged shapes of membrane wings and observed that increasing frame camber results in increased aero-induced membrane camber. This study involves a more in-depth DIC (Digital Image Correlation) analysis of the previous research to increase the understanding of the time-averaged shapes for membrane wings with cambered frames and offers a theoretical comparison to the experimental results. The author performed a theoretical lifting-line analysis based on the time-averaged shape for the membrane wings to calculate lift, induced drag, and circulation. The calculations include the effects of geometric twist, aspect ratio, and effective angle-of-attack. The wings, with an aspect ratio of 2, were fabricated with silicone rubber membranes and 3D printed cambered frames differing in percent camber, maximum camber location, and thickness. The DIC images were acquired in The University of Alabama's MAV wind tunnel as tests were performed at 10 m/s (Re = 50,000). The analysis will be discussed in the presentation. Graduate Research Assistant.

  8. Unsteady aerodynamic characteristics of a translating rigid wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mancini, Peter; Manar, Field; Granlund, Kenneth; Ol, Michael V.; Jones, Anya R.

    2015-12-01

    Rectilinearly surging wings are investigated under several different velocity profiles and incidence angles. The primary wing studied here was an aspect ratio 4 rectangular flat plate. Studies on acceleration distance, ranging from 0.125c to 6c, and incidence angles 5°-45° were performed to obtain a better understanding of the force and moment histories during an extended surge motion over several chord-lengths of travel. Flow visualization and particle image velocimetry were performed to show the flow structures responsible for variations in force and moment coefficients. It was determined that the formation and subsequent shedding of a leading edge vortex correspond to oscillations in force coefficients for wings at high angle of attack. Comparing unsteady lift results to static force measurements, it was determined that for cases with large flow separation, even after 14 chords traveled at a constant velocity, the unsteady forces do not converge to the fully developed values. Forces were then broken up into circulatory and non-circulatory components to identify individual contributors to lift. Although it was observed that the "fast" and "slow" cases produced nearly identical vortex trajectories, circulation measurements confirmed that the faster acceleration case generates more vorticity in the form of a tighter, more coherent vortex and produces significantly more circulation than the slower acceleration case, which is consistent with the difference in force production.

  9. Wind-tunnel studies of the effects of stimulated damage on the aerodynamic characteristics of airplanes and missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1982-01-01

    As an aid in assessing the aerodynamic effects of battle damage that might be sustained by military airplanes or missiles, several wind tunnel investigations were performed at the Langley Research Center in which damage was simulated with models by the removal of all or parts of the wing and tails. Results of the investigations indicate that the loss of a major part of the vertical tail will probably result in the loss of an airplane in any speed range. The loss of major parts of the horizontal tail generally results in catastrophic instability in the subsonic range but, at low supersonic speeds, and for some planform configurations at subsonic speeds, may allow stable flight to the extent that the airplane might return to friendly territory before the pilot must eject. The results further indicate that major damage to the wing, up to the point of the complete removal of one wing panel, and major damage to the horizontal tail may be sustained without necessarily causing the loss of the airplane or pilot.

  10. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattic method, L216 (DUBFLX). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Richard, M.; Harrison, B. A.

    1979-01-01

    The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  11. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  12. Wind tunnel investigation of effects of variations in Reynolds number and leading-edge treatment on the aerodynamic characteristics of an externally blown jet-flap configuration

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Smith, C. C., Jr.; Megrail, J. L.

    1973-01-01

    An investigation has been conducted in a full-scale tunnel to determine the effects of variations in Reynolds number and leading-edge treatment on the aerodynamic characteristics of an externally blown jet-flap transport configuration. The model had a double-slotted trailing-edge flap and was powered by four high-bypass-ratio turbofan engines. Tests were performed by using each of three leading-edge devices (a 30-percent-chord flap and 15- and 25-percent-chord slats) at Reynolds numbers from 0.47 x one million to 1.36 x one million thrust coefficients up to 3.5. The use of a 25-percent-chord slat was found to be more effective than a 15-percent-chord slat or a 30-percent-chord flap in extending the stall angle of attack and in minimizing the loss of lift after the stall. The large slat was also effective in reducing the rolling moments that occurred when the engine-out wing stalled first.

  13. An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.

    1982-01-01

    A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated.

  14. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  15. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  16. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  17. Experimental investigation of the high angle of attack characteristics of a high performance general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Meyer, H. F.; Yip, L. P.; Perkins, J. N.; Vess, R. J.

    1989-01-01

    Scale model wind tunnel tests and full scale flight tests have been conducted for the Questair Venture general aviation aircraft configuration in order to investigate its high angle-of-attack aerodynamics. Attention is given to the formulation of a wing leading-edge modification capable of enhancing stall departure characteristics. This modification, which involved both outboard wing leading-edge droop and two chordwise leading-edge slots, is found to produce almost no wing-rock tendency when tested on a wind tunnel free-to-roll apparatus; in the full-scale aircraft, the modification yielded gentle, controllable stall characteristics with little cruise and climb performance penalty.

  18. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  19. Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.

    1989-01-01

    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.

  20. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  1. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  2. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  3. Two-dimensional aerodynamic characteristics of three rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1982-01-01

    Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively.

  4. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  5. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  6. Performance characteristics of anthropomorphic prosthetic hands.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2011-01-01

    In this paper we set forth a review of performance characteristics for both common commercial prosthetics as well as anthropomorphic research devices. Based on these specifications as well as surveyed results from prosthetic users, ranges of hand attributes are evaluated and discussed. End user information is used to describe the performance requirements for prosthetic hands for clinical use. PMID:22275674

  7. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  8. Effects of Reynolds number and body corner radius on aerodynamic characteristics of a space shuttle-type vehicle at subsonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Brownson, J. J.

    1972-01-01

    Static aerodynamic forces and moments were measured to study the effects of Reynolds number and body corner radius on the aerodynamic characteristics of a straight wing space shuttle orbiter at subsonic speeds. A 0.02-scale model was tested at Mach numbers from 0.3 to 0.9 and Reynolds numbers from about 600,000 to 3 million, based on body width. The body alone and the body with its wing and horizontal tail attached were tested at angles of attack from 35 to 75 degrees. The effects of rounding the body corners at the junctures connecting the bottom and sides were investigated for corner radii from 0 to 8.5 percent of the body width. At low subsonic Mach numbers (free stream Mach number approximately equal 0.3) the aerodynamic characteristics are affected significantly by changes in Reynolds number and body corner radius. With increase in Mach number to free stream Mach number = 0.9 the effect of Reynolds number seems to vanish, but a significant effect of body corner radius remains.

  9. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  10. Effects of upper-surface blowing and thrust vectoring on low-speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1975-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the low-speed aerodynamic characteristics of a large-scale arrow-wing supersonic transport configured with engines mounted above the wing for upper surface blowing, and conventional lower surface engines with provisions for thrust vectoring. A limited number of tests were conducted for the upper surface engine configuration in the high lift condition for beta = 10 in order to evaluate lateral directional characteristics, and with the right engine inoperative to evaluate the engine out condition.

  11. Low speed aerodynamic characteristics of a vectored thrust V/STOL transport with two lift/cruise fans

    NASA Technical Reports Server (NTRS)

    Renselaer, D. J.

    1977-01-01

    A wind tunnel test was conducted to obtain power on low speed characteristics of a twin fan vectored thrust V/STOL transport aircraft. Longitudinal, as well as some lateral directional data, were analyzed. Hover, STOL, and conventional flight modes were investigated. Determination of STOL characteristics, hover characteristics, roll control effectiveness and aircraft attitude were evaluated. The study also included various means to improve the lifting capability of the aircraft such as by application of fuselage strakes, exhaust vanes capable of shifting the thrust vector aft, and external flap blowing for STOL performance.

  12. High-angle-of-attack aerodynamics - Lessons learned

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1986-01-01

    Recently, the military and civil technical communities have undertaken numerous studies of the high angle-of-attack aerodynamic characteristics of advanced airplane and missile configurations. The method of approach and the design methodology employed have necessarily been experimental and exploratory in nature, due to the complex nature of separated flows. However, despite the relatively poor definition of many of the key aerodynamic phenomena involved for high-alpha conditions, some generic guidelines for design consideration have been identified. The present paper summarizes some of the more important lessons learned in the area of high angle-of-attack aerodynamics with examples of a number of key concepts and with particular emphasis on high-alpha stability and control characteristics of high performance aircraft. Topics covered in the discussion include the impact of design evolution, forebody flows, control of separated flows, configuration effects, aerodynamic controls, wind-tunnel flight correlation, and recent NASA research activities.

  13. Aerodynamic Performance and Static Stability at Mach Number 3.3 of an Aircraft Configuration Employing Three Triangular Wing Panels and a Body Equal Length

    NASA Technical Reports Server (NTRS)

    James, Carlton S.

    1960-01-01

    An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.

  14. Effect of underwing aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.

  15. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor Hugo

    Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness

  16. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  17. Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward

    2014-01-01

    The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.

  18. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  19. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  20. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  1. Thermic diode performance characteristics and design manual

    NASA Technical Reports Server (NTRS)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  2. On the flight derived/aerodynamic data base performance comparisons for the NASA Space Shuttle entries during the hypersonic regime

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Compton, H. R.

    1983-01-01

    Aerodynamic performance data from the first four Shuttle reentry flights are compared with preflight predictions covering hypersonic longitudinal mode down to Mach 2. The extraction of the flight coefficients, as measured by the spacecraft angular rates and the linear accelerations, derived from the inertial measurement unit, the best estimate trajectory, and the remotely measured atmosphere are discussed. The ground predictions were developed from 30,000 hr of wind tunnel testing. Actual flight data are presented for 80-260 kft, from Mach 2-26, comprising the dynamic pressure, the vehicle air relative attitude angles, control surface deflections, reaction jet activity, and body axis rates and accelerations. The second and fourth flights gave results which deviated from predictions between 230-260 kft. The accuracy limits of the derived atmospheric densities are considered, together with potential data base updates in the light of limitations imposed on the corrections by available flight data.

  3. Aerodynamic performance of a transonic turbine guide vane with trailing edge coolant ejection. Part 1: Experimental approach

    SciTech Connect

    Kapteijn, C.; Amecke, J.; Michelassi, V.

    1996-07-01

    Inlet guide vanes (IGV) of high-temperature gas turbines require an effective trailing edge cooling. But this cooling significantly influences the aerodynamic performance caused by the unavoidable thickening of the trailing edge and the interference of the cooling flow with the main flow. As part of a comprehensive research program, an inlet guide vane was designed and manufactured with two different trailing edge shapes. The results from the cascade tests show that the flow behavior upstream of the trailing edge remains unchanged. The homogeneous values downstream show higher turning and higher losses for the cut-back blade, especially in the supersonic range. Additional tests were conducted with carbon dioxide ejection, in order to analyze the mixing process downstream of the cascade.

  4. Dynamic and Performance Characteristics of Baseball Bats

    ERIC Educational Resources Information Center

    Bryant, Fred O.; And Others

    1977-01-01

    The dynamic and performance characteristics of wooden and aluminum baseball bats were investigated in two phases; the first dealing with the velocity of the batted balls, and the second with a study of centers of percussion and impulse response at the handle. (MJB)

  5. Performance Characteristics of an Isothermal Freeze Valve

    SciTech Connect

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  6. Simulation and experiment research of aerodynamic performance of small axial fans with struts

    NASA Astrophysics Data System (ADS)

    Chu, Wei; Lin, Peifeng; Zhang, Li; Jin, Yingzi; Wang, Yanping; Kim, Heuy Dong; Setoguchi, Toshiaki

    2016-06-01

    Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream of the rotor. The cross section of the struts is changed to the cylindrical shapes for the investigation: one is in the same hydraulic diameter as the square struts and another one is in the same cross section as the square struts. Influence of the shape of the struts on the static pressure characteristics, the internal flow and the sound emission of the small axial fans are studied. Standard K-ɛ turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field, and the curves of the pressure rising against the flow rate are obtained, which demonstrates that the simulation results are in nice consistence with the experimental data. The steady calculation results are set as the initial field in the unsteady calculation. Large eddy simulation and PISO algorithm are used in the transient calculation, and the Ffowcs Williams-Hawkings model is introduced to predict the sound level at the eight monitoring points. The research results show that: the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square struts, and the efficiencies increase by about 28.6%. The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts.

  7. Influence of characteristics on combined sewer performance.

    PubMed

    Möderl, M; Kleidorfer, M; Rauch, W

    2012-01-01

    Elements of combined sewer systems are among others sub-catchments, junctions, conduits and weirs with or without storage units. The spatial distribution and attributes of all these elements influence both system characteristics and sewer performance. Until today, little work has been done to analyse the influence of such characteristics in a case unspecific approach. In this study, 250 virtual combined sewer systems are analysed by defining groups of systems, which are representative for their different characteristics. The set was created with a further development of the case study generator (CSG), a tool for automatic generation of branched sewer systems. Combined sewer overflow and flooding is evaluated using performance indicators based on hydrodynamic simulations. The analysis of system characteristics, like those presented in this paper, helps researchers to understand coherences and aids practitioners in designing combined sewers. For instance, it was found that characteristics that have a positive influence on emission reduction frequently have a negative influence on flooding avoidance and vice versa. PMID:22797234

  8. Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.

    1978-01-01

    A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.

  9. Investigation of the Aerodynamic Characteristics of a Model Wing-Propeller Combination and of the Wing and Propeller Separately at Angles of Attack up to 90 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E; Draper, John W

    1956-01-01

    This report presents the results of an investigation conducted in the Langley 300 mph 7- by 10-foot wind tunnel for the purpose of determining the aerodynamic characteristics of a model wing-propeller combination, and of the wing and propeller separately at angles of attack up to 90 degrees. The tests covered thrust coefficients corresponding to free-stream velocities from zero forward speed to the normal range of cruising speeds. The results indicate that increasing the thrust coefficient increases the angle of attack for maximum lift and greatly diminishes the usual reduction in lift above the angle of attack for maximum lift.

  10. Subsonic and supersonic aerodynamic characteristics of a supersonic cruise fighter model with a twisted and cambered wing with 74 deg sweep

    NASA Technical Reports Server (NTRS)

    Morris, O. A.

    1977-01-01

    A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.

  11. Low subsonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/Ames 12 foot pressure tunnel (LA65)

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Watson, D. B.

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings (also referred to as cranked leading edge or double delta wings is reported; the benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform-fillet-wing combination while providing the desired hypersonic trim angle and stability. Because subsonic and hypersonic conditions were the two prime areas of concern in the initial application of this program to optimize shuttle orbiter landing and entry characteristics, the study was designated the Subsonic/Hypersonic Irregular Planforms Study (SHIPS).

  12. A computer program for calculating symmetrical aerodynamic characteristics and lateral-directional stability derivatives of wing-body combinations with blowing jets

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Mehrotra, S. C.; Fox, C. H., Jr.

    1978-01-01

    The necessary information for using a computer program to calculate the aerodynamic characteristics under symmetrical flight conditions and the lateral-directional stability derivatives of wing-body combinations with upper-surface-blowing (USB) or over-wing-blowing (OWB) jets are described. The following new features were added to the program: (1) a fuselage of arbitrary body of revolution has been included. The effect of wing-body interference can now be investigated, and (2) all nine lateral-directional stability derivatives can be calculated. The program is written in FORTRAN language and runs on CDC Cyber 175 and Honeywell 66/60 computers.

  13. Low-speed aerodynamic characteristics of a 42 deg swept high-wing model having a double-slotted flap system and a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Goodson, K. W.

    1974-01-01

    A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.

  14. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  15. Scaling characteristics of the aerodynamics and low-NOx properties of industrial natural gas burners: The scaling 400 study. Part 3. The 30kw test results

    SciTech Connect

    Driscoll, J.F.; Dahm, W.J.A.; Wu, M.S.

    1993-08-15

    The objective of the SCALING 400 study is to assist in the development of new ultra-low NOx natural gas burners for industrial and utility operations so as to maintain and expand future demand for natural gas as the fuel of choice for clean combustion applications. The study is determining the scaling characteristics of near-burner aerodynamics and low-NOx properties of industrial natural gas burners, thereby yielding valuable new engineering information on the scaling of natural gas burners to contribute to the development of new low-NOx designs.

  16. A ballistic investigation of the aerodynamic characteristics of a blunt vehicle at hypersonic speeds in carbon dioxide and air

    NASA Technical Reports Server (NTRS)

    Packard, James D.; Griffith, Wayland C.; Yates, Leslie A.; Strawa, Anthony W.

    1992-01-01

    Missions to Mars require the successful development of aerobraking technology, and therefore a blunt cone representative of aerobrake shapes is investigated. Ballistic tests of the Pioneer Venus configuration are conducted in carbon dioxide and air at Mach numbers from 7 to 20 and Reynolds numbers from 0.1 x 10 exp 5 to 4 x 10 exp 6. Experimental results show that for defined conditions aerodynamic research can be conducted in air rather than carbon dioxide, providing savings in time and money. In addition, the results offer a prediction of flight aerodynamics during entry into the Martian atmosphere. Also discussed is a comparison of results from two data-reduction techniques showing that a five-degree-of-freedom routine employing weighted least-squares with differential corrections analyzes ballistic data more accurately.

  17. Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

    1982-01-01

    Several applications of the steady, oscillatory, and unsteady subsonic and supersonic aerodynamics (SOUSSA) computer program to wings with steady and oscillatory motion, including flutter, are discussed. The program employs a generalized Green's function to the full, time-dependent potential-flow equation to obtain an integral equation for the velocity potential at any point in a flow, even points on a body or whole bodies in a flow. Aerodynamic calculations are provided for two rectangular wings, a clipped-tip delta wing, and two swept wings with and without a fuselage. The number and distribution of the finite element panels are varied in order to demonstrate the convergence of the results. The results are shown to be close to those of lifting-surface theory, and further applications with bodies having deformities, arbitrary shapes, motions, and deformations are indicated.

  18. A large-eddy simulation study on statistical attributes of urban-like geometries relevant to parameterizing bulk aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaowei; Anderson, William

    2015-11-01

    The inherent spatial heterogeneity exhibited by real urban environments complicates a priori estimation of the roughness height needed to parameterize the inertial layer mean streamwise velocity. A large-eddy simulation study of turbulent flow over 3-D random urban-like topographies is conducted to explore the effects of surface geometry on bulk aerodynamic characterization. In a mean sense, we find that statistical attributes including surface height root mean square and skewness can adequately capture the spatial heterogeneities and randomness of real urban geometries. We find, however, that higher-order statistical moments have a negligible affect on aerodynamic drag (i.e. kurtosis may be omitted). The results enable exploration of applicability of some recently-proposed roughness parameterizations that are relevant to complex, urban-like roughness (including the model proposed by Flack and Schultz, 2010: J. Fluids Eng. 132, 041203-1). We evaluate empirical parameters needed in these models for the present urban-like cases. We find that two empirical parameters (relevant to height rms and skewness) can characterize the bulk aerodynamic roughness of topographies with statistical attributes comparable to dense urban environments. This work was supported by the Army Research Office, Atmospheric Sciences Program (PM: Dr. S. Collier) under Grant # W911NF-13-1-0474. Computational resources were provided by the Texas Advanced Computing Center at the University of Texas.

  19. Characteristics and performance of MEMS accelerometers

    SciTech Connect

    Kant, R.A.; Nagel, D.J.

    1996-04-01

    Until recently, accelerometer manufacturing appeared to be a reasonably mature field. But, this situation changed rapidly when researchers began to build miniature accelerometers using micron scale lithographic techniques developed for producing integrated circuits. Several micro- electro-mechanical systems (MEMS) accelerometers are now available commercially. The MEMS devices are attractive because they are relatively inexpensive to produce and they include electronic circuits to perform a variety control and signal processing functions on the same chip. How does the performance of these new devices compare to their older and larger competitors? The physics of the scaling laws suggests that performance should decrease with size. The MEMS technology may be well positioned to take advantage of new, small-scale sensing and actuating methods and, in the process, MEMS fabricated accelerometers may avoid or overcome the engineering limitations of older generation devices by using high precision micro-machining, arrays of sensors, on-chip temperature control circuitry, etc. This study compares the performance and physical characteristics of micro-machined and conventional accelerometers. We review the physical operating principles and describe the basic scaling laws and other factors that ultimately limit accelerometer performance. Then we tabulate and discuss the current performance and characteristics of diverse types of commercial accelerometers. {copyright} {ital 1996 American Institute of Physics.}

  20. Characterization of Aerodynamic Performance of Boundary-Layer-Ingesting Inlet Under Crosswind

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Lee, Byung Joon

    2012-01-01

    NASA has been studying future transport concepts, envisioned to be technically realizable in the timeframe of 2020-2030, to meet environmental and performance goals. One concept receiving considerable interest involves a propulsion system embedded into a hybrid wing-body aircraft. While offering significant advantages in fuel savings and noise reduction by this concept, there are several technical challenges that are not encountered in the current fleet and must be overcome so as to deliver target performance and operability. One of these challenges is associated with an inlet system that ingests a significantly thick boundary layer, developing along the wing-body surface, into a serpentine diffuser before the flow meeting fan blades. The flow is subject to considerable total pressure loss and distorted at the fan face, much more significantly than in the inlet system of conventional aircraft. In our previous studies [1, 2], we have shown that through innovative design changes on the airframe surface, it is possible to simultaneously increase total pressure recovery and decrease distortion in the flow, without resorting to conventional penalty-ridden flow control concepts, such as vortex generator or boundary layer bleeding/suction. In the current study, we are interested in understanding the following issues: how the embedded propulsion system performs under a crosswind condition by studying in detail the flow characteristics of two inlets, the baseline and another optimized previously under the cruise condition. With the insight, it is hoped that it can help in the follow-on study by devising effective strategies to minimize flow distortion arising from the integration of an embedded-engine system into an airframe to the level acceptable to the operation and fuel consumption before 2030. To achieve these demanding goals, non-conventional concepts are called for; but technology gap is too big that it requires evolutionary approach by focusing various concepts and