Science.gov

Sample records for aerodynamic performance degradation

  1. Predictions of airfoil aerodynamic performance degradation due to icing

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Potapezuk, Mark G.; Bidwell, Colin S.

    1988-01-01

    An overview of NASA's ongoing efforts to develop an airfoil icing analysis capability is developed. An indication is given to the approaches being followed to calculate the water droplet trajectories past the airfoil, the buildup of ice on the airfoil, and the resultant changes in aerodynamic performance due to the leading edge ice accretion. Examples are given of current code capabilities/limitations through comparisons of predictions with experimental data gathered in various calibration/validation experiments. A brief discussion of future efforts to extend the analysis to handle three dimensional components is included.

  2. Correlation Between Geometric Similarity of Ice Shapes and the Resulting Aerodynamic Performance Degradation: A Preliminary Investigation Using WIND

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Chung, James

    1999-01-01

    Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.

  3. Aerodynamic Performance Degradation Induced by Ice Accretion. PIV Technique Assessment in Icing Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Gregorio, Fabrizio De

    The aim of the present chapter is to consider the use of PIV technique in an industrial icing wind tunnel (IWT) and the potentiality/advantages of applying the PIV technique to this specific field. The purpose of icing wind tunnels is to simulate the aircraft flight condition through cloud formations. In this operational condition ice accretions appear on the aircraft exposed surfaces due to the impact of the water droplets present in the clouds and the subsequent solidification. The investigation of aircraft aerodynamic performances and flight safety in icing condition is a fundamental aspect in the phase of design, development and certification of new aircrafts. The description of this unusual ground testing facility is reported. The assessment of PIV in CIRA-IWT has been investigated. Several technological problems have been afforded and solved by developing the components of the measurement system, such as the laser system and the recording apparatus, both fully remotely controlled, equipped with several traversing mechanism and protected by the adverse environment conditions (temperature and pressure). The adopted solutions are described. Furthermore, a complete test campaign on a full-scale aircraft wing tip, equipped with moving slat and deicing system has been carried out by PIV. Two regions have been investigated. The wing leading-edge (LE) area has been studied with and without ice accretion and for different cloud characteristics. The second activitiy was aimed at the investigation of the wing-wake behavior. The measurements were aimed to characterize the wake for the model in cruise condition without ice formation and during the ice formation.

  4. Aerodynamic Performance of Hand Launch Glider

    NASA Astrophysics Data System (ADS)

    Koike, Masaru; Ishii, Mitsuru

    In recent years Micro Air Vehicles (MAV) for disaster aerial video are developed vigorously. In order to improve aerodynamic performance of MAV wing performance in low Reynolds numbers (Re) need to be improved, but research on the theme are very rare. In category of Hand Launch Glider, a kind of model aircraft, glide performance are competed, as a result high performance airfoils in Re is around 20,000 are developed. Therefore for MAV's aerodynamic performance improvement airfoils of Hand Launch Gliders should be referred and aerodynamic characteristics of the airfoils desired to be studied. So in this research, aerodynamic characteristics of the gliders are measured in wind tunnel. And also consistency between wind tunnel test and glide test in calm air is examined to confirm reliability of wind tunnel test. Comparison of different airfoils and flow visualization are also performed.

  5. Performance aerodynamics of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Arrington, J. P.; Mccandless, R. S.

    1984-01-01

    A method for predicting the performance aerodynamics of aeroassisted orbital transfer vehicles was developed based on techniques that were used in the aerodynamic databook of the Space Shuttle orbiter and theories from the Hypersonic Arbitrary Body Program. The method spans the entire flight profile of the aeroassisted orbital transfer vehicles from the extreme high altitude non-continuum regime to the highly viscous continuum regime. Results from this method are compared with flight data from the Shuttle orbiter, Apollo Capsule, and the Viking Aeroshell. Finally, performance aerodynamics are estimated for three aeroassisted orbital transfer vehicles that range from low to high lift-to-drag ratio configurations.

  6. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  7. Flipperons for Improved Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Mabe, James H.

    2008-01-01

    Lightweight, piezoelectrically actuated bending flight-control surfaces have shown promise as means of actively controlling airflows to improve the performances of transport airplanes. These bending flight-control surfaces are called flipperons because they look somewhat like small ailerons, but, unlike ailerons, are operated in an oscillatory mode reminiscent of the actions of biological flippers. The underlying concept of using flipperons and other flipperlike actuators to impart desired characteristics to flows is not new. Moreover, elements of flipperon-based active flow-control (AFC) systems for aircraft had been developed previously, but it was not until the development reported here that the elements have been integrated into a complete, controllable prototype AFC system for wind-tunnel testing to enable evaluation of the benefits of AFC for aircraft. The piezoelectric actuator materials chosen for use in the flipperons are single- crystal solid solutions of lead zinc niobate and lead titanate, denoted generically by the empirical formula (1-x)[Pb(Zn(1/3)Nb(2/3))O3]:x[PbTiO3] (where x<1) and popularly denoted by the abbreviation PZN-PT. These are relatively newly recognized piezoelectric materials that are capable of strain levels exceeding 1 percent and strain-energy densities 5 times greater than those of previously commercially available piezoelectric materials. Despite their high performance levels, (1-x)[Pb(Zn(1/3)Nb(2/3))O3]:x[PbTiO3] materials have found limited use until now because, relative to previously commercially available piezoelectric materials, they tend to be much more fragile.

  8. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  9. The aerodynamic effect of heavy rain on airplane performance

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    The National Aeronautics and Space Administration has been conducting a series of tests to determine the effect of heavy rain on airfoil aerodynamics. The results of these tests have shown that heavy rain can significantly increase drag as well as decrease lift and stall angle of attack. This paper describes a recent effort to use the heavy rain airfoil data to determine the aerodynamic effect on a conventional twin-jet transport. The paper reports on the method used to model the heavy rain aerodynamic effect and the resulting performance degradation. The heavy rain performance effect is presented in terms of the diminished climb performance associated with increasing rain rates. The effect of heavy rain on the airplane's ability to escape a performance-limiting wind shear is illustrated through a numerical simulation of a wet microburst encounter. The results of this paper accentuate the need for further testing to determine scaling relationships and flow mechanics, and the full configuration three-dimensional effects of heavy rain.

  10. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  11. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  12. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  13. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  14. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  15. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  16. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  17. Steam generator performance degradation

    SciTech Connect

    Lovett, J.T.; Dow, B.L. )

    1991-09-01

    A survey was conducted to determine the range and severity of steam generator performance degradation effects experienced by PWRs in the United States. The survey results were tabulated and correlated with steam generator age and design. Operating experience at several PWRs was examined in detail. The operating experience at US PWRs was compared to that of PWRs in Japan and Germany. Possible causes for the performance degradation were postulated and evaluated. The sensitivity of steam generator output pressure to changes in various parameters (such as fouling factor, average reactor coolant temperature, and percentage of steam generator tubes plugged) was calculated. These calculations were used in the evaluation of possible causes of steam generator performance degradation. Several deposit exfoliation scenarios were evaluated in terms of the calculated effect on fouling factor trends and associated steam generator output pressure trends. 15 refs., 32 figs., 7 tabs.

  18. Aerodynamic Performance of Electro-Active Membrane Wings

    NASA Astrophysics Data System (ADS)

    Barbu, Ioan-Alexandru; de Kat, Roeland; Ganapathisubramani, Bharathram

    2014-11-01

    Electro-active polymers offer due to their multivariate compliant nature a great potential for integrating the lift producing system and the control system into one. This work presents the first step in describing both the mechanical and aerodynamic performance of such materials and focuses on both understanding their behaviour in aerodynamic applications and on analysing their aerodynamic performance. Photogrammetry and load measurements are conducted in a wind tunnel for both silicone-based and acrylic-based membranes at zero prestrain supported in a perimeter reinforced frame in electrically passive, active and pulsing conditions. A wide range of fixed voltages and pulsing frequencies are considered. Due to their hyper-viscoelastic nature, both short and long term hysteresis analysis are conducted in terms of aerodynamic performance. Along with these tests, analyses of the effects of the percentage electrode area and silicone content on aerodynamic performance are conducted.

  19. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  20. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Riley, Jim

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  1. Aerodynamic performance of membrane wings with adaptive compliance

    NASA Astrophysics Data System (ADS)

    Curet, Oscar M.; Carrere, Alexander; Pande, Arjun; Breuer, Kenneth S.

    2012-11-01

    Some flying animals use wing membranes with adaptive compliance to control their aerodynamic performance. In this work we characterize the mechanical properties and aerodynamic performance of a low aspect ratio membrane wing composed of a dielectric film supported on a rigid frame. We test the wing model in a wind tunnel. When a fixed voltage is applied across the wing membrane the camber increases, accompanied by a small increase in lift (less than 2%). However, lift is significantly increased when the wing is forced with an oscillating field at specific frequencies that correspond to the characteristic vortex shedding frequency. We present the results concerning the kinematics and aerodynamic performance of the adaptive wing membrane and the coupling between the vortex shedding and the forced modulation of elastic modulus.

  2. Aerodynamic performance of vertical and horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  3. Aerodynamics and flight performance of flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Silin, Dmytro

    Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as a vector sum of a freestream velocity and a strokeaveraged wingtip velocity. No abrupt stall was observed in flapping wings for the angle of attack up to vertical. If was found that in the presence of a freestream lift of a flapping wing in vertical position is higher than the propulsive thrust. Camber and dihedral increased both lift and thrust. Lift-curve slope, and maximum lift coefficient increased with Reynolds number. Performance model of an ornithopter was developed. Parametric studies of steady level flight of ornithopters with, and without a tail were performed. A model was proposed to account for wing-sizing effects during hover. Three micro ornithopter designs were presented. Ornithopter flight testing and data-logging was performed using a telemetry acquisition system, as well as motion capture technology. The ability of ornithopter for a sustained flight and a presence of passive aerodynamic stability were shown. Flight data were compared with performance simulations. Close agreement in terms of airspeed and flapping frequency was observed.

  4. Performance and Design Investigation of Heavy Lift Tiltrotor with Aerodynamic Interference Effects

    NASA Technical Reports Server (NTRS)

    Yeo, Yyeonsoo; Johnson, Wayne

    2007-01-01

    The aerodynamic interference effects on tiltrotor performance in cruise are investigated using comprehensive calculations, to better understand the physics and to quantify the effects on the aircraft design. Performance calculations were conducted for 146,600-lb conventional and quad tiltrotors, which are to cruise at 300 knots at 4000 ft/95 deg F condition. A parametric study was conducted to understand the effects of design parameters on the performance of the aircraft. Aerodynamic interference improves the aircraft lift-to-drag ratio of the baseline conventional tiltrotor. However, interference degrades the aircraft performance of the baseline quad tiltrotor, due mostly to the unfavorable effects from the front wing to the rear wing. A reduction of rotor tip speed increased the aircraft lift-to-drag ratio the most among the design parameters investigated.

  5. Performance Degradation of LSCF Cathodes

    SciTech Connect

    Alinger, Matthew

    2013-09-30

    This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled “Performance Degradation of LSCF Cathodes”. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

  6. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  7. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  8. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  9. Aerodynamic performance of a scale-model, counterrotating unducted fan

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1990-01-01

    The aerodynamic performance of a scale model, counter-rotating unducted fan has been determined and the results are discussed. Experimental investigations were conducted using the scale model propulsor simulator and uniquely shaped fan blades. The blades, designed for a high disk loading at Mach 0.72 at 35,000 feet altitude maximum climb condition are aft-mounted on the simulator in a pusher configuration. Data are compared with analytical predictions at the design point and show good agreement.

  10. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  11. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.

    PubMed

    Dial, Terry R; Heers, Ashley M; Tobalske, Bret W

    2012-11-01

    Wing morphology correlates with flight performance and ecology among adult birds, yet the impact of wing development on aerodynamic capacity is not well understood. Recent work using chukar partridge (Alectoris chukar), a precocial flier, indicates that peak coefficients of lift and drag (C(L) and C(D)) and lift-to-drag ratio (C(L):C(D)) increase throughout ontogeny and that these patterns correspond with changes in feather microstructure. To begin to place these results in a comparative context that includes variation in life-history strategy, we used a propeller and force-plate model to study aerodynamic force production across a developmental series of the altricial-flying mallard (Anas platyrhynchos). We observed the same trend in mallards as reported for chukar in that coefficients of vertical (C(V)) and horizontal force (C(H)) and C(V):C(H) ratio increased with age, and that measures of gross-wing morphology (aspect ratio, camber and porosity) in mallards did not account for intraspecific trends in force production. Rather, feather microstructure (feather unfurling, rachis width, feather asymmetry and barbule overlap) all were positively correlated with peak C(V):C(H). Throughout ontogeny, mallard primary feathers became stiffer and less transmissive to air at both macroscale (between individual feathers) and microscale (between barbs/barbules/barbicels) levels. Differences between species were manifest primarily as heterochrony of aerodynamic force development. Chukar wings generated measurable aerodynamic forces early (<8 days), and improved gradually throughout a 100 day ontogenetic period. Mallard wings exhibited delayed aerodynamic force production until just prior to fledging (day 60), and showed dramatic improvement within a condensed 2-week period. These differences in timing may be related to mechanisms of escape used by juveniles, with mallards swimming to safety and chukar flap-running up slopes to take refuge. Future comparative work should test

  12. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.

    PubMed

    Dial, Terry R; Heers, Ashley M; Tobalske, Bret W

    2012-11-01

    Wing morphology correlates with flight performance and ecology among adult birds, yet the impact of wing development on aerodynamic capacity is not well understood. Recent work using chukar partridge (Alectoris chukar), a precocial flier, indicates that peak coefficients of lift and drag (C(L) and C(D)) and lift-to-drag ratio (C(L):C(D)) increase throughout ontogeny and that these patterns correspond with changes in feather microstructure. To begin to place these results in a comparative context that includes variation in life-history strategy, we used a propeller and force-plate model to study aerodynamic force production across a developmental series of the altricial-flying mallard (Anas platyrhynchos). We observed the same trend in mallards as reported for chukar in that coefficients of vertical (C(V)) and horizontal force (C(H)) and C(V):C(H) ratio increased with age, and that measures of gross-wing morphology (aspect ratio, camber and porosity) in mallards did not account for intraspecific trends in force production. Rather, feather microstructure (feather unfurling, rachis width, feather asymmetry and barbule overlap) all were positively correlated with peak C(V):C(H). Throughout ontogeny, mallard primary feathers became stiffer and less transmissive to air at both macroscale (between individual feathers) and microscale (between barbs/barbules/barbicels) levels. Differences between species were manifest primarily as heterochrony of aerodynamic force development. Chukar wings generated measurable aerodynamic forces early (<8 days), and improved gradually throughout a 100 day ontogenetic period. Mallard wings exhibited delayed aerodynamic force production until just prior to fledging (day 60), and showed dramatic improvement within a condensed 2-week period. These differences in timing may be related to mechanisms of escape used by juveniles, with mallards swimming to safety and chukar flap-running up slopes to take refuge. Future comparative work should test

  13. Influence of inflow angle on flexible flap aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Y Zhao, H.; Ye, Z.; Li, Z. M.; Li, C.

    2013-12-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance.

  14. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  15. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small.

  16. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  17. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  18. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  19. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.

    1981-12-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  20. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1981-01-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  1. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  2. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small-and large-scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties related to minimum drag, wave drag, high angle of attack characteristics, and power-induced effects. Engine design configurations from several aircraft manufacturers are reviewed.

  3. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  4. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-12-31

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

  5. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    SciTech Connect

    Fleeter, S.; Lawless, P.B.

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  6. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  7. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  8. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

  9. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  10. Effects of wing deformation on aerodynamic performance of a revolving insect wing

    NASA Astrophysics Data System (ADS)

    Noda, Ryusuke; Nakata, Toshiyuki; Liu, Hao

    2014-12-01

    Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces, which is of highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime, we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model. To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold: acceleration and steady rotation, which are based on hovering wing kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase, which results in a significant wing deformation. While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration. During the phase of steady rotation, the flexible wing model generates more vertical force at higher angles of attack (40°-60°) but less horizontal force than those of a rigid wing model. This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip, which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force. Moreover, our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics: the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation, which is mainly induced by

  11. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    PubMed

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

  12. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  13. A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

    SciTech Connect

    Simms, D A; Robinson, M C; Hand, M M; Fingersh, L J

    1995-01-01

    NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

  14. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  15. Experimental quiet engine program aerodynamic performance of Fan C

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1972-01-01

    This report presents the aerodynamic component test results of Fan C, a high-bypass-ratio, low-aerodynamic-loading, 1550 feet per second (472.4 m/sec), single-stage fan, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.60 with an adiabatic efficiency of 84.2 percent at a total fan flow of 915 lb/sec (415.0 kg/sec). It was tested with and without inlet distortion. A bypass total-pressure ratio of 1.61 and an adiabatic efficiency of 83.9 percent at a total fan flow of 921 lb/sec (417.8 kg/sec) were actually achieved. An operating margin in excess of 14.6 percent was demonstrated at design speed.

  16. Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Lucci, Barbara L.; Senyitko, Richard G.

    2002-01-01

    Turbine vane aerodynamics were measured in a three vane linear cascade. Surface pressures and blade row losses were obtained over a range of Reynolds and Mach number for three levels of turbulence. Comparisons are made with predictions using a quasi-3D Navier-Stokes analysis. Turbulence intensity measurement were made upstream and downstream of the vane. The purpose of the downstream measurements was to determine how the turbulence was affected by the strong contraction through 75 deg turning.

  17. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

  18. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.

  19. Evaluation of Three-Dimensional Low-Speed Aerodynamic Performance for a Supersonic Biplane

    NASA Astrophysics Data System (ADS)

    Ozaki, Shuichi; Ogawa, Toshihiro; Obayashi, Shigeru; Matsuno, Takashi; Kawazoe, Hiromitsu

    This study focuses on the aerodynamic performance of the supersonic biplane at the low-speed region. The performance was evaluated and discussed through Computational Fluid Dynamics (CFD) and Experimental Fluid Dynamics (EFD). The result of the CFD simulation was compared with the experimental result to validate the simulation and confirmed to be reliable. Therefore, the CFD results were employed to derive the aerodynamic performance coupled with the theoretical equations. In the wind tunnel experiment, the three-component force measurement was conducted to obtain lift, drag and pitching moment coefficients. The wake survey was conducted to measure the drag in detail. The results proved the low-speed aerodynamic performance of the supersonic biplane can be described by the classical ``general biplane theory'' reasonably well.

  20. Aerodynamic potpourri

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1981-01-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  1. Aerodynamic potpourri

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.

    1981-05-01

    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  2. Effects of nonlinear aerodynamics and static aeroelasticity on mission performance calculations for a fighter aircraft

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.; Tatum, Kenneth E.; Foss, Willard E., Jr.

    1989-01-01

    During conceptual design studies of advanced aircraft, the usual practice is to use linear theory to calculate the aerodynamic characteristics of candidate rigid (nonflexible) geometric external shapes. Recent developments and improvements in computational methods, especially computational fluid dynamics (CFD), provide significantly improved capability to generate detailed analysis data for the use of all disciplines involved in the evaluation of a proposed aircraft design. A multidisciplinary application of such analysis methods to calculate the effects of nonlinear aerodynamics and static aeroelasticity on the mission performance of a fighter aircraft concept is described. The aircraft configuration selected for study was defined in a previous study using linear aerodynamics and rigid geometry. The results from the previous study are used as a basis of comparison for the data generated herein. Aerodynamic characteristics are calculated using two different nonlinear theories, potential flow and rotational (Euler) flow. The aerodynamic calculations are performed in an iterative procedure with an equivalent plate structural analysis method to obtain lift and drag data for a flexible (nonrigid) aircraft. These static aeroelastic data are then used in calculating the combat and mission performance characteristics of the aircraft.

  3. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  4. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  5. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  6. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  7. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.

    PubMed

    Dyke, Gareth; de Kat, Roeland; Palmer, Colin; van der Kindere, Jacques; Naish, Darren; Ganapathisubramani, Bharathram

    2013-01-01

    Understanding the aerodynamic performance of feathered, non-avialan dinosaurs is critical to reconstructing the evolution of bird flight. Here we show that the Early Cretaceous five-winged paravian Microraptor is most stable when gliding at high-lift coefficients (low lift/drag ratios). Wind tunnel experiments and flight simulations show that sustaining a high-lift coefficient at the expense of high drag would have been the most efficient strategy for Microraptor when gliding from, and between, low elevations. Analyses also demonstrate that anatomically plausible changes in wing configuration and leg position would have made little difference to aerodynamic performance. Significant to the evolution of flight, we show that Microraptor did not require a sophisticated, 'modern' wing morphology to undertake effective glides. This is congruent with the fossil record and also with the hypothesis that symmetric 'flight' feathers first evolved in dinosaurs for non-aerodynamic functions, later being adapted to form lifting surfaces. PMID:24048346

  8. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  9. Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.

    1995-01-01

    The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.

  10. Effect of vane opening on aerodynamic performance of the ram-rotor test system

    NASA Astrophysics Data System (ADS)

    Han, Ji-ang; Guan, Jian; Zhong, Jingjun; Yuan, Chenguang

    2016-06-01

    In order to research the influence of adjustable vane on the aerodynamic performance of the ram-rotor test system, FLUENT software has been adopted to simulate the flow passage of the ram-rotor test system numerically. The vane opening is controlled by changing the stagger angle of the vane blades. Results show that flow uniformity of vane outlet is influenced by the vane openings, which has an impact on the aerodynamic loss to some extent. Total pressure ratio, adiabatic efficiency and mass flow rate can be regulated by different openings of the vane. Compared with -8° vane opening, top efficiency of the ram-rotor increases by about 13.8% at +6° opening. And total pressure ratio drops by 5.87%. The rising opening increases the relative Mach number at inlet of the ram-rotor and weakens the intensity of the tip clearance leakage, which comes to a decreasing aerodynamic loss.

  11. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  12. Aerodynamic and Performance Measurements on a SWT-2.3-101 Wind Turbine

    SciTech Connect

    Medina, P.; Singh, M.; Johansen, J.; Jove, A.R.; Machefaux, E.; Fingersh, L. J.; Schreck, S.

    2011-10-01

    This paper provides an overview of a detailed wind turbine field experiment being conducted at NREL under U.S. Department of Energy sponsorship. The purpose of the experiment is to obtain knowledge about the aerodynamics, performance, noise emission and structural characteristics of the Siemens SWT-2.3-101 wind turbine.

  13. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  14. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  15. Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters

    NASA Technical Reports Server (NTRS)

    Keys, C. N.; Stephniewski, W. Z. (Editor)

    1979-01-01

    Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume.

  16. Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh.

    PubMed

    Dabnichki, Peter; Avital, Eldad

    2006-01-01

    Bobsleigh aerodynamics has long been recognised as one of the crucial performance factors. Although the published research in the area is very limited, it is well known that the leading nations in the sport devote significant resources in research and development of sleds' aerodynamics. However, the rules and regulations pose strict design constraints on the shape modifications aiming at aerodynamics improvements. The reason for that is two-fold: (i) safety of the athletes and (ii) reduction of equipment impact on competition outcome. One particular area that has not been looked at and falls outside the current rules and regulations is the influence of the crew positioning and internal modifications on the aerodynamic performance. The current study presents results on numerical simulation of the flow in the cavity underpinned with some experimental measurements including flow visualisation of the air circulation around the bobsleigh. A simplified computational model was developed to assess the trends and its results validated by windtunnel tests. The results show that crew members influence the drag level significantly and suggest that purely internal modifications can be introduced to reduce the overall resistance drag.

  17. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  18. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  19. Analytical determination of propeller performance degradation due to ice accretion

    NASA Technical Reports Server (NTRS)

    Miller, T. L.

    1986-01-01

    A computer code has been developed which is capable of computing propeller performance for clean, glaze, or rime iced propeller configurations, thereby providing a mechanism for determining the degree of performance degradation which results from a given icing encounter. The inviscid, incompressible flow field at each specified propeller radial location is first computed using the Theodorsen transformation method of conformal mapping. A droplet trajectory computation then calculates droplet impingement points and airfoil collection efficiency for each radial location, at which point several user-selectable empirical correlations are available for determining the aerodynamic penalities which arise due to the ice accretion. Propeller performance is finally computed using strip analysis for either the clean or iced propeller. In the iced mode, the differential thrust and torque coefficient equations are modified by the drag and lift coefficient increments due to ice to obtain the appropriate iced values. Comparison with available experimental propeller icing data shows good agreement in several cases. The code's capability to properly predict iced thrust coefficient, power coefficient, and propeller efficiency is shown to be dependent on the choice of empirical correlation employed as well as proper specification of radial icing extent.

  20. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  1. The effects of wind and posture on the aerodynamic performance during the flight stage of skiing.

    PubMed

    Chen, Zhifeng; Fang, Haisheng

    2011-09-01

    Numerical simulation is conducted to evaluate the wind and posture effects on the aerodynamic performance of a skier during the flight stage. Both steady and unsteady models are applied on a 2D geometry. Using the Fluent code, the fundamental equations of fluid flow are solved simultaneously. In particular we focus on the influence of wind speed and direction on aerodynamic forces with several different postures of the skier in steady modeling. For a chosen case, the unsteady models are used to predict the transient characteristics of streamline distributions and aerodynamic forces. It is found that the skier's postures, wind speed, and direction play a significant role. The wind condition affects the pressure force (the form drag) on the skier and makes it a resistance or thrust regarding wind directions. The optimized posture with a minimization of resistance under a facing wind is determined as a moving-forward body of the skier. The unsteady modeling reveals that the wake around the skier and aerodynamic forces are strongly dependent on time. This initial study not only provides a qualitative and theoretical basis for the athletes to understand the effects of wind and postures, and then to optimize their postures according to the wind condition during the flight stage of skiing, but also builds the foundation for the systematic study of skiing process with more advanced CFD models in the future.

  2. The effects of wind and posture on the aerodynamic performance during the flight stage of skiing.

    PubMed

    Chen, Zhifeng; Fang, Haisheng

    2011-09-01

    Numerical simulation is conducted to evaluate the wind and posture effects on the aerodynamic performance of a skier during the flight stage. Both steady and unsteady models are applied on a 2D geometry. Using the Fluent code, the fundamental equations of fluid flow are solved simultaneously. In particular we focus on the influence of wind speed and direction on aerodynamic forces with several different postures of the skier in steady modeling. For a chosen case, the unsteady models are used to predict the transient characteristics of streamline distributions and aerodynamic forces. It is found that the skier's postures, wind speed, and direction play a significant role. The wind condition affects the pressure force (the form drag) on the skier and makes it a resistance or thrust regarding wind directions. The optimized posture with a minimization of resistance under a facing wind is determined as a moving-forward body of the skier. The unsteady modeling reveals that the wake around the skier and aerodynamic forces are strongly dependent on time. This initial study not only provides a qualitative and theoretical basis for the athletes to understand the effects of wind and postures, and then to optimize their postures according to the wind condition during the flight stage of skiing, but also builds the foundation for the systematic study of skiing process with more advanced CFD models in the future. PMID:22010736

  3. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    NASA Astrophysics Data System (ADS)

    Menicovich, David

    By 2050 an estimated 9 billion people will inhabit planet earth and almost all the growth in the next 40 years will be in urban areas putting tremendous pressure on creating sustainable cities. The rapid increase in population, rise in land value and decrease in plot sizes in cities around the world positions tall or more importantly slender buildings as the best suited building typology to address the increasingly critical demand for space in this pressing urbanization trend. However, the majority of new tall building urban developments have not followed principles of environmental and/or sustainable design and incentives to innovate, both technological and economic, are urgently required. The biggest climatic challenge to the design, construction and performance of tall buildings is wind sensitivity. This challenge is further emphasized seeing two market driven trends: on one hand as urban population grows, land value rises while plot sizes decrease; on the other, more cost effective modular construction techniques are introducing much lighter tall building structures. The combination of the two suggests a potential increase in the slenderness ratio of tall buildings (typically less than 6:1 but stretching to 20:1 in the near future) where not-so-tall but much lighter buildings will be the bulk of new construction in densely populated cities, providing affordable housing in the face of fast urbanization but also introducing wind sensitivity which was previously the problem of a very limited number of super tall buildings to a much larger number of buildings and communities. The proposed research aims to investigate a novel approach to the interaction between tall buildings and their environment. Through this approach the research proposes a new relationship between buildings and the flows around, through and inside them, where buildings could adapt to better control and manage the air flow around them, and consequently produce significant opportunities to reduce

  4. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.

  5. Unsteady aerodynamic interaction effects on turbomachinery blade life and performance

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J.

    1992-01-01

    This paper is an attempt to address the impact of a class of unsteady flows on the life and performance of turbomachinery blading. These class of flows to be investigated are those whose characteristic frequency is an integral multiple of rotor shaft speed. Analysis of data recorded downstream of a compressor and turbine rotor will reveal that this class of flows can be highly three-dimensional and may lead to the generation of secondary flows within downstream blading. By explicitly accounting for these unsteady flows in the design of turbomachinery blading for multistage applications, it may be possible to bring about gains in performance and blade life.

  6. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  7. Aerodynamic Analysis of Cup Anemometers Performance: The Stationary Harmonic Response

    PubMed Central

    Pindado, Santiago; Cubas, Javier; Sanz-Andrés, Ángel

    2013-01-01

    The effect of cup anemometer shape parameters, such as the cups' shape, their size, and their center rotation radius, was experimentally analyzed. This analysis was based on both the calibration constants of the transfer function and the most important harmonic term of the rotor's movement, which due to the cup anemometer design is the third one. This harmonic analysis represents a new approach to study cup anemometer performances. The results clearly showed a good correlation between the average rotational speed of the anemometer's rotor and the mentioned third harmonic term of its movement. PMID:24381512

  8. Aerodynamic performance of a scale-model, counter-rotating unducted fan

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas J.

    1987-01-01

    The aerodynamic performance of a scale model, counter-rotating unducted fan has been determined and the results are discussed. Experimental investigations were conducted using the scale model propulsor simulator and uniquely shaped fan blades. The blades, designed for a high disk loading at Mach 0.72 at 35,000 feet altitude maximum climb condition are aft-mounted on the simulator in a pusher configuration. Data are compared with analytical predictions at the design point and show good agreement.

  9. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  10. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    NASA Astrophysics Data System (ADS)

    Meftah, S. M. A.; Belhenniche, M.; Madani Fouatih, O.; Imine, B.

    2014-03-01

    The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  11. A performance index approach to aerodynamic design with the use of analysis codes only

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Moitra, Anutosh

    1988-01-01

    A method is described for designing an aerodynamic configuration for a specified performance vector, based on results from several similar, but not identical, trial configurations, each defined by a geometry parameter vector. The theory shows the method effective provided that: (1) the results for the trial configuration provide sufficient variation so that a linear combination of them approximates the specified performance; and (2) the difference between the performance vectors (including the specifed performance) are sufficiently small that the linearity assumption of sensitivity analysis applies to the differences. A computed example describes the design of a high supersonic Mach number missile wing body configuration based on results from a set of four trial configurations.

  12. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  13. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  14. Aerodynamic flight performance in flap-gliding birds and bats.

    PubMed

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-01

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat.

  15. Aerodynamic flight performance in flap-gliding birds and bats.

    PubMed

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-01

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat. PMID:22726811

  16. Aerodynamic Performance Enhancement of a Finite Span Wind Turbine Blade using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Taylor, Keith; Leong, Chia Min; Amitay, Michael

    2011-11-01

    Modern wind turbines undergo significant changes in pitch angle and structural loading through a revolution. Recent developments in flow control techniques, coupled with increased interest in green energy technologies, have led to interest in applying these techniques to wind turbines, in an effort to increase power output and reduce structural stress associated with widely varying loading. This reduction in structural stress could lead to reduced operational costs associated with the maintenance cycle. The effect of active flow control on the aerodynamic and structural aspects of finite span blade was investigated experimentally. When synthetic jets were employed the effect on aerodynamic performance and structural vibrations, during static and dynamic pitch conditions, was significant. In order to investigate if the jets can be actuated for less time (reduce their power consumption), they were actuated during only a portion of the pitch cycle or using pulse modulation. The results showed that these techniques result in significant reduction in the hysteresis loop and the structural vibrations.

  17. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  18. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  19. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus).

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S

    2013-03-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188

  20. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus)

    PubMed Central

    Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.

    2013-01-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188

  1. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus).

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S

    2013-03-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.

  2. Effects of Wing Platform on the Aerodynamic Performance of Finite-Span Flapping Wings

    NASA Astrophysics Data System (ADS)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2010-11-01

    A numerical study is conducted to investigate the effects of wing platform on the aerodynamics performance of finite-span flapping wings. A three-dimensional high-order Navier-Stokes compressible flow solver was developed using the spectral difference method and dynamic grids. An AUSM^+-up Riemann solver was implemented to simulate the unsteady low Mach number flows over finite-span flapping wings with explicit third order Runge-Kutta time integration. The studied finite-span flapping wings, which include a rectangular flapping wing, an elliptic flapping wing and a bio-inspired flapping wing, have the same wing span, aspect ratio of the platform and the characteristics of the flapping motion (i.e., sinusoidal trajectory of the flapping wing tip, Strouhal number and reduced frequency). In the present study, the Strouhul number (Str) of the finite-span flapping wings was selected to be well within the optimal range usually used by flying insects and birds and swimming fishes (i.e., 0.2 < Str < 0.4). The effects of the wing platform on the aerodynamics performance of the finite-span flapping wings were elucidated in the terms of the evolutions and dynamic interaction between the leading edge vortices (LEV) and the wing tip vortices as well as the resultant aerodynamic forces (both lift and thrust) generated by the flapping wings.

  3. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    SciTech Connect

    Nishizaki, K.; Uchida, H.; Watanabe, M.

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  4. Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades

    NASA Astrophysics Data System (ADS)

    Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

    2014-02-01

    The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating under unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.

  5. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  6. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    NASA Technical Reports Server (NTRS)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  7. Aerodynamic performance of a 1.20-pressure ratio fan stage designed for low noise

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Moore, R. D.

    1976-01-01

    The aerodynamic design and the overall blade element performance of a 51 centimeter diameter fan stage is presented. The stage was designed to minimize the noise generated by rotor stator interactions. The design pressure ratio was 1.20 at a flow of 30.6 kilograms per second and a rotor blade tip speed of 228.6 meters per second. At design speed the rotor peak efficiency was 0.935. The peak efficiency of the stage, however, was 0.824. The radial distribution of rotor performance parameters at peak efficiency and design speed indicated excellent agreement with design values.

  8. Performance degradation and cleaning of photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Sheskin, T. J.; Chang, G. C.; Cull, R. C.; Knapp, W. D.

    NASA tests results from an 18 mo program of cleaning silicone-encapsulated and glass fronted solar cell panels in urban and desert environments to examine the effects of cleaning on module performance are reported. The panels were cleaned on weekly, monthly, quarterly, or semi-annual basis, while other panels of the same construction were not cleaned and served as controls. Commercially-available detergents and city water were employed for the tests, and the measurements were maintained of the modules' continuing short-circuit current output. The decay of the output was determined by least square regression analyses. Performance degradation was noticeably less in glass covered, rather than silicone-encapsulated modules which decayed faster in urban than in desert environments. Lower frequency cleanings are recommended where labor costs are high.

  9. Performance degradation and cleaning of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Sheskin, T. J.; Chang, G. C.; Cull, R. C.; Knapp, W. D.

    1982-01-01

    NASA tests results from an 18 mo program of cleaning silicone-encapsulated and glass fronted solar cell panels in urban and desert environments to examine the effects of cleaning on module performance are reported. The panels were cleaned on weekly, monthly, quarterly, or semi-annual basis, while other panels of the same construction were not cleaned and served as controls. Commercially-available detergents and city water were employed for the tests, and the measurements were maintained of the modules' continuing short-circuit current output. The decay of the output was determined by least square regression analyses. Performance degradation was noticeably less in glass covered, rather than silicone-encapsulated modules which decayed faster in urban than in desert environments. Lower frequency cleanings are recommended where labor costs are high.

  10. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  11. Numerical investigations on the aerodynamic performance of wind turbine: Downwind versus upwind configuration

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Wan, Decheng

    2015-03-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  12. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  13. Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1978-01-01

    An experimental investigation was conducted to determine the effect of design changes on the aerodynamic and acoustic performance of translating centerbody sonic inlets. Scale model inlets were tested in the Lewis Research Center's V/STOL wind tunnel. The effects of centerbody position, entry lip contraction ratio, diffuser length, and diffuser area ratio on inlet total pressure recovery, distortion, and noise suppression were investigated at static conditions and at forward velocity and angle of attack. With the centerbody in the takeoff position (retracted), good aerodynamic and acoustic performance was attained at static conditions and at forward velocity. At 0 deg incidence angle with a sound pressure level reduction of 20 dB, the total pressure recovery was 0.986. Pressure recovery at 50 deg was 0.981. With the centerbody in the approach position (extended), diffuser flow separation occurred at an incidence angle of approximately 20 deg. However, good performance was attained at lower angles. With the centerbody in the takeoff position the ability of the inlet to tolerate high incidence angles was improved by increasing the lip contraction ratio. However, at static conditions with the centerbody in the approach position, an optimum lip contraction ratio appears to exist, with both thinner and thicker lips yielding reduced performance.

  14. Modification of k-ω turbulence model for predicting airfoil aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Yan, Hao; Fang, Hong; Wang, Ming

    2015-06-01

    Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is conducted with k-ω turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-ω model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating region when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-ω turbulence model.

  15. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  16. Aerodynamic performance of 0.4066-scale model to JT8D refan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.; Tysl, E. R.

    1976-01-01

    The aerodynamic performance of a scale model of the split flow JT8D rafan stage is presented over a range of flows at speeds from 40 to 100 percent design. The bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second and a pressure ratio of 1.697. The stall margin was 15 percent based on pressure ratio and weight flow at stall and peak efficiency conditions. The data indicated that the hub region of the core stators was choked at design speed over the entire flow range tested.

  17. Aerodynamic performance of a 1.35-pressure-ratio axial-flow fan stage

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Moore, R. D.; Steinke, R. J.

    1978-01-01

    The overall blade element performances and the aerodynamic design parameters are presented for a 1.35-pressure-ratio fan stage. The fan stage was designed for a weight flow of 32.7 kilograms per second and a tip speed of 302.8 meters per second. At design speed the stage peak efficiency of 0.879 occurred at a pressure ratio of 1.329 and design flow. Stage stall margin was approximately 14 percent. At design flow rotor efficiency was 0.94 and the pressure ratio was 1.360.

  18. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric

  19. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  20. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  1. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  2. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  3. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  4. Axial compressor blade design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Erler, Engin

    Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this

  5. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  6. The aerodynamic design and performance of the NASA/GE E3 low pressure turbine

    NASA Technical Reports Server (NTRS)

    Cherry, D. G.; Dengler, R. P.

    1984-01-01

    The aerodynamic design and scaled rig test results of the low pressure turbine (LPT) component for the NASA/General Electric Energy Efficient Engine (E3) are presented. The low pressure turbine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of its performance has been made based on a series of scaled air turbine tests which were divided into two phases: Block I (March through August, 1979) and Block II (June through September, 1981). Results from the Block II five-stage test, summarized in the paper, indicate that the E3 LPT will attain an efficiency level of 91.5 percent at the Mach 0.8/35,000 ft. max. climb altitude design point. This is relative to program goals of 91.1 percent for the E3 demonstrator engine and 91.7 percent for a fully developed flight propulsion system LPT.

  7. Aerodynamic performance of a full-scale lifting ejector system in a STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Garland, Doug; Poppen, William A.

    1992-01-01

    The aerodynamic characteristics of an advanced lifting ejector system incorporated into a full-scale, powered, fighter aircraft model were measured at statically and at transition airspeeds in the 40- by 80- and 80- by 120-Foot Wind Tunnels at NASA-Ames. The ejector system was installed in an ejector-lift/vectored thrust STOVL (Short Take-Off Vertical Landing) fighter aircraft configuration. Ejector thrust augmentation ratios approaching 1.6 were demonstrated during static testing. Changes in the internal aerodynamics and exit flow conditions of the ejector ducts are presented for a variety of wind-off and forward-flight test conditions. Wind-on test results indicate a small decrease in ejector performance and increase in exit flow nonuniformity with forward speed. Simulated ejector start-up at high speed, nose-up attitudes caused only small effects on overall vehicle forces and moments despite the fact that the ejector inlet flow was found to induce large regions of negative pressure on the upper surface of the wing apex adjacent to the inlets.

  8. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  9. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  10. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  11. A computer program for wing subsonic aerodynamic performance estimates including attainable thrust and vortex lift effects

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1982-01-01

    Numerical methods incorporated into a computer program to provide estimates of the subsonic aerodynamic performance of twisted and cambered wings of arbitrary planform with attainable thrust and vortex lift considerations are described. The computational system is based on a linearized theory lifting surface solution which provides a spanwise distribution of theoretical leading edge thrust in addition to the surface distribution of perturbation velocities. The approach used relies on a solution by iteration. The method also features a superposition of independent solutions for a cambered and twisted wing and a flat wing of the same planform to provide, at little additional expense, results for a large number of angles of attack or lift coefficients. A previously developed method is employed to assess the portion of the theoretical thrust actually attainable and the portion that is felt as a vortex normal force.

  12. Numerical study of improving aerodynamic performance of low solidity LPT cascade through increasing trailing edge thickness

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yan, Peigang; Wang, Xiangfeng; Han, Wanjin; Wang, Qingchao

    2016-08-01

    This paper presents a new idea to reduce the solidity of low-pressure turbine (LPT) blade cascades, while remain the structural integrity of LPT blade. Aerodynamic performance of a low solidity LPT cascade was improved by increasing blade trailing edge thickness (TET). The solidity of the LPT cascade blade can be reduced by about 12.5% through increasing the TET of the blade without a significant drop in energy efficiency. For the low solidity LPT cascade, increasing the TET can decrease energy loss by 23.30% and increase the flow turning angle by 1.86% for Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 2.35%. The flow control mechanism governing behavior around the trailing edge of an LPT cascade is also presented. The results show that appropriate TET is important for the optimal design of high-lift load LPT blade cascades.

  13. Aerodynamic performance of high turning core turbine vanes in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.

    1982-01-01

    Experimental and theoretical aerodynamic performance data are presented for four uncooled high turning core turbine vanes with exit angles of 74.9, 75.0, 77.5, and 79.6 degrees in a two-dimensional cascade. Data for a more conservative 67.0 degree vane are included for comparison. Corection of the experimental aftermix kinetic energy losses to a common 0.100 centimeter trailing edge thickness yields a linear trend of increased loss from 0.020 to 0.025 as the vane exit angle increases from 67.0 to 79.6 degrees. The theoretical losses show a similar trend. The experimental and theoretical vane surface velocity distributions generally agree within approximately five percent, although the suction surface theoretical velocities are generally higher than the experimental velocities as the vane exit angle increases.

  14. Aerodynamic performance of high turning core turbine vanes in a two dimensional cascade

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.

    1982-01-01

    Experimental and theoretical aerodynamic performance data are presented for four uncooled high turning core turbine vanes with exit angles of 74.9, 75.0, 77.5, and 79.6 degrees in a two dimensional cascade. Data for a more conservative 67.0 degree vane are included for comparison. Correction of the experimental aftermix kinetic energy losses to a common 0.100 centimeter trailing edge thickness yields a linear trend of increased loss from 0.020 to 0.025 as the vane exit angle increases from 67.0 to 79.6 degrees. The theoretical losses show a similar trend. The experimental and theoretical vane surface velocity distributions generally agree within approximately five percent, although the suction surface theoretical velocities are generally higher than the experimental velocities as the vane exit angle increases.

  15. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  16. Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent

    NASA Technical Reports Server (NTRS)

    Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.

    2013-01-01

    The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the

  17. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent

    NASA Astrophysics Data System (ADS)

    Korzun, Ashley M.

    shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.

  18. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Winter, York; Hedenström, Anders

    2011-10-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology.

  19. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders

    2011-01-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  20. Sensitivity of Key Parameters in Aerodynamic Wind Turbine Rotor Design on Power and Energy Performance

    NASA Astrophysics Data System (ADS)

    Bak, Christian

    2007-07-01

    In this paper the influence of different key parameters in aerodynamic wind turbine rotor design on the power efficiency, Cp, and energy production has been investigated. The work was divided into an analysis of 2D airfoils/blade sections and of entire rotors. In the analysis of the 2D airfoils it was seen that there was a maximum of the local Cp for airfoils with finite maximum Cl/Cd values. The local speed ratio should be between 2.4 and 3.8 for airfoils with maximum cl/cd between 50 and 200, respectively, to obtain maximum local Cp. Also, the investigation showed that Re had a significant impact on CP and especially for Re<2mio corresponding to rotors below approximately 400kW this impact was pronounced. The investigation of Cp for rotors was made with three blades and showed that with the assumption of constant maximum cl/cd along the entire blade, the design tip speed ratio changed from X=6 to X=12 for cl/cd=50 and cl/cd=200, respectively, with corresponding values of maximum cp of 0.46 and 0.525. An analysis of existing rotors re-designed with new airfoils but maintaining the absolute thickness distribution to maintain the stiffness showed that big rotors are more aerodynamic efficient than small rotors caused by higher Re. It also showed that the design tip speed ratio was very dependent on the rotor size and on the assumptions of the airfoil flow being fully turbulent (contaminated airfoil) or free transitional (clean airfoil). The investigations showed that rotors with diameter D=1.75m, should be designed for X around 5.5, whereas rotors with diameter D=126m, should be designed for Xbetween 6.5 and 8.5, depending on the airfoil performance.

  1. Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner

    NASA Astrophysics Data System (ADS)

    Wu, Chengjun; Liu, Jiang; Pan, Jie

    2014-07-01

    DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

  2. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.

    PubMed

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-04-12

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics. PMID:21444774

  3. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.

    PubMed

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2011-04-12

    Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics.

  4. Gap and stagger effects on the aerodynamic performance and the wake behind a biplane with endplates

    NASA Astrophysics Data System (ADS)

    Kang, Hantae

    Modern flow diagnostics applied to a very old aerodynamic problem has produced a number of intriguing new results and new insight into previous results. The aerodynamic performance and associated flow physics of the biplane with endplates as a function of variation in gap and stagger were analytically and experimentally investigated. A combination of vortex lattice method, integrated force measurement, streamwise PIV, and Trefftz plane Stereo PIV were used to better understand the flowfield around the biplane with endplates. This study was performed to determine the configuration with the optimal aerodynamic performance and to understand the fluid mechanics behind optimal and suboptimal performance of the configuration. The Vortex Lattice code (AVL) shows that the gap and stagger have the most dramatic effects out of the six parameters studied: gap, stagger, dihedral, decalage, sweep and overhang. The force balance measurements with fourteen biplane configurations of different gaps and staggers show that as gap and stagger increase, the lift efficiency also increases at all angles of attack tested at both Re 60,000 and 120,000. Using the force balance data, a generalized empirical method for the prediction of lift coefficient as a function of gap, stagger and angle of attack has been determined and validated when combined with existing relations for CL--α adjustments for AR and taper effects. The resulting empirical approach allows for a rapid determination of CL for a biplane having different gap, stagger, AR and taper without the need for a complete flowfield analysis. Two Dimensional PIV results show a distinctive pattern in the downwash angle for the different gap and stagger configurations tested. The downwash angle increases with increasing gap and stagger. It is also evident that the change in downwash angle is directly proportional to the change in lift coefficient as would be expected. Increasing gap spacing increases the downwash angle as well. Based on

  5. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).

    PubMed

    Bishop, Kristin L

    2007-08-01

    Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a

  6. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).

    PubMed

    Bishop, Kristin L

    2007-08-01

    Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a

  7. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  8. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  9. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight.

  10. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  11. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  12. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  13. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  14. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors

    NASA Astrophysics Data System (ADS)

    Winstroth, J.; Seume, J. R.

    2016-09-01

    The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.

  15. Aerodynamic Performance and Flow-Field Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1995-01-01

    The component integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the straight-wing and cranked-wing shapes. Both shapes were conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 1.6 to 4.63 at a Reynolds number of 2.0 x 10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Experimental data showed that no significant performance degradations, in terms of maximum lift-to-drag ratios, occur at off-design Mach numbers for the waverider shapes and the integrated configurations. A comparison of the fully-integrated waverider vehicles to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders, with the most significant degradation resulting from aftbody closure and the addition of control surfaces. Both fully-integrated configurations were longitudinally unstable over the Mach number range studied with the selected center of gravity location and for unpowered conditions. The cranked-wing configuration provided better lateral-directional stability characteristics than the straight-wing configuration.

  16. Optoelectronic reservoir computing: tackling noise-induced performance degradation.

    PubMed

    Soriano, M C; Ortín, S; Brunner, D; Larger, L; Mirasso, C R; Fischer, I; Pesquera, L

    2013-01-14

    We present improved strategies to perform photonic information processing using an optoelectronic oscillator with delayed feedback. In particular, we study, via numerical simulations and experiments, the influence of a finite signal-to-noise ratio on the computing performance. We illustrate that the performance degradation induced by noise can be compensated for via multi-level pre-processing masks.

  17. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. 1: Experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.

    1980-01-01

    The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.

  18. Aerodynamics and performance verifications of test methods for laboratory fume cupboards.

    PubMed

    Tseng, Li-Ching; Huang, Rong Fung; Chen, Chih-Chieh; Chang, Cheng-Ping

    2007-03-01

    The laser-light-sheet-assisted smoke flow visualization technique is performed on a full-size, transparent, commercial grade chemical fume cupboard to diagnose the flow characteristics and to verify the validity of several current containment test methods. The visualized flow patterns identify the recirculation areas that would inevitably exist in the conventional fume cupboards because of the fundamental configurations and structures. The large-scale vortex structures exist around the side walls, the doorsill of the cupboard and in the vicinity of the near-wake region of the manikin. The identified recirculation areas are taken as the 'dangerous' regions where the risk of turbulent dispersion of contaminants may be high. Several existing tracer gas containment test methods (BS 7258:1994, prEN 14175-3:2003 and ANSI/ASHRAE 110:1995) are conducted to verify the effectiveness of these methods in detecting the contaminant leakage. By comparing the results of the flow visualization and the tracer gas tests, it is found that the local recirculation regions are more prone to contaminant leakage because of the complex interaction between the shear layers and the smoke movement through the mechanism of turbulent dispersion. From the point of view of aerodynamics, the present study verifies that the methodology of the prEN 14175-3:2003 protocol can produce more reliable and consistent results because it is based on the region-by-region measurement and encompasses the most area of the entire recirculation zone of the cupboard. A modified test method combined with the region-by-region approach at the presence of the manikin shows substantially different results of the containment. A better performance test method which can describe an operator's exposure and the correlation between flow characteristics and the contaminant leakage properties is therefore suggested.

  19. Isolation, identification, and degradation performance of a PFOA-degrading strain.

    PubMed

    Yi, L B; Chai, L Y; Xie, Y; Peng, Q J; Peng, Q Z

    2016-01-01

    The perfluorooctanoic acid (PFOA)-degrading strain YAB1 was isolated from the soil near a perfluorinated compound production plant through acclimation and enrichment culture, using PFOA as the sole carbon source. This strain was preliminarily identified as Pseudomonas parafulva based on colony morphology, physiological and biochemical features, and 16S rRNA gene sequencing. Using shaking flask fermentation, the maximum tolerable concentration of YAB1 on PFOA was found to be 1000 mg/L. The optimal conditions for bacterial growth and PFOA degradation were 30°C, pH 7, 2% inoculum, and an initial PFOA concentration of 500 mg/L. After 96 h of culture, the PFOA degradation rate determined by GC-MS analysis was 32.4%. When 1 g/L glucose was added to the inorganic salt culture medium, the degradation rate increased to 48.1%. Glucose was the best exogenous carbon source for the degradation of PFOA. This study reports the degradation performance of PFOA-degrading bacteria. PMID:27173322

  20. Assessment Of The Aerodynamic And Aerothermodynamic Performance Of The USV-3 High-Lift Re-Entry Vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Richiello, Camillo; Russo, Gennaro

    2011-05-01

    This paper deals with the aerodynamic and aerothermodynamic trade-off analysis carried out with the aim to design a hypersonic flying test bed (FTB), namely USV3. Such vehicle will have to be launched with a small expendable launcher and shall re-enter the Earth atmosphere allowing to perform several experiments on critical re-entry phenomena. The demonstrator under study is a re-entry space glider characterized by a relatively simple vehicle architecture able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures. Then, a summary review of the aerodynamic characteristics of two FTB concepts, compliant with a phase-A design level, has been provided hereinafter. Indeed, several design results, based both on engineering approach and computational fluid dynamics, are reported and discussed in the paper.

  1. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  2. Effects of nonlinear unsteady aerodynamics on performance, stability and control of an F-18 configuration

    NASA Astrophysics Data System (ADS)

    Lin, Guofeng

    Large-amplitude forced oscillation data for an F-18 configuration are analyzed with two modeling methods: Fourier functional analysis to form the indicial integrals, and a generalized dynamic aerodynamic model for stability and control analysis. The indicial integral is first applied to calculate the pitch damping parameter for comparison with the conventional forced oscillation test. It is shown that the reduced frequency affects the damping much more strongly than the test amplitude. Using the indicial integral models in a flight simulation code for an F-18 configuration, it is found that the configuration with unsteady aerodynamics becomes unstable in pitch if the pitch rate is high, in contrast to the quasi-steady configuration which depends mainly on the instantaneous angle of attack. In a pitch-up maneuver in the post-stall regime the configuration with unsteady aerodynamics can stay at a high pitch attitude and angle of attack without losing altitude for a much longer duration than the quasi-steady model. However, the speed will decrease faster because of higher drag. The newly developed generalized dynamic aerodynamic model is of the nonlinear algebraic form with the coefficients being determined from a set of large amplitude oscillatory experimental data by using least-square fitting. The resulting model coefficients are functions of the reduced frequency and amplitude. The new aerodynamic models have been verified with data in harmonic oscillation with a smaller amplitude and in constant pitch-rate motions. The new algebraic models are especially useful in stability and control analysis, and are used in bifurcation analysis and control studies for the same F-18 HARV configuration. The results show significant differences in the equilibrium surfaces and dynamic stability. It is also shown that control gains developed with the conventional quasi-steady aerodynamic data may not be adequate when the effect of unsteady aerodynamics is significant. A numerical

  3. Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing

    NASA Technical Reports Server (NTRS)

    Woodard, Brian; Diebold, Jeff; Broeren, Andy; Potapczuk, Mark; Lee, Sam; Bragg, Michael

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  4. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather.

  5. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather. PMID:20938776

  6. Multiprogramming performance degradation - Case study on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Dimpsey, R. T.; Iyer, R. K.

    1989-01-01

    The performance degradation due to multiprogramming overhead is quantified for a parallel-processing machine. Measurements of real workloads were taken, and it was found that there is a moderate correlation between the completion time of a program and the amount of system overhead measured during program execution. Experiments in controlled environments were then conducted to calculate a lower bound on the performance degradation of parallel jobs caused by multiprogramming overhead. The results show that the multiprogramming overhead of parallel jobs consumes at least 4 percent of the processor time. When two or more serial jobs are introduced into the system, this amount increases to 5.3 percent

  7. Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance. [engine performance tests to define propulsion system performance on turbofan engines

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated.

  8. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Astrophysics Data System (ADS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-09-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  9. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-01-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  10. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns

  11. Computation of radar cross section with the coupling of aerodynamic performance in a multidisciplinary design optimization of aircraft

    NASA Astrophysics Data System (ADS)

    Hong, Seng Muy

    The computation or prediction of plane wave scattering widths is one of the major design considerations of future aircraft and weapon systems. The control of scattering and penetration of electromagnetic waves is the primary objective of emerging low observable technology. The task in computing the electromagnetic backscattered field of an airframe structure is by no means a new endeavor. Whereas predicting a minimal backscattered field return under the manipulation of airframe geometry in the context of multidisciplinary design is considered the most prudent approach to obtain the optimal solution. The objective of this paper is to develop a mathematical method to couple the backscattered field with the defined aerodynamic performance constraints in the design process of future airframes. This paper will address the basic concept of integrating the radio frequency (RF) backscattered field or electromagnetic (EM) discipline with the Multidisciplinary Design Optimization (MDO) methodology. The development of the MDO system is complex and the result appears to be intractable and time consuming despite the availability of high-speed super computers. Due to the fact that many disciplines and analyses were implemented with various optimization methods and techniques, such as the Finite Element Method (FEM), Method of Moment (MoM), the Finite Difference Time Domain (FDTD) method, the integration of multiple individual disciplines with various software coding formats would be the most difficult task. In spite of this expected challenge, this paper will address: (a) The effects and benefits of employing the EM discipline in MDO systems in preliminary configuration design of aircraft structure. (b) The criteria to minimize backscattered field return while maximizing aerodynamic performance and the methods of optimization, trade-off, and implementation. (c) The integration issue of electromagnetic discipline into the grand scheme of MDO. Furthermore, this paper explores the

  12. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079

  13. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  14. Numerical investigation of the aerodynamic performance for the newly designed cavity vane type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Suffer, K. H.; Usubamatov, R.; Quadir, G. A.; Ismail, K. A.

    2015-05-01

    Research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The power generated by vertical axis wind turbines is strongly dependent on the aerodynamic performance of the turbines. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic (CFD) software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.

  15. Analysis and compilation of missile aerodynamic data. Volume 2: Performance analysis

    NASA Technical Reports Server (NTRS)

    Burkhalter, J. E.

    1977-01-01

    A general analysis is given of the flight dynamics of several surface-to-air and two air-to-air missile configurations. The analysis involves three phases: vertical climb, straight and level flight, and constant altitude turn. Wind tunnel aerodynamic data and full scale missile characteristics are used where available; unknown data are estimated. For the constant altitude turn phase, a three degree of freedom flight simulation is used. Important parameters considered in this analysis are the vehicle weight, Mach number, heading angle, thrust level, sideslip angle, g loading, and time to make the turn. The actual flight path during the turn is also determined. Results are presented in graphical form.

  16. Models for evaluating the performability of degradable computing systems

    NASA Technical Reports Server (NTRS)

    Wu, L. T.

    1982-01-01

    Recent advances in multiprocessor technology established the need for unified methods to evaluate computing systems performance and reliability. In response to this modeling need, a general modeling framework that permits the modeling, analysis and evaluation of degradable computing systems is considered. Within this framework, several user oriented performance variables are identified and shown to be proper generalizations of the traditional notions of system performance and reliability. Furthermore, a time varying version of the model is developed to generalize the traditional fault tree reliability evaluation methods of phased missions.

  17. Aerodynamic performance of a new LM 17.2 m rotor

    NASA Astrophysics Data System (ADS)

    Rasmussen, F.

    1985-03-01

    The aerodynamic properties of a 17.2 m diameter rotor mounted on a 55 kW windmill were measured. Power curves were measured for a range of blade tip angles to find the best angle in relation to energy production and stalling characteristics. With this optimum blade setting the flapwise blade root bending moment was measured as a function of wind speed. The drag coefficient at 90 deg angle of attack was calculated from measurements of the integrated value, i.e., the flapwise blade root bending moment as a function of wind speed during stand still. Profile properties are estimated from aerodynamic calculations, and the results compared to profile data from three dimensional wind tunnel measurements. The flapwise blade root bending moment versus blade angular position during one revolution was measured in skew wind and compared with calculations. The influence of surface roughnes introduced at a certain percentage of the section chord and the dependency on the Reynolds number is investigated, and discussed from observed discrepancies in the measured power curves.

  18. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathan A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  19. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  20. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers.

    PubMed

    Kaneko, Tatsuo; Thi, Tran Hang; Shi, Dong Jian; Akashi, Mitsuru

    2006-12-01

    Aliphatic polyesters, such as poly(lactic acid), which degrade by hydrolysis, from naturally occurring molecules form the main components of biodegradable plastics. However, these polyesters have become substitutes for only a small percentage of the currently used plastic materials because of their poor thermal and mechanical properties. Polymers that degrade into natural molecules and have a performance closer to that of engineering plastics would be highly desirable. Although the use of a high-strength filler such as a bacterial cellulose or modified lignin greatly increases the plastic properties, it is the matrix polymer that determines the intrinsic properties of the composite. The introduction of an aromatic component into the thermoplastic polymer backbone is an efficient method to intrinsically improve the material performance. Here, we report the preparation of environmentally degradable, liquid crystalline, wholly aromatic polyesters. The polyesters were derived from polymerizable plant-derived chemicals--in other words, 'phytomonomers' that are widely present as lignin biosynthetic precursors. The mechanical performance of these materials surpasses that of current biodegradable plastics, with a mechanical strength, sigma, of 63 MPa, a Young's modulus, E, of 16 GPa, and a maximum softening temperature of 169 degrees C. On light irradiation, their mechanical properties improved further and the rate of hydrolysis accelerated.

  1. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tatsuo; Thi, Tran Hang; Shi, Dong Jian; Akashi, Mitsuru

    2006-12-01

    Aliphatic polyesters, such as poly(lactic acid), which degrade by hydrolysis, from naturally occurring molecules form the main components of biodegradable plastics. However, these polyesters have become substitutes for only a small percentage of the currently used plastic materials because of their poor thermal and mechanical properties. Polymers that degrade into natural molecules and have a performance closer to that of engineering plastics would be highly desirable. Although the use of a high-strength filler such as a bacterial cellulose or modified lignin greatly increases the plastic properties, it is the matrix polymer that determines the intrinsic properties of the composite. The introduction of an aromatic component into the thermoplastic polymer backbone is an efficient method to intrinsically improve the material performance. Here, we report the preparation of environmentally degradable, liquid crystalline, wholly aromatic polyesters. The polyesters were derived from polymerizable plant-derived chemicals-in other words, `phytomonomers' that are widely present as lignin biosynthetic precursors. The mechanical performance of these materials surpasses that of current biodegradable plastics, with a mechanical strength, σ, of 63MPa, a Young's modulus, E, of 16GPa, and a maximum softening temperature of 169∘C. On light irradiation, their mechanical properties improved further and the rate of hydrolysis accelerated.

  2. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  3. Effects of icing on the aerodynamic performance of high lift airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, L. N.; Phaengsook, N.; Bangalore, A.

    1993-01-01

    A 2D compressible Navier-Stokes solver capable of analyzing multi-element airfoils is described. The flow field is divided into multiple zones. In each zone, the governing equations are solved using an implicit finite difference scheme. The flow solver is validated through a study of the aerodynamic characteristics of a GA(W)-1 configuration, for which good quality measured surface pressure data and load data are available. The solver is next applied to a study of the effects of icing on an iced 5-element airfoil configuration, experimentally studied at NASA Lewis Research Center. It is demonstrated that the formation of ice over the leading edge slat and the main airfoil can lead to significant flow separation, and a significant loss in lift, compared to clean configurations.

  4. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor Hugo

    Wind turbines operate within the atmospheric boundary layer (ABL) which gives rise to turbulence among other flow phenomena. There are several factors that contribute to turbulent flow: The operation of wind turbines in two layers of the atmosphere, the surface layer and the mixed layer. These layers often have unstable wind conditions due to the daily heating and cooling of the atmosphere which creates turbulent thermals. In addition, wind turbines often operate in the wake of upstream turbines such as in wind farms; where turbulence generated by the rotor can be compounded if the turbines are not sited properly. Although turbulent flow conditions are known to affect performance, i.e. power output and lifespan of the turbine, the flow mechanisms by which atmospheric turbulence and other external conditions (such as blade debris contamination) adversely impact wind turbines are not known in enough detail to address these issues. The main objectives of the current investigation are thus two-fold: (i) to understand the interaction of the turbulent integral length scales and surface roughness on the blade and its effect on aerodynamic performance, and (ii) to develop and apply flow control (both passive and active) techniques to alleviate some of the adverse fluid dynamics phenomena caused by the atmosphere (i.e. blade contamination) and restore some of the aerodynamic performance loss. In order to satisfy the objectives of the investigation, a 2-D blade model based on the S809 airfoil for horizontal axis wind turbine (HAWT) applications was manufactured and tested at the Johns Hopkins University Corrsin Stanley Wind Tunnel facility. Additional levels of free stream turbulence with an intensity of 6.14% and integral length scale of about 0.321 m was introduced into the flow via an active grid. The free stream velocity was 10 m/s resulting in a Reynolds number based on blade chord of Rec ≃ 2.08x105. Debris contamination on the blade was modeled as surface roughness

  5. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  6. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  7. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  8. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  9. Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance.

    PubMed

    Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P

    2014-02-01

    A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack

  10. Aerodynamic performance of a fully film cooled core turbine vane tested with cold air in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1975-01-01

    The aerodynamic performance of a fully film cooled core turbine vane was investigated experimentally in a two-dimensional cascade of 10 vanes. Three of the 10 vanes were cooled; the others were solid (uncooled) vanes. Cold air was used for both the primary and coolant flows. The cascade test covered a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95 and a range of coolant flow rates to 7.5 percent of the primary flow. The coolant flow was varied by changing the coolant supply pressure. The principal measurements were cross-channel surveys of exit total pressure, static pressure, and flow angle. The results presented include exit survey data and overall performance in terms of loss, flow angle, and weight flow for the range of exit velocity ratios and coolant flows investigated. The performance of the cooled vane is compared with the performance of an uncooled vane of the same profile and also with the performance obtained with a single cooled vane in the 10-vane cascade.

  11. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  12. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  13. Validation of a computer code for analysis of subsonic aerodynamic performance of wings with flaps in combination with a canard or horizontal tail and an application to optimization

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.

    1990-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).

  14. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stocker, H. L.; Cox, D. M.; Holle, G. F.

    1977-01-01

    Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.

  15. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  16. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.

  17. Validation of a pair of computer codes for estimation and optimization of subsonic aerodynamic performance of simple hinged-flap systems for thin swept wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1988-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.

  18. Experimental and Computational Studies of Low-Speed Aerodynamic Performance and Flow Characteristics around a Supersonic Biplane

    NASA Astrophysics Data System (ADS)

    Kuratani, Naoshi; Ozaki, Shuichi; Obayashi, Shigeru; Ogawa, Toshihiro; Matsuno, Takashi; Kawazoe, Hiromitsu

    One of the most critical technical issues with regard to supersonic commercial transportation is the sonic boom that occurs during supersonic cruising flight, which causes impulsive noise on the ground. The “supersonic biplane theory” has been proposed to reduce the sonic boom. Shock wave interaction and cancellation between the wings of a supersonic biplane can be realized at a specific design Mach number, but does not work at off-design values. Here, the low-speed aerodynamic performance, as off-design performance, of a baseline supersonic biplane was investigated and discussed using experimental and computational fluid dynamics approaches. The thin airfoil stall characteristics of a supersonic biplane were shown to be caused by the stall of both upper and lower wings at an angle of attack of 20°. Although there was leading flow separation of the upper wing at lower angles of attack, the stall of the lower wing was suppressed by interference with the upper wing. The lift of the lower wing was almost dominant to produce the lift of the supersonic biplane in the low-speed range. However, the lower wing caused greater drag than the upper wing at higher angles of attack.

  19. Improvement of the cruise performances of a wing by means of aerodynamic optimization. Validation with a Far-Field method

    NASA Astrophysics Data System (ADS)

    Jiménez-Varona, J.; Ponsin Roca, J.

    2015-06-01

    Under a contract with AIRBUS MILITARY (AI-M), an exercise to analyze the potential of optimization techniques to improve the wing performances at cruise conditions has been carried out by using an in-house design code. The original wing was provided by AI-M and several constraints were posed for the redesign. To maximize the aerodynamic efficiency at cruise, optimizations were performed using the design techniques developed internally at INTA under a research program (Programa de Termofluidodinámica). The code is a gradient-based optimizaa tion code, which uses classical finite differences approach for gradient computations. Several techniques for search direction computation are implemented for unconstrained and constrained problems. Techniques for geometry modifications are based on different approaches which include perturbation functions for the thickness and/or mean line distributions and others by Bézier curves fitting of certain degree. It is very e important to afford a real design which involves several constraints that reduce significantly the feasible design space. And the assessment of the code is needed in order to check the capabilities and the possible drawbacks. Lessons learnt will help in the development of future enhancements. In addition, the validation of the results was done using also the well-known TAU flow solver and a far-field drag method in order to determine accurately the improvement in terms of drag counts.

  20. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance.

    PubMed

    Faulhammer, Eva; Wahl, Verena; Zellnitz, Sarah; Khinast, Johannes G; Paudel, Amrit

    2015-08-01

    This study aims to investigate the effect of carrier characteristics and dosator capsule filling operation on the in vitro deposition of mixtures containing salbutamol sulphate (SS) and lactose and mannitol as model carrier materials. The carrier surfaces of lactose and mannitol were modified via wet decantation. The impact of the decantation process on the properties of carriers was investigated by laser diffraction, density and powder flow measurements, N2 physisorption, small and wide angle X-ray scattering (SWAXS) and scanning electron microscopy (SEM). Differences in carrier type and untreated and decanted materials were identified and the SAXS measurements proved to be a promising technology confirming the successful removal of fines. Adhesive carrier API mixtures with carrier-to-API ratio of 99:1 wt% were prepared, mixture homogeneity was tested and subsequently the mixtures were filled into capsules at different process settings. Finally, the influence of the decantation process on the in vitro performance of the adhesive mixtures was tested with a next generation impactor. For lactose, the decantation decreased the fine particle fraction (FPF) of SS, whereas the FPF of mannitol as a carrier was only affected by the capsule filling process. In summary, the DPI formulation based on untreated lactose, especially by capsule filling using a dosing chamber to powder layer (compression) ratio of 1:2, proved to be superior in terms of the dosing accuracy (RSD<0.8%) and the in vitro aerodynamic performance (FPF of 12%).

  1. An analytical model for predicting the aerodynamic performance of a turbine cascade with film cooling

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.; Tabakoff, W.

    1977-01-01

    Various analytical approaches to predicting the performance of film cooled turbine blades are reviewed. A two-dimensional cascade flow solution is developed for calculating the effects of the coolant injection on the total flow field. This solution is used with an available analytical performance predicting method to provide an improved method. Comparisons are made with experimental data and other analytical results.

  2. Insights into PEMFC Performance Degradation from HCl in Air

    SciTech Connect

    O Baturina; A Epshteyn; P Northrup; K Swider-Lyons

    2011-12-31

    The performance degradation of a proton exchange membrane fuel cell (PEMFC) is studied in the presence of HCl in the air stream. The cathode employing carbon-supported platinum nanoparticles (Pt/C) was exposed to 4 ppm HCl in air while the cell voltage was held at 0.6 V. The HCl poisoning results in generation of chloride and chloroplatinate ions on the surface of Pt/C catalyst as determined by a combination of electrochemical tests and ex-situ chlorine K-edge X-Ray absorption near-edge structure (XANES) spectroscopy. The chloride ions inhibit the oxygen reduction reaction (ORR) and likely affect the wetting properties of diffusion media/catalyst layer, while the chloroplatinate ions are responsible for enhanced platinum particle growth most likely due to platinum dissolution-redeposition. The chloride ions can cause corrosion of the Pt nanoparticles in the presence of aqueous HCl in air even if no potential is applied. Although the majority of chloride ions are desorbed from the Pt surface by hydrogen treatment of the cathode, they partially remain in the system and re-adsorb on platinum at cell voltages of 0.5-0.9 V. Chloride ions are removed from the system and fuel cell performance at 0.5-0.7 V is restored by multiple exposures to low potentials.

  3. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  4. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the

  5. The effect of incidence angle on the overall three-dimensional aerodynamic performance of a classical annular airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Fleeter, S.

    1983-01-01

    To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.

  6. Low-speed wind-tunnel investigation of the aerodynamic and acoustic performance of a translating grid choked flow inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Miller, B. A.; Golladay, R. L.

    1974-01-01

    The aerodynamic and acoustic performance of a translating grid choked-flow inlet was determined in a low-speed wind tunnel at free-stream velocities of 24, 32, and 45 m/sec and incidence angles of 0, 10, 20, 30, 35, 40, 45, and 50 deg. The inlet was sized to fit a 13.97- centimeter-diameter fan with a design weight flow of 2.49 kg/sec. Measurements were made to determine inlet total pressure recovery, flow distortion, and sound pressure level for both choked and unchoked geometries over a range of inlet weight flows. For the unchoked geometry, inlet total pressure recovery ranged from 0.983 to 0.989 at incidence angles less than 40 deg. At 40 deg incidence angle, inlet cowl separation was encountered which resulted in lower values of pressure recovery and higher levels of fan broadband noise. For the choked geometry, increasing total pressure losses occurred with increasing inlet weight flow that prevented the inlet from reaching full choked conditions with the particular fan used. These losses were attributed to the high Mach number drag rise characteristics of airfoil grid. At maximum attainable inlet weight flow, the total pressure recovery at static conditions was 0.935. The fan blade passing frequency and other fan generated pure tones were eliminated from the noise spectrum, but the broadband level was increased.

  7. Cool and Quiet: Partnering to Enhance the Aerodynamic and Acoustic Performance of Installed Electronics Cooling Fans: A White Paper

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.

    2006-01-01

    Breathtaking images of distant planets. Spacewalks to repair a telescope in orbit. Footprints on the moon. The awesome is made possible by the mundane. Every achievement in space exploration has relied on solid, methodical advances in engineering. Space exploration fuels economic development like no other endeavor can. But which advances will make their way into our homes and businesses? And how long will it take? Answers to these questions are dependent upon industrial involvement in government sponsored research initiatives, market demands, and timing. Recognizing an opportunity is half the battle. This proposal describes the framework for a collaborative research program aimed at improving the aerodynamic and acoustic performance of electronics cooling fans. At its best, the program would involve NASA and academic researchers, as well as corporate researchers representing the Information Technology (IT) and fan manufacturing industries. The momentum of space exploration, the expertise resultant from the nation's substantial investment in turbofan noise reduction research, and the competitiveness of the IT industry are intended to be catalysts of innovation.

  8. Effect of Inlet Clearance on the Aerodynamic Performance of a Centrifugal Blower

    NASA Astrophysics Data System (ADS)

    Hariharan, C.; Govardhan, M.

    2016-09-01

    The present work reports the effect of inlet clearance on the performance of a centrifugal blower, with parallel wall volute, over its full operating range. For a particular impeller configuration, four volutes based on constant angular momentum principle, have been designed and analysed numerically for varying inlet clearances ranging from 0 mm (ideal clearance) to 5 mm. The computational methodology is validated using experimental data. The results indicate that as the clearance increases, the impeller performance in terms of both static and total pressure rise deteriorate. Further, the stage performances deteriorate in terms of efficiency and specific work for all mass flow rates. However, the performance of volute improves at lower mass flow rates compared to the Best Efficiency Point (BEP). A set of correlations have been developed to predict the change in stage performance as a function of clearance ratio. The non-dimensional values of change in specific work, isentropic efficiency and static pressure are found to be same irrespective of the shape of the volute.

  9. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  10. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 2: Performance with coolant flow ejection at temperature ratios up to 2

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Kofskey, M. G.

    1977-01-01

    The aerodynamic performance of a 0.5 aspect ratio turbine vane configuration with coolant flow ejection was experimentally determined in a full annular cascade. The vanes were tested at a nominal mean section ideal critical velocity ratio of 0.890 over a range of primary to coolant total temperature ratio from 1.0 to 2.08 and a range of coolant to primary total pressure ratio from 1.0 to 1.4 which corresponded to coolant flows from 3.0 to 10.7 percent of the primary flow. The variations in primary and thermodynamic efficiency and exit flow conditions with circumferential and radial position were obtained.

  11. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John

    2002-01-01

    A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.

  12. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  13. Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level.

    PubMed

    Supej, M; Saetran, L; Oggiano, L; Ettema, G; Šarabon, N; Nemec, B; Holmberg, H-C

    2013-02-01

    This investigation was designed to (a) develop an individualized mechanical model for measuring aerodynamic drag (F(d) ) while ski racing through multiple gates, (b) estimate energy dissipation (E(d) ) caused by F(d) and compare this to the total energy loss (E(t) ), and (c) investigate the relative contribution of E(d) /E(t) to performance during giant slalom skiing (GS). Nine elite skiers were monitored in different positions and with different wind velocities in a wind tunnel, as well as during GS and straight downhill skiing employing a Global Navigation Satellite System. On the basis of the wind tunnel measurements, a linear regression model of drag coefficient multiplied by cross-sectional area as a function of shoulder height was established for each skier (r > 0.94, all P < 0.001). Skiing velocity, F(d) , E(t) , and E(d) per GS turn were 15-21 m/s, 20-60 N, -11 to -5 kJ, and -2.3 to -0.5 kJ, respectively. E(d) /E(t) ranged from ∼5% to 28% and the relationship between E(t) /v(in) and E(d) was r = -0.12 (all NS). In conclusion, (a) F(d) during alpine skiing was calculated by mechanical modeling, (b) E(d) made a relatively small contribution to E(t) , and (c) higher relative E(d) was correlated to better performance in elite GS skiers, suggesting that reducing ski-snow friction can improve this performance. PMID:23121340

  14. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  15. NASP aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  16. Aerodynamic optimization, comparison, and trim design of canard and conventional high performance general aviation configurations

    NASA Technical Reports Server (NTRS)

    Keith, M. W.; Selberg, B. P.

    1983-01-01

    A design study has been conducted to optimize trim cruise flight of high performance general aviation canard aircraft which achieve minimum drag. In order to investigate the advantages and disadvantages of canard configured aircraft, corresponding conventional tail-aft 'baseline' aircraft were designed and used for comparison. Two-dimensional predictions were obtained by coupling inviscid results from a vortex panel multi-element program to a momentum integral boundary layer analysis. Using the results of the two-dimensional vortex panel analysis, a vortex lattice method was employed to predict the finite wing results. The analysis utilized a turbulent airfoil and a natural laminar airfoil which are two NASA state-of-the-art airfoil sections. The canard aircraft designs give quantitative results of wing and canard loadings, wing-to-canard moment arm ratios, and aspect ratio effects for trim cruise flight for a wide range of wing-to-canard area ratios. Both canard and baseline aircraft achieved a 25 to 30 percent improvement in performance over typical current technology aircraft, but high canard loading necessary for trim resulted in slightly poorer performance of the canard aircraft as compared to the baseline designs.

  17. Iterative learning control applied to a non-linear vortex panel model for improved aerodynamic load performance of wind turbines with smart rotors

    NASA Astrophysics Data System (ADS)

    Blackwell, Mark W.; Tutty, Owen R.; Rogers, Eric; Sandberg, Richard D.

    2016-01-01

    The inclusion of smart devices in wind turbine rotor blades could, in conjunction with collective and individual pitch control, improve the aerodynamic performance of the rotors. This is currently an active area of research with the primary objective of reducing the fatigue loads but mitigating the effects of extreme loads is also of interest. The aerodynamic loads on a wind turbine blade contain periodic and non-periodic components and one approach is to consider the application of iterative learning control algorithms. In this paper, the control design is based on a simple, in relative terms, computational fluid dynamics model that uses non-linear wake effects to represent flow past an airfoil. A representation for the actuator dynamics is included to undertake a detailed investigation into the level of control possible and on how performance can be effectively measured.

  18. Aerodynamic design guidelines and computer program for estimation of subsonic wind tunnel performance

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Mort, K. W.; Jope, J.

    1976-01-01

    General guidelines are given for the design of diffusers, contractions, corners, and the inlets and exits of non-return tunnels. A system of equations, reflecting the current technology, has been compiled and assembled into a computer program (a user's manual for this program is included) for determining the total pressure losses. The formulation presented is applicable to compressible flow through most closed- or open-throat, single-, double-, or non-return wind tunnels. A comparison of estimated performance with that actually achieved by several existing facilities produced generally good agreement.

  19. Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward

    2014-01-01

    The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.

  20. The effect of shielding on the aerodynamic performance of Savonius wind turbines

    NASA Astrophysics Data System (ADS)

    Morcos, S. M.; Khalafallah, M. G.; Heikel, H. A.

    The effect of the flat plate shield on the performance of two-bladed Savonius rotor has been experimentally determined. Tests were carried out in a low speed wind tunnel with a working section of 1.0 sq m. Flat plate shields with various values of plate width and inclination angle were tested in order to determine the optimum configuration. The maximum power coefficient of the Savonius rotor was increased from 0.22 for the case without shielding to 0.34 for the case with an optimum shielding configuration. The addition of a flat plate shield to the Savonius rotor can, therefore, enhance the power coefficient to values approaching the more elaborate wind turbines without affecting the simplicity of the Savonius rotor.

  1. The aerodynamic performance of several flow control devices for internal flow systems

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.

    1982-01-01

    An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.

  2. Aerodynamic performance investigation of advanced mechanical suppressor and ejector nozzle concepts for jet noise reduction

    NASA Technical Reports Server (NTRS)

    Wagenknecht, C. D.; Bediako, E. D.

    1985-01-01

    Advanced Supersonic Transport jet noise may be reduced to Federal Air Regulation limits if recommended refinements to a recently developed ejector shroud exhaust system are successfully carried out. A two-part program consisting of a design study and a subscale model wind tunnel test effort conducted to define an acoustically treated ejector shroud exhaust system for supersonic transport application is described. Coannular, 20-chute, and ejector shroud exhaust systems were evaluated. Program results were used in a mission analysis study to determine aircraft takeoff gross weight to perform a nominal design mission, under Federal Aviation Regulation (1969), Part 36, Stage 3 noise constraints. Mission trade study results confirmed that the ejector shroud was the best of the three exhaust systems studied with a significant takeoff gross weight advantage over the 20-chute suppressor nozzle which was the second best.

  3. Characterization of Aerodynamic Performance of Boundary-Layer-Ingesting Inlet Under Crosswind

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Lee, Byung Joon

    2012-01-01

    NASA has been studying future transport concepts, envisioned to be technically realizable in the timeframe of 2020-2030, to meet environmental and performance goals. One concept receiving considerable interest involves a propulsion system embedded into a hybrid wing-body aircraft. While offering significant advantages in fuel savings and noise reduction by this concept, there are several technical challenges that are not encountered in the current fleet and must be overcome so as to deliver target performance and operability. One of these challenges is associated with an inlet system that ingests a significantly thick boundary layer, developing along the wing-body surface, into a serpentine diffuser before the flow meeting fan blades. The flow is subject to considerable total pressure loss and distorted at the fan face, much more significantly than in the inlet system of conventional aircraft. In our previous studies [1, 2], we have shown that through innovative design changes on the airframe surface, it is possible to simultaneously increase total pressure recovery and decrease distortion in the flow, without resorting to conventional penalty-ridden flow control concepts, such as vortex generator or boundary layer bleeding/suction. In the current study, we are interested in understanding the following issues: how the embedded propulsion system performs under a crosswind condition by studying in detail the flow characteristics of two inlets, the baseline and another optimized previously under the cruise condition. With the insight, it is hoped that it can help in the follow-on study by devising effective strategies to minimize flow distortion arising from the integration of an embedded-engine system into an airframe to the level acceptable to the operation and fuel consumption before 2030. To achieve these demanding goals, non-conventional concepts are called for; but technology gap is too big that it requires evolutionary approach by focusing various concepts and

  4. On-Orbit Performance Degradation of the International Space Station P6 Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gustafson, Eric D.

    2003-01-01

    This paper discusses the on-orbit performance and performance degradation of the International Space Station P6 solar array wings (SAWs) from the period of December 2000 through February 2003. Data selection considerations and data reduction methods are reviewed along with the approach for calculating array performance degradation based on measured string shunt current levels. Measured degradation rates are compared with those predicted by the computational tool SPACE and prior degradation rates measured with the same SAW technology on the Mir space station. Initial results show that the measured SAW short-circuit current is degrading 0.2 to 0.5 percent per year. This degradation rate is below the predicted rate of 0.8 percent per year and is well within the 3 percent estimated uncertainty in measured SAW current levels. General contributors to SAW degradation are briefly discussed.

  5. Simulation and experiment research of aerodynamic performance of small axial fans with struts

    NASA Astrophysics Data System (ADS)

    Chu, Wei; Lin, Peifeng; Zhang, Li; Jin, Yingzi; Wang, Yanping; Kim, Heuy Dong; Setoguchi, Toshiaki

    2016-06-01

    Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream of the rotor. The cross section of the struts is changed to the cylindrical shapes for the investigation: one is in the same hydraulic diameter as the square struts and another one is in the same cross section as the square struts. Influence of the shape of the struts on the static pressure characteristics, the internal flow and the sound emission of the small axial fans are studied. Standard K-ɛ turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field, and the curves of the pressure rising against the flow rate are obtained, which demonstrates that the simulation results are in nice consistence with the experimental data. The steady calculation results are set as the initial field in the unsteady calculation. Large eddy simulation and PISO algorithm are used in the transient calculation, and the Ffowcs Williams-Hawkings model is introduced to predict the sound level at the eight monitoring points. The research results show that: the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square struts, and the efficiencies increase by about 28.6%. The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts.

  6. Assessment of an Unstructured-Grid Method for Predicting Aerodynamic Performance of Jet Flaps

    NASA Technical Reports Server (NTRS)

    Cruz, Josue; Anders, Scott G.

    2006-01-01

    The application of a Computational Fluid Dynamics tool to a jet flap control effector on an elliptical airfoil-section wing was investigated. The study utilized the Tetrahedral Unstructured Software System developed at NASA Langley Research Center. The Reynolds-averaged Navier-Stokes flow solver code used was USM3D. The CFD-based jet flap simulations were compared to experimental results from a wind tunnel test conducted at the NASA Langley Transonic Dynamics Tunnel. The wind tunnel model consisted of a six percent thick elliptical airfoil with a modified trailing edge. The jet flap was located at 95% chord and exited at 90 degrees to the lower surface. The experimental model was designed to promote two-dimensional flow across the wing. It was found that the CFD simulation had to model the three-dimensional geometry of the experiment in order to obtain good agreement. Tests were performed at two Mach numbers at several different jet momentum coefficients. In order to be consistent with the experimental method, the CFD lift and pitching moment values were determined by integrating the pressures over the wing.

  7. Evaluation of the performance degradation at PAFC effect of electrolyte fill-level on electrode performance

    SciTech Connect

    Kitai, Takashi; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this report, we will exhibit the effect of the electrolyte fill-level on the electrode performances.

  8. Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6). [for short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Stakolich, E. G.

    1974-01-01

    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle.

  9. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  10. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.

    PubMed

    Zhong, Yuanhong; Liang, Xiaoliang; Zhong, Yin; Zhu, Jianxi; Zhu, Sanyuan; Yuan, Peng; He, Hongping; Zhang, Jing

    2012-10-01

    Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, could negatively affect various aspects of mammalian and human physiology, which triggers effective techniques for its removal. In this work, the degradation characteristics of TBBPA in heterogeneous UV/Fenton reaction catalyzed by titanomagnetite (Fe(3-x)Ti(x)O₄) were studied. Batch tests were conducted to evaluate the effects of titanomagnetite dosage, H₂O₂ concentration and titanium content in magnetite on TBBPA degradation. In the system with 0.125 g L⁻¹ of Fe₂.₀₂Ti₀.₉₈O₄ and 10 mmol L⁻¹) of H₂O₂, almost complete degradation of TBBPA (20 mg L⁻¹) was accomplished within 240 min UV irradiation at pH 6.5. The titanium incorporation obviously enhanced the catalytic activity of magnetite. As shown by the XRD and XANES results, titanomagnetite had a spinel structure with Ti⁴⁺ occupying the octahedral sites. On the basis of the degradation products identified by GC-MS, the degradation pathways of TBBPA were proposed. TBBPA possibly underwent the sequential debromination to form TriBBPA, DiBBPA, MonoBBPA and BPA, and β-scission to generate seven brominated compounds. All of these products were finally completely removed from reaction solution. In addition, the reused catalyst Fe₂.₀₂Ti₀.₉₈O₄ still retained the catalytic activity after three cycles, indicating that titanomagnetite had good stability and reusability. These results demonstrated that heterogeneous UV/Fenton reaction catalyzed by titanomagnetite is a promising advanced oxidation technology for the treatment of wastewater containing TBBPA. PMID:22784808

  11. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.

    PubMed

    Zhong, Yuanhong; Liang, Xiaoliang; Zhong, Yin; Zhu, Jianxi; Zhu, Sanyuan; Yuan, Peng; He, Hongping; Zhang, Jing

    2012-10-01

    Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, could negatively affect various aspects of mammalian and human physiology, which triggers effective techniques for its removal. In this work, the degradation characteristics of TBBPA in heterogeneous UV/Fenton reaction catalyzed by titanomagnetite (Fe(3-x)Ti(x)O₄) were studied. Batch tests were conducted to evaluate the effects of titanomagnetite dosage, H₂O₂ concentration and titanium content in magnetite on TBBPA degradation. In the system with 0.125 g L⁻¹ of Fe₂.₀₂Ti₀.₉₈O₄ and 10 mmol L⁻¹) of H₂O₂, almost complete degradation of TBBPA (20 mg L⁻¹) was accomplished within 240 min UV irradiation at pH 6.5. The titanium incorporation obviously enhanced the catalytic activity of magnetite. As shown by the XRD and XANES results, titanomagnetite had a spinel structure with Ti⁴⁺ occupying the octahedral sites. On the basis of the degradation products identified by GC-MS, the degradation pathways of TBBPA were proposed. TBBPA possibly underwent the sequential debromination to form TriBBPA, DiBBPA, MonoBBPA and BPA, and β-scission to generate seven brominated compounds. All of these products were finally completely removed from reaction solution. In addition, the reused catalyst Fe₂.₀₂Ti₀.₉₈O₄ still retained the catalytic activity after three cycles, indicating that titanomagnetite had good stability and reusability. These results demonstrated that heterogeneous UV/Fenton reaction catalyzed by titanomagnetite is a promising advanced oxidation technology for the treatment of wastewater containing TBBPA.

  12. Performance of an aerodynamic yaw controller mounted on the space shuttle orbiter body flap at Mach 10

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.

    1995-01-01

    A wind-tunnel investigation of the effectiveness of an aerodynamic yaw controller mounted on the lower surface of a shuttle orbiter model body flap was conducted in the Langley 31-Inch Mach 10 Tunnel. The controller consisted of a 60 deg delta fin mounted perpendicular to the body flap lower surface and yawed 30 deg to the free stream direction. The control was tested at angles of attack from 20 deg to 40 deg at zero sideslip for a Reynolds number based on wing mean aerodynamic chord of 0.66 x 10(exp 6). The aerodynamic and control effectiveness characteristics are presented along with an analysis of the effectiveness of the controller in making a bank maneuver for Mach 18 flight conditions. The controller was effective in yaw and produced a favorable rolling moment. The analysis showed that the controller was as effective as the reaction control system in making the bank maneuver. These results warrant further studies of the aerodynamic/aerothermodynamic characteristics of the control concept for application to future transportation vehicles.

  13. Nonlinear degradation-enhanced transport of morphogens performing subdiffusion.

    PubMed

    Fedotov, Sergei; Falconer, Steven

    2014-01-01

    We study a morphogen gradient formation under nonlinear degradation and subdiffusive transport. In the long-time limit, we obtain the nonlinear effect of degradation-enhanced diffusion, resulting from the interaction of non-Markovian subdiffusive transport with a nonlinear reaction. We find the stationary profile of power-law type, which has implications for robustness, with the shape of the profile being controlled by the anomalous exponent. Far away from the source of morphogens, any changes in the rate of production are not felt.

  14. Computational aerodynamics and supercomputers

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1984-01-01

    Some of the progress in computational aerodynamics over the last decade is reviewed. The Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans are described.

  15. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  16. Steady and Unsteady Aerodynamics of Thin Airfoils with Porosity Gradients

    NASA Astrophysics Data System (ADS)

    Hajian, Rozhin; Jaworski, Justin W.

    2015-11-01

    Porous treatments have been shown in previous studies to reduce turbulence noise generation from the edges of wings and blades. However, this acoustical benefit can come at the cost of aerodynamic performance that is degraded by seepage flow through the wing. To better understand the trade-off between acoustic stealth and the desired airfoil performance, the aerodynamic loads of a thin airfoil in uniform flow with a prescribed porosity distribution are determined analytically in closed form, provided that the distribution is Hölder-continuous. The theoretical model is extended to include unsteady heaving and pitching motions of the airfoil section, which has applications to the performance estimation of biologically-inspired swimmers and fliers and to the future assessment of vortex noise production from porous airfoils.

  17. DEGRADATION OF EMISSIONS CONTROL PERFORMANCE OF WOODSTOVES IN CRESTED BUTTE, CO

    EPA Science Inventory

    The report discusses the degradation of emissions control performance of woodstoves in Crested Butte, Colorado. Four seasons of field monitoring of EPA-certified woodstoves in and around Crested Butte has demonstrated some significant failures in emissions control performance. In...

  18. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  19. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    NASA Astrophysics Data System (ADS)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  20. Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment

    NASA Astrophysics Data System (ADS)

    Jiang, Huiming; Chen, Jin; Dong, Guangming

    2016-05-01

    Hidden Markov model (HMM) has been widely applied in bearing performance degradation assessment. As a machine learning-based model, its accuracy, subsequently, is dependent on the sensitivity of the features used to estimate the degradation performance of bearings. It's a big challenge to extract effective features which are not influenced by other qualities or attributes uncorrelated with the bearing degradation condition. In this paper, a bearing performance degradation assessment method based on HMM and nuisance attribute projection (NAP) is proposed. NAP can filter out the effect of nuisance attributes in feature space through projection. The new feature space projected by NAP is more sensitive to bearing health changes and barely influenced by other interferences occurring in operation condition. To verify the effectiveness of the proposed method, two different experimental databases are utilized. The results show that the combination of HMM and NAP can effectively improve the accuracy and robustness of the bearing performance degradation assessment system.

  1. Cold-air annular-cascade investigation of aerodynamic performance of cooled turbine vanes. 2: Trailing-edge ejection, film cooling, and transpiration cooling

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Mclallin, K. L.

    1975-01-01

    The aerodynamic performance of four different cooled vane configurations was experimentally determined in a full-annular cascade at a primary- to coolant-total-temperature ratio of 1.0. The vanes were tested over a range of coolant flow rates and pressure ratios. Overall vane efficiencies were obtained and compared, where possible, with the results obtained in a four-vane, annular-sector cascade. The vane efficiency and exit flow conditions as functions of radial position were also determined and compared with solid (uncooled) vane results.

  2. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  3. Aerodynamic characteristics of airfoils with ice accretions

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Gregorek, G. M.

    1982-01-01

    Results of a wind tunnel test to evaluate the performance of an airfoil with simulated rime ice are presented with theoretical comparisons. A NACA 65A413 airfoil was tested in the OSU 6 x 22 inch Transonic Airfoil Wind Tunnel at a Reynolds number near three million and Mach numbers from 0.20 to 0.80. The model was tested in four configurations to determine the aero-dynamic effects of the roughness and shape of a rime ice accretion. The simulated rime ice shape was obtained analytically using a time-stepping dry ice accretion computer code. Lift, drag, moment coefficients, and pressure distributions for the clean and simulated rime ice cases are reported. The measured degradation in airfoil performance is compared to an analytical method which uses existing airfoil analysis computer codes with empirical corrections for the surface roughness. A discussion of the empirical surface roughness correction and uses of other airfoil computer methods is included.

  4. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  5. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  6. Bearing Performance Degradation Assessment Using Linear Discriminant Analysis and Coupled HMM

    NASA Astrophysics Data System (ADS)

    Liu, T.; Chen, J.; Zhou, X. N.; Xiao, W. B.

    2012-05-01

    Bearing is one of the most important units in rotary machinery, its performance may vary significantly under different working stages. Thus it is critical to choose the most effective features for bearing performance degradation prediction. Linear Discriminant Analysis (LDA) is a useful method in finding few feature's dimensions that best discriminate a set of features extracted from original vibration signals. Another challenge in bearing performance degradation is how to build a model to recognize the different conditions with the data coming from different monitoring channels. In this paper, coupled hidden Markov models (CHMM) is presented to model interacting processes which can overcome the defections of the HMM. Because the input data in CHMM are collected by several sensors, and the interacting information can be fused by coupled modalities, it is more effective than HMM which used only one state chain. The model can be used in estimating the bearing performance degradation states according to several observation data. When becoming degradation pattern recognition, the new observation features should be input into the pre-trained CHMM and calculate the performance index (PI) of the outputs, the changing of PI could be used to describe the different degradation level of the bearings. The results show that PI will decline with the increase of the bearing degradation. Assessment results of the whole life time experimental bearing signals validate the feasibility and effectiveness of this method.

  7. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  8. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.; Gaubert, Michel

    1986-01-01

    A flight test program was conducted to obtain data from an upgraded Gazelle helicopter with an advanced geometry, three bladed rotor. Data were acquired on upper and lower surface chordwise blade pressure, blade bending and torsion moments, and fuselage structural loads. Results are presented from 16 individual flight conditions, including level flights ranging from 10 to 77 m/sec at 50 to 3000 m altitude, turning flights up to 2.0 g, and autorotation. Rotor aerodynamic data include information from 51 pressure transducers distributed chordwise at 75, 88, and 97% radial stations. Individual tranducer pressure coefficients and airfoil section lift and pitching moment coefficients are presented, as are steady state flight condition parameters and time dependence rotor loads. All dynamic data are presented as harmonic analysis coefficients.

  9. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  10. Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation

    SciTech Connect

    Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab

    2009-01-01

    Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  11. Development of biodegradable materials; balancing degradability and performance

    SciTech Connect

    Mayer, J.M.; Allen, A.L.; Dell, P.A.; McCassie, J.E.; Shupe, A.E.; Stenhouse, P.J. Stenhouse, Welch, E.A.; Kaplan, D.L.

    1993-12-31

    The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.

  12. Driver performance-based assessment of thermal display degradation effects

    NASA Astrophysics Data System (ADS)

    Ruffner, John W.; Massimi, Michael S.; Choi, Yoon S.; Ferrett, Donald A.

    1998-07-01

    The Driver's Vision Enhancer (DVE) is a thermal sensor and display combination currently being procured for use in U.S. Army combat and tactical wheeled vehicles. During the DVE production process, a given number of sensor or display pixels may either vary from the desired luminance values (nonuniform) or be inactive (nonresponsive). The amount and distribution of pixel luminance nonuniformity (NU) and nonresponsivity (NR) allowable in production DVEs is a significant cost factor. No driver performance-based criteria exist for determining the maximum amount of allowable NU and NR. For safety reasons, these characteristics are specified conservatively. This paper describes an experiment to assess the effects of different levels of display NU and NR on Army drivers' ability to identify scene features and obstacles using a simulated DVE display and videotaped driving scenarios. Baseline, NU, and NR display conditions were simulated using real-time image processing techniques and a computer graphics workstation. The results indicate that there is a small, but statistically insignificant decrease in identification performance with the NU conditions tested. The pattern of the performance-based results is consistent with drivers' subjective assessments of display adequacy. The implications of the results for specifying NU and NR criteria for the DVE display are discussed.

  13. Turbulence degradation and mitigation performance for handheld weapon ID

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Aghera, Sameer; Thompson, Roger; Miller, Jason

    2012-06-01

    Atmospheric turbulence can severely limit the range performance of state-of-the-art large aperture imaging sensor systems, specifically those intended for long range ground to ground target identification. Simple and cost-effective mitigation solutions which operate in real-time are desired. Software-based post-processing techniques are attractive as they lend themselves to easy implementation and integration into the back-end of existing sensor systems. Recently, various post-processing algorithms to mitigate turbulence have been developed and implemented in real-time hardware. To determine their utility in Army-relevant tactical scenarios, an assessment of the impact of the post processing on observer performance is required. In this paper, we test a set of representative turbulence mitigation algorithms on field collected data of human targets carrying various handheld objects in varying turbulence conditions. We use a controlled human perception test to assess handheld weapon identification performance before and after turbulence mitigation post-processing. In addition, novel image analysis tools are implemented to estimate turbulence strength from the scene. Results of this assessment will lead to recommendations on cost-effective turbulence mitigation strategies suitable for future sensor systems.

  14. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  15. Effects of ice accretions on aircraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Lynch, Frank T.; Khodadoust, Abdollah

    2001-11-01

    This article is a systematic and comprehensive review, correlation, and assessment of test results available in the public domain which address the aerodynamic performance and control degradations caused by various types of ice accretions on the lifting surfaces of fixed wing aircraft. To help put the various test results in perspective, overviews are provided first of the important factors and limitations involved in computational and experimental icing simulation techniques, as well as key aerodynamic testing simulation variables and governing flow physics issues. Following these are the actual reviews, assessments, and correlations of a large number of experimental measurements of various forms of mostly simulated in-flight and ground ice accretions, augmented where appropriate by similar measurements for other analogous forms of surface contamination and/or disruptions. In-flight icing categories reviewed include the initial and inter-cycle ice accretions inherent in the use of de-icing systems which are of particular concern because of widespread misconceptions about the thickness of such accretions which can be allowed before any serious consequences occur, and the runback/ridge ice accretions typically associated with larger-than-normal water droplet encounters which are of major concern because of the possible potential for catastrophic reductions in aerodynamic effectiveness. The other in-flight ice accretion category considered includes the more familiar large rime and glaze ice accretions, including ice shapes with rather grotesque features, where the concern is that, in spite of all the research conducted to date, the upper limit of penalties possible has probably not been defined. Lastly, the effects of various possible ground frost/ice accretions are considered. The concern with some of these is that for some types of configurations, all of the normally available operating margins to stall at takeoff may be erased if these accretions are not

  16. Performance degradation of the Block IV telemetry system due to the presence of a CW interference

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1982-01-01

    The presence of an in-band continuous wave interference can seriously degrade the performance of a telemetry system. Degradation effects for a phase shift keying (PSK) system can be found in Refs. 1 and 2. The telemetry system employed for deep space communications is a binary phase-shift keying system (BPSK) with squarewave subcarriers. The use of squarewave subcarriers makes the system less sensitive to in-band interference than a system using sinusoidal subcarriers. A model that allows one to predict the telemetry degradation for the deep space telemetry system is presented and backed with experimental data.

  17. Storage life of power switching transistors based on performance degradation data

    NASA Astrophysics Data System (ADS)

    Haochun, Qi; Xiaoling, Zhang; Xuesong, Xie; Changzhi, Lü; Chengju, Chen; Li, Zhao

    2014-04-01

    NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-107 h. According to its definition, the accelerating factor is 1462 in 100°C/100% relative humidity (RH) stress condition, and 25°C/25% RH stress condition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.

  18. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  19. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  20. Aerodynamic Performance and Static Stability and Control of Flat-Top Hypersonic Gliders at Mach Numbers from 0.6 to 18

    NASA Technical Reports Server (NTRS)

    Syvertson, Clarence A; Gloria, Hermilo R; Sarabia, Michael F

    1958-01-01

    A study is made of aerodynamic performance and static stability and control at hypersonic speeds. In a first part of the study, the effect of interference lift is investigated by tests of asymmetric models having conical fuselages and arrow plan-form wings. The fuselage of the asymmetric model is located entirely beneath the wing and has a semicircular cross section. The fuselage of the symmetric model was centrally located and has a circular cross section. Results are obtained for Mach numbers from 3 to 12 in part by application of the hypersonic similarity rule. These results show a maximum effect of interference on lift-drag ratio occurring at Mach number of 5, the Mach number at which the asymmetric model was designed to exploit favorable lift interference. At this Mach number, the asymmetric model is indicated to have a lift-drag ratio 11 percent higher than the symmetric model and 15 percent higher than the asymmetric model when inverted. These differences decrease to a few percent at a Mach number of 12. In the course of this part of the study, the accuracy to the hypersonic similarity rule applied to wing-body combinations is demonstrated with experimental results. These results indicate that the rule may prove useful for determining the aerodynamic characteristics of slender configurations at Mach numbers higher than those for which test equipment is really available. In a second part of the study, the aerodynamic performance and static stability and control characteristics of a hypersonic glider are investigated in somewhat greater detail. Results for Mach numbers from 3 to 18 for performance and 0.6 to 12 for stability and control are obtained by standard text techniques, by application of the hypersonic stability rule, and/or by use of helium as a test medium. Lift-drag ratios of about 5 for Mach numbers up to 18 are shown to be obtainable. The glider studied is shown to have acceptable longitudinal and directional stability characteristics through the

  1. Influence of Flow Rotation Within a Cooling Tower on the Aerodynamic Interaction with Crosswind Flow

    NASA Astrophysics Data System (ADS)

    Kashani, M. M. Hemmasian; Dobrego, K. V.

    2014-03-01

    Environmental crosswind changes the aerodynamic pattern inside a cooling tower, destroys uniform and axisymmetric distribution of flow at its inlet and outlet, and may degrade fill zone performance. In this paper, the effect of flow rotation in the over-shower zone of a natural draft cooling tower (NDCT) on the aerodynamic interaction with crosswind is studied numerically. The 3D geometry of an actual NDCT and three models of induced rotation velocity fields are utilized for simulation. It is demonstrated that flow rotation results in homogenization of the aerodynamic field in the over-shower zone. The inhomogeneity of the velocity field in the outlet cross section decreases linearly with rotation intensification. The effect of main stream switching under strong wind conditions is found. It is shown that even moderate flow rotation eliminates this effect.

  2. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  3. Mechanochemical degradation of tetrabromobisphenol A: performance, products and pathway.

    PubMed

    Zhang, Kunlun; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo; Yu, Gang

    2012-12-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), which has received more and more concerns due to its high lipophilicity, persistency and endocrine disrupting property in the environment. Considering the possible need for the safe disposal of TBBPA containing wastes in the future, the potential of mechanochemical (MC) destruction as a promising non-combustion technology was investigated in this study. TBBPA was co-ground with calcium oxide (CaO) or the mixture of iron powder and quartz sand (Fe+SiO(2)) in a planetary ball mill at room temperature. The method of Fe+SiO(2) destructed over 98% of initial TBBPA after 3h and acquired 95% debromination rate after 5h, which showed a better performance than the CaO method. Raman spectra and Fourier transform infrared spectroscopy (FTIR) demonstrated the generation of inorganic carbon with the disappearance of benzene ring and CBr bond, indicating the carbonization and debromination process during mechanochemical reaction. LC-MS-MS screening showed that the intermediates of the treatment with Fe+SiO(2) were tri-, bi-, mono-brominated BPA, BPA and other fragments. Finally all the intermediates were also destroyed after 5h grinding. The bromine balance was calculated and a possible reaction pathway was proposed. PMID:23158692

  4. Concentration system performance degradation in the aftermath of Mount Pinatubo

    SciTech Connect

    Michalsky, J.J.; Perez, R.; Seals, R.; Ineichen, P.

    1993-11-01

    Major volcanic eruptions occur every few years, but most have little effect on solar radiation or climate. However, in the last ten years two volcanoes have decreased solar radiation and influenced weather at a level that might be expected at the frequency of about once a century. The Mexican volcano El Chichon and the Philippine volcano Mount Pinatubo put 6 and 20 million metric tons of SO{sub 2} in the stratosphere, respectively. SO{sub 2} is converted into H{sub 2}SO{sub 4}, which mixes with water to produce aerosol. Since there is no weather in the stratosphere and the aerosol is small, these aerosol particles remain suspended until coagulation and sedimentation bring them to the troposphere where they are removed by normal wet and dry deposition processes. The extinction in the direct solar irradiance from El Chichon was found to peak during the winter of 1983 at about 11% for northern, mid latitudes. Mount Pinatubo`s peak extinction during 1992 was about 15%. Data from four northern, mid-latitude sites are examined to compare the direct consequences of the volcano`s eruption on the performance of concentrating solar energy systems and the indirect effects that may be associated with Mount Pinatubo`s perturbation of the weather.

  5. Degradation of radiator performance on Mars due to dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Forkapa, Mark

    1992-01-01

    An artificial mineral of the approximate elemental composition of Martian soil was manufactured, crushed, and sorted into four different size ranges. Dust particles from three of these size ranges were applied to arc-textured Nb-1 percent Zr and Cu radiator surfaces to assess their effect on radiator performance. Particles larger than 75 microns did not have sufficient adhesive forces to adhere to the samples at angles greater than about 27 deg. Pre-deposited dust layers were largely removed by clear wind velocities greater than 40 m/s, or by dust-laden wind velocities as low as 25 m/s. Smaller dust grains were more difficult to remove. Abrasion was found to be significant only in high velocity winds (89 m/s or greater). Dust-laden winds were found to be more abrasive than clear wind. Initially dusted samples abraded less than initially clear samples in dust laden wind. Smaller dust particles of the simulant proved to be more abrasive than large. This probably indicates that the larger particles were in fact agglomerates.

  6. Children's Auditory Working Memory Performance in Degraded Listening Conditions

    ERIC Educational Resources Information Center

    Osman, Homira; Sullivan, Jessica R.

    2014-01-01

    Purpose: The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It…

  7. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1983-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  8. Rotor/body aerodynamic interactions

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  9. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  10. Bifurcations in unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Unal, A.

    1986-01-01

    Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

  11. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  12. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  13. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  14. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  15. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  16. A Framework for Evaluating the Effects of Degraded Digital I and C Systems on Human Performance

    SciTech Connect

    OHara,J.; Gunther, B.; Hughes, N.; Barnes, V.

    2009-04-09

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator situation awareness and performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission has initiated a research project to investigate the effects of degraded I&C systems on human performance and plant operations. The ultimate objective of this project is to develop the technical basis for human factors review guidance for conditions of degraded I&C, including complete failure. Based on the results of this effort, NRC will determine the need for developing new guidance or revising NUREG-0800, NUREG-0711, NUREG-0700 and other pertinent NRC review guidance. This paper reports on the first phase of the research, the development of a framework for linking degraded I&C system conditions to human performance. The framework consists of three levels: I&C subsystems, human-system interfaces, and human performance. Each level is composed of a number of discrete elements. This paper will describe the elements at each level and their integration. In the next phase of the research, the framework will be used to systematically investigate the human performance consequences of various classes of failures.

  17. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle

  18. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy.

    PubMed

    Shangguan, Yongming; Sun, Lina; Wan, Peng; Tan, Lili; Wang, Chengyue; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-12-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. PMID:27612693

  19. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  20. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  1. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  2. Performance degradation of QAM based inter-satellite optical communication system under gamma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Li, Xuan

    2016-01-01

    Main devices in quadrature amplitude modulation (QAM) based inter-satellite optical communication system were irradiated to a total dose of 20 krad with the dose rate of 5 rad/s using a Co60 radiation source. Gamma irradiation impacts on devices were analyzed and on the basis, system performance degradation was simulated. Variety of system BER along with onboard working time for different inter-satellite links was presented. In addition, some adaption methods were proposed to reduce gamma irradiation induced degradation.

  3. Aerodynamics of Small Vehicles

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  4. Vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, J. H. B.; Campbell, J. F.; Young, A. D. (Editor)

    1992-01-01

    The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

  5. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-01

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability. PMID:27187246

  6. Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT.

    PubMed

    Kang, Shenghong; Liu, Shengwen; Wang, Huimin; Cai, Weiping

    2016-04-15

    Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2-5μm in planar size and 35-55nm in thickness, and ∼16m(2)/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment.

  7. "Pierce and inhale" design in capsule based dry powder inhalers: Effect of capsule piercing and motion on aerodynamic performance of drugs.

    PubMed

    Martinelli, Francesco; Balducci, Anna Giulia; Rossi, Alessandra; Sonvico, Fabio; Colombo, Paolo; Buttini, Francesca

    2015-06-20

    In this work three capsule-based dry powder inhalers, available for generics product development, were compared. Two technologically different dry powder formulations were used in order to relate the capsule piercing position and motion in the device to their aerodynamic performance. A "pierce and inhale" design, in which the capsules pierced with RS01, HandiHaler or Turbospin devices were aerosolized in the same device or transferred and aerosolized with another device, was constructed and carried out. The results obtained showed that two dry powder formulations, i.e., a drug/lactose blend or a carrier-free powder, aerosolized using capsule based inhalers, performed differently. The aerosolization of drug carrier mixture in terms of drug dispersion and emitted dose, was more sensible to the piercing and device combination than the carrier free powder. The motion of the capsule during the aerosolization boosted the powder emission, whereas the powder disaggregation was more influenced by the airflow pattern around the capsule and inside the inhaler turbulence chamber.

  8. Low-speed wind tunnel investigation of the aerodynamic and acoustic performance of a translating-centerbody choked-flow inlet

    NASA Technical Reports Server (NTRS)

    Miller, B. A.; Abbott, J. M.

    1973-01-01

    Low-speed wind-tunnel tests were conducted to determine the effects of free-stream velocity and incidence angle on the aerodynamic and acoustic performance of a translating centerbody choked-flow inlet. The inlet was sized to fit a 13.97 cm diameter fan with a design weight flow of 2.49 kg/sec. Performance was determined at free-stream velocities to 45 meters per second and incidence angles of 0 deg to 50 deg. The inlet was operated in both the choked and unchoked modes over a range of weight flows. Measurements were made of inlet total pressure recovery, flow distortion, surface static pressure distribution, and fan noise suppression. In the choked mode, increasing incidence angle tended to reduce the amount of inlet noise suppression for a given amount of inlet suction. This tendency was overcome by applying sufficient inlet suction to increase the flow Mach number. At 45 meters per second free-stream velocity, at least 22 decibels of suppression were measured at 35 deg incidence angle with a total pressure recovery of 0.985.

  9. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler® in Comparison with Diskus® and Turbohaler® Dry Powder Inhalers

    PubMed Central

    Buttini, Francesca; Brambilla, Gaetano; Copelli, Diego; Sisti, Viviana; Balducci, Anna Giulia; Bettini, Ruggero; Pasquali, Irene

    2016-01-01

    Abstract Background: European and United States Pharmacopoeia compendial procedures for assessing the in vitro emitted dose and aerodynamic size distribution of a dry powder inhaler require that 4.0 L of air at a pressure drop of 4 kPa be drawn through the inhaler. However, the product performance should be investigated using conditions more representative of what is achievable by the patient population. This work compares the delivered dose and the drug deposition profile at different flow rates (30, 40, 60, and 90 L/min) of Foster NEXThaler® (beclomethasone dipropionate/formoterol fumarate), Seretide® Diskus® (fluticasone propionate/salmeterol xinafoate), and Symbicort® Turbohaler® (budesonide/formoterol fumarate). Methods: The delivered dose uniformity was tested using a dose unit sampling apparatus (DUSA) at inhalation volumes either 2.0 or 4.0 L and flow rates 30, 40, 60, or 90 L/min. The aerodynamic assessment was carried out using a Next Generation Impactor by discharging each inhaler at 30, 40, 60, or 90 L/min for a time sufficient to obtain an air volume of 4 L. Results: Foster® NEXThaler® and Seretide® Diskus® showed a consistent dose delivery for both the drugs included in the formulation, independently of the applied flow rate. Contrary, Symbicort® Turbohaler® showed a high decrease of the emitted dose for both budesonide and formoterol fumarate when the device was operated at airflow rate lower that 60 L/min. The aerosolizing performance of NEXThaler® and Diskus® was unaffected by the flow rate applied. Turbohaler® proved to be the inhaler most sensitive to changes in flow rate in terms of fine particle fraction (FPF) for both components. Among the combinations tested, Foster NEXThaler® was the only one capable to deliver around 50% of extra-fine particles relative to delivered dose. Conclusions: NEXThaler® and Diskus® were substantially unaffected by flow rate through the inhaler in terms of both delivered dose and

  10. Synthesis of Pt3Ni microspheres with high performance for rapid degradation of organic dyes.

    PubMed

    Wang, Min; Yang, Yushi; Long, Jia; Mao, Zhou; Qiu, Tong; Wu, Qingzhi; Chen, Xiaohui

    2015-12-01

    In this study, Pt3Ni microspheres consisted of nanoparticles were synthesized without addition of surfactants via the solvothermal route. The obtained sample was characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Furthermore, the catalytic performance of as-synthesized Pt3Ni microspheres was evaluated on the degradation of different organic dyes (methylene blue, methyl orange, Congo red, and rhodamine B). The results show that different dyes were rapidly decomposed by Pt3Ni microspheres in different pathways. Among different dyes, the formation and further degradation of the intermediates was observed during the degradation of methylene blue and methyl orange, suggesting the indirect degradation process of these dyes. This study provides not only a promising catalyst for the removal of organic contaminants for environment remediation, but also new insights for Pt3Ni alloy as a high-performance catalyst in organic synthesis.

  11. Unsteady transonic aerodynamics

    SciTech Connect

    Nixon, D.

    1989-01-01

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows.

  12. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  13. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    SciTech Connect

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

  14. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  15. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    PubMed

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers.

  16. Photocatalytic performance of TiO2-zeolite templated carbon composites in organic contaminant degradation.

    PubMed

    Donphai, Waleeporn; Kamegawa, Takashi; Chareonpanich, Metta; Nueangnoraj, Khanin; Nishihara, Hirotomo; Kyotani, Takashi; Yamashita, Hiromi

    2014-12-01

    TiO2 composites with zeolite templated carbon (TiO2-ZTC) and activated carbon (TiO2-AC) were prepared and used as the photocatalysts for comparative studies with pure TiO2. TiO2-ZTC exhibited the highest rate of methylene blue degradation with a rate approximately 4 and 400 times higher than those of TiO2-AC and pure TiO2, respectively. Moreover, the highest catalytic performance of TiO2-ZTC in gas-phase degradation of acetone was approximately 1.1 and 12.9 times higher than TiO2-AC and pure TiO2, respectively. These outstanding performances could be attributed to high surface area, pore volume, and hydrophobic surface properties, leading to improvement in the adsorption properties of organic molecules.

  17. Aerodynamic characteristics of a hypersonic viscous optimized waverider at high altitudes

    NASA Technical Reports Server (NTRS)

    Rault, Didier F. G.

    1992-01-01

    The present paper addresses the applicability of the basic concept of waveriding at high altitudes, and the extent to which the large viscous forces degrade the aerodynamic performance of waveriders. The waverider under consideration was designed using a continuum flow methodology. It is shown that the lift-to-drag ratio of high-altitude/high-Knudsen-number waveriders can be expected to be significantly lower than their low altitude/low Knudsen number counterparts. The aerodynamic performance of a representative waverider which was optimized for a 90-km, Mach-25 application is studied for altitudes ranging from 97 km to 145 km and incidence angles of 0 to 30 deg. Typical values of the lift-to-drag ratio were computed to be in the range of 0 to 0.3. Friction forces are mostly responsible for this poor performance. Friction forces account for more than 93 percent of the drag and significantly reduce lift.

  18. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  19. Wind Tunnel Results of the Aerodynamic Performance of a 1/8-Scale Model of a Twin-Engine Transport with Multi-Element Wing

    NASA Technical Reports Server (NTRS)

    Laflin, Brenda E. Gile; Applin, Zachary T.; Jones, Kenneth M.

    1997-01-01

    A wind tunnel investigation was performed in the 14- by 22-Foot Subsonic Tunnel on a pressure instrumented 1/8-scale twin-engine subsonic transport to better understand the flow physics on a multi-element wing section. The wing consisted of a part-span, triple-slotted trailing edge flap, inboard leading-edge Krueger flap and an outboard leading-edge slat. The model was instrumented with flush pressure ports at the fuselage centerline and seven spanwise wing locations. The model was tested in cruise, take-off and landing configurations at dynamic pressures and Mach numbers from 10 lbf/ft(exp 2) to 50 lbf/ft(exp 2) and 0.08 to 0.17, respectively. This resulted in corresponding Reynolds numbers of 0.8 x 10(exp 5) to 1.8 x 10(exp 6). Pressure data were collected using electronically scanned pressure devices and force and moment data were collected with a six component strain gauge balance. Results are presented for various control surface deflections over an angle-of-attack range from -4 degrees to 16 degrees and sideslip angle range from -10 degrees to 10 degrees. Longitudinal and lateral directional aerodynamic data are presented as well as chordwise pressure distributions at the seven spanwise wing locations and the fuselage centerline.

  20. Aerodynamic Performance and Static Stability at Mach Number 3.3 of an Aircraft Configuration Employing Three Triangular Wing Panels and a Body Equal Length

    NASA Technical Reports Server (NTRS)

    James, Carlton S.

    1960-01-01

    An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.

  1. Investigation of a radiation-hardened quasi-SOI device: performance degradation induced by single ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Weikang; An, Xia; Que, Taotao; Zhang, Xing; Shen, Dongjun; Guo, Gang; Huang, Ru

    2016-10-01

    In this paper, performance degradation after heavy-ion irradiation in novel quasi-SOI devices are investigated and compared with bulk Si MOSFETs through experiment and simulation. A quasi-SOI device is characterized with an L-type insulator surrounding the source and drain regions. The I-V characteristic of the quasi-SOI device may degrade after heavy-ion irradiation and the degradation phenomena are demonstrated and statistically analyzed. The results show that compared with bulk Si devices, quasi-SOI devices illustrate a reduced performance degradation induced by heavy-ion irradiation. Therefore, quasi-SOI devices are promising candidates for future space applications.

  2. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  3. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  4. Aerodynamics of biplane and tandem wings at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Jones, R.; Cleaver, D. J.; Gursul, I.

    2015-06-01

    Experiments were performed to investigate the aerodynamic characteristics of two-wing configurations at a low Reynolds number of 100,000. The wing models were rectangular flat plates with a semi-aspect ratio of two. The stagger between the wings was varied from ∆ X/c = 0 to 1.5; the gap was varied from ∆ Y/c = 0 to 2 and ∆ Y/c = -1.5 to 1.5 for biplane and tandem configurations, respectively, with the decalage angle fixed at 0°. Lift, drag, aerodynamic efficiency and power efficiency ratios show that for small incidence angles, performance compared with the single wing is degraded. However, for single-wing post-stall angles of attack, lift performance improves and stall is delayed significantly for many configurations with nonzero gap, i.e., ∆ Y/c ≥ 0. For a fixed angle of attack, there are optimal gaps between the wings for which total lift becomes maximum. Particle image velocimetry measurements show that performance improvement relies heavily on the strength of the inter-wing flow and the interaction of the separated shear layers from the leading edge and trailing edge of the leading wing with the trailing wing. Unsteady forces are found to intensify for certain two-wing configurations. A switching between the stalled and unstalled states for the trailing wing as well as a switching between the merged and distinct wakes is shown to have high flow unsteadiness and large lift fluctuations.

  5. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  6. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  7. Performance Degradation of Encapsulated Monocrystalline-Si Solar Cells upon Accelerated Weathering Exposures: Preprint

    SciTech Connect

    Glick, S. H.; Pern, F. J.; Watson, G. L.; Tomek, D.; Raaff, J.

    2001-10-01

    Presented at 2001 NCPV Program Review Meeting: Performed accelerated exposures to study performance reliability/materials degradation of encapsulated c-Si cells using weathering protocols in 2 weatherometers. We have performed accelerated exposures to study performance reliability and materials degradation of a total of forty-one 3-cm x 3-cm monocrystalline-Si (c-Si) solar cells that were variously encapsulated using accelerated weathering protocols in two weatherometers (WOMs), with and without front specimen water sprays. Laminated cells (EVA/c-Si/EVA, ethylene vinyl acetate) with one of five superstrate/substrate variations and other features including with and without: (i) load resistance, (ii) Al foil light masks, and (iii) epoxy edge-sealing were studied. Three additional samples, omitting EVA, were exposed under a full-spectrum solar simulator, or heated in an oven, for comparison. After exposures, cell performance decreased irregularly, but to a relatively greater extent for samples exposed in WOM where light, heat, and humidity cycles were present (solar simulator or oven lacked such cycles). EVA laminates in the samples masked with aluminum (Al) foils were observed to retain moisture in WOM with water spray. Moisture effects caused substantial efficiency losses probably related in part to increasing series resistance.

  8. Investigation of possible causes for human-performance degradation during microgravity flight

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.; Tuttle, Megan L.

    1992-01-01

    The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.

  9. [Determination of main degradation products of lignin using reversed-phase high performance liquid chromatography].

    PubMed

    Jiang, Zhijing; Zhu, Junjun; Li, Xin; Lian, Zhina; Yu, Shiyuan; Yong, Qiang

    2011-01-01

    An analytical method using reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the separation and quantitative determination of main degradation products of lignin (4-hydroxybenzoic acid, vanillic acid, syringic acid, 4-hydroxybenzaldehyde, vanillin and syringaldehyde) during the steam exploded pretreatment for corn stovers. The separation was carried out on a C18 column with the mobile phase of acetonitrile-water (containing 1.5% acetic acid) at 30 degrees C at a flow rate of 0.8 mL/min and the detection wavelengths of 254 and 280 nm. Under the optimized conditions, the correlation coefficients of the 6 compounds were between 0.999 9 and 1.000 0. The recoveries of the 6 compounds were all above 96% and the relative standard deviations (n = 6) were less than 2.5%. This method is suitable for the determination of the main degradation products of lignin during the steam exploded pretreatment of lignocellulosics.

  10. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  11. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  12. Aerodynamic performance of 0.4066-scale model of JT8D refan stage with S-duct inlet

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Kovich, G.; Lewis, G. W., Jr.

    1977-01-01

    A scale model of the JT8D refan stage was tested with a scale model of the S-duct inlet design for the refanned Boeing 727 center engine. Detailed survey data of pressures, temperatures, and flow angles were obtained over a range of flows at speeds from 70 to 97 percent of design speed. Two S-duct configurations were tested; one with a bellmouth inlet and the other with a flight lip inlet. The results indicated that the overall performance was essentially unaffected by the distortion generated by the S-duct inlet. The stall weight flow increased by less than 0.5 kg/sec (approximately 1.5% of design flow) with the S-duct inlet compared with that obtained with uniform flow. The detailed measurements indicated that the inlet guide vane (IGV) significantly reduced circumferential variations. For example, the flow angles ahead of the IGV were positive in the right half of the inlet and negative in the left half. Behind the IGV, the flow angles tended to be more uniform circumferentially.

  13. Computational Assessment of the Aerodynamic Performance of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2011-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.

  14. Computational Study of the Impact of Unsteadiness on the Aerodynamic Performance of a Variable- Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2012-01-01

    The design-point and off-design performance of an embedded 1.5-stage portion of a variable-speed power turbine (VSPT) was assessed using Reynolds-Averaged Navier-Stokes (RANS) analyses with mixing-planes and sector-periodic, unsteady RANS analyses. The VSPT provides one means by which to effect the nearly 50 percent main-rotor speed change required for the NASA Large Civil Tilt-Rotor (LCTR) application. The change in VSPT shaft-speed during the LCTR mission results in blade-row incidence angle changes of as high as 55 . Negative incidence levels of this magnitude at takeoff operation give rise to a vortical flow structure in the pressure-side cove of a high-turn rotor that transports low-momentum flow toward the casing endwall. The intent of the effort was to assess the impact of unsteadiness of blade-row interaction on the time-mean flow and, specifically, to identify potential departure from the predicted trend of efficiency with shaft-speed change of meanline and 3-D RANS/mixing-plane analyses used for design.

  15. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    SciTech Connect

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  16. Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1981-01-01

    Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.

  17. Advanced turboprop installation aerodynamics

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1981-01-01

    The expected aerodynamic effects of a propfan installed on a thick supercritical wing are summarized qualitatively. Nacelle/wing and jet interactions, slipstream incremental velocity, nonuniform inflow, and swirl loss recovery are discussed.

  18. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  19. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  20. ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

    SciTech Connect

    Sluder, Scott; Storey, John Morse; Youngquist, Adam D

    2009-01-01

    Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied. Comparisons with a previous study conducted at low HC levels shows that the presence of increased volatiles in the deposit does not impact the degradation in effectiveness significantly. Moreover, the effectiveness loss divided by the deposit mass gain for both low- and high-HC conditions seems to indicate that the HC fraction in the deposit does not significantly alter the overall thermal properties of the deposit layer.

  1. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  2. Kinetic evaluation and process performance of an upflow anaerobic filter reactor degrading terephthalic acid.

    PubMed

    Davutluoglu, Orkun I; Seckin, Galip

    2014-01-01

    The anaerobic degradation of terephthalic acid (TA) as the sole organic carbon source was studied in an upflow anaerobic filter (UAF) reactor. The reactor was seeded with biomass obtained from a full-scale upflow anaerobic sludge bed (UASB) reactor and was used to treat wastewater from a petrochemical facility producing dimethyl terephthalate. The UAF reactor was operated for 252 d with a constant hydraulic retention time of 24 h, and the organic loading rate (OLR) was gradually increased from 1 to 10 g-chemical oxygen demand (COD)/L d. After a lag period of approximately 40 d, the COD removal efficiency increased exponentially and high removal rate values (≈90%) were obtained, except for at highest OLR (10 g-COD/L d). The high removal rates and the robustness of the reactor performance could be attributed to the formation of biofilm as well as granular sludge. The methane production rates (0.22 to 2.15 L/d) correlated well with the removed OLRs (0.3 to 6.8 g-COD/L d) during the various phases of treatment, indicating that the main mechanism of TA degradation occurs via methanogenic reactions. The average methane content of the produced biogas was 70.3%. The modified Stover-Kincannon model was found to be applicable for the anaerobic degradation of TA in UAFs (Umax = 64.5, KB = 69.1 g-COD/L d and Ymax = 0.27 L-CH4/g-CODremoved). These results suggest that UAF reactors are among the most effective reactor configurations for the anaerobic degradation of TA.

  3. Performance of an electrically raised, synchronous satellite when subjected to radiation degradation effects

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1971-01-01

    The use of solar electric propulsion to raise a high-power communication satellite from a low altitude, inclined circular orbit of the geosynchronous orbit is evaluated. Since the satellite ascends through the high intensity radiation belts, the power available from the solar array and therefore to the ion thrusters degrades. The performance of the solar electric stage in combination with the thrust augmented Thor/Delta launch vehicle is evaluated for two thrust steering programs. The transfer times and solar array requirements are presented for total geosynchronous payloads from 450 to 1100 kg.

  4. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  5. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: October 31, 2002--January 31, 2003

    SciTech Connect

    Selig, M. S.; McGranahan, B. D.

    2004-10-01

    Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbinesrepresents the fourth installment in a series of volumes documenting the ongoing work of th University of Illinois at Urbana-Champaign Low-Speed Airfoil Tests Program. This particular volume deals with airfoils that are candidates for use on small wind turbines, which operate at low Reynolds numbers.

  6. Fundamental Aspects of the Aerodynamics of Turbojet Engine Combustors

    NASA Technical Reports Server (NTRS)

    Barrere, M.

    1978-01-01

    Aerodynamic considerations in the design of high performance combustors for turbojet engines are discussed. Aerodynamic problems concerning the preparation of the fuel-air mixture, the recirculation zone where primary combustion occurs, the secondary combustion zone, and the dilution zone were examined. An aerodynamic analysis of the entire primary chamber ensemble was carried out to determine the pressure drop between entry and exit. The aerodynamics of afterburn chambers are discussed. A model which can be used to investigate the evolution of temperature, pressure, and rate and efficiency of combustion the length of the chamber was developed.

  7. Effect of degradable intake protein level on finishing cattle performance and ruminal metabolism.

    PubMed

    Shain, D H; Stock, R A; Klopfenstein, T J; Herold, D W

    1998-01-01

    Two finishing trials and a metabolism trial were conducted to evaluate level of supplemental degradable intake (crude) protein (DIP) in finishing diets on cattle performance, carcass characteristics, and ruminal metabolism. Finishing trials were conducted in two consecutive years using 128 crossbred yearling steers (BW = 343+/-5 kg, Trial 1) and 176 crossbred yearling steers (BW = 375+/-4 kg, Trial 2) in a randomized complete block design. Steers were fed dry-rolled corn diets containing urea at 0, .88, 1.34, or 1.96% (DM basis). No differences in DMI, daily gain, or feed efficiency were noted among steers receiving diets containing supplemental urea. However, steers fed diets supplemented with urea were 5.4% more efficient (P < .01) and gained 6.6% faster (P < .01) than steers receiving no supplemental urea. Metabolizable protein (MP) content of all diets exceeded the steers' requirements. However, diets containing no urea were deficient in DIP. In the metabolism trial, four ruminally fistulated steers (BW = 380+/-22 kg) were used in a 4 x 4 Latin square design and fed (ad libitum) diets similar to those used in the finishing trials. Nitrogen intake and ruminal ammonia N concentration increased linearly (P < .05) with increasing level of urea supplementation. Diets containing no supplemental urea were calculated to be deficient in DIP, resulting in reduced bacterial synthesis. Results indicate that dry-rolled corn finishing diets containing no supplemental N are deficient in ruminally degradable N. Supplementing these diets with an inexpensive source of ruminally degradable N improved animal performance. However, supplementation with urea above .88% was not beneficial. PMID:9464905

  8. Performance degradation of a large production reactor recirculation pump during off-design conditions

    SciTech Connect

    Whitehouse, J.C.

    1993-11-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost, (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location, measured pump motor power along with other techniques, were used to calculate the average mixture density at the pump impeller. This technique provides a good estimate of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps. Further experimental work using a 1/4 scale model of the SRS pump should provide an opportunity to confirm these results, and is currently in progress.

  9. Polymer electrolyte membrane fuel cell performance degradation by coolant leakage and recovery

    NASA Astrophysics Data System (ADS)

    Jung, Ju Hae; Kim, Se Hoon; Hur, Seung Hyun; Joo, Sang Hoon; Choi, Won Mook; Kim, Junbom

    2013-03-01

    Coolant leakage leads to decrease in performance during the operation of electric vehicles which make use of polymer electrolyte membrane fuel cells (PEMFC). This study examines the effects of various coolant leak conditions in 3-cell stack and single cell. The experimental results show that an irreversible reduction in performance occurs after coolant injection into the anode side of the stack. Poisoning of carbon monoxide (CO) on the platinum (Pt) catalyst is caused by electro-oxidation reaction of EG. Water cleaning is selected because CO poisoning is desorbed to reaction with water molecules. Performance is quickly reduced when the interval between coolant injections is short. Performance reduction is indicated by the experimental results for the gas diffusion layer (GDL) and the membrane electrode assembly (MEA). It shows that performance of the MEA with the GDL exposed to coolant decreased, but it is recovered after water cleaning. In contrast, results for performance of the MEA exposed to coolant for long time could not be reversed after water cleaning. Therefore, we propose that performance degradation of coolant leak on the Pt catalyst surface and GDL can be recovered by the water cleaning simply without disassembly of stack.

  10. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  11. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  12. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater.

  13. Performance evaluation of active sub-Terahertz systems in Degraded Visual Environments (DVE)

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Tanguy, Bernard; Martin, Christian; Huet, Thierry; Chervet, Patrick; Durand, Gerard; Riviere, Nicolas; Hespel, Laurent; Diakonova, Nina; But, Dmitry; Knap, Wojciech; Meilhan, Jerome; Delplanque, Baptiste; Oden, Jonathan; Simoens, François

    2016-05-01

    This paper addresses the problem of critical operations in Degraded Visual Environment (DVE). DVE usually refer when the perception of a pilot is degraded by environmental factors, including the presence of obscurants from bad weather (e.g. fog, rain, snow) or accidental events (e.g. brownout, whiteout, smoke). Critical operations in DVE are a growing field of research as it is a cause of numerous fatal accidents for operational forces. Due to the lack of efficient sources and sensors in the Terahertz (THz) region, this domain has remained an unexplored part of the electromagnetic spectrum. Recently, the potential use of sub-Terahertz waves has been proposed to see through dense clouds of obscurants (e.g. sand, smoke) in DVE conditions. In order to conduct a performance evaluation of sub-Terahertz systems, several sub-terahertz systems (e.g. bolometer-array cameras, liquid helium cooled bolometers) were operated in artificial controlled DVE conditions at ONERA facilities. The purpose of this paper is to report field experiments results in controlled DVE conditions: attenuation measurements from 400 GHz to 700 GHz with a performance evaluation of different sub-Terahertz systems are presented.

  14. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  15. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  16. Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jena, Ajay Kumar; Kulkarni, Ashish; Ikegami, Masashi; Miyasaka, Tsutomu

    2016-03-01

    Hysteresis in current-voltage curves of perovskite solar cells is a serious concern as it creates confusions about actual cell performance and raises questions on its reliability. Although a lot of effort has been made to understand the origin of hysteresis, knowing whether hysteresis affects the cell performance while they are in practical use (operated constantly at maximum power point) is not yet examined. In the present study, we investigate steady state performance and performance stability of perovskite solar cells (planar architecture with varying perovskite film thickness and TiO2 mesoscopic structure with different TiO2 compact layer thickness exhibiting hysteresis of different magnitudes) operating across an external load in relation to hysteresis. The planar cells with larger hysteresis exhibit a steady state current that closely matches the value determined on forward voltage scan. Cyclic photocurrent-dark current measurements on cells with hysteresis of different magnitudes reveal that photo-induced electrical instability (not material degradation), which might be originated from ion migration or photo-induced traps formation, is not related to hysteresis. Performance of the cells is recovered partially or fully, depending on the device structure, on storage in dark. TiO2 meso-structure cells tend to show complete recovery while the planar cells recover partially.

  17. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  18. Fundamental modeling the performance and degradation of HEV Lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Fang, Weifang

    Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated

  19. Spider silk aging: initial improvement in a high performance material followed by slow degradation.

    PubMed

    Agnarsson, Ingi; Boutry, Cecilia; Blackledge, Todd A

    2008-10-01

    Spider silk possesses a unique combination of high tensile strength and elasticity resulting in extraordinarily tough fibers, compared with the best synthetic materials. However, the potential application of spider silk and biomimetic fibers depends upon retention of their high performance under a variety of conditions. Here, we report on changes in the mechanical properties of dragline and capture silk fibers from several spider species over periods up to 4 years of benign aging. We find an improvement in mechanical performance of silk fibers during the first year of aging. Fibers rapidly decrease in diameter, suggesting an increase in structural alignment and organization of molecules. One-year old silk also is stiffer and has higher stress at yield than fresh silk, whereas breaking force, elasticity, and toughness either improve or are unaffected by early aging. However, 4-year old silk shows signs of degradation as the breaking load, elasticity, and toughness are all lower than in fresh silk. Aging, however, does not reduce the tensile strength of silk. These data suggest initially rapid reorganization and tighter packaging of molecules within the fiber, followed by longer-term decomposition. We hypothesize that possibly the breakdown of amino acids via emission of ammonia gas, as is seen in long-term aging of museum silkworm fabrics, may contribute. Degradation of spider silk under benign conditions may be a concern for efforts to construct and utilize biomimetic silk analogs. However, our findings suggest an initial improvement in mechanical performance and that even old spider silk still retains impressive mechanical performance. PMID:18626974

  20. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  1. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899

  2. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  3. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  4. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  5. Aerodynamic design and performance testing of an advanced 30 deg swept, eight bladed propeller at Mach numbers from 0.2 to 0.85

    NASA Technical Reports Server (NTRS)

    Black, D. M.; Menthe, R. W.; Wainauski, H. S.

    1978-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8.

  6. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  7. Reference values and improvement of aerodynamic drag in professional cyclists.

    PubMed

    García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo

    2008-02-01

    The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed.

  8. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  9. Computational aerodynamics and design

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.

    1982-01-01

    The role of computational aerodynamics in design is reviewed with attention given to the design process; the proper role of computations; the importance of calibration, interpretation, and verification; the usefulness of a given computational capability; and the marketing of new codes. Examples of computational aerodynamics in design are given with particular emphasis on the Highly Maneuverable Aircraft Technology. Finally, future prospects are noted, with consideration given to the role of advanced computers, advances in numerical solution techniques, turbulence models, complex geometries, and computational design procedures. Previously announced in STAR as N82-33348

  10. Determination of acrylamide monomer in polyacrylamide degradation studies by high-performance liquid chromatography.

    PubMed

    Ver Vers, L M

    1999-12-01

    A high-performance liquid chromatography method using C18 and ion-exchange columns in series is developed for the determination of acrylamide and acrylic acid monomers in polymeric samples. The C18 column acts as a guard column, trapping surfactants and impurities and retaining the nonionic species. The ion-exchange column then separates the monomers according to their respective ionic strengths. This method has been proven in the laboratory to work successfully for all types of acrylamide/acrylic acid polymers and matrices. Detection limits for both monomers can be achieved in the parts-per-billion range. The method is used to study the possible degradation of polyacrylamide to acrylamide monomer in the presence of glyphosate (a herbicide) and sunlight. Polyacrylamide is used as a spray drift reduction aid in combination with glyphosate. In normal applications, the polymer and herbicide are in contact with each other in the presence of sunlight. The results show that the polymer does not degrade to acrylamide in the presence of glyphosate or sunlight or any combination of the two. It is also observed that glyphosate influences the solubility of polyacrylamide, and care must be used when combining the two.

  11. International Space Station Solar Array Wing On-Orbit Electrical Performance Degradation Measured

    NASA Technical Reports Server (NTRS)

    Gustafson, Eric D.; Kerslake, Thomas W.

    2004-01-01

    The port-side photovoltaic power module (P6) was activated on the International Space Station in December 2000. P6 provides electrical power to channels 2B and 4B to operate ISS power loads. A P6 is shown in the preceding photograph. This article highlights the work done at the NASA Glenn Research Center to calculate the on-orbit degradation of the P6 solar array wings (SAWs) using on-orbit data from December 2000 to February 2003. During early ISS operations, the 82 strings of photovoltaic cells that make up a SAW can provide much more power than is necessary to meet the demand. To deal with excess power, a sequential shunt unit successively shunts the current from the strings. This shunt current was the parameter chosen for the SAW performance degradation study for the following reasons: (1) it is based on a direct shunt current measurement in the sequential shunt unit, (2) the shunt current has a low temperature dependence that reduces the data correction error from using a computationally derived array temperature, and (3) the SSU shunt current is essentially the same as the SAW short-circuit current on a per-string basis.

  12. Effect of cleaning agents and additives on Protein A ligand degradation and chromatography performance.

    PubMed

    Yang, Lihua; Harding, Jason D; Ivanov, Alexander V; Ramasubramanyan, Natarajan; Dong, Diane D

    2015-03-13

    Protein A chromatography, employing the recombinant Protein A ligand, is widely used as a capture step for antibody and Fc-fusion proteins manufacture. Protein A ligands in these matrices are susceptible to degradation/loss when exposed to cleaning agents such as sodium hydroxide, resulting in loss of capacity on reuse. In this study, MabSelect Protein A ligand and MabSelect SuRe Protein A ligand were chosen to evaluate the impact of alkaline cleaning solutions on the ligands and the packed columns. The Protein A ligands alone and the Protein A columns were incubated or cycled in different concentrations of sodium hydroxide solutions with and without additives, respectively. Ligand integrity (degradation) and ligand function (binding affinity) were studied using SDS-PAGE and customized Biacore technology, surface plasma resonance (SPR) and were successfully correlated with column performance measurement in terms of static binding capacity (SBC), dynamic binding capacity (DBC) and recovery as a function of exposure to cleaning agents with and without additives. The findings and the methodology presented in this study are not only able to determine appropriate cleaning conditions for Protein A chromatography, but also provided tools to enable systematic and rapid study of the cleaning solutions and conditions. PMID:25680549

  13. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Berkowitz, Brian M.

    1989-01-01

    An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.

  14. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption. PMID:27040040

  15. Aerodynamics of high-speed railway train

    NASA Astrophysics Data System (ADS)

    Raghunathan, Raghu S.; Kim, H.-D.; Setoguchi, T.

    2002-10-01

    Railway train aerodynamic problems are closely associated with the flows occurring around train. Much effort to speed up the train system has to date been paid on the improvement of electric motor power rather than understanding the flow around the train. This has led to larger energy losses and performance deterioration of the train system, since the flows around train are more disturbed due to turbulence of the increased speed of the train, and consequently the flow energies are converted to aerodynamic drag, noise and vibrations. With the speed-up of train, many engineering problems which have been neglected at low train speeds, are being raised with regard to aerodynamic noise and vibrations, impulse forces occurring as two trains intersect each other, impulse wave at the exit of tunnel, ear discomfort of passengers inside train, etc. These are of major limitation factors to the speed-up of train system. The present review addresses the state of the art on the aerodynamic and aeroacoustic problems of high-speed railway train and highlights proper control strategies to alleviate undesirable aerodynamic problems of high-speed railway train system.

  16. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 3: Aerodynamics and Structures Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advanced rotorcraft technology and tilt rotor aircraft were discussed. Rotorcraft performance, acoustics, and vibrations were discussed, as was the use of composite materials in rotorcraft structures. Rotorcraft aerodynamics, specifically the aerodynamic phenomena of a rotating and the aerodynamics of fuselages, was discussed.

  17. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and

  18. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  19. Aerodynamic performance of 0.5 meter-diameter, 337 meter-per-second tip speed, 1.5 pressure-ratio, single-stage fan designed for low noise aircraft engines

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Lewis, G. W., Jr.

    1974-01-01

    Overall and blade-element aerodynamic performance of a 0.271-scale model of QF-1 are presented, examined, and then compared and evaluated with that from similar low noise fan stage designs. The tests cover a wide range of speeds and weight flows along with variations in stator setting angle and stator axial spacing from the rotor. At design speed with stator at design setting angle and a fixed distance between stage measuring stations, there were no significant effects of increasing the axial spacing between rotor stator from 1.0 to 3.5 rotor chords on stage overall pressure ratio, efficiency or stall margin.

  20. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  1. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  2. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets.

    PubMed

    Kohl, Kevin D; Stengel, Ashley; Dearing, M Denise

    2016-06-01

    It has been hypothesized that herbivores host tannin-degrading bacteria (TDB) to overcome the toxic challenges posed by plant tannins. While TDB have been isolated from the guts of numerous mammals, their functional significance to their hosts has never been explicitly tested. We introduced TDB into lab rats, which do not host TDB, and measured host performance on tannin-rich diets. We first isolated three species of TDB, Escherichia coli, Bacillus subtilis and Enterococcus faecalis, from the guts of the desert woodrat (Neotoma lepida), which regularly feeds on tannin-rich plants. Then, we inoculated isolated TDB, as well as full woodrat microbial communities into laboratory rats. A control group was inoculated with sterilized woodrat faeces. Recipient lab rats were fed increasing concentrations of tannic acid, and we monitored tannic acid intake, body mass and liver damage as measured by serum alanine aminotransferase activity. Lab rats given TDB as isolates or full communities exhibited increased tannic acid intake, higher maintenance of body mass and lower indicators of liver damage compared with control animals. These differences were maintained when the trial was repeated after 6 weeks of feeding on tannin-free diets. Our results are the first to demonstrate that TDB significantly increase host performance on tannin-rich diets.

  3. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    SciTech Connect

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  4. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  5. Prediction of ionizing radiation effects induced performance degradation in homodyne BPSK based inter-satellite optical communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Li, Xuan; Dong, Chen

    2016-03-01

    Ionizing radiation effects induced on-orbit performance degradation in homodyne binary phase shift keying (BPSK) based inter-satellite optical communication system is predicted in this paper. Essential optoelectronic devices involved in optical communication system were irradiated by Co60 gamma ray and ionizing radiation environment of three general orbits was analyzed. On this basis, variations of terminal performance loss and system BER degradation along with on-orbit working time were simulated. Influences of terminal location and orbit environment were further discussed. Radiation protection on laser transmitters requires more strengthening, especially for those located in MEO and GEO satellites.

  6. FLPP IXV Re-Entry Vehicle, Aerodynamic Characterisation

    NASA Astrophysics Data System (ADS)

    Belmont, J.-P.; Cantinaud, O.; Tribot, J.-P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and improving in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration, and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape and thick body. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD. The AEDB includes nominal aerodynamic data, a new set of free molecular aerodynamic coefficients as well as aerodynamic uncertainties. Through the phase B2/C1, complementary computations were performed (CFSE, EPFL, ASTRIUM, TAS, DAA) as well as wind tunnel tests such as ONERA S4ma, DLR H2K, DNW/NLR SST, FOI T1500. All data were analyzed and compared enabling the consolidation of the nominal aerodynamic and aerodynamic uncertainties as well. The paper presents the logic of work based on the system engineering plan with emphasis on the different prediction tools used aiming the final aerodynamic characterization of the IXV configuration.

  7. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  8. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  9. Rarefied-flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1992-01-01

    Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

  10. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  11. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    SciTech Connect

    OHara, J.M.; Gunther, B.; Martinez-Guridi, G.; Xing, J.; Barnes, V.

    2010-11-07

    Integrated digital instrumentation and control (I&C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I&C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I&C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I&C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I&C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  12. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  13. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  14. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  15. Signal dependent degradation in noise performance of optimum detectors for multiple signal detection

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit

    1991-02-01

    The detection of multiple signals in the presence of additive noise is addressed, and finite impulse response (FIR) filters are treated as arrays (or vectors) to facilitate mathematical manipulations. The detection of multiple (more than two) signals in the presence of arbitrary additive noise using a single linear time-invariant (LTI) processor requires the synthesis of generalized filters. A set of N representative views that are sufficiently descriptive of the object are chosen for determining the generalized filter coefficients. These representative images are referred to as the training vectors. The training vectors provide information about the shape and structure of the objects to be classified, and their selection is crucial to the distortion sensitivity of the generalized filter. Each vector in the training set (i.e., the set of images used for filter synthesis) is treated as a signal to be detected and classified using the generalized filter. The problem is to find the filter coefficients such that the output is (1) indicative of the class of the input image, (2) tolerant to additive input noise, and (3) invariant to image distortions. The filter synthesis procedure is reviewed. Degradation in processor performance and the rise in output variance as the number of signals to be detected increases are discussed. It is shown that the variance is a nondecreasing function of the number of signals. Recursive expressions for the exact output variance and incremental changes in variance are derived.

  16. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Mansu; Jung, Namgee; Eom, KwangSup; Yoo, Sung Jong; Kim, Jin Young; Jang, Jong Hyun; Kim, Hyoung-Juhn; Hong, Bo Ki; Cho, EunAe

    2014-11-01

    Polymer electrolyte membrane fuel cell (PEMFC) stacks in a fuel cell vehicle can be inevitably exposed to harsh environments such as cold weather in winter, causing water flooding by the direct flow of condensed water to the electrodes. In this study, anode flooding was experimentally investigated with condensed water generated by cooling the anode gas line during a long-term operation (∼1600 h). The results showed that the performance of the PEMFC was considerably degraded. After the long-term experiment, the thickness of the anode decreased, and the ratio of Pt to carbon in the anode increased. Moreover, repeated fuel starvation of the half-cell severely oxidized the carbon surface due to the high induced potential (>1.5 VRHE). The cyclic voltammogram of the anode in the half-cell experiments indicated that the characteristic feature of the oxidized carbon surface was similar to that of the anode in the single cell under anode flooding conditions during the long-term experiment. Therefore, repeated fuel starvation by anode flooding caused severe carbon corrosion in the anode because the electrode potential locally increased to >1.0 VRHE. Consequently, the density of the tri-phase boundary decreased due to the corrosion of carbons supporting the Pt nanoparticles in the anode.

  17. Aerodynamic drag in cycling: methods of assessment.

    PubMed

    Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William

    2011-09-01

    When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance.

  18. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward

    1990-01-01

    Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.

  19. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  20. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect

    Wang, Liping; Hong, Tianzhen

    2013-01-01

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct

  1. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  2. Preparation and photocatalytic degradation performance of Ag3PO4 with a two-step approach

    NASA Astrophysics Data System (ADS)

    Li, Jiwen; Ji, Xiaojing; Li, Xian; Hu, Xianghua; Sun, Yanfang; Ma, Jingjun; Qiao, Gaowei

    2016-05-01

    Ag3PO4 photocatalysts were prepared via two and one-step through a facile ion-exchange route. The photocatalysts were then characterized through powder X-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated on the basis of the photocatalytic degradation of methyl orange (MO) and methylene blue (MB) under solar irradiation. The MO degradation rate of the Photocatalyst synthesized by the two-step ion-exchange route was 89.18% in 60 min. This value was four times that of the Photocatalyst synthesized by the one-step approach.The MB degradation rate was 97% in 40 min. After six cycling runs were completed, the MO degradation rate was 73%

  3. Aerodynamic research on tipvane windturbines

    NASA Astrophysics Data System (ADS)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  4. Nozzle Aerodynamic Stability During a Throat Shift

    NASA Technical Reports Server (NTRS)

    Kawecki, Edwin J.; Ribeiro, Gregg L.

    2005-01-01

    An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.

  5. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  6. Compendium of NASA Langley reports on hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

    1987-01-01

    Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

  7. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-11-15

    In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO2, H2O, and formic acid. Discharge products such as O3, N2O, N2O5, and HNO3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants.

  8. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  9. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  10. [Performance Study of Bromochloracetonitrile Degradation in Drinking Water by Fe/Cu Catalytic Reduction].

    PubMed

    Ding, Chun-sheng; Ma, Hai-long; Fu, Yang-ping; Zhao, Shi-du; Li, Dong-bing

    2015-06-01

    The paper used the method of iron copper catalyst reduction to degrade low concentrations of bromochloracetonitrile (BCAN) to lighten the damage to human being, which is a kind of disinfection by-products (DBPs) produced during the chlorination process of drinking water. The removal efficiency of BCAN and its influencing factors were investigated. The mechanism of degradation and kinetics were also explored. The results indicated that iron copper had a greater degradation ability towards BCAN, and the degradation rate of iron copper (mass ratio of 10:1) was 1.5 times that of the zero-valent iron. The removal of BCAN increased obviously with the increase of Fe/Cu dosage. When the initial concentration was set at 20 microg x L(-1), after a reaction time of 150 min, removal of BCAN was improved from 51.1% to 89.5% with the increase of iron copper (mass ratio of 10:1) dosage from 5 g x L(-1) to 10 g x L(-1). The temperature also had great impact on BCAN removal and the removal increased with the increase of temperature. However, BCAN removal did not change a lot with the variation of the initial concentration of BCAN when it was at a low level. The BCAN degradation by iron copper catalytic-reduction followed the first-order kinetics model. PMID:26387315

  11. [Performance Study of Bromochloracetonitrile Degradation in Drinking Water by Fe/Cu Catalytic Reduction].

    PubMed

    Ding, Chun-sheng; Ma, Hai-long; Fu, Yang-ping; Zhao, Shi-du; Li, Dong-bing

    2015-06-01

    The paper used the method of iron copper catalyst reduction to degrade low concentrations of bromochloracetonitrile (BCAN) to lighten the damage to human being, which is a kind of disinfection by-products (DBPs) produced during the chlorination process of drinking water. The removal efficiency of BCAN and its influencing factors were investigated. The mechanism of degradation and kinetics were also explored. The results indicated that iron copper had a greater degradation ability towards BCAN, and the degradation rate of iron copper (mass ratio of 10:1) was 1.5 times that of the zero-valent iron. The removal of BCAN increased obviously with the increase of Fe/Cu dosage. When the initial concentration was set at 20 microg x L(-1), after a reaction time of 150 min, removal of BCAN was improved from 51.1% to 89.5% with the increase of iron copper (mass ratio of 10:1) dosage from 5 g x L(-1) to 10 g x L(-1). The temperature also had great impact on BCAN removal and the removal increased with the increase of temperature. However, BCAN removal did not change a lot with the variation of the initial concentration of BCAN when it was at a low level. The BCAN degradation by iron copper catalytic-reduction followed the first-order kinetics model.

  12. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  13. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  14. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  15. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  16. Aerodynamic coefficients and transformation tables

    NASA Technical Reports Server (NTRS)

    Ames, Joseph S

    1918-01-01

    The problem of the transformation of numerical values expressed in one system of units into another set or system of units frequently arises in connection with aerodynamic problems. Report contains aerodynamic coefficients and conversion tables needed to facilitate such transformation. (author)

  17. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  18. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  19. An application of high performance liquid chromatographic assay for the kinetic analysis of degradation of faropenem.

    PubMed

    Cielecka-Piontek, J; Krause, A; Paczkowska, M

    2012-11-01

    An isocratic RP-HPLC-DAD procedure was developed and validated for kinetic analysis of degradation of faropenem in bulk drug substance and in tablets. It involved the use of a C-18 analytical column (5 microm particle size, 250 mm x 4.6 mm), flow rate 1.3 ml/min and 50 microl injection volume. The mobile phase consisted of acetate buffer (pH 3.5) - acetonitrile (70:30 v/v). The determination was carried out at the wavelength of 323 nm. Kinetic studies of faropenem degradation in aqueous solutions included hydrolysis, oxidation, photolysis and thermal degradation. A derivative spectrophotometry was used as an alternative method to compare the observed rate constants. PMID:23210240

  20. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  1. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  2. Performance degradation mechanisms and modes in terrestrial photovoltaic arrays and technology for their diagnosis

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Accelerated life-prediction test methodologies have been developed for the validation of a 20-year service life for low-cost photovoltaic arrays. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Measurements must provide sufficient confidence to permit selection among alternative designs and materials and to stimulate widespread deployment of such arrays. Furthermore, the diversity of candidate materials and designs, and the variety of potential environmental stress combinations, degradation mechanisms and failure modes require that combinations of measurement techniques be identified which are suitable for the characterization of various encapsulation system-cell structure-environment combinations.

  3. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  4. Mimicking the humpback whale: An aerodynamic perspective

    NASA Astrophysics Data System (ADS)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  5. Preliminary aerodynamic design considerations for advanced laminar flow aircraft configurations

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Yip, Long P.; Jordan, Frank L., Jr.

    1986-01-01

    Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE). Aerodynamic and aeromechanical performance of a 50.8 cm (20 inch) diameter 1.34 PR variable pitch fan with core flow

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.

    1977-01-01

    The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.

  7. Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism

    PubMed Central

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL-1 LacA, 109.9 mg L-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s-1, respectively. UV–visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography–mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  8. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  9. Recommendations for Exploring the Disfluency Hypothesis for Establishing Whether Perceptually Degrading Materials Impacts Performance

    ERIC Educational Resources Information Center

    Dunlosky, John; Mueller, Michael L.

    2016-01-01

    The target articles explore a common hypothesis pertaining to whether perceptually degrading materials will improve reasoning, memory, and metamemory. Outcomes are mixed, yet some evidence was garnered in support of a version of the disfluency hypothesis that includes moderators, and along with evidence from prior research, researchers will likely…

  10. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    PubMed

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1) LacA, 109.9 mg L(-1) MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1), respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  11. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    PubMed

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1) LacA, 109.9 mg L(-1) MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1), respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  12. Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance.

    PubMed

    Buitrón, Germán; Moreno-Andrade, Iván

    2014-12-01

    The performance of a single-chamber microbial fuel cell (MFC) using wastewater containing phenol as the anodic fuel was evaluated. The evaluation was performed considering the effects of the presence of different phenol concentrations in the anodic fuel and the external resistance at which the cells were adapted. Maximum power and current densities of 49.8 mW m(-2) and 292.8 mA m(-2) were obtained, respectively. Microbial diversity on the anode surface remained relatively stable when the phenol concentration was increased. Pseudomonas sp. was the most abundant microorganism in the MFC, followed by the genus Geobacter and Shewanella. Phenol degradation was mainly conducted by bacteria present in the wastewater, and its presence did not affect the electricity generation. The operation of the MFC with a resistance different to the adaptation resistance produced lower current and power densities; however, the variation in external resistances did not adversely affect the phenol degradation. PMID:25227685

  13. Stability-Indicating High-Performance Liquid Chromatographic Determination of Apixaban in the Presence of Degradation Products

    PubMed Central

    Prabhune, Swarup Suresh; Jaguste, Rajendra Shankar; Kondalkar, Prakash Laxman; Pradhan, Nitin Sharadchandra

    2014-01-01

    Abstract A simple, robust, and stability-indicating reversed-phase high-performance liquid chromatographic (HPLC) method for the analysis of apixaban and its related substances has been successfully developed. Chromatography was performed on a 250 mm × 4.6 mm, 5 μm C18 column with a gradient mixture of a phosphate buffer–methanol 60:40 (v/v) at 1.0 mL min-1. Ultraviolet detection of apixaban was at 220 nm. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting apixaban solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from apixaban. The method was used to quantify the related substances in apixaban in the bulk drug and can be used for routine quality control purposes. PMID:26171323

  14. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  15. A high-performance liquid chromatographic assay for clindamycin phosphate and its principal degradation product in bulk drug and formulations.

    PubMed

    Munson, J W; Kubiak, E J

    1985-01-01

    A high-performance liquid chromatography method has been developed for the analysis of clindamycin phosphate and clindamycin, the principal degradation product. The method is quantitative, precise and is able to separate a variety of closely related molecules. The method has been applied to bulk drug, topical and sterile solutions, and experimental cream, lotion and gel formulations. The method gives results that are in good agreement with the official gas chromatographic method but is much less time-consuming.

  16. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    PubMed

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  17. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability.

    PubMed

    Li, Huanxuan; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Chen, Xi; Guan, Zeyu

    2016-11-15

    In this work, a new effective and relatively stable heterogeneous catalyst of Metal-Organic Framework Co3(BTC)2·12H2O (Co-BTC) has been synthesized and tested to activate peroxymonosulfate (PMS) for removal of refractory dibutyl phthalate (DBP). Co-BTC(A) and Co-BTC(B) were synthesized by different methods, which resulted in different activity towards PMS. The results indicated that Co-BTC(A) showed better performance on DBP degradation. The highest degradation rate of 100% was obtained within 30min. The initial pH showed respective level on DBP degradation with a rank of 5.0>2.75>9.0>7.0>11.0 in PMS/Co-BTC(A) system. No remarkable reduction of DBP was observed in the catalytic activity of Co-BTC(A) at 2nd run as demonstrated by recycling. However, the DBP degradation efficiency decreased by 8.26%, 10.9% and 25.6% in the 3rd, 4th, and 5th runs, respectively. The loss of active catalytic sites of Co(II) from Co-BTC(A) is responsible for the activity decay. Sulfate radicals (SO4(-)) and hydroxyl radicals (OH) were found at pH 2.75. Here, we propose the possible mechanism for activation of PMS by Co-BTC(A), which is involved in homogeneous and heterogeneous reactions in the solutions and the surface of Co-BTC(A), respectively. PMID:27420387

  18. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  19. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  20. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  1. High-angle-of-attack aerodynamics - Lessons learned

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1986-01-01

    Recently, the military and civil technical communities have undertaken numerous studies of the high angle-of-attack aerodynamic characteristics of advanced airplane and missile configurations. The method of approach and the design methodology employed have necessarily been experimental and exploratory in nature, due to the complex nature of separated flows. However, despite the relatively poor definition of many of the key aerodynamic phenomena involved for high-alpha conditions, some generic guidelines for design consideration have been identified. The present paper summarizes some of the more important lessons learned in the area of high angle-of-attack aerodynamics with examples of a number of key concepts and with particular emphasis on high-alpha stability and control characteristics of high performance aircraft. Topics covered in the discussion include the impact of design evolution, forebody flows, control of separated flows, configuration effects, aerodynamic controls, wind-tunnel flight correlation, and recent NASA research activities.

  2. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  3. Newly Identified Thermostable Esterase from Sulfobacillus acidophilus: Properties and Performance in Phthalate Ester Degradation

    PubMed Central

    Zhang, Xiao-Yan; Fan, Xiang; Qiu, Yong-Jun; Li, Cheng-Yuan; Xing, Shuai; Zheng, Yi-Tao

    2014-01-01

    EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70°C, respectively. The half-life of EstS1 at 60°C was 15 h, indicating that the enzyme had good thermostability. The specificity constant (kcat/Km) of the enzyme for p-nitrophenyl butyrate was as high as 6,770 mM−1 s−1. The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37°C, with all substrates being completely degraded within 24 h. At 60°C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures. PMID:25149523

  4. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  5. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    SciTech Connect

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constant voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.

  6. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  7. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  8. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  9. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  10. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  11. Atmospheric determination for Shuttle aerodynamic studies

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1983-01-01

    Evaluation of the aerodynamic performance of the Shuttle during atmospheric reentry requires a determination of the free-stream atmospheric properties along the entry path. This determination must be of the best possible accuracy in order to fully utilize the Shuttle as an aerodynamic flight research vehicle. To accomplish this, two Shuttle Orbiter experiments, the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) and the Shuttle Entry Air Data System (SEADS), are being developed to provide onboard measurements. SUMS will measure freestream parameters in the high altitude (above 90 km), high Mach number (M above 20) regions where conventional static pressure measurements are not available. SEADS will provide research quality data below about 90 km. Since these two experiments were not installed for the Shuttle developmental flights, an alternate method was needed to determine the freestream atmospheric properties along the entry trajectory. The method which was developed is described with a discussion of the results from the first five Shuttle flights.

  12. Freight Wing Trailer Aerodynamics Final Technical Report

    SciTech Connect

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products

  13. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.

    1995-01-01

    The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.

  14. A Case Study of Performance Degradation Attributable to Run-Time Bounds Checks on C++ Vector Access

    PubMed Central

    Flater, David; Guthrie, William F

    2013-01-01

    Programmers routinely omit run-time safety checks from applications because they assume that these safety checks would degrade performance. The simplest example is the use of arrays or array-like data structures that do not enforce the constraint that indices must be within bounds. This report documents an attempt to measure the performance penalty incurred by two different implementations of bounds-checking in C and C++ using a simple benchmark and a desktop PC with a modern superscalar CPU. The benchmark consisted of a loop that wrote to array elements in sequential order. With this configuration, relative to the best performance observed for any access method in C or C++, mean degradation of only (0.881 ± 0.009) % was measured for a standard bounds-checking access method in C++. This case study showed the need for further work to develop and refine measurement methods and to perform more comparisons of this type. Comparisons across different use cases, configurations, programming languages, and environments are needed to determine under what circumstances (if any) the performance advantage of unchecked access is actually sufficient to outweigh the negative consequences for security and software quality. PMID:26401432

  15. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  16. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  17. Turbine Aerodynamics Design Tool Development

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Turner, James E. (Technical Monitor)

    2001-01-01

    This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.

  18. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  19. Characterization and performance of a toluene-degrading biofilm developed on pumice stones.

    PubMed

    Di Lorenzo, Alessandra; Varcamonti, Mario; Parascandola, Palma; Vignola, Rodolfo; Bernardi, Adriano; Sacceddu, Pasquale; Sisto, Raffaello; de Alteriis, Elisabetta

    2005-01-17

    BACKGROUND: Hydrocarbon-degrading biofilms in the treatment of contaminated groundwaters have received increasing attention due to the role played in the so-called "biobarriers". These are bioremediation systems in which a microbial consortium adherent to a solid support is placed across the flow of a contaminated plume, thus promoting biodegradation of the pollutant. RESULTS: A microbial consortium adherent to pumice granules (biofilm) developed from a toluene-enriched microflora in a mini-scale system, following continuous supply of a mineral medium containing toluene, over a 12-month period. Observation by scanning electron microscopy, together with quantification of the biomass attached to pumice, evidenced the presence of abundant exopolymeric material surrounding the cells in the biofilm. Toluene removal monitored during 12-month operation, reached 99%. Identification of the species, based on comparative 16S ribosomal DNA (rDNA) sequence analysis, revealed that Rhodococcus erythropolis and Pseudomonas marginalis were the predominant bacterial species in the microbial consortium. CONCLUSION: A structurally complex toluene-degrading biofilm, mainly formed by Rhodococcus erythropolis and Pseudomonas marginalis, developed on pumice granules, in a mini-scale apparatus continuously fed with toluene.

  20. Hydraulic performance of a proposed in situ photocatalytic reactor for degradation of MTBE in water.

    PubMed

    Lim, Leonard Lik Pueh; Lynch, Rod

    2011-01-01

    Methyl tert-butyl ether (MTBE) groundwater remediation projects often require a combination of technologies resulting in increasing the project costs. A cost-effective in situ photocatalytic reactor design, Honeycomb II, is proposed and tested for its efficiency in MTBE degradation at various flows. This study is an intermediate phase of the research in developing an in situ photocatalytic reactor for groundwater remediation. It examines the effect of the operating variables: air and water flow and double passages through Honeycomb II, on the MTBE removal. MTBE vaporisation is affected by not only temperature, Henry's law constant and air flow to volume ratio but also reactor geometry. The column reactor achieved more than 84% MTBE removal after 8 h at flows equivalent to horizontal groundwater velocities slower than 21.2 cm d⁻¹. Despite the contrasting properties between a photocatalytic indicator methylene blue and MTBE, the reactor efficiency in degrading both compounds showed similar responses towards flow (equivalent groundwater velocity and hydraulic residence time (HRT)). The critical HRT for both compounds was approximately 1 d, which corresponded to a velocity of 21.2 cm d⁻¹. A double pass through both new and used catalysts achieved more than 95% MTBE removal after two passes in 48 h. It also verified that the removal efficiency can be estimated via the sequential order of the removal efficiency of one pass obtained in the laboratory. This study reinforces the potential of this reactor design for in situ groundwater remediation.

  1. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  2. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  3. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  4. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  5. Aerodynamics of Laminar Flames

    NASA Astrophysics Data System (ADS)

    Law, Chung K.

    2000-11-01

    The presentation will review recent advances in the understanding of the structure, dynamics, and geometry of stretched, nonequidiffusive, laminar premixed flames, as exemplified by the unsteady propagation of wrinkled flames in nonuniform flow fields. It is first shown that by considering the effects of aerodynamic stretch on the flame structure, and by allowing for mixture nonequidiffusion, the flame responses, especially the flame propagation speed, can be quantitatively as well as qualitatively modified from the idealized planar limit. Subsequently, by treating the flame as a level surface propagating with the stretch-affected flame speed, problems of increasing complexity are presented to illustrate various features of flame propagation. The illustration first treats the flame as a structureless surface propagating into a constant-density combustible with a constant velocity * the laminar flame speed, and demonstrates the phenomena of cusp formation and volumetric burning rate augmentation through flame wrinkling. By using the stretch-affected flame speed, we then describe the phenomena of cusp broadening as well as tip opening of the Bunsen flame. Finally, by allowing for the density jump across the flame surface, a unified dispersion relation is derived for the intrinsic hydrodynamic, body-force, and nonequidiffusive modes of flame

  6. Introduction. Computational aerodynamics.

    PubMed

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  7. Estimating the erosion and degradation performance of ceramic and polymeric insulator materials in high current arc environments

    NASA Astrophysics Data System (ADS)

    Engel, T. G.; Kristiansen, M.; O'Hair, E.; Marx, J. N.

    1991-01-01

    Modeling the erosion and holdoff degradation performance of various commercially available polymeric and ceramic insulators is addressed. The insulators are tested on a surface discharge switch at about 300 kA in atmospheric air. Test diagnostics include the surface voltage holdoff recovery and the eroded mass loss of the insulator and electrode materials used. The ceramic materials tested include several types of aluminum and magnesium silicates, several alumina and zirconia composites, and aluminum and silicon nitride. The polymeric insulators include polyvinyl chloride, low- and high-molecular-weight polyethylene, polytetrafluoroethylene, polyamide, acetyl, polyamide-imide, and several types of glass-reinforced epoxies, melamines, and phenolics. The test results indicate that the holdoff degradation resistance and erosion rates can be qualitatively predicated by the use of merit figures which are based on the thermochemical properties of the insulator. The holdoff degradation and erosion rates can be improved for some thermoset polymers by a suitable choice of electrode material and/or by the ultraviolet stabilization of the insulator.

  8. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  9. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  10. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  11. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    PubMed

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  12. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    NASA Technical Reports Server (NTRS)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  13. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  14. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  15. Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.

    1978-01-01

    A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.

  16. The DELTA MONSTER: An RPV designed to investigate the aerodynamics of a delta wing platform

    NASA Technical Reports Server (NTRS)

    Connolly, Kristen; Flynn, Mike; Gallagher, Randy; Greek, Chris; Kozlowski, Marc; Mcdonald, Brian; Mckenna, Matt; Sellar, Rich; Shearon, Andy

    1989-01-01

    The mission requirements for the performance of aerodynamic tests on a delta wind planform posed some problems, these include aerodynamic interference; structural support; data acquisition and transmission instrumentation; aircraft stability and control; and propulsion implementation. To eliminate the problems of wall interference, free stream turbulence, and the difficulty of achieving dynamic similarity between the test and actual flight aircraft that are associated with aerodynamic testing in wind tunnels, the concept of the remotely piloted vehicle which can perform a basic aerodynamic study on a delta wing was the main objective for the Green Mission - the Delta Monster. The basic aerodynamic studies were performed on a delta wing with a sweep angle greater than 45 degrees. These tests were performed at various angles of attack and Reynolds numbers. The delta wing was instrumented to determine the primary leading edge vortex formation and location, using pressure measurements and/or flow visualization. A data acquisition system was provided to collect all necessary data.

  17. Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells

    NASA Astrophysics Data System (ADS)

    Singh, Vinamrita; Arora, Swati; Arora, Manoj; Sharma, Vishal; Tandon, R. P.

    2014-04-01

    The present work is a detailed study of the optical, morphological and electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, films doped with ethylene glycol (EG) and multi-walled carbon nanotubes (MWCNT). The conductivity of PEDOT:PSS films doped with EG and MWCNT is higher than pristine PEDOT:PSS film. The optical transparency of PEDOT:PSS film decreases insignificantly after addition of MWCNT and EG. The films were further studied using atomic force microscopy, x-ray diffraction, Raman spectroscopy and Kelvin probe work function measurement, after which films of PEDOT:PSS with EG and MWCNT were optimized for the fabrication of solar cells. The optimized film was used as a hole extracting layer in a typical ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell. The suitable concentration for an optimized film was found to be 4% MWCNT and 1:4 ratio of EG to PEDOT:PSS. The performance of the device with doped PEDOT:PSS was found to improve in terms of short circuit current density (JSC) and efficiency (η). The solar cell with a doped PEDOT:PSS layer showed higher JSC and η due to the increase in the interchains among PEDOT chains along with the introduction of MWCNT channels in PEDOT:PSS matrix. The degradation behavior of the cells was studied and it was found that both pristine and doped PEDOT:PSS cells showed similar trends of degradation. The performance degradation with time was also studied under variable environmental conditions, which showed different aging rates for the two devices.

  18. Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) engine composite nacelle test report. Volume 1: Summary, aerodynamic and mechanical performance

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system.

  19. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults.

    PubMed

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-01-01

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances. PMID:26349676

  20. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults

    PubMed Central

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-01-01

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg–8Er–1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances. PMID:26349676

  1. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults.

    PubMed

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-09-09

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances.

  2. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  3. Fitting aerodynamics and propulsion into the puzzle

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  4. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  5. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD

  6. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  7. Aerodynamic Performance of a 0.27-Scale Model of an AH-64 Helicopter with Baseline and Alternate Rotor Blade Sets

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1990-01-01

    Performance of a 27 percent scale model rotor designed for the AH-64 helicopter (alternate rotor) was measured in hover and forward flight and compared against and AH-64 baseline rotor model. Thrust, rotor tip Mach number, advance ratio, and ground proximity were varied. In hover, at a nominal thrust coefficient of 0.0064, the power savings was about 6.4 percent for the alternate rotor compared to the baseline. The corresponding thrust increase at this condition was approx. 4.5 percent which represents an equivalent full scale increase in lift capability of about 660 lbs. Comparable results were noted in forward flight except for the high thrust, high speed cases investigated where the baseline rotor was slightly superior. Reduced performance at the higher thrusts and speeds was likely due to Reynolds number effects and blade elasticity differences.

  8. Investigation of aerodynamic braking devices for wind turbine applications

    SciTech Connect

    Griffin, D.A.

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  9. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  10. Sleep restriction and degraded reaction-time performance in Figaro solo sailing races.

    PubMed

    Hurdiel, Rémy; Van Dongen, Hans P A; Aron, Christophe; McCauley, Peter; Jacolot, Laure; Theunynck, Denis

    2014-01-01

    In solo offshore sailing races like those of the Solitaire du Figaro, sleep must be obtained in multiple short bouts to maintain competitive performance and safety. Little is known about the amount of sleep restriction experienced at sea and the effects that fatigue from sleep loss have on sailors' performance. Therefore, we assessed sleep in sailors of yachts in the Figaro 2 Beneteau class during races and compared response times on a serial simple reaction-time test before and after races. Twelve men (professional sailors) recorded their sleep and measured their response times during one of the three single-handed races of 150, 300 and 350 nautical miles (nominally 24-50 h in duration). Total estimated sleep duration at sea indicated considerable sleep insufficiency. Response times were slower after races than before. The results suggest that professional sailors incur severe sleep loss and demonstrate marked performance impairment when competing in one- to two-day solo sailing races. Competitive performance could be improved by actively managing sleep during solo offshore sailing races.

  11. Performance optimization for pedestrian detection on degraded video using natural scene statistics

    NASA Astrophysics Data System (ADS)

    Winterlich, Anthony; Denny, Patrick; Kilmartin, Liam; Glavin, Martin; Jones, Edward

    2014-11-01

    We evaluate the effects of transmission artifacts such as JPEG compression and additive white Gaussian noise on the performance of a state-of-the-art pedestrian detection algorithm, which is based on integral channel features. Integral channel features combine the diversity of information obtained from multiple image channels with the computational efficiency of the Viola and Jones detection framework. We utilize "quality aware" spatial image statistics to blindly categorize distorted video frames by distortion type and level without the use of an explicit reference. We combine quality statistics with a multiclassifier detection framework for optimal pedestrian detection performance across varying image quality. Our detection method provides statistically significant improvements over current approaches based on single classifiers, on two large pedestrian databases containing a wide variety of artificially added distortion. The improvement in detection performance is further demonstrated on real video data captured from multiple cameras containing varying levels of sensor noise and compression. The results of our research have the potential to be used in real-time in-vehicle networks to improve pedestrian detection performance across a wide range of image and video quality.

  12. Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three experiments compared ruminal, physiological, and performance responses of beef steers consuming hay ad libitum and receiving grain-based supplements without (CO) or with (CAM) the inclusion of camelina meal. In Exp. 1, 9 steers fitted with ruminal cannulas received CAM (2.04 kg of DM/d; n = 5)...

  13. The Effects of Repeated Retention Tests Can Benefit as Well as Degrade Timing Performance

    ERIC Educational Resources Information Center

    Fairbrother, Jeffrey T.; Barros, Joao Augusto de Camargo

    2010-01-01

    In this study, we examined the effects of interference and repeated retention tests by comparing groups that performed (a) one or two tests, or (b) two tests separated by interpolated tasks. The task involved pressing five keys in 925 ms. Constant error increased after Block 1 of the second test for the group completing the interpolated tasks.…

  14. Handling properties of diverse automobiles and correlation with full scale response data. [driver/vehicle response to aerodynamic disturbances

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.; Weir, D. H.

    1973-01-01

    Driver/vehicle response and performance of a variety of vehicles in the presence of aerodynamic disturbances are discussed. Steering control is emphasized. The vehicles include full size station wagon, sedan, compact sedan, van, pickup truck/camper, and wagon towing trailer. Driver/vehicle analyses are used to estimate response and performance. These estimates are correlated with full scale data with test drivers and the results are used to refine the driver/vehicle models, control structure, and loop closure criteria. The analyses and data indicate that the driver adjusts his steering control properties (when he can) to achieve roughly the same level of performance despite vehicle variations. For the more disturbance susceptible vehicles, such as the van, the driver tightens up his control. Other vehicles have handling dynamics which cause him to loosen his control response, even though performance degrades.

  15. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  16. Experimental aerodynamic performance of advanced 40 deg-swept 10-blade propeller model at Mach 0.6 to 0.85

    NASA Technical Reports Server (NTRS)

    Mitchell, Glenn A.

    1988-01-01

    A propeller designated as SR-6, designed with 40 deg of sweep and 10 blades to cruise at Mach 0.8 at an altitude of 10.7 km (35,000 ft), was tested in the NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel. This propeller was one of a series of advanced single rotation propeller models designed and tested as part of the NASA Advanced Turboprop Project. Design-point net efficiency was almost constant to Mach 0.75 but fell above this speed more rapidly than that of any previously tested advanced propeller. Alternative spinners that further reduced the near-hub interblade Mach numbers and relieved the observed hub choking improved performance above Mach 0.75. One spinner attained estimated SR-6 Design-point net deficiencies of 80.6 percent at Mach 0.75 and 79.2 percent at Mach 0.8, higher than the measured performance of any previously tested advanced single-rotation propeller at these speeds.

  17. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  18. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  19. Performance and Reliability Optimization for Aerospace Systems subject to Uncertainty and Degradation

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Uebelhart, Scott A.; Blaurock, Carl

    2004-01-01

    This report summarizes work performed by the Space Systems Laboratory (SSL) for NASA Langley Research Center in the field of performance optimization for systems subject to uncertainty. The objective of the research is to develop design methods and tools to the aerospace vehicle design process which take into account lifecycle uncertainties. It recognizes that uncertainty between the predictions of integrated models and data collected from the system in its operational environment is unavoidable. Given the presence of uncertainty, the goal of this work is to develop means of identifying critical sources of uncertainty, and to combine these with the analytical tools used with integrated modeling. In this manner, system uncertainty analysis becomes part of the design process, and can motivate redesign. The specific program objectives were: 1. To incorporate uncertainty modeling, propagation and analysis into the integrated (controls, structures, payloads, disturbances, etc.) design process to derive the error bars associated with performance predictions. 2. To apply modern optimization tools to guide in the expenditure of funds in a way that most cost-effectively improves the lifecycle productivity of the system by enhancing the subsystem reliability and redundancy. The results from the second program objective are described. This report describes the work and results for the first objective: uncertainty modeling, propagation, and synthesis with integrated modeling.

  20. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    SciTech Connect

    Aziz, Hammad Ahmad, Faiz Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  1. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-01

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  2. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.

  3. Aerodynamic performance of axial-flow fan stage operated at nine inlet guide vane angles. [to be used on vertical lift aircraft

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Reid, L.

    1979-01-01

    The overall performance of a fan stage with nine inlet guide vane angle settings is presented. These data were obtained over the stable flow range at speeds from 60 to 120 percent of design for vane setting angles from -25 to 42.5 degrees. At design speed and design inlet guide vane angle, the stage has a peak efficiency of 0.892 at a pressure ratio of 1.322 and a flow of 25.31 kg/s. The stall margin based on peak efficiency and stall was 20 percent. Based on an operating line passing through the peak efficiency point at the design setting angle, the useful operating range of the stage at design speed is limited by stall at the positive setting angles and by choke at the negative angles. At design the calculated static thrust along the operating line varied from 68 to 114 percent of that obtained at design setting angle.

  4. Aerodynamic performance of a core-engine turbine stator vane tested in a two-dimensional cascade of 10 vanes and in a single vane tunnel

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1973-01-01

    A turbine stator vane was tested in a two-dimensional cascade of 10 vanes and in a single-vane tunnel. The single-vane tunnel was a cold air version of a tunnel which will be used for high temperature heat transfer testing of cooled turbine vanes. The purpose of the investigation was to determine if the flow conditions in the single-vane tunnel were sufficiently similar to those of a 10-vane cascade to permit meaningful heat transfer testing. The vane was tested over a range of ideal exit critical velocity ratios. The principal measurements were vane surface static pressure and cross-channel surveys of exit static pressure, total pressure, and flow angle. A brief description of the test vane and tunnels is included. The results of the exit surveys, the vane surface pressure distributions, and overall performance in terms of flow and loss for the two test configurations are compared.

  5. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  6. Resonance versus aerodynamics for energy savings in agile natural flyers

    NASA Astrophysics Data System (ADS)

    Kok, Jia M.; Chahl, Javaan

    2014-03-01

    Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.

  7. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

  8. Performance degradation and altered cerebral activation during dual performance: Evidence for a bottom-up attentional system

    PubMed Central

    Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Ghez, Claude; Stern, Yaakov

    2012-01-01

    Subjects performed a continuous tracking concurrently with an intermittent visual detection task to investigate the existence of competition for a capacity-limited stage (a bottleneck stage). Both perceptual and response-related processes between the two tasks were examined behaviorally and the changes in brain activity during dual-tasking relative to single-task were also assessed. Tracking error and joystick speed were analyzed for changes that were time-locked to visual detection stimuli. The associated brain activations were examined with functional magnetic resonance imaging (fMRI). These were analyzed using mixed block and event-related models to tease apart sustained neural activity and activations associated with individual events. Increased tracking error and decreased joystick speed were observed relative to the target stimuli in the dual-task condition only, which supports the existence of a bottleneck stage in response-related processes. Neuroimaging data show decreased activation to target relative to non-target stimuli in the dual-task condition in the left primary motor and somatosensory cortices controlling right-hand tracking, consistent with the tracking interference observed in behavioral data. Furthermore, the ventral attention system, rather than the dorsal attention system, was found to mediate task coordination between tracking and visual detection. PMID:20188768

  9. Synthesis of S-doped WO3 nanowires with enhanced photocatalytic performance towards dye degradation

    NASA Astrophysics Data System (ADS)

    Han, Fugui; Li, Heping; Fu, Li; Yang, Jun; Liu, Zhong

    2016-05-01

    In this letter, S-doped WO3 nanowires (S-WO3) were prepared using a hydrothermal method followed by a low-temperature solid-state annealing treatment. The synthesized S-WO3 was characterized by SEM, EDX, XRD, XPS, Raman spectroscopy, UV-vis DRS and photocurrent responses. The results indicated that S could enhance the light harvesting capacity of WO3 nanowires. The photocatalytic performance of the S-WO3 was investigated by photodegradation of methyl orange (MO) under visible light irradiation. Results demonstrated that the photocatalytic activity of the S-WO3 nanowires is much higher than that of pure WO3 nanowires.

  10. Performance degradation due to multiprogramming and system overheads in real workloads - Case study on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Dimpsey, R. T.; Iyer, R. K.

    1990-01-01

    The performance degradation due to the multiprogramming (MP) overhead in a parallel execution environment is quantified. In addition, total system overhead is also measured. A methodology, which estimates the MP overhead present in real workloads, is illustrated with real measurents. It is found that MP overhead usually consumes between 10 and 23 percent of the processing power available to parallel programs. The mean MP overhead is determined to be 16 percent which is well over half the total system overhead executed on the system (the mean system overhead is determined to be 24 percent of the processing power). It is found that MP overhead, total system overhead, and application completion time are all moderately correlated.

  11. Degradation and interconversion of plant pteridines during sample preparation and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Van Daele, Jeroen; Blancquaert, Dieter; Kiekens, Filip; Van Der Straeten, Dominique; Lambert, Willy E; Stove, Christophe P

    2016-03-01

    The degradation and interconversion of a selected set of pterins (dihydroneopterin, hydroxymethyldihydropterin, dihydroxanthopterin, neopterin, hydroxymethylpterin, xanthopterin, 6-formylpterin, 6-carboxypterin and pterin), spiked to charcoal-treated potato and Arabidopsis thaliana matrix was investigated, together with their relative recovery in potato and A. thaliana. As a result, a matrix-specific procedure for the ultra-high performance liquid chromatography-tandem mass spectrometry based determination of 6 aromatic pterins (neopterin, hydroxymethylpterin, xanthopterin, 6-formylpterin, 6-carboxypterin and pterin) is proposed: 1.5ml of an N2-flushed, alkaline (pH=10) extraction solvent is added to 200mg of plant sample. After boiling and homogenization, the samples are incubated: Arabidopsis samples for 30min at room temperature, while shaking, and potato samples for 2h at 37°C (applying a dienzyme treatment with α-amylase and protease). After a final boiling step, the samples are ultrafiltrated and resulting extracts are analyzed by UHPLC-MS/MS.

  12. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    SciTech Connect

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  13. Sensitivity analysis in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1984-01-01

    Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.

  14. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  15. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  16. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  17. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  18. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  19. Influence of Fiber Bragg Grating Spectrum Degradation on the Performance of Sensor Interrogation Algorithms

    PubMed Central

    Lamberti, Alfredo; Vanlanduit, Steve; De Pauw, Ben; Berghmans, Francis

    2014-01-01

    The working principle of fiber Bragg grating (FBG) sensors is mostly based on the tracking of the Bragg wavelength shift. To accomplish this task, different algorithms have been proposed, from conventional maximum and centroid detection algorithms to more recently-developed correlation-based techniques. Several studies regarding the performance of these algorithms have been conducted, but they did not take into account spectral distortions, which appear in many practical applications. This paper addresses this issue and analyzes the performance of four different wavelength tracking algorithms (maximum detection, centroid detection, cross-correlation and fast phase-correlation) when applied to distorted FBG spectra used for measuring dynamic loads. Both simulations and experiments are used for the analyses. The dynamic behavior of distorted FBG spectra is simulated using the transfer-matrix approach, and the amount of distortion of the spectra is quantified using dedicated distortion indices. The algorithms are compared in terms of achievable precision and accuracy. To corroborate the simulation results, experiments were conducted using three FBG sensors glued on a steel plate and subjected to a combination of transverse force and vibration loads. The analysis of the results showed that the fast phase-correlation algorithm guarantees the best combination of versatility, precision and accuracy. PMID:25521386

  20. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric