High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Murman, Scott; Aftosmis, Michael
2003-01-01
Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.
Benchmark tests for a Formula SAE Student car prototyping
NASA Astrophysics Data System (ADS)
Mariasiu, Florin
2011-12-01
Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.
Simulation Environment for Orion Launch Abort System Control Design Studies
NASA Technical Reports Server (NTRS)
McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.
2007-01-01
The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.
NASA Astrophysics Data System (ADS)
Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.
2012-06-01
Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
High Resolution Aerospace Applications using the NASA Columbia Supercomputer
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha
2005-01-01
This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.
Simulation and Analyses of Stage Separation Two-Stage Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, Kelly J.; Covell, Peter F.
2005-01-01
NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(registered Trademark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.
Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, K. J.; Covell, Peter F.
2007-01-01
NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(Registerd TradeMark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.
Arrow 227: Air transport system design simulation
NASA Technical Reports Server (NTRS)
Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy
1992-01-01
The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.
Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1
NASA Technical Reports Server (NTRS)
Salas, Juan; Lovell, T. Alan; Schmidt, David K.
1993-01-01
A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions).
Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure
NASA Technical Reports Server (NTRS)
Miller, R. C.; Clure, J. L.
1974-01-01
The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.
Fluid-structure coupling for wind turbine blade analysis using OpenFOAM
NASA Astrophysics Data System (ADS)
Dose, Bastian; Herraez, Ivan; Peinke, Joachim
2015-11-01
Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.
NASA Technical Reports Server (NTRS)
Rathjen, K. A.; Burk, H. O.
1983-01-01
The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.
NASA Technical Reports Server (NTRS)
Thompson, J. M.; Russell, J. W.; Blanchard, R. C.
1987-01-01
This report presents a process for extracting the aerodynamic accelerations of the Shuttle Orbiter Vehicle from the High Resolution Accelerometer Package (HiRAP) flight data during reentry. The methods for obtaining low-level aerodynamic accelerations, principally in the rarefied flow regime, are applied to 10 Orbiter flights. The extraction process is presented using data obtained from Space Transportation System Flight 32 (Mission 61-C) as a typical example. This process involves correcting the HiRAP measurements for the effects of temperature bias and instrument offset from the Orbiter center of gravity, and removing acceleration data during times they are affected by thruster firings. The corrected data are then made continuous and smooth and are further enhanced by refining the temperature bias correction and removing effects of the auxiliary power unit actuation. The resulting data are the current best estimate of the Orbiter aerodynamic accelerations during reentry and will be used for further analyses of the Orbiter aerodynamics and the upper atmosphere characteristics.
2015-09-01
lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
Sensitivity analysis of a wing aeroelastic response
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.
1991-01-01
A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.
Comparison of PASCAL and FORTRAN for solving problems in the physical sciences
NASA Technical Reports Server (NTRS)
Watson, V. R.
1981-01-01
The paper compares PASCAL and FORTRAN for problem solving in the physical sciences, due to requests NASA has received to make PASCAL available on the Numerical Aerodynamic Simulator (scheduled to be operational in 1986). PASCAL disadvantages include the lack of scientific utility procedures equivalent to the IBM scientific subroutine package or the IMSL package which are available in FORTRAN. Advantages include a well-organized, easy to read and maintain writing code, range checking to prevent errors, and a broad selection of data types. It is concluded that FORTRAN may be the better language, although ADA (patterned after PASCAL) may surpass FORTRAN due to its ability to add complex and vector math, and the specify the precision and range of variables.
Supersonic civil airplane study and design: Performance and sonic boom
NASA Technical Reports Server (NTRS)
Cheung, Samson
1995-01-01
Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
NASA Technical Reports Server (NTRS)
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
NASA Technical Reports Server (NTRS)
Karpel, M.
1994-01-01
Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the importance of different tabular values in determining the approximations based upon physical characteristics of the system. Specifically, the physical weighting capability is such that each tabulated aerodynamic coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. In both cases, the resulting approximations yield a relatively low number of aerodynamic lag states in the subsequent state-space model. MIST is written in ANSI FORTRAN 77 for DEC VAX series computers running VMS. It requires approximately 1Mb of RAM for execution. The standard distribution medium for this package is a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. MIST was developed in 1991. DEC VAX and VMS are trademarks of Digital Equipment Corporation. FORTRAN 77 is a registered trademark of Lahey Computer Systems, Inc.
CFD analysis on effect of front windshield angle on aerodynamic drag
NASA Astrophysics Data System (ADS)
Abdellah, Essaghouri; Wang, Bo
2017-09-01
The external aerodynamics plays an important role in the design process of any automotive. The whole performance of the vehicle can be improved with the help of external aerodynamics. The aerodynamic analysis nowadays is implemented in the recent research in the automotive industry to achieve better cars in terms of design and efficiency. The major objective of the present work is to find out the effect of changing the angle between the engine hood and the front windshield on reducing the car air resistance. A full scale three dimensional (BMW 3 series) sedan car model was carried out using the ALIAS AUTOSTUDIO 2016 a NURBS modeling tool with high quality surfaces, only the external shape of the car was modeled while the interior was not modeled. The ANSYS 17.0 WORKBENCH software package was used to analyse the airflow around the external shape of the car - the solutions of Reynolds Average Navier Stokes (RANS) equations has been carried out using realizable k-epsilon turbulence model (which is perfectly suitable for the automated calculation process) for the given car domain. In this work, the boundary layer, mesh quality, and turbulent value simulation has been compared and discussed in the result section. Finally the optimal model was selected and the redesigned car was analysed to verify the results.
The High Resolution Accelerometer Package (HiRAP) flight experiment summary for the first 10 flights
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, K. T.; Barrett, M.
1992-01-01
The High Resolution Accelerometer Package (HiRAP) instrument is a triaxial, orthogonal system of gas damped accelerometers with a resolution of 1 x 10(exp -6) g (1 micro-g). The purpose of HiRAP is to measure the low frequency component of the total acceleration along the orbiter vehicle (OV) body axes while the OV descends through the rarefied flow flight regime. Two HiRAP instruments have flown on a total of 10 Space Transport System (STS) missions. The aerodynamic component of the acceleration measurements was separated from the total acceleration. Instrument bias and orbiter mechanical system acceleration effects were incorporated into one bulk bias. The bulk bias was subtracted from the acceleration measurements to produce aerodynamic descent data sets for all 10 flights. The aerodynamic acceleration data sets were input to an aerodynamic coefficient model. The aerodynamic acceleration data and coefficient model were used to estimate the atmospheric density for the altitude range of 140 to 60 km and a downrange distance of 600 km. For 8 of 10 flights results from this model agree with expected results. For the results that do not agree with expected results, a variety of error sources have been explored.
2016-09-01
ARL-TR-7790 ● SEP 2016 US Army Research Laboratory Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic... Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity by Sidra I Silton Weapons and...To) December 2014–April 2015 4. TITLE AND SUBTITLE Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at
X based interactive computer graphics applications for aerodynamic design and education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Higgs, C. Fred, III
1995-01-01
Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
NASA Technical Reports Server (NTRS)
Olmedo, L.
1980-01-01
The changes, modifications, and inclusions which were adapted to the current version of the MINIVER program are discussed. Extensive modifications were made to various subroutines, and a new plot package added. This plot package is the Johnson Space Center DISSPLA Graphics System currently driven under an 1110 EXEC 8 configuration. User instructions on executing the MINIVER program are provided and the plot package is described.
Thermal testing techniques for space shuttle thermal protection system panels
NASA Technical Reports Server (NTRS)
Cox, B. G.
1972-01-01
An experimental system was developed for evaluation of the effects of aerodynamic heating and cooling, vacuum, and pressure loading on candidate insulation packages proposed for use on the space shuttle. The system includes a number of design features which facilitate rapid recycle times. This is necessary to efficiently conduct extensive thermal cycling tests on these insulation packages to determine their reuse capabilities. The heart of the system is a 26-inch graphite element radiant heater. A susceptor plate functions as a uniform-temperature intermediate radiating surface. The susceptor also forms the lid of an inert atmosphere enclosure which separates the heater from the oxidizing test atmosphere. In some tests the plate properly simulates the heating from an actual flight heat-shield panel. Although other materials were used at lower required test temperatures, 2500 F was routinely achieved using a coated columbium susceptor plate.
Missile Aerodynamics for Ascent and Re-entry
NASA Technical Reports Server (NTRS)
Watts, Gaines L.; McCarter, James W.
2012-01-01
Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.
Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Ellison, J. C.
1972-01-01
Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.
2013-01-01
Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
NASA Astrophysics Data System (ADS)
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.
2000-01-01
An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
NASA Astrophysics Data System (ADS)
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
NASA Technical Reports Server (NTRS)
Messina, Michael D.
1995-01-01
The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.
NASA Technical Reports Server (NTRS)
1993-01-01
Developed under a Small Business Innovation Research (SBIR) contract, RAMPANT is a CFD software package for computing flow around complex shapes. The package is flexible, fast and easy to use. It has found a great number of applications, including computation of air flow around a Nordic ski jumper, prediction of flow over an airfoil and computation of the external aerodynamics of motor vehicles.
Monte Carlo Methodology Serves Up a Software Success
NASA Technical Reports Server (NTRS)
2003-01-01
Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.
Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database
NASA Technical Reports Server (NTRS)
Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.
2011-01-01
Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
NASA Technical Reports Server (NTRS)
Compton, H. R.; Blanchard, R. C.; Walberg, G. D.
1978-01-01
A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator
NASA Astrophysics Data System (ADS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
2006-05-01
Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.
Enhancement of the CAVE computer code
NASA Astrophysics Data System (ADS)
Rathjen, K. A.; Burk, H. O.
1983-12-01
The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.
Development of multi-element active aerodynamics for the formula sae car
NASA Astrophysics Data System (ADS)
Merkel, James Patrick
This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.
Aerodynamic Simulation of Ice Accretion on Airfoils
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
Aerodynamics model for a generic ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.
1995-01-01
This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.
Open Source Software Openfoam as a New Aerodynamical Simulation Tool for Rocket-Borne Measurements
NASA Astrophysics Data System (ADS)
Staszak, T.; Brede, M.; Strelnikov, B.
2015-09-01
The only way to do in-situ measurements, which are very important experimental studies for atmospheric science, in the mesoshere/lower thermosphere (MLT) is to use sounding rockets. The drawback of using rockets is the shock wave appearing because of the very high speed of the rocket motion (typically about 1000 mIs). This shock wave disturbs the density, the temperature and the velocity fields in the vicinity of the rocket, compared to undisturbed values of the atmosphere. This effect, however, can be quantified and the measured data has to be corrected not just to make it more precise but simply usable. The commonly accepted and widely used tool for this calculations is the Direct Simulation Monte Carlo (DSMC) technique developed by GA. Bird which is available as stand-alone program limited to use a single processor. Apart from complications with simulations of flows around bodies related to different flow regimes in the altitude range of MLT, that rise due to exponential density change by several orders of magnitude, a particular hardware configuration introduces significant difficulty for aerodynamical calculations due to choice of the grid sizes mainly depending on the demands on adequate DSMCs and good resolution of geometries with scale differences of factor of iO~. This makes either the calculation time unreasonably long or even prevents the calculation algorithm from converging. In this paper we apply the free open source software OpenFOAM (licensed under GNU GPL) for a three-dimensional CFD-Simulation of a flow around a sounding rocket instrumentation. An advantage of this software package, among other things, is that it can run on high performance clusters, which are easily scalable. We present the first results and discuss the potential of the new tool in applications for sounding rockets.
NASA Astrophysics Data System (ADS)
Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro
2017-11-01
In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.
Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train
NASA Astrophysics Data System (ADS)
Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro
In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.
CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests
NASA Technical Reports Server (NTRS)
Brock, Joseph; Stern, Eric; Wilder, Michael
2017-01-01
A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George
1990-01-01
Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.
Aerodynamic Simulation of Runback Ice Accretion
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.
2010-01-01
This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.
NASA Technical Reports Server (NTRS)
Reinmann, J. J.
1991-01-01
The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids.
Automated Simulation Updates based on Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Ward, David G.
2007-01-01
A statistically-based method for using flight data to update aerodynamic data tables used in flight simulators is explained and demonstrated. A simplified wind-tunnel aerodynamic database for the F/A-18 aircraft is used as a starting point. Flight data from the NASA F-18 High Alpha Research Vehicle (HARV) is then used to update the data tables so that the resulting aerodynamic model characterizes the aerodynamics of the F-18 HARV. Prediction cases are used to show the effectiveness of the automated method, which requires no ad hoc adjustments by the analyst.
Transonic aerodynamic design experience
NASA Technical Reports Server (NTRS)
Bonner, E.
1989-01-01
Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Aerodynamics inside a rapid compression machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Gaurav; Sung, Chih-Jen
2006-04-15
The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstratedmore » to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)« less
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Time-Varying Loads of Co-Axial Rotor Blade Crossings
NASA Technical Reports Server (NTRS)
Schatzman, Natasha L.; Komerath, Narayanan; Romander, Ethan A.
2017-01-01
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Churchfield, M.; Mirocha, J.
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2015-01-01
The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).
An extended BET format for La RC shuttle experiments: Definition and development
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Henry, M. W.
1981-01-01
A program for shuttle post-flight data reduction is discussed. An extended Best Estimate Trajectory (BET) file was developed. The extended format results in some subtle changes to the header record. The major change is the addition of twenty-six words to each data record. These words include atmospheric related parameters, body axis rate and acceleration data, computed aerodynamic coefficients, and angular accelerations. These parameters were added to facilitate post-flight aerodynamic coefficient determinations as well as shuttle entry air data sensor analyses. Software (NEWBET) was developed to generate the extended BET file utilizing the previously defined ENTREE BET, a dynamic data file which may be either derived inertial measurement unit data or aerodynamic coefficient instrument package data, and some atmospheric information.
Generation of Aerodynamics Via Physics-Based Virtual Flight Simulations
2008-12-01
problems associated with projectile and missile aerodynamics. For maneuvering munitions, the effect of many new weapon control mechanisms being...dynamic simulation. The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2...an unsteady aerodynamic moment along with terms due to the fact that the center of pressure and center of Magnus are not located at the mass
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft
DOT National Transportation Integrated Search
1995-04-01
This report describes the aerodynamics model used in a simulation model of : an advanced short takeoff and vertical landing lift-far fighter aircraft. The : simulation model was developed for use in piloted evaluations of transition and : hover fligh...
Aerodynamic loads on buses due to crosswind gusts: extended analysis
NASA Astrophysics Data System (ADS)
Drugge, Lars; Juhlin, Magnus
2010-12-01
The objective of this work is to use inverse simulations on measured vehicle data in order to estimate the aerodynamic loads on a bus when exposed to crosswind situations. Tyre forces, driver input, wind velocity and vehicle response were measured on a typical coach when subjected to natural crosswind gusts. Based on these measurements and a detailed MBS vehicle model, the aerodynamic loads were estimated through inverse simulations. In order to estimate the lift force, roll and pitch moments in addition to the lateral force and yaw moment, the simulation model was extended by also incorporating the estimation of the vertical road disturbances. The proposed method enables the estimation of aerodynamic loads due to crosswind gusts without using a full scale wind tunnel adapted for crosswind excitation.
NASA Technical Reports Server (NTRS)
Boyle, W.; Conine, B.
1978-01-01
Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
Evaluation of Job Queuing/Scheduling Software: Phase I Report
NASA Technical Reports Server (NTRS)
Jones, James Patton
1996-01-01
The recent proliferation of high performance work stations and the increased reliability of parallel systems have illustrated the need for robust job management systems to support parallel applications. To address this issue, the national Aerodynamic Simulation (NAS) supercomputer facility compiled a requirements checklist for job queuing/scheduling software. Next, NAS began an evaluation of the leading job management system (JMS) software packages against the checklist. This report describes the three-phase evaluation process, and presents the results of Phase 1: Capabilities versus Requirements. We show that JMS support for running parallel applications on clusters of workstations and parallel systems is still insufficient, even in the leading JMS's. However, by ranking each JMS evaluated against the requirements, we provide data that will be useful to other sites in selecting a JMS.
EAGLEView: A surface and grid generation program and its data management
NASA Technical Reports Server (NTRS)
Remotigue, M. G.; Hart, E. T.; Stokes, M. L.
1992-01-01
An old and proven grid generation code, the EAGLE grid generation package, is given an added dimension of a graphical interface and a real time data base manager. The Numerical Aerodynamic Simulation (NAS) Panel Library is used for the graphical user interface. Through the panels, EAGLEView constructs the EAGLE script command and sends it to EAGLE to be processed. After the object is created, the script is saved in a mini-buffer which can be edited and/or saved and reinterpreted. The graphical objects are set-up in a linked-list and can be selected or queried by pointing and clicking the mouse. The added graphical enhancement to the EAGLE system emphasizes the unique capability to construct field points around complex geometry and visualize the construction every step of the way.
DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations
Influence of unsteady aerodynamics on driving dynamics of passenger cars
NASA Astrophysics Data System (ADS)
Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.
2014-11-01
Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.
Application Program Interface for the Orion Aerodynamics Database
NASA Technical Reports Server (NTRS)
Robinson, Philip E.; Thompson, James
2013-01-01
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduced
The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models
NASA Technical Reports Server (NTRS)
Hill, Melissa A.; Jackson, E. Bruce
2007-01-01
It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.
Numerical Prediction of the Influence of Thrust Reverser on Aeroengine's Aerodynamic Stability
NASA Astrophysics Data System (ADS)
Zhiqiang, Wang; Xigang, Shen; Jun, Hu; Xiang, Gao; Liping, Liu
2017-11-01
A numerical method was developed to predict the aerodynamic stability of a high bypass ratio turbofan engine, at the landing stage of a large transport aircraft, when the thrust reverser was deployed. 3D CFD simulation and 2D aeroengine aerodynamic stability analysis code were performed in this work, the former is to achieve distortion coefficient for the analysis of engine stability. The 3D CFD simulation was divided into two steps, the single engine calculation and the integrated aircraft and engine calculation. Results of the CFD simulation show that with the decreasing of relative wind Mach number, the engine inlet will suffer more severe flow distortion. The total pressure and total temperature distortion coefficients at the inlet of the engines were obtained from the results of the numerical simulation. Then an aeroengine aerodynamic stability analysis program was used to quantitatively analyze the aerodynamic stability of the high bypass ratio turbofan engine. The results of the stability analysis show that the engine can work stably, when the reverser flow is re-ingested. But the anti-distortion ability of the booster is weaker than that of the fan and high pressure compressor. It is a weak link of engine stability.
Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.
1977-01-01
Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.
A workstation based simulator for teaching compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.
Turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Daniels, W. A.
1992-01-01
Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2015-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2014-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller
NASA Astrophysics Data System (ADS)
Rahmadi Nuranto, Awang; Jamaludin Fitroh, Ahmad; Syamsudin, Hendri
2018-04-01
The existing propeller of the LSU-03 aircraft is made of wood. To improve structural strength and obtain better mechanical properties, the propeller will be redesigned usingcomposite materials. It is necessary to simulate and analyze the design load. This research paper explainsthe simulation and analysis of aerodynamic load prior to structural design phase of composite propeller. Aerodynamic load calculations are performed using both the Blade Element Theory(BET) and the Computational Fluid Dynamic (CFD)simulation. The result of both methods show a close agreement, the different thrust forces is only 1.2 and 4.1% for two type mesh. Thus the distribution of aerodynamic loads along the surface of the propeller blades of the 3-D CFD simulation results are considered valid and ready to design the composite structure. TheCFD results is directly imported to the structure model using the Direct Import CFD / One-Way Fluid Structure Interaction (FSI) method. Design load of propeller is chosen at the flight condition at speed of 20 km/h at 7000 rpm.
Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft
NASA Technical Reports Server (NTRS)
Shah, Gautam H.; Hill, Melissa A.
2012-01-01
A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
NASA Technical Reports Server (NTRS)
Green, F. M.; Resnick, D. R.
1979-01-01
An FMP (Flow Model Processor) was designed for use in the Numerical Aerodynamic Simulation Facility (NASF). The NASF was developed to simulate fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The facility is applicable to studying aerodynamic and aircraft body designs. The following general topics are discussed in this volume: (1) FMP functional computer specifications; (2) FMP instruction specification; (3) standard product system components; (4) loosely coupled network (LCN) specifications/description; and (5) three appendices: performance of trunk allocation contention elimination (trace) method, LCN channel protocol and proposed LCN unified second level protocol.
Dynamic stability of an aerodynamically efficient motorcycle
NASA Astrophysics Data System (ADS)
Sharma, Amrit; Limebeer, David J. N.
2012-08-01
Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.
Numerical aerodynamic simulation facility preliminary study: Executive study
NASA Technical Reports Server (NTRS)
1977-01-01
A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.
PyFly: A fast, portable aerodynamics simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.
Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less
PyFly: A fast, portable aerodynamics simulator
Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...
2018-03-14
Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less
NASA Technical Reports Server (NTRS)
Dayman, B., Jr.; Fiore, A. W.
1974-01-01
The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.
Aerodynamic analysis of an isolated vehicle wheel
NASA Astrophysics Data System (ADS)
Leśniewicz, P.; Kulak, M.; Karczewski, M.
2014-08-01
Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.
Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2010-01-01
Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.
Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, V. L.
1985-01-01
Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.
2014-11-01
39–44) has been explored in depth in the literature. Of particular interest for this study are investigations into roll control. Isolating the...Control Performance, Aerodynamic Modeling, and Validation of Coupled Simulation Techniques for Guided Projectile Roll Dynamics by Jubaraj...Simulation Techniques for Guided Projectile Roll Dynamics Jubaraj Sahu, Frank Fresconi, and Karen R. Heavey Weapons and Materials Research
Formulation of the linear model from the nonlinear simulation for the F18 HARV
NASA Technical Reports Server (NTRS)
Hall, Charles E., Jr.
1991-01-01
The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.
A Passive Earth-Entry Capsule for Mars Sample Return
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Kellas, Sotiris
1999-01-01
A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.
NASA Technical Reports Server (NTRS)
Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward
1989-01-01
A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.
Numerical aerodynamic simulation program long haul communications prototype
NASA Technical Reports Server (NTRS)
Cmaylo, Bohden K.; Foo, Lee
1987-01-01
This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.
STS-40 orbital acceleration research experiment flight results during a typical sleep period
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.
1992-01-01
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.
1999-01-01
As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.
Numerical Simulations For the F-16XL Aircraft Configuration
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Abdol-Hamid, Khaled; Cavallo, Peter A.; Parlette, Edward B.
2014-01-01
Numerical simulations of flow around the F-16XL are presented as a contribution to the Cranked Arrow Wing Aerodynamic Project International II (CAWAPI-II). The NASA Tetrahedral Unstructured Software System (TetrUSS) is used to perform numerical simulations. This CFD suite, developed and maintained by NASA Langley Research Center, includes an unstructured grid generation program called VGRID, a postprocessor named POSTGRID, and the flow solver USM3D. The CRISP CFD package is utilized to provide error estimates and grid adaption for verification of USM3D results. A subsonic high angle-of-attack case flight condition (FC) 25 is computed and analyzed. Three turbulence models are used in the calculations: the one-equation Spalart-Allmaras (SA), the two-equation shear stress transport (SST) and the ke turbulence models. Computational results, and surface static pressure profiles are presented and compared with flight data. Solution verification is performed using formal grid refinement studies, the solution of Error Transport Equations, and adaptive mesh refinement. The current study shows that the USM3D solver coupled with CRISP CFD can be used in an engineering environment in predicting vortex-flow physics on a complex configuration at flight Reynolds numbers.
Future Computer Requirements for Computational Aerodynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.
Transient aerodynamic characteristics of vans during the accelerated overtaking process
NASA Astrophysics Data System (ADS)
Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li
2018-04-01
This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.
Small, high pressure ratio compressor: Aerodynamic and mechanical design
NASA Technical Reports Server (NTRS)
Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.
1973-01-01
The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.
Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension
NASA Technical Reports Server (NTRS)
Lincoln, N. R.
1978-01-01
Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.
Blunt Body Aerodynamics for Hypersonic Low Density Flows
NASA Technical Reports Server (NTRS)
Moss, James N.; Glass, Christopher E.; Greene, Francis A.
2006-01-01
Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations.
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.
Aerodynamic characterisation and trajectory simulations for the Ariane-5 booster recovery system
NASA Astrophysics Data System (ADS)
Meiboom, F. P.
One of the most critical aspects of the early phases of the development of the Ariane-5 booster recovery system was the determination of the behavior of the booster during its atmospheric reentry, since this behavior determines the start conditions for the parachute system elements. A combination of wind-tunnel tests (subsonic and supersonic) and analytical methods was applied to define the aerodynamic characteristics of the booster. This aerodynamic characterization in combination with information of the ascent trajectory, atmospheric properties and booster mass and inertia were used as input for the 6-DOF trajectory simulations of the vehicle. Uncertainties in aerodynamic properties and deviations in atmospheric and booster properties were incorporated to define the range of initial conditions for the parachute system, utilizing stochastic (Monte-Carlo) methods.
A General Simulation Method for Multiple Bodies in Proximate Flight
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
2003-01-01
Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.
Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.
Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle
NASA Technical Reports Server (NTRS)
Tillier, Clemens Emmanuel
1998-01-01
This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.
Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions
NASA Technical Reports Server (NTRS)
Moss, James N.; Greene, Francis A.; Boyles, Katie A.
2006-01-01
Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).
Efficient Global Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2012-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of the lateral-directional static aerodynamic stability and control uncertainties on the performance of the automatic (no manual inputs) entry-guidance and control systems of the space shuttle orbiter. To establish the acceptable boundaries of the uncertainties, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. Control-system modifications were identified that decrease the sensitivity to off-nominal aerodynamics. With these modifications, the acceptable aerodynamic boundaries were determined.
Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1
NASA Technical Reports Server (NTRS)
Driggers, H. H.
1978-01-01
A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.
Space shuttle plume/simulation application: Results and math model supersonic data
NASA Technical Reports Server (NTRS)
Boyle, W.; Conine, B.; Bell, G.
1979-01-01
The analysis of pressure and gage wind tunnel data from space shuttle wind tunnel test IA138 was performed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes on the total vehicles, elements, and components of the space shuttle vehicle during the supersonic portion of ascent flight. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach numbers from 1.55 to 2.5.
Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation
NASA Technical Reports Server (NTRS)
Zwerneman, W. D.; Eller, B. G.
1994-01-01
For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.
Aerocapture Systems Analysis for a Neptune Mission
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Edquist, Karl T.; Starr, Brett R.; Hollis, Brian R.; Hrinda, Glenn A.; Bailey, Robert W.; Hall, Jeffery L.; Spilker, Thomas R.; Noca, Muriel A.; O'Kongo, N.
2006-01-01
A Systems Analysis was completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The systems analysis includes the following disciplines: science; mission design; aeroshell configuration; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and aeroheating environment; stability analyses; guidance development; atmospheric flight simulation; thermal protection system design; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture is feasible and performance is adequate for the Neptune mission. Aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle and results in a 3-4 year reduction in trip time compared to all-propulsive systems. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads.
System Identification of a Vortex Lattice Aerodynamic Model
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.
2001-01-01
The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.
NASA Technical Reports Server (NTRS)
Redhed, D. D.
1978-01-01
Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.
Computational aerodynamics development and outlook /Dryden Lecture in Research for 1979/
NASA Technical Reports Server (NTRS)
Chapman, D. R.
1979-01-01
Some past developments and current examples of computational aerodynamics are briefly reviewed. An assessment is made of the requirements on future computer memory and speed imposed by advanced numerical simulations, giving emphasis to the Reynolds averaged Navier-Stokes equations and to turbulent eddy simulations. Experimental scales of turbulence structure are used to determine the mesh spacings required to adequately resolve turbulent energy and shear. Assessment also is made of the changing market environment for developing future large computers, and of the projections of micro-electronics memory and logic technology that affect future computer capability. From the two assessments, estimates are formed of the future time scale in which various advanced types of aerodynamic flow simulations could become feasible. Areas of research judged especially relevant to future developments are noted.
Neural network identification of aircraft nonlinear aerodynamic characteristics
NASA Astrophysics Data System (ADS)
Egorchev, M. V.; Tiumentsev, Yu V.
2018-02-01
The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.
The Integrated Sensor System Data Enhancement Package
NASA Technical Reports Server (NTRS)
Trankle, T. L.; Reed, W. B.; Rabin, U.; Vincent, J.
1983-01-01
The purpose of the Integrated Sensor System (ISS) Data Enhancement Package (DEP) is to improve the accuracies of the data obtained from the inflight tests performed on aircraft. The DEP is a microprocessor-based, flight-qualified electronics package that assimilates data from a Ring Laser Gyro (RGL) system, a standard NASA air data package, and other inputs. The DEP then processes these inputs in real-time to obtain optimal estimates of the aircraft velocity, attitude, and altitude. These estimates can be passed to the flight crew, downlinked, and/or stored on a mass storage medium. The DEP is now being built for the NASA Dryden Flight Research Center. Completion is anticipated in early 1984. A primary use of the ISS/DEP will be for the collection of quality data for the estimation of aircraft aerodynamic coefficients, including stability derivatives, using system identification methods. Initial anticipated applications will be on the AV-8B, F-14, and X-29 test aircraft.
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn’t been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect. PMID:25679522
Swept-Wing Ice Accretion Characterization and Aerodynamics
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.
2013-01-01
NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65% scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20%, 64% and 83% semispan stations of the baseline-reference wing. Three-dimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date. 1
Swept-Wing Ice Accretion Characterization and Aerodynamics
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.
2013-01-01
NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65 percent scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20, 64 and 83 percent semispan stations of the baseline-reference wing. Threedimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.
NASA Technical Reports Server (NTRS)
Powell, R. W.
1975-01-01
There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.
A New Aerodynamic Data Dispersion Method for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.
2011-01-01
A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis
NASA Technical Reports Server (NTRS)
Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.
2013-01-01
The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.
NASA Technical Reports Server (NTRS)
Bezos, Gaudy M.; Campbell, Bryan A.
1993-01-01
A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.
Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation
NASA Astrophysics Data System (ADS)
Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.
2014-06-01
The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.
NASA Technical Reports Server (NTRS)
Morelli, E. A.; Proffitt, M. S.
1999-01-01
The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
NASA Technical Reports Server (NTRS)
Donohue, Paul F.
1987-01-01
The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.
Simulation on a car interior aerodynamic noise control based on statistical energy analysis
NASA Astrophysics Data System (ADS)
Chen, Xin; Wang, Dengfeng; Ma, Zhengdong
2012-09-01
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap
NASA Astrophysics Data System (ADS)
Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong
2017-10-01
Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.
NASA Astrophysics Data System (ADS)
Rahimi, H.; Hartvelt, M.; Peinke, J.; Schepers, J. G.
2016-09-01
The aim of this work is to investigate the capabilities of current engineering tools based on Blade Element Momentum (BEM) and free vortex wake codes for the prediction of key aerodynamic parameters of wind turbines in yawed flow. Axial induction factor and aerodynamic loads of three wind turbines (NREL VI, AVATAR and INNWIND.EU) were investigated using wind tunnel measurements and numerical simulations for 0 and 30 degrees of yaw. Results indicated that for axial conditions there is a good agreement between all codes in terms of mean values of aerodynamic parameters, however in yawed flow significant deviations were observed. This was due to unsteady phenomena such as advancing & retreating and skewed wake effect. These deviations were more visible in aerodynamic parameters in comparison to the rotor azimuthal angle for the sections at the root and tip where the skewed wake effect plays a major role.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Stanford, Bret K.
2017-01-01
Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
Unsteady Aerodynamic Force Sensing from Strain Data
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2017-01-01
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of longitudinal static aerodynamic stability and control uncertainties on the performance of the space shuttle orbiter automatic (no manual inputs) entry guidance and control systems. To establish the acceptable boundaries, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. With either of two previously identified control system modifications included, the acceptable longitudinal aerodynamic boundaries were determined.
Progress Toward a Format Standard for Flight Dynamics Models
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2006-01-01
In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90, Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency. However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight dynamics model from one simulation environment to another one. If a standard data package or exchange format were to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard flight dynamic model exchange standard based on XML and HDF-5 data formats.
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
Close to real life. [solving for transonic flow about lifting airfoils using supercomputers
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Bailey, F. Ron
1988-01-01
NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.
Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb
NASA Astrophysics Data System (ADS)
Yang, Jiaoying; Guo, Yachao
2017-10-01
For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.
Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Wieseman, Carol D.
1989-01-01
As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
NASA Technical Reports Server (NTRS)
Wells, W. L.; Snow, W. L.
1977-01-01
A description is given and calibration procedures are presented for an apparatus that is used to simulate aerodynamic radiant heating during planetary entry. The primary function of the apparatus is to simulate the spectral distribution of shock layer radiation and to determine absorption effects of simulated ablation products which are injected into the stagnation region flow field. An electric arc heater is used to heat gas mixtures that represent the planetary atmospheres of interest. Spectral measurements are made with a vacuum ultraviolet scanning monochromator.
Parameter Studies, time-dependent simulations and design with automated Cartesian methods
NASA Technical Reports Server (NTRS)
Aftosmis, Michael
2005-01-01
Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.
Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Rojahn, Josh
2011-01-01
Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.
Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime
NASA Technical Reports Server (NTRS)
Rojahn, Josh; Ruf, Joe
2011-01-01
Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state and in three dimensions with symmetric geometries, no freestream sideslip angle, and motors firing. The trajectory points at issue were in the transonic regime, at 0 and +/- 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC's Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.
NASA Technical Reports Server (NTRS)
Jones, William H.
1985-01-01
The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.
CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.
1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
STS-40 orbital acceleration research experiment flight results during a typical sleep period
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.
1992-01-01
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities was flown aboard Shuttle on STS-40. The instrument is designed to measure and record the Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarefied flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the Shuttle while in low-earth orbit. A 2-h orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low-frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight liner corrections for drift.
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain
NASA Technical Reports Server (NTRS)
Campbell, Bryan A.; Bezos, Gaudy M.
1989-01-01
The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.
NASA Astrophysics Data System (ADS)
Jalasabri, J.; Romli, F. I.; Harmin, M. Y.
2017-12-01
In developing successful airship designs, it is important to fully understand the effect of the design on the performance of the airship. The aim of this research work is to establish the trend for effects of design fineness ratio of an airship towards its aerodynamic performance. An approximate computer-aided design (CAD) model of the Atlant-100 airship is constructed using CATIA software and it is applied in the computational fluid dynamics (CFD) simulation analysis using Star-CCM+ software. In total, 36 simulation runs are executed with different combinations of values for design fineness ratio, altitude and velocity. The obtained simulation results are analyzed using MINITAB to capture the effects relationship on lift and drag coefficients. Based on the results, it is concluded that the design fineness ratio does have a significant impact on the generated aerodynamic lift and drag forces on the airship.
NASA Technical Reports Server (NTRS)
Savaglio, Clare
1989-01-01
A realistic simulation of an aircraft in the flight using the AD 100 digital computer is presented. The implementation of three model features is specifically discussed: (1) a large aerodynamic data base (130,00 function values) which is evaluated using function interpolation to obtain the aerodynamic coefficients; (2) an option to trim the aircraft in longitudinal flight; and (3) a flight control system which includes a digital controller. Since the model includes a digital controller the simulation implements not only continuous time equations but also discrete time equations, thus the model has a mixed-data structure.
Airframe Icing Research Gaps: NASA Perspective
NASA Technical Reports Server (NTRS)
Potapczuk, Mark
2009-01-01
qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.
Optimal segmentation and packaging process
Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.
1999-01-01
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.
1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.
Aeroelastic simulation of higher harmonic control
NASA Technical Reports Server (NTRS)
Robinson, Lawson H.; Friedmann, Peretz P.
1994-01-01
This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.
Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H
NASA Technical Reports Server (NTRS)
1972-01-01
Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.
NASA Astrophysics Data System (ADS)
Chandra, Yatish
Unmanned Aerial Systems (UASs) are relatively affordable and immediately available compared to commercial aircraft. Hence, their aerodynamics and design accuracies are often based on extrapolating from design standards and procedures widely used in the aerospace industry for commercial aircraft with most often, acceptable results. Engineering level software such as Advanced Aircraft Analysis (AAA) use general aviation aircraft data and later extrapolate them onto UASs for aerodynamic and flight dynamics modeling but are limited by their platform repository and relatively high Reynolds number evaluations. UASs however, are aircraft which fly at comparatively low speeds and low Reynolds number with close proximities between the components wherein such standards may not hold good. This thesis focuses on evaluating the accuracy and impact of such industry standards on the aerodynamics and flight dynamics of UASs. A DG808s UAS is chosen for the study which was previously modeled using the AAA software at The University of Kansas by the Flight Systems Team. Using the STAR-CCM+ code, performance data were compared and assessed with AAA. Aerodynamic simulations were carried out for two different configurations viz., aircraft with and without propeller slipstream effects. Data obtained for the non-powered simulations were found to be in good agreement with the AAA model. For the powered flight however, discrepancies between the AAA model and CFD data were observed with large values for the vertical tail side-force coefficient. A comparison with the system identification data from the flight tests was made to confirm and validate this vertical tail behavior with the help of rudder deflection inputs. A relationship between the propeller RPM and the aerodynamic model was established by simulating two different propeller speeds. Based on the STAR-CCM+ data and the resulting comparisons with AAA, updates necessary to the UAS aerodynamic and flight dynamics models currently used in the industry were discussed and concluded with a stress on dependency on higher fidelity methods such as Computational Fluid Dynamics.
Scale Adaptive Simulation Model for the Darrieus Wind Turbine
NASA Astrophysics Data System (ADS)
Rogowski, K.; Hansen, M. O. L.; Maroński, R.; Lichota, P.
2016-09-01
Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads and wake velocity profiles behind the rotor are compared with experimental data taken from literature. The level of agreement between CFD and experimental results is reasonable.
NASA Astrophysics Data System (ADS)
Yondo, Raul; Andrés, Esther; Valero, Eusebio
2018-01-01
Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.
NASA Technical Reports Server (NTRS)
Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.
1978-01-01
The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.
NASA Astrophysics Data System (ADS)
Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon
2017-11-01
We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.
NASA Technical Reports Server (NTRS)
Frost, A. L.; Dill, C. C.
1986-01-01
An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.
Neptune Aerocapture Systems Analysis
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae
2004-01-01
A Neptune Aerocapture Systems Analysis is completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The high fidelity systems analysis is completed by a five center NASA team and includes the following disciplines and analyses: science; mission design; aeroshell configuration screening and definition; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and database definition; initial stability analyses; guidance development; atmospheric flight simulation; computational fluid dynamics and radiation analyses for aeroheating environment definition; thermal protection system design, concepts and sizing; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle. In addition aerocapture results in a 3-4 year reduction in trip time compared to all-propulsive systems. Aerocapture is feasible and performance is adequate for the Neptune aerocapture mission. Monte Carlo simulation results show 100% successful capture for all cases including conservative assumptions on atmosphere and navigation. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods and validation for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads, and the effects on surface recession.
Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics
NASA Technical Reports Server (NTRS)
Eugene, L. Tu
1996-01-01
The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.
NASA Technical Reports Server (NTRS)
Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.
1986-01-01
Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.
User Selection Criteria of Airspace Designs in Flexible Airspace Management
NASA Technical Reports Server (NTRS)
Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung
2011-01-01
A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.
NASA Technical Reports Server (NTRS)
Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.
1978-01-01
The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.
Optimal segmentation and packaging process
Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.
1999-08-10
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.
focuses on high-fidelity simulation of wind plant aerodynamics using large-eddy simulation. Particularly Applications (SOWFA), a coupled fluid-structure-controls simulation tool specifically for wind plants. Matt's
A flight experiment to measure rarefied-flow aerodynamics
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.
1990-01-01
A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.
A large-scale computer facility for computational aerodynamics
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Ballhaus, W. F., Jr.
1985-01-01
As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.
Statistical Analysis of the Uncertainty in Pre-Flight Aerodynamic Database of a Hypersonic Vehicle
NASA Astrophysics Data System (ADS)
Huh, Lynn
The objective of the present research was to develop a new method to derive the aerodynamic coefficients and the associated uncertainties for flight vehicles via post- flight inertial navigation analysis using data from the inertial measurement unit. Statistical estimates of vehicle state and aerodynamic coefficients are derived using Monte Carlo simulation. Trajectory reconstruction using the inertial navigation system (INS) is a simple and well used method. However, deriving realistic uncertainties in the reconstructed state and any associated parameters is not so straight forward. Extended Kalman filters, batch minimum variance estimation and other approaches have been used. However, these methods generally depend on assumed physical models, assumed statistical distributions (usually Gaussian) or have convergence issues for non-linear problems. The approach here assumes no physical models, is applicable to any statistical distribution, and does not have any convergence issues. The new approach obtains the statistics directly from a sufficient number of Monte Carlo samples using only the generally well known gyro and accelerometer specifications and could be applied to the systems of non-linear form and non-Gaussian distribution. When redundant data are available, the set of Monte Carlo simulations are constrained to satisfy the redundant data within the uncertainties specified for the additional data. The proposed method was applied to validate the uncertainty in the pre-flight aerodynamic database of the X-43A Hyper-X research vehicle. In addition to gyro and acceleration data, the actual flight data include redundant measurements of position and velocity from the global positioning system (GPS). The criteria derived from the blend of the GPS and INS accuracy was used to select valid trajectories for statistical analysis. The aerodynamic coefficients were derived from the selected trajectories by either direct extraction method based on the equations in dynamics, or by the inquiry of the pre-flight aerodynamic database. After the application of the proposed method to the case of the X-43A Hyper-X research vehicle, it was found that 1) there were consistent differences in the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis, 2) the pre-flight estimation of the pitching moment coefficients was significantly different from the post-flight analysis, 3) the type of distribution of the states from the Monte Carlo simulation were affected by that of the perturbation parameters, 4) the uncertainties in the pre-flight model were overestimated, 5) the range where the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis are in closest agreement is between Mach *.* and *.* and more data points may be needed between Mach * and ** in the pre-flight aerodynamic database, 6) selection criterion for valid trajectories from the Monte Carlo simulations was mostly driven by the horizontal velocity error, 7) the selection criterion must be based on reasonable model to ensure the validity of the statistics from the proposed method, and 8) the results from the proposed method applied to the two different flights with the identical geometry and similar flight profile were consistent.
Development and Use of an Open-Source, User-Friendly Package to Simulate Voltammetry Experiments
ERIC Educational Resources Information Center
Wang, Shuo; Wang, Jing; Gao, Yanjing
2017-01-01
An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
NASA Technical Reports Server (NTRS)
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Hahne, David E. (Editor)
1999-01-01
NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.
Kinematics Simulation Analysis of Packaging Robot with Joint Clearance
NASA Astrophysics Data System (ADS)
Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.
2018-03-01
Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier
2010-01-01
The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.
NASA Astrophysics Data System (ADS)
Meyer, M.; Breitsamter, Ch.
2013-12-01
The influence of an oscillating aileron and trailing edge device on the unsteady aerodynamics of a blended wing body (BWB) aircraft configuration with high-fidelity time-accurate Euler simulations has been investigated. Steady results show an unequally-distributed lift distribution in spanwise direction with a particularly severe shock at cruise conditions on the outboard wing. Unsteady oscillations of the outboardlocated aileron are able to influence the local and global aerodynamics. The oscillation of the trailing edge device designed to be at trailing edge of the aileron does not show any great effect on neither local nor global aerodynamics.
An Aerodynamic Analysis of a Spinning Missile with Dithering Canards
NASA Technical Reports Server (NTRS)
Meakin, Robert L.; Nygaard, Tor A.
2003-01-01
A generic spinning missile with dithering canards is used to demonstrate the utility of an overset structured grid approach for simulating the aerodynamics of rolling airframe missile systems. The approach is used to generate a modest aerodynamic database for the generic missile. The database is populated with solutions to the Euler and Navier-Stokes equations. It is used to evaluate grid resolution requirements for accurate prediction of instantaneous missile loads and the relative aerodynamic significance of angle-of-attack, canard pitching sequence, viscous effects, and roll-rate effects. A novel analytical method for inter- and extrapolation of database results is also given.
NASA Technical Reports Server (NTRS)
Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.
1985-01-01
The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.
Computational Fluid Dynamics of Whole-Body Aircraft
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh
1999-01-01
The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
Space-Time Interface-Tracking Computations with Contact Between Solid Surfaces
2014-04-01
parachute FSI [70, 72, 73, 75, 53, 55, 46, 51, 57], flapping-wing aerodynamics [48, 50], and wind - turbine rotor and tower aerodynamics [61]. It can...48, 50], and wind - turbine rotor and tower aerodynamics with the blades passing the tower 18 4 close [61]. As mentioned in [16], one of course...9] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E. Tezduyar. 3D simulation of wind turbine rotors at
A Feasibility Study on the Control of a Generic Air Vehicle Using Control Moment Gyros
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Moerder, Daniel D.
2006-01-01
This paper examines feasibility and performance issues in using Control Moment Gyroscopes (CMGs) to control the attitude of a fixed-wing aircraft. The paper describes a control system structure that permits allocating control authority and bandwidth between a CMG system and conventional aerodynamic control surfaces to stabilize a vehicle with neutral aerodynamic stability. A simulation study explores the interplay between aerodynamic and CMG effects, and indicates desirable physical characteristics for a CMG system to be used for aircraft attitude control.
Flap effectiveness appraisal for winged re-entry vehicles
NASA Astrophysics Data System (ADS)
de Rosa, Donato; Pezzella, Giuseppe; Donelli, Raffaele S.; Viviani, Antonio
2016-05-01
The interactions between shock waves and boundary layer are commonplace in hypersonic aerodynamics. They represent a very challenging design issue for hypersonic vehicle. A typical example of shock wave boundary layer interaction is the flowfield past aerodynamic surfaces during control. As a consequence, such flow interaction phenomena influence both vehicle aerodynamics and aerothermodynamics. In this framework, the present research effort describes the numerical activity performed to simulate the flowfield past a deflected flap in hypersonic flowfield conditions for a winged re-entry vehicle.
Aerodynamic investigations of a disc-wing
NASA Astrophysics Data System (ADS)
Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin
2017-01-01
The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.
NASA Technical Reports Server (NTRS)
Niederer, P. G.; Mihora, D. J.
1972-01-01
The current design and hardware components of the patented 14 sqm Stokes flow parachute are described. The Stokes-flow parachute is a canopy of open mesh material, which is kept deployed by braces. Because of the light weight of its mesh material, and the high drag on its mesh elements when they operate in the Stokes-flow flight regime, this parachute has an extremely low ballistic coefficient. It provides a stable aerodynamic platform superior to conventional nonporous billowed parachutes, is exceptionally packable, and is easily contained within the canister of the Sidewinder Arcas or the RDT and E rockets. Thus, it offers the potential for gathering more meteorological data, especially at high altitudes, than conventional billowed parachutes. Methods for packaging the parachute are also recommended. These methods include schemes for folding the canopy and for automatically releasing the pressurizing fluid as the packaged parachute unfolds.
Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.
2013-01-01
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188
Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S
2013-03-06
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.
Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle
NASA Technical Reports Server (NTRS)
Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.
2016-01-01
This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.
AGT100 turbomachinery. [for automobiles
NASA Technical Reports Server (NTRS)
Tipton, D. L.; Mckain, T. F.
1982-01-01
High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.
NASA Astrophysics Data System (ADS)
Lokotko, A. V.
2016-10-01
Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
Full-envelope aerodynamic modeling of the Harrier aircraft
NASA Technical Reports Server (NTRS)
Mcnally, B. David
1986-01-01
A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2016-01-01
An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.
Wind energy system time-domain (WEST) analyzers
NASA Technical Reports Server (NTRS)
Dreier, M. E.; Hoffman, J. A.
1981-01-01
A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.
NASA Technical Reports Server (NTRS)
Garbutt, K. S.; Goodyer, M. J.
1994-01-01
Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 ft x 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, three-dimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9% scale model.
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9 percent scale model.
High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime
NASA Astrophysics Data System (ADS)
Turansky, Craig P.
The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
A real-time digital computer program for the simulation of automatic spacecraft reentries
NASA Technical Reports Server (NTRS)
Kaylor, J. T.; Powell, L. F.; Powell, R. W.
1977-01-01
The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.
Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows
NASA Astrophysics Data System (ADS)
Yang, Xiang; Urzay, Javier; Moin, Parviz
2017-11-01
Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.
An Inviscid Computational Study of an X-33 Configuration at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1999-01-01
This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of a simplified X-33 configuration. The major components of the X-33 vehicle, namely the body, the canted fin, the vertical fin, and the body-flap, were simulated in the CFD (Computational Fluid Dynamic) model. The rear-ward facing surfaces at the base including the aerospike engine surfaces were not simulated. The FELISA software package consisting of an unstructured surface and volume grid generator and two inviscid flow solvers was used for this study. Computations were made for Mach 4.96, 6.0, and 10.0 with perfect gas air option, and for Mach 10 with equilibrium air option with flow condition of a typical point on the X-33 flight trajectory. Computations were also made with CF4 gas option at Mach 6.0 to simulate the CF4 tunnel flow condition. An angle of attack range of 12 to 48 deg was covered. The CFD results were compared with available wind tunnel data. Comparison was good at low angles of attack; at higher angles of attack (beyond 25 deg) some differences were found in the pitching moment. These differences progressively increased with increase in angle of attack, and are attributed to the viscous effects. However, the computed results showed the trends exhibited by the wind tunnel data.
JPRS report: Science and technology. Central Eurasia: Engineering and equipment
NASA Astrophysics Data System (ADS)
1993-10-01
Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascade; analysis of aerodynamic interaction of profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.
Simulation of aerodynamic noise and vibration noise in hard disk drives
NASA Astrophysics Data System (ADS)
Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao
2018-05-01
Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.
Xiang, Jinwu; Liu, Kai; Li, Daochun; Du, Jianxun
2017-11-01
The effects of micro-structure on aerodynamics of Coccinella septempunctata (Coleoptera: Coccinellidae) elytra in forward flight were investigated. The micro-structure was examined by a scanning electron microscope and a digital microscope. Based on the experimental results, five elytron models were constructed to separately investigate the effects of the camber and the local corrugation in both leading edge and trailing edge on aerodynamics. Computational fluid dynamic simulations of five elytron models were conducted by solving the Reynolds-Averaged Navier-Stokes equations with the Reynolds number of 245. The results show that camber and the local corrugation in the leading edge play significant roles in improving the aerodynamic performance, while the local corrugation in the trailing edge has little effect on aerodynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical study on aerodynamic damping of floating vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir
2016-09-01
Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
A Flight Dynamics Model for a Small Glider in Ambient Winds
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.
2003-01-01
In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.
Numerical aerodynamic simulation facility preliminary study, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.
NASA Technical Reports Server (NTRS)
Chapman, C. P.; Slusser, R. A.
1980-01-01
PARAMET, interactive simulation program for parametric studies of electric vehicles, guides user through simulation by menu and series of prompts for input parameters. Program considers aerodynamic drag, rolling resistance, linear and rotational acceleration, and road gradient as forces acting on vehicle.
Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data
NASA Technical Reports Server (NTRS)
Bland, M. P.; Fajfar, B.; Konsewicz, R. K.
1976-01-01
Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.
Building complex simulations rapidly using MATRIX(x): The Space Station redesign
NASA Technical Reports Server (NTRS)
Carrington, C. K.
1994-01-01
MSFC's quick response to the Space Station redesign effort last year required the development of a computer simulation to model the attitude and station-keeping dynamics of a complex body with rotating solar arrays in orbit around the Earth. The simulation was written using a rapid-prototyping graphical simulation and design tool called MATRIX(x) and provided the capability to quickly remodel complex configuration changes by icon manipulation using a mouse. The simulation determines time-dependent inertia properties, and models forces and torques from gravity-gradient, solar radiation, and aerodynamic disturbances. Surface models are easily built from a selection of beams, plates, tetrahedrons, and cylinders. An optimization scheme was written to determine the torque equilibrium attitudes that balance gravity-gradient and aerodynamic torques over an orbit, and propellant-usage estimates were determined. The simulation has been adapted to model the attitude dynamics for small spacecraft.
Intermediate Experimental Vehicle, ESA Programme Supersonic Transonic Aerodynamics
NASA Astrophysics Data System (ADS)
Sjors, Karin; Olsson, Jorgen; Maseland, Hans; de Cock, Koen; Dutheil, Sylvain; Bouleuc, Laurent; Cantinaud, Olivier; Tribot, Jean-Pierre; Mareschi, Vincenzo; Ferrarella, Daniella, Rufolo, Giuseppe
2011-05-01
The IXV project objectives are the design, development, manufacture and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, which is highly flexible and manoeuvrable. The IXV vehicle is planned to be recovered in supersonic regime by means of a Descent and Recovery System (DRS). In that context, a specific aerodynamic identification was carried in order to provide data to be used for consolidating the AEDB (AErodynamic Data Base) and as inputs for the DRS sub-system activities. During the phase C2, a wind tunnel campaign was carried out at for the Mach number range M=1.7 to M=0.3 together with computational fluid dynamics simulation. The main objectives were to assess the aerodynamic forces and moments assuming high aileron setting in supersonic regime and to get preliminary aerodynamic data in subsonic regime to be used as input by the DRS team. The logic and the main results of these activities are presented and discussed in this paper.
NASA Astrophysics Data System (ADS)
Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.
2014-12-01
Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.
Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.
2006-01-01
Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.
Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft
NASA Technical Reports Server (NTRS)
Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.
2006-01-01
Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.
Aerodynamic analysis of formula student car
NASA Astrophysics Data System (ADS)
Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif
2018-02-01
Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.
1993-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide
NASA Technical Reports Server (NTRS)
Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.
1992-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
Aerodynamic Design Study of Advanced Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.
2002-01-01
As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.
Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test
Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan
2016-01-01
GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602
Microspoiler Actuation for Guided Projectiles
2016-01-06
and be hardened to gun -launch. Several alternative designs will be explored using various actuation techniques, and downselection to an optimal design...aerodynamic optimization of the microspoiler mechanism, mechanical design/ gun hardening, and parameter estimation from experimental data. These...performed using the aerodynamic parameters in Table 2. Projectile trajectories were simulated without gravity at zero gun elevation. The standard 30mm
Bioinspired morphing wings for extended flight envelope and roll control of small drones.
Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D
2017-02-06
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.
NASA Technical Reports Server (NTRS)
Smith, Brian E.; Naumowicz, Tim
1987-01-01
The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.
Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang
2018-03-01
Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.
Application of supercomputers to computational aerodynamics
NASA Technical Reports Server (NTRS)
Peterson, V. L.
1984-01-01
Computers are playing an increasingly important role in the field of aerodynamics such that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. Example results obtained from the successively refined forms of the governing equations are discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to problems of practical importance. Finally, the Numerical Aerodynamic Simulation (NAS) Program - with its 1988 target of achieving a sustained computational rate of 1 billion floating point operations per second and operating with a memory of 240 million words - is discussed in terms of its goals and its projected effect on the future of computational aerodynamics.
Bioinspired morphing wings for extended flight envelope and roll control of small drones
Heitz, G.; Noca, F.; Floreano, D.
2017-01-01
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Foster, John V.
2007-01-01
A simulation study was conducted to investigate aerodynamic modeling methods for prediction of post-stall flight dynamics of large transport airplanes. The research approach involved integrating dynamic wind tunnel data from rotary balance and forced oscillation testing with static wind tunnel data to predict aerodynamic forces and moments during highly dynamic departure and spin motions. Several state-of-the-art aerodynamic modeling methods were evaluated and predicted flight dynamics using these various approaches were compared. Results showed the different modeling methods had varying effects on the predicted flight dynamics and the differences were most significant during uncoordinated maneuvers. Preliminary wind tunnel validation data indicated the potential of the various methods for predicting steady spin motions.
Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability
NASA Astrophysics Data System (ADS)
Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2018-01-01
The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.
USSAERO version D computer program development using ANSI standard FORTRAN 77 and DI-3000 graphics
NASA Technical Reports Server (NTRS)
Wiese, M. R.
1986-01-01
The D version of the Unified Subsonic Supersonic Aerodynamic Analysis (USSAERO) program is the result of numerous modifications and enhancements to the B01 version. These changes include conversion to ANSI standard FORTRAN 77; use of the DI-3000 graphics package; removal of the overlay structure; a revised input format; the addition of an input data analysis routine; and increasing the number of aeronautical components allowed.
1975-06-01
Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening
Effects of Base Cavity Depth on a Free Spinning Wrap-Around Fin Missile Configuration
1995-12-01
packaging problem. Current missile systems which possess wrap-around fin designs are the Army’s Multiple Launch Rocket System (MLRS) and the Hard Target...aerodynamic irregularities (2). Of particular importance to projectile designers is the side force/moment inherent to wrap-around fin configurations. During...virtual instrument programs integrated to perform all necessary aspects of calibration, data collection, and reduction. The details surrounding the design
Transonic Flow Computations Using Nonlinear Potential Methods
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
2000-01-01
This presentation describes the state of transonic flow simulation using nonlinear potential methods for external aerodynamic applications. The presentation begins with a review of the various potential equation forms (with emphasis on the full potential equation) and includes a discussion of pertinent mathematical characteristics and all derivation assumptions. Impact of the derivation assumptions on simulation accuracy, especially with respect to shock wave capture, is discussed. Key characteristics of all numerical algorithm types used for solving nonlinear potential equations, including steady, unsteady, space marching, and design methods, are described. Both spatial discretization and iteration scheme characteristics are examined. Numerical results for various aerodynamic applications are included throughout the presentation to highlight key discussion points. The presentation ends with concluding remarks and recommendations for future work. Overall. nonlinear potential solvers are efficient, highly developed and routinely used in the aerodynamic design environment for cruise conditions. Published by Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Karpel, Mordechay
1989-01-01
Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.
CFD analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
Aerodynamic performance of a small vertical axis wind turbine using an overset grid method
NASA Astrophysics Data System (ADS)
Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten
2017-08-01
The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.
System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.
2011-01-01
Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed
CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.
2010-01-01
A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.
Aerodynamic force measurement on a large-scale model in a short duration test facility
NASA Astrophysics Data System (ADS)
Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.
2005-03-01
A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350μs is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1ms.
A Computational Fluid-Dynamics Assessment of the Improved Performance of Aerodynamic Rain Gauges
NASA Astrophysics Data System (ADS)
Colli, Matteo; Pollock, Michael; Stagnaro, Mattia; Lanza, Luca G.; Dutton, Mark; O'Connell, Enda
2018-02-01
The airflow surrounding any catching-type rain gauge when impacted by wind is deformed by the presence of the gauge body, resulting in the acceleration of wind above the orifice of the gauge, which deflects raindrops and snowflakes away from the collector (the wind-induced undercatch). The method of mounting a gauge with the collector at or below the level of the ground, or the use of windshields to mitigate this effect, is often not practicable. The physical shape of a gauge has a significant impact on its collection efficiency. In this study, we show that appropriate "aerodynamic" shapes are able to reduce the deformation of the airflow, which can reduce undercatch. We have employed computational fluid-dynamic simulations to evaluate the time-averaged airflow realized around "aerodynamic" rain gauge shapes when impacted by wind. Terms of comparison are provided by the results obtained for two standard "conventional" rain gauge shapes. The simulations have been run for different wind speeds and are based on a time-averaged Reynolds-Averaged Navier-Stokes model. The shape of the aerodynamic gauges is shown to have a positive impact on the time-averaged airflow patterns observed around the orifice compared to the conventional shapes. Furthermore, the turbulent air velocity fields for the aerodynamic shapes present "recirculating" structures, which may improve the particle-catching capabilities of the gauge collector.
van Ooijen, Iris; Fransen, Marieke L; Verlegh, Peeter W J; Smit, Edith G
2017-02-01
Three studies show that product packaging shape serves as a cue that communicates healthiness of food products. Inspired by embodiment accounts, we show that packaging that simulates a slim body shape acts as a symbolic cue for product healthiness (e.g., low in calories), as opposed to packaging that simulates a wide body shape. Furthermore, we show that the effect of slim package shape on consumer behaviour is goal dependent. Whereas simulation of a slim (vs. wide) body shape increases choice likelihood and product attitude when consumers have a health-relevant shopping goal, packaging shape does not affect these outcomes when consumers have a hedonic shopping goal. In Study 3, we adopt a realistic shopping paradigm using a shelf with authentic products, and find that a slim (as opposed to wide) package shape increases on-shelf product recognition and increases product attitude for healthy products. We discuss results and implications regarding product positioning and the packaging design process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.
NASA Technical Reports Server (NTRS)
Cubbage, J. M.; Mercer, C. E.
1977-01-01
Results from an investigation of the effects of the operation of a combined turbojet/scramjet propulsion system on the longitudinal aerodynamic characteristics of a 1/60-scale hypersonic airbreathing launch vehicle configuration are presented. Decomposition products of hydrogen peroxide were used for simulation of the propulsion system exhaust.
Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.
Aerodynamic Characteristics of Tube-Launched Tandem Wing Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Rosid, Nurhayyan H.; Irsyad Lukman, E.; Fadlillah, M. Ahmad; Agoes Moelyadi, M.
2018-04-01
Tube Launched UAV with expandable tandem-wing configuration becomes one of the most interesting topic to be investigated. Folding wing mechanism is used due to the requirements that the UAV should be folded into tubular launcher. This paper focuses on investigating the aerodynamics characteristics because of the effects of folding wing mechanism, tandem wing configuration, and rapid deploying process from tube launcher. The aerodynamic characteristics investigation is conducted using computational fluid dynamics (CFD) at low Reynolds numbers (Re < 200000). The results of the simulation are used for the development of ITB Tube-launched UAV prototype and for future studies.
Zhang, Lucy T.; Yang, Jubiao
2017-01-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541
Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.
1999-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.
1998-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
Zhang, Lucy T; Yang, Jubiao
2016-12-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.
Ares I and Ares I-X Stage Separation Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.; Niskey, Charles J.
2011-01-01
The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.
Cartesian-Grid Simulations of a Canard-Controlled Missile with a Free-Spinning Tail
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper presents a series of simulations of a geometrically complex, canard-controlled, supersonic missile with free-spinning tail fins. Time-dependent simulations were performed using an inviscid Cartesian-grid-based method with results compared to both experimental data and high-resolution Navier-Stokes computations. At fixed free stream conditions and canard deflections, the tail spin rate was iteratively determined such that the net rolling moment on the empennage is zero. This rate corresponds to the time-asymptotic rate of the free-to-spin fin system. After obtaining spin-averaged aerodynamic coefficients for the missile, the investigation seeks a fixed-tail approximation to the spin-averaged aerodynamic coefficients, and examines the validity of this approximation over a variety of freestream conditions.
NASA Technical Reports Server (NTRS)
Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.
Faster Aerodynamic Simulation With Cart3D
NASA Technical Reports Server (NTRS)
2003-01-01
A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.
Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad
2013-01-01
On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.
NASA Astrophysics Data System (ADS)
Fei, Huang; Xu-hong, Jin; Jun-ming, Lv; Xiao-li, Cheng
2016-11-01
An attempt has been made to analyze impact of Martian atmosphere parameter uncertainties on entry vehicle aerodynamics for hypersonic rarefied conditions with a DSMC code. The code has been validated by comparing Viking vehicle flight data with present computational results. Then, by simulating flows around the Mars Science Laboratory, the impact of errors of free stream parameter uncertainties on aerodynamics is investigated. The validation results show that the present numerical approach can show good agreement with the Viking flight data. The physical and chemical properties of CO2 has strong impact on aerodynamics of Mars entry vehicles, so it is necessary to make proper corrections to the data obtained with air model in hypersonic rarefied conditions, which is consistent with the conclusions drawn in continuum regime. Uncertainties of free stream density and velocity weakly influence aerodynamics and pitching moment. However, aerodynamics appears to be little influenced by free stream temperature, the maximum error of what is below 0.5%. Center of pressure position is not sensitive to free stream parameters.
Contributions of TetrUSS to Project Orion
NASA Technical Reports Server (NTRS)
Mcmillin, Susan N.; Frink, Neal T.; Kerimo, Johannes; Ding, Djiang; Nayani, Sudheer; Parlette, Edward B.
2011-01-01
The NASA Constellation program has relied heavily on Computational Fluid Dynamics simulations for generating aerodynamic databases and design loads. The Orion Project focuses on the Orion Crew Module and the Orion Launch Abort Vehicle. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been applied in a supporting role to the Crew Exploration Vehicle Aerosciences Project for investigating various aerodynamic sensitivities and supplementing the aerodynamic database. This paper provides an overview of the contributions from the TetrUSS team to the Project Orion Crew Module and Launch Abort Vehicle aerodynamics, along with selected examples to highlight the challenges encountered along the way. A brief description of geometries and tasks will be discussed followed by a description of the flow solution process that produced production level computational solutions. Four tasks conducted by the USM3D team will be discussed to show how USM3D provided aerodynamic data for inclusion in the Orion aero-database, contributed data for the build-up of aerodynamic uncertainties for the aero-database, and provided insight into the flow features about the Crew Module and the Launch Abort Vehicle.
Numerical flow simulation of a reusable sounding rocket during nose-up rotation
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Kitamura, Keiichi; Fujimoto, Keiichiro; Shima, Eiji
2010-11-01
Flow around a reusable sounding rocket during nose-up rotation is simulated using unstructured compressible CFD code. While a reusable sounding rocket is expected to reduce the cost of the flight management, it is demanded that this rocket has good performance for wide range of flight conditions from vertical take-off to vertical landing. A rotating body, which corresponds to a vehicle's motion just before vertical landing, is one of flight environments that largely affect its aerodynamic design. Unlike landing of the space shuttle, this vehicle must rotate from gliding position to vertical landing position in nose-up direction. During this rotation, the vehicle generates massive separations in the wake. As a result, induced flow becomes unsteady and could have influence on aerodynamic characteristics of the vehicle. In this study, we focus on the analysis of such dynamic characteristics of the rotating vehicle. An employed numerical code is based on a cell-centered finite volume compressible flow solver applied to a moving grid system. The moving grid is introduced for the analysis of rotating motion. Furthermore, in order to estimate an unsteady turbulence, we employed DDES method as a turbulence model. In this simulation, flight velocity is subsonic. Through this simulation, we discuss the effect on aerodynamic characteristics of a vehicle's shape and motion.
Development of the Orion Crew Module Static Aerodynamic Database. Par 2; Supersonic/Subsonic
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Walker, Eric L.; Brauckmann, Gregory J.; Robinson, Phil
2011-01-01
This work describes the process of developing the nominal static aerodynamic coefficients and associated uncertainties for the Orion Crew Module for Mach 8 and below. The database was developed from wind tunnel test data and computational simulations of the smooth Crew Module geometry, with no asymmetries or protuberances. The database covers the full range of Reynolds numbers seen in both entry and ascent abort scenarios. The basic uncertainties were developed as functions of Mach number and total angle of attack from variations in the primary data as well as computations at lower Reynolds numbers, on the baseline geometry, and using different flow solvers. The resulting aerodynamic database represents the Crew Exploration Vehicle Aerosciences Project's best estimate of the nominal aerodynamics for the current Crew Module vehicle.
NASA Astrophysics Data System (ADS)
Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian
2017-11-01
A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.
Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions
NASA Technical Reports Server (NTRS)
Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William
2005-01-01
As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.
Airplane numerical simulation for the rapid prototyping process
NASA Astrophysics Data System (ADS)
Roysdon, Paul F.
Airplane Numerical Simulation for the Rapid Prototyping Process is a comprehensive research investigation into the most up-to-date methods for airplane development and design. Uses of modern engineering software tools, like MatLab and Excel, are presented with examples of batch and optimization algorithms which combine the computing power of MatLab with robust aerodynamic tools like XFOIL and AVL. The resulting data is demonstrated in the development and use of a full non-linear six-degrees-of-freedom simulator. The applications for this numerical tool-box vary from un-manned aerial vehicles to first-order analysis of manned aircraft. A Blended-Wing-Body airplane is used for the analysis to demonstrate the flexibility of the code from classic wing-and-tail configurations to less common configurations like the blended-wing-body. This configuration has been shown to have superior aerodynamic performance -- in contrast to their classic wing-and-tube fuselage counterparts -- and have reduced sensitivity to aerodynamic flutter as well as potential for increased engine noise abatement. Of course without a classic tail elevator to damp the nose up pitching moment, and the vertical tail rudder to damp the yaw and possible rolling aerodynamics, the challenges in lateral roll and yaw stability, as well as pitching moment are not insignificant. This thesis work applies the tools necessary to perform the airplane development and optimization on a rapid basis, demonstrating the strength of this tool through examples and comparison of the results to similar airplane performance characteristics published in literature.
Aerodynamic Influence of Added Surfaces on the Performance Characteristics of a Sports Car
NASA Astrophysics Data System (ADS)
Thangadurai, Murugan; Kumar, Rajesh; Rana, Subhas Chandra; Chatterjee, Dipankar
2018-05-01
External aerodynamics plays a vital role in designing high-speed vehicles since a reduction in drag and positive lift generation are principal concerns in vehicle aerodynamics to ensure superior performance, comfort, and vehicle stability. In the present study, the effect of added surfaces such as NACA 2412 wings and wedge type spoiler at the rear end of a sports car are examined in detail using three-dimensional numerical simulations substantiated with lab scale experiments. The simulations are performed by solving Reynolds-averaged Navier-Stokes equations with a realizable k-ɛ turbulence model using ANSYS Fluent software for Reynolds numbers 9.1 × 106, 1.37 × 107 and 1.82 × 107. The results obtained from simulations are validated with the experiments performed on a scale down model at the low-speed wind tunnel using a six component external pyramidal balance. The variation in the wake flow field of the vehicles with different added surfaces are demonstrated using pressure and velocity contours, velocity vectors at the rear end, and the turbulent kinetic energy distribution plots. It is observed that the positive lift coefficient of the base model is reduced drastically by incorporating a single wing at the rear end of the vehicle. The aerodynamics coefficients obtained from different configurations suggest that the two wing configuration has lesser drag than the wedge type spoiler though, the negative lift is higher with a wedge than the two wing configuration.
Charged aerodynamics of a Low Earth Orbit cylinder
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2016-11-01
This work investigates the charged aerodynamic interaction of a Low Earth Orbiting (LEO) cylinder with the ionosphere. The ratio of charge to neutral drag force on a 2D LEO cylinder with diffusely reflecting cool walls is derived analytically and compared against self-consistent electrostatic Particle-in-Cell (PIC) simulations. Analytical calculations predict that neglecting charged drag in an O+ dominated LEO plasma with a neutral to ion number density ratio of 102 will cause a 10% over-prediction of O density based on body accelerations when body potential (ɸB) is ≤ -390 V. Above 900 km altitude in LEO, where H+ becomes the dominant ion species, analytical predictions suggest charge drag becomes equivalent to neutral drag for ɸB ≤ -0.75 V. Comparing analytical predictions against PIC simulations in the range of 0 < - ɸB < 50 V found that analytical charged drag was under-estimated for all body potentials; the degree of under-estimation increasing with ɸB. Based on the -50 V PIC simulations, our in-house 6 degree of freedom orbital propagator saw a reduction in the semi-major axis of a 10 kg satellite at 700 km of 6.9 m/day and 0.98 m/day at 900 km compared that caused purely by neutral drag - 0.67 m/day and 0.056 m/day respectively. Hence, this work provides initial evidence that charged aerodynamics may become significant compared to neutral aerodynamics for high voltage LEO bodies.
UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1985-01-01
This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.
Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses
NASA Technical Reports Server (NTRS)
Hoyniak, Daniel; Verdon, Joseph M.
1991-01-01
A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.
Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.
pysimm: A Python Package for Simulation of Molecular Systems
NASA Astrophysics Data System (ADS)
Fortunato, Michael; Colina, Coray
pysimm, short for python simulation interface for molecular modeling, is a python package designed to facilitate the structure generation and simulation of molecular systems through convenient and programmatic access to object-oriented representations of molecular system data. This poster presents core features of pysimm and design philosophies that highlight a generalized methodology for incorporation of third-party software packages through API interfaces. The integration with the LAMMPS simulation package is explained to demonstrate this methodology. pysimm began as a back-end python library that powered a cloud-based application on nanohub.org for amorphous polymer simulation. The extension from a specific application library to general purpose simulation interface is explained. Additionally, this poster highlights the rapid development of new applications to construct polymer chains capable of controlling chain morphology such as molecular weight distribution and monomer composition.
The interference aerodynamics caused by the wing elasticity during store separation
NASA Astrophysics Data System (ADS)
Lei, Yang; Zheng-yin, Ye
2016-04-01
Air-launch-to-orbit is the technology that has stores carried aloft and launched the store from the plane to the orbit. The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered is simulated numerically. And the interactive aerodynamic forces are analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Because of the effect of the interference aerodynamics, the roll angle response and pitch angle response increase. When the store is mounted under the wingtip, the additional aerodynamics caused by the wingtip vortex is obvious, which accelerate the divergence of the lateral force and the lateral-directional attitude angle of the store. This study supports some beneficial conclusions to the engineering application of the air-launch-to-orbit.
INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT
A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...
Simulation of the Physics of Flight
ERIC Educational Resources Information Center
Lane, W. Brian
2013-01-01
Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2015-01-01
An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.
Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent with Contra-Rotation
2014-08-01
data on the blade required three instrumentation patches due to slip ring channel limitations. TRF blowdowns designated as experiments 280100...measurements from sensors on the rotating hardware due to slip ring limitations. The experimental data was compared to time-accurate simulations modeling...AFRL-RQ-WP-TR-2014-0195 UNSTEADY AERODYNAMIC INTERACTION IN A CLOSELY COUPLED TURBINE CONSISTENT WITH CONTRA-ROTATION Michael Kenneth
SOLARIS: Software for planet formation and orbital integrations
NASA Astrophysics Data System (ADS)
Süli software, Á.
2013-11-01
I present SOLARIS a general purpose software package for doing N-body and planet formation simulations. SOLARIS is capable to (i) to follow the orbital evolution of the solar system's major planets and minor bodies, (ii) to study the dynamics of exoplanetary systems, and (iii) to study the early and later phases of planetary formation. The process to bring bodies with different epochs to one common epoch, i.e. synchronization is implemented. Apart from the Newtonian gravitational forces, aerodynamic drag force, and type I and II migration forces are also implemented. The code also includes a nebula model. To speed up the computation, SOLARIS treats particles with different interaction properties. Several two-body events are monitored, such as collision, ejection etc. Arbitrary chemical composition can be assigned to massive bodies and during collisions the new body's composition is based on the mergers. The input is given in XML to define the parameters in a well-structured and flexible way. SOLARIS is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian orbital elements.
Simulations of SSLV Ascent and Debris Transport
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil
2006-01-01
A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.
Quasi-steady state aerodynamics of the cheetah tail.
Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-08-15
During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.
Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
Beaumont, F; Taiar, R; Polidori, G; Trenchard, H; Grappe, F
2018-01-23
The aerodynamic drag of three different time-trial cycling helmets was analyzed numerically for two different cyclist head positions. Computational Fluid Dynamics (CFD) methods were used to investigate the detailed airflow patterns around the cyclist for a constant velocity of 15 m/s without wind. The CFD simulations have focused on the aerodynamic drag effects in terms of wall shear stress maps and pressure coefficient distributions on the cyclist/helmet system. For a given head position, the helmet shape, by itself, obtained a weak effect on a cyclist's aerodynamic performance (<1.5%). However, by varying head position, a cyclist significantly influences aerodynamic performance; the maximum difference between both positions being about 6.4%. CFD results have also shown that both helmet shape and head position significantly influence drag forces, pressure and wall shear stress distributions on the whole cyclist's body due to the change in the near-wake behavior and in location of corresponding separation and attachment areas around the cyclist. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of the X-33 Aerodynamic Uncertainty Model
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
1998-01-01
An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.
NASA Technical Reports Server (NTRS)
Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.
2016-01-01
The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.
Quasi-steady state aerodynamics of the cheetah tail
Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-01-01
ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267
Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vegendla, Prasad; Sofu, Tanju; Saha, Rohit
2017-01-31
Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimummore » curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.« less
NASA Technical Reports Server (NTRS)
Salas, Manuel D.
2007-01-01
The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.
NASA Technical Reports Server (NTRS)
Campbell, R. L.
1982-01-01
Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
Aerodynamic control of NASP-type vehicles through vortex manipulation, volume 4
NASA Technical Reports Server (NTRS)
Smith, Brooke C.; Suarez, Carlos J.; Porada, William M.; Malcolm, Gerald N.
1993-01-01
Forebody Vortex Control (FVC) is an emerging technology that has received widespread and concentrated attention by many researchers for application on fighter aircraft to enhance aerodynamic controllability at high angles of attack. This research explores potential application of FVC to a NASP-type configuration. The configuration investigated is characterized by a slender, circular cross-section forebody and a 78 deg swept delta wing. A man-in-the-loop, six-degress-of-freedom, high-fidelity simulation was developed that demonstrates the implementation and advantages of pneumatic forebody vortex control. Static wind tunnel tests were used as the basis for the aerodynamic characteristics modeled in the simulation. Dynamic free-to-roll wind tunnel tests were analyzed and the wing rock motion investigated. A non-linear model of the dynamic effects of the bare airframe and the forebody vortex control system were developed that closely represented the observed behavior. Multiple state-of-the-art digital flight control systems were developed that included different utilizations of pneumatic vortex control. These were evaluated through manned simulation. Design parameters for a pneumatic forebody vortex control system were based on data collected regarding the use of blowing and the mass flow required during realistic flight maneuvers.
Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions
NASA Technical Reports Server (NTRS)
Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.
2011-01-01
The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Ratnayake, Nalin A.
2010-01-01
As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.
Reference H Cycle 3 Stability, Control, and Flying Qualities Batch Assessments
NASA Technical Reports Server (NTRS)
Henderson, Dennis K.
1999-01-01
This work is an update of the assessment completed in February of 1996, when a preliminary assessment report was issued for the Cycle 2B simulation model. The primary purpose of the final assessment was to re-evaluate each assessment against the flight control system (FCS) requirements document using the updated model. Only a limited number of final assessments were completed due to the close proximity of the release of the Langley model and the assessment deliverable date. The assessment used the nonlinear Cycle 3 simulation model because it combines nonlinear aeroelastic (quasi-static) aerodynamic with hinge moment and rate limited control surface deflections. Both Configuration Aerodynamics (Task 32) and Flight Controls (Task 36) were funded in 1996 to conduct the final stability and control assessments of the unaugmented Reference H configuration in FY96. Because the two tasks had similar output requirements, the work was divided such that Flight Controls would be responsible for the implementation and checkout of the simulation model and Configuration Aerodynamics for writing Madab "script' files, conducting the batch assessments and writing the assessment report. Additionally, Flight Controls was to investigate control surface allocations schemes different from the baseline Reference H in an effort to fulfill flying qualities criteria.
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1986-01-01
An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.
Real time flight simulation methodology
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Cook, G.; Mcvey, E. S.
1977-01-01
Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.
A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.
Jeppesen, Jan; Christensen, Steen
2015-01-01
This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.
NASA Technical Reports Server (NTRS)
Kenner, B. G.; Lincoln, N. R.
1979-01-01
The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.
A new method for aerodynamic test of high altitude propellers
NASA Astrophysics Data System (ADS)
Gong, Xiying; Zhang, Lin
A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers' wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method.
Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2010-01-01
A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.
Aerodynamic preliminary analysis system 2. Part 2: User's manuals
NASA Technical Reports Server (NTRS)
Divan, P.
1981-01-01
An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Seiff, Alvin
1954-01-01
The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)
JetWeb: A WWW interface and database for Monte Carlo tuning and validation
NASA Astrophysics Data System (ADS)
Butterworth, J. M.; Butterworth, S.
2003-06-01
A World Wide Web interface to a Monte Carlo tuning facility is described. The aim of the package is to allow rapid and reproducible comparisons to be made between detailed measurements at high-energy physics colliders and general physics simulation packages. The package includes a relational database, a Java servlet query and display facility, and clean interfaces to simulation packages and their parameters.
Investigation on the Capability of a Non Linear CFD Code to Simulate Wave Propagation
2003-02-01
Linear CFD Code to Simulate Wave Propagation Pedro de la Calzada Pablo Quintana Manuel Antonio Burgos ITP, S.A. Parque Empresarial Fernando avenida...mechanisms above presented, simulation of unsteady aerodynamics with linear and nonlinear CFD codes is an ongoing activity within the turbomachinery industry
NASA Technical Reports Server (NTRS)
Brock, Joseph M; Stern, Eric
2016-01-01
Dynamic CFD simulations of the SIAD ballistic test model were performed using US3D flow solver. Motivation for performing these simulations is for the purpose of validation and verification of the US3D flow solver as a viable computational tool for predicting dynamic coefficients.
Aerodynamic Simulation of Indoor Flight
ERIC Educational Resources Information Center
De Leon, Nelson; De Leon, Matthew N.
2007-01-01
We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1984-01-01
A three dimensional model which combines measurements of wind shear in the real atmosphere with three dimensional Monte Carlo simulated turbulence was developed. The wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated.
NASA Astrophysics Data System (ADS)
Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman
2012-06-01
Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.
Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung
2013-01-01
In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486
Aerodynamics and Aerothermodynamics of undulated re-entry vehicles
NASA Astrophysics Data System (ADS)
Kaushikh, K.; Arunvinthan, S.; Pillai, S. Nadaraja
2018-01-01
Aerodynamic and aerothermodynamic analysis is a fundamental basis for the design of a hypersonic vehicle. In this work, aerodynamic and aerothermodynamic analyses of a blunt body vehicle with undulations on its after-body are studied with the help of numerical simulations. A crew exploration vehicle (CEV) is taken for initial analysis and undulations with varying amplitude and wavelength are introduced on CEV's after-body. Numerical simulations were carried out for CEV and for CEV with undulations at Mach 3.0 and 7.0 for angles of attack ranging from -20° to +20° with increments of +5°. The results show that introduction of undulations did not have a significant impact on mono stability and lift-drag characteristics of the vehicle. It was also observed that introduction of undulations improved the aerothermodynamic characteristics of CEV. A reduction of about 36% in maximum heat flux at Mach 3.0 and about 21% at Mach 7.0 compared to the maximum heat flux for CEV was observed.
NASA Astrophysics Data System (ADS)
Zhang, Tony S.
Loss-of-control following aerodynamic stall remains the largest contributor to fatal civil aviation accidents. Aerodynamic models past stall are required to train pilots on stall recovery techniques using ground-based simulators, which are safe, inexpensive, and accessible. A methodology for creating representative stall models, which capture essential stall characteristics, is being developed for classes of twin-turboprop commuter and twin-engine regional jet aircraft. Despite having lower fidelity than type specific stall models generated from wind tunnel, flight test, and/or CFD studies data, these models are configuration adjustable and significantly cheaper to construct for high angle-of-attack regimes. Baseline specific stall models are modified to capture changes in aerodynamic coefficients due to configuration variations from a baseline to a target aircraft. A Shape Prescriptive Modeling approach combining existing theory and data using least-squares splines is used to make coefficient change predictions. Initial results are satisfactory and suggest that representative models are suitable for stall training.
Aerodynamic penalties of heavy rain on a landing aircraft
NASA Technical Reports Server (NTRS)
Haines, P. A.; Luers, J. K.
1982-01-01
The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions.
Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle
NASA Astrophysics Data System (ADS)
Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun
2018-05-01
The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.
Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)
2001-01-01
Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.
Exploring Discretization Error in Simulation-Based Aerodynamic Databases
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2010-01-01
This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.
GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package
Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-01-01
The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-12-05
The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.
Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0
NASA Technical Reports Server (NTRS)
Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.
1993-01-01
The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.
SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.
2005-01-01
SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.
Development and validation of a piloted simulation of a helicopter and external sling load
NASA Technical Reports Server (NTRS)
Shaughnessy, J. D.; Deaux, T. N.; Yenni, K. R.
1979-01-01
A generalized, real time, piloted, visual simulation of a single rotor helicopter, suspension system, and external load is described and validated for the full flight envelope of the U.S. Army CH-54 helicopter and cargo container as an example. The mathematical model described uses modified nonlinear classical rotor theory for both the main rotor and tail rotor, nonlinear fuselage aerodynamics, an elastic suspension system, nonlinear load aerodynamics, and a loadground contact model. The implementation of the mathematical model on a large digital computing system is described, and validation of the simulation is discussed. The mathematical model is validated by comparing measured flight data with simulated data, by comparing linearized system matrices, eigenvalues, and eigenvectors with manufacturers' data, and by the subjective comparison of handling characteristics by experienced pilots. A visual landing display system for use in simulation which generates the pilot's forward looking real world display was examined and a special head up, down looking load/landing zone display is described.
NASA Technical Reports Server (NTRS)
Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene
2005-01-01
Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.
NASA Astrophysics Data System (ADS)
Weingart, Robert
This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.
A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)
NASA Astrophysics Data System (ADS)
Fulchignoni, M.; Aboudan, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Flamini, E.; Gaborit, V.; Ghafoor, N.; Hathi, B.; Harri, A.-M.; Lehto, A.; Lion Stoppato, P. F.; Patel, M. R.; Zarnecki, J. C.
2004-08-01
We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base "Luigi Broglio" in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min, to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.
Time-Accurate Numerical Prediction of Free Flight Aerodynamics of a Finned Projectile
2005-09-01
develop (with fewer dollars) more lethal and effective munitions. The munitions must stay abreast of the latest technology available to our...consuming. Computer simulations can and have provided an effective means of determining the unsteady aerodynamics and flight mechanics of guided projectile...Recently, the time-accurate technique was used to obtain improved results for Magnus moment and roll damping moment of a spinning projectile at transonic
Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3
NASA Technical Reports Server (NTRS)
Maynard, J. D.
1961-01-01
A wind-tunnel investigation was conducted to determine the parameters affecting the aerodynamic performance of drogue parachutes in the Mach number range from 1.6 to 3. Flow studies of both rigid and flexible-parachute models were made by means of high-speed schlieren motion pictures and drag coefficients of the flexible-parachute models were measured at simulated altitudes from about 50,000 to 120,000 feet.
Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
NASA Technical Reports Server (NTRS)
Deere, K. A.
2000-01-01
A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
NASA Astrophysics Data System (ADS)
Letizia, Stefano; Puccioni, Matteo; Zhan, Lu; Viola, Francesco; Camarri, Simone; Iungo, Giacomo Valerio
2017-11-01
Numerical simulations of wakes produced by utility-scale wind turbines still present challenges related to the variability of the atmospheric conditions and, in the most of the cases, the lack of information about the geometry and aerodynamic performance of the wind turbine blades. In order to overcome the mentioned difficulties, we propose a RANS solver for which turbine aerodynamic forcing and turbulence closure are calibrated through LiDAR and SCADA data acquired for an onshore wind farm. The wind farm under examination is located in North Texas over a relatively flat terrain. The experimental data are leveraged to maximize accuracy of the RANS predictions in terms of wake velocity field and power capture for different atmospheric stability conditions and settings of the wind turbines. The optimization of the RANS parameters is performed through an adjoint-RANS formulation and a gradient-based procedure. The optimally-tuned aerodynamic forcing and turbulence closure are then analyzed in order to investigate effects of the atmospheric stability on the evolution of wind turbine wakes and power performance. The proposed RANS solver has low computational costs comparable to those of wake engineering models, which make it a compelling tool for wind farm control and optimization. Acknowledgments: NSF I/UCRC WindSTAR IIP 1362033 and TACC.
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2017-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888
Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, J. M.
The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less
ExoMars Entry Demonstrator Module Dynamic Stability
NASA Astrophysics Data System (ADS)
Dormieux, Marc; Gulhan, Ali; Berner, Claude
2011-05-01
In the frame of ExoMars DM aerodynamics characterization, pitch damping derivatives determination is required as it drives the parachute deployment conditions. Series of free-flight and free- oscillation tests (captive model) have been conducted with particular attention for data reduction. 6 Degrees- of-Freedom (DoF) analysis tools require the knowledge of local damping derivatives. In general ground tests do not provide them directly but only effective damping derivatives. Free-flight (ballistic range) tests with full oscillations around trim angle have been performed at ISL for 0.5
Improved Helicopter Rotor Performance Prediction through Loose and Tight CFD/CSD Coupling
NASA Astrophysics Data System (ADS)
Ickes, Jacob C.
Helicopters and other Vertical Take-Off or Landing (VTOL) vehicles exhibit an interesting combination of structural dynamic and aerodynamic phenomena which together drive the rotor performance. The combination of factors involved make simulating the rotor a challenging and multidisciplinary effort, and one which is still an active area of interest in the industry because of the money and time it could save during design. Modern tools allow the prediction of rotorcraft physics from first principles. Analysis of the rotor system with this level of accuracy provides the understanding necessary to improve its performance. There has historically been a divide between the comprehensive codes which perform aeroelastic rotor simulations using simplified aerodynamic models, and the very computationally intensive Navier-Stokes Computational Fluid Dynamics (CFD) solvers. As computer resources become more available, efforts have been made to replace the simplified aerodynamics of the comprehensive codes with the more accurate results from a CFD code. The objective of this work is to perform aeroelastic rotorcraft analysis using first-principles simulations for both fluids and structural predictions using tools available at the University of Toledo. Two separate codes are coupled together in both loose coupling (data exchange on a periodic interval) and tight coupling (data exchange each time step) schemes. To allow the coupling to be carried out in a reliable and efficient way, a Fluid-Structure Interaction code was developed which automatically performs primary functions of loose and tight coupling procedures. Flow phenomena such as transonics, dynamic stall, locally reversed flow on a blade, and Blade-Vortex Interaction (BVI) were simulated in this work. Results of the analysis show aerodynamic load improvement due to the inclusion of the CFD-based airloads in the structural dynamics analysis of the Computational Structural Dynamics (CSD) code. Improvements came in the form of improved peak/trough magnitude prediction, better phase prediction of these locations, and a predicted signal with a frequency content more like the flight test data than the CSD code acting alone. Additionally, a tight coupling analysis was performed as a demonstration of the capability and unique aspects of such an analysis. This work shows that away from the center of the flight envelope, the aerodynamic modeling of the CSD code can be replaced with a more accurate set of predictions from a CFD code with an improvement in the aerodynamic results. The better predictions come at substantially increased computational costs between 1,000 and 10,000 processor-hours.
Ge, Changfeng; Cheng, Yujie; Shen, Yan
2013-01-01
This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.
Jaffer, Usman; Normahani, Pasha; Singh, Prashant; Aslam, Mohammed; Standfield, Nigel J
2015-01-01
In vascular surgery, duplex ultrasonography is a valuable diagnostic tool in patients with peripheral vascular disease, and there is increasing demand for vascular surgeons to be able to perform duplex scanning. This study evaluates the role of a novel simulation training package on vascular ultrasound (US) skill acquisition. A total of 19 novices measured predefined stenosis in a simulated pulsatile vessel using both peak systolic velocity ratio (PSVR) and diameter reduction (DR) methods before and after a short period of training using a simulated training package. The training package consisted of a simulated pulsatile vessel phantom, a set of instructional videos, duplex ultrasound objective structured assessment of technical skills (DUOSATS) tool, and a portable US scanner. Quantitative metrics (procedure time, percentage error using PSVR and DR methods, DUOSAT scores, and global rating scores) before and after training were compared. Subjects spent a median time of 144 mins (IQR: 60-195) training using the simulation package. Subjects exhibited statistically significant improvements when comparing pretraining and posttraining DUOSAT scores (pretraining = 17 [16-19.3] vs posttraining = 30 [27.8-31.8]; p < 0.01), global rating score (pretraining = 1 [1-2] vs posttraining = 4 [3.8-4]; p < 0.01), percentage error using both the DR (pretraining = 12.6% [9-29.6] vs posttraining = 10.3% [8.9-11.1]; p = 0.03) and PSVR (pretraining = 60% [40-60] vs posttraining = 20% [6.7-20]; p < 0.01) methods. In this study, subjects with no previous practical US experience developed the ability to both acquire and interpret arterial duplex images in a pulsatile simulated phantom following a short period of goal direct training using a simulation training package. A simulation training package may be a valuable tool for integration into a vascular training program. However, further work is needed to explore whether these newly attained skills are translated into clinical assessment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Validation of thermal effects of LED package by using Elmer finite element simulation method
NASA Astrophysics Data System (ADS)
Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap
2017-02-01
The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.
Building Aerodynamic Databases for the SLS Design Process
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Dalle, Derek J.; Lee, Henry; Meeroff, Jamie; Onufer, Jeffrey; Chan, William; Pulliam, Thomas
2017-01-01
NASA's new Space Launch System (SLS) will be the first rocket since the Saturn V (1967-1973) to carry astronauts beyond low earth orbit-and will carry 10% more payload than Saturn V and three times the payload of the space shuttle. The SLS configuration consists of a center core and two solid rocket boosters that separate from the core as their fuel is exhausted two minutes after lift-off. During these first two minutes of flight, the vehicle powers its way through strong shock waves as it accelerates past the speed of sound, then pushes beyond strong aerodynamic loads at the maximum dynamic pressure, and is ultimately enveloped by gaseous plumes from the booster-separation motors. The SLS program relies on computational fluid dynamic (CFD) simulations to provide much of the data needed to build aerodynamic databases describing the structural load distribution, surface pressures, and aerodynamic forces on the vehicle.
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
Computation of the stability derivatives via CFD and the sensitivity equations
NASA Astrophysics Data System (ADS)
Lei, Guo-Dong; Ren, Yu-Xin
2011-04-01
The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-01-01
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411
An experimental investigation of flow around a vehicle passing through a tornado
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Obara, Kouhei; Okura, Nobuyuki
2016-03-01
Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2014-11-01
Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.
Numerical aerodynamic simulation facility feasibility study, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
NASA Technical Reports Server (NTRS)
Robinson, Ross B.; Morris, Odell A.
1960-01-01
An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.
NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993
NASA Technical Reports Server (NTRS)
1994-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
Leake, S.A.; Prudic, David E.
1988-01-01
The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)
Validation of computational code UST3D by the example of experimental aerodynamic data
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2017-02-01
Numerical simulation of the aerodynamic characteristics of the hypersonic vehicles X-33 and X-34 as well as spherically blunted cone is performed using the unstructured meshes. It is demonstrated that the numerical predictions obtained with the computational code UST3D are in acceptable agreement with the experimental data for approximate parameters of the geometry of the hypersonic vehicles and in excellent agreement with data for blunted cone.
Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.
2010-01-01
NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.
Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Lee, L. P.
1972-01-01
A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.
Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1
NASA Technical Reports Server (NTRS)
Mraz, M. R.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.
NASA Technical Reports Server (NTRS)
Campbell, J. H., II; Embury, W. R.
1974-01-01
An experimental aerodynamic investigation was conducted to determine the interference effects of a wind tunnel support system. The test article was a 0.015 scale model of the space shuttle orbiter. The primary objective of the test was to determine the extent that aerodynamic simulation of the space shuttle orbiter is affected by base mounting the model, without nozzles, on a straight sting. Two support systems were tested. The characteristics of the support systems are described. Data from the tests are presented in the form of graphs and tables.
Preliminary Studies on Aerodynamic Control with Direct Current Discharge at Hypersonic Speed
NASA Astrophysics Data System (ADS)
Watanabe, Yasumasa; Takama, Yoshiki; Imamura, Osamu; Watanuki, Tadaharu; Suzuki, Kojiro
A new idea of an aerodynamic control device for hypersonic vehicles using plasma discharges is presented. The effect of DC plasma discharge on a hypersonic flow is examined with both experiments and CFD analyses. It is revealed that the surface pressure upstream of plasma area significantly increases, which would be preferable in realizing a new aerodynamic control devices. Such pressure rise is also observed in the result of analyses of the Navier-Stokes equations with energy addition that simulates the Joule heating of a plasma discharge. It is revealed that the pressure rise due to the existence of the plasma discharge can be qualitatively explained as an effect of Joule heating.
NASA Technical Reports Server (NTRS)
Suit, W. T.
1977-01-01
Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.
A user's guide to the ssWavelets package
J.H. Gove
2017-01-01
ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package (Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation. In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with each scale corresponding to a different level of the...
ERIC Educational Resources Information Center
DesJardins, Stephen L.; McCall, Brian P.
2010-01-01
This study investigates the impact that different financial aid packages have on student stopout, reenrollment, and graduation probabilities. The authors simulate how various financial aid packaging regimes affect the occurrence and timing of these events. Their findings indicate that the number and duration of enrollment and stopout spells affect…
Migration and sorption phenomena in packaged foods.
Gnanasekharan, V; Floros, J D
1997-10-01
Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.
A User-Friendly Software Package for HIFU Simulation
NASA Astrophysics Data System (ADS)
Soneson, Joshua E.
2009-04-01
A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.
spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains
NASA Astrophysics Data System (ADS)
Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo
2016-09-01
The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.
A Generic Nonlinear Aerodynamic Model for Aircraft
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2014-01-01
A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh.
Dabnichki, Peter; Avital, Eldad
2006-01-01
Bobsleigh aerodynamics has long been recognised as one of the crucial performance factors. Although the published research in the area is very limited, it is well known that the leading nations in the sport devote significant resources in research and development of sleds' aerodynamics. However, the rules and regulations pose strict design constraints on the shape modifications aiming at aerodynamics improvements. The reason for that is two-fold: (i) safety of the athletes and (ii) reduction of equipment impact on competition outcome. One particular area that has not been looked at and falls outside the current rules and regulations is the influence of the crew positioning and internal modifications on the aerodynamic performance. The current study presents results on numerical simulation of the flow in the cavity underpinned with some experimental measurements including flow visualisation of the air circulation around the bobsleigh. A simplified computational model was developed to assess the trends and its results validated by windtunnel tests. The results show that crew members influence the drag level significantly and suggest that purely internal modifications can be introduced to reduce the overall resistance drag.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.
User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Buning, Pieter G.
1996-01-01
In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.
NASA Technical Reports Server (NTRS)
Kutler, Paul; Yee, Helen
1987-01-01
Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.
JT9D performance deterioration results from a simulated aerodynamic load test
NASA Technical Reports Server (NTRS)
Stakolich, E. G.; Stromberg, W. J.
1981-01-01
The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.
Ohmic Heating of an Electrically Conductive Food Package.
Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya
2016-12-01
Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.
DNA Packaging in Bacteriophage: Is Twist Important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-01-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces. PMID:15805174
DNA packaging in bacteriophage: is twist important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-06-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.
A wind turbine hybrid simulation framework considering aeroelastic effects
NASA Astrophysics Data System (ADS)
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Differential maneuvering simulator data reduction and analysis software
NASA Technical Reports Server (NTRS)
Beasley, G. P.; Sigman, R. S.
1972-01-01
A multielement data reduction and analysis software package has been developed for use with the Langley differential maneuvering simulator (DMS). This package, which has several independent elements, was developed to support all phases of DMS aircraft simulation studies with a variety of both graphical and tabular information. The overall software package is considered unique because of the number, diversity, and sophistication of the element programs available for use in a single study. The purpose of this paper is to discuss the overall DMS data reduction and analysis package by reviewing the development of the various elements of the software, showing typical results that can be obtained, and discussing how each element can be used.
Dynamics modeling and periodic control of horizontal-axis wind turbines
NASA Astrophysics Data System (ADS)
Stol, Karl Alexander
2001-07-01
The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.
Leake, S.A.; Leahy, P.P.; Navoy, A.S.
1994-01-01
Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.
Experimental investigation of turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Daniels, W. A.; Johnson, B. V.
1993-01-01
An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.
Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines
NASA Astrophysics Data System (ADS)
Luhmann, B.; Cheng, P. W.
2014-06-01
A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body simulation software SIMPACK. The aerodynamic loads are calculated using ECN's AeroModule and NREL's BEM code Aerodynl3.
Shipboard communications center modernization network simulation report
DOT National Transportation Integrated Search
1995-08-01
Commercially available simulation packages were investigated to determine their suitability for modeling the USCG Cutter Communications Center (CCC). The suitability of a candidate package was based upon it meeting the operational goals and hardware ...
Simulation model of a twin-tail, high performance airplane
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.
1992-01-01
The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.
Effectiveness of Simulation in a Hybrid and Online Networking Course.
ERIC Educational Resources Information Center
Cameron, Brian H.
2003-01-01
Reports on a study that compares the performance of students enrolled in two sections of a Web-based computer networking course: one utilizing a simulation package and the second utilizing a static, graphical software package. Analysis shows statistically significant improvements in performance in the simulation group compared to the…
Aerodynamic and Aeroacoustic Wind Tunnel Testing of the Orion Spacecraft
NASA Technical Reports Server (NTRS)
Ross, James C.
2011-01-01
The Orion aerodynamic testing team has completed more than 40 tests as part of developing the aerodynamic and loads databases for the vehicle. These databases are key to achieving good mechanical design for the vehicle and to ensure controllable flight during all potential atmospheric phases of a mission, including launch aborts. A wide variety of wind tunnels have been used by the team to document not only the aerodynamics but the aeroacoustic environment that the Orion might experience both during nominal ascents and launch aborts. During potential abort scenarios the effects of the various rocket motor plumes on the vehicle must be accurately understood. The Abort Motor (AM) is a high-thrust, short duration motor that rapidly separates Orion from its launch vehicle. The Attitude Control Motor (ACM), located in the nose of the Orion Launch Abort Vehicle, is used for control during a potential abort. The 8 plumes from the ACM interact in a nonlinear manner with the four AM plumes which required a carefully controlled test to define the interactions and their effect on the control authority provided by the ACM. Techniques for measuring dynamic stability and for simulating rocket plume aerodynamics and acoustics were improved or developed in the course of building the aerodynamic and loads databases for Orion.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1980-01-01
The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.
Increased Order Modeling Approach to Unsteady Aerodynamics and Aeroelasticity
2010-03-01
dynamic simulation of a maneuvering air vehicle with actuator free play , limit-cycle oscillations (LCO) of platetype fins with nonlinear plate-stiffness...6 2.3 Response to maneuver command with actuator free play ............................................................ 8...15 3.2 LCO Simulations with actuator free play .....................................................................................18
Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.
2016-01-01
This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.
An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.
2003-01-01
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.
User's guide to the Variably Saturated Flow (VSF) process to MODFLOW
Thoms, R. Brad; Johnson, Richard L.; Healy, Richard W.
2006-01-01
A new process for simulating three-dimensional (3-D) variably saturated flow (VSF) using Richards' equation has been added to the 3-D modular finite-difference ground-water model MODFLOW. Five new packages are presented here as part of the VSF Process--the Richards' Equation Flow (REF1) Package, the Seepage Face (SPF1) Package, the Surface Ponding (PND1) Package, the Surface Evaporation (SEV1) Package, and the Root Zone Evapotranspiration (RZE1) Package. Additionally, a new Adaptive Time-Stepping (ATS1) Package is presented for use by both the Ground-Water Flow (GWF) Process and VSF. The VSF Process allows simulation of flow in unsaturated media above the ground-water zone and facilitates modeling of ground-water/surface-water interactions. Model performance is evaluated by comparison to an analytical solution for one-dimensional (1-D) constant-head infiltration (Dirichlet boundary condition), field experimental data for a 1-D constant-head infiltration, laboratory experimental data for two-dimensional (2-D) constant-flux infiltration (Neumann boundary condition), laboratory experimental data for 2-D transient drainage through a seepage face, and numerical model results (VS2DT) of a 2-D flow-path simulation using realistic surface boundary conditions. A hypothetical 3-D example case also is presented to demonstrate the new capability using periodic boundary conditions (for example, daily precipitation) and varied surface topography over a larger spatial scale (0.133 square kilometer). The new model capabilities retain the modular structure of the MODFLOW code and preserve MODFLOW's existing capabilities as well as compatibility with commercial pre-/post-processors. The overall success of the VSF Process in simulating mixed boundary conditions and variable soil types demonstrates its utility for future hydrologic investigations. This report presents a new flow package implementing the governing equations for variably saturated ground-water flow, four new boundary condition packages unique to unsaturated flow, the Adaptive Time-Stepping Package for use with both the GWF Process and the new VSF Process, detailed descriptions of the input and output files for each package, and six simulation examples verifying model performance.
Modeling procedures for handling qualities evaluation of flexible aircraft
NASA Technical Reports Server (NTRS)
Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.
1981-01-01
This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.
Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.
2016-01-01
The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2012-01-01
The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.
Method of high speed flow field influence and restrain on laser communication
NASA Astrophysics Data System (ADS)
Meng, Li-xin; Wang, Chun-hui; Qian, Cun-zhu; Wang, Shuo; Zhang, Li-zhong
2013-08-01
For laser communication performance which carried by airplane or airship, due to high-speed platform movement, the air has two influences in platform and laser communication terminal window. The first influence is that aerodynamic effect causes the deformation of the optical window; the second one is that a shock wave and boundary layer would be generated. For subsonic within the aircraft, the boundary layer is the main influence. The presence of a boundary layer could change the air density and the temperature of the optical window, which causes the light deflection and received beam spot flicker. Ultimately, the energy hunting of the beam spot which reaches receiving side increases, so that the error rate increases. In this paper, aerodynamic theory is used in analyzing the influence of the optical window deformation due to high speed air. Aero-optics theory is used to analyze the influence of the boundary layer in laser communication link. Based on this, we focused on working on exploring in aerodynamic and aero-optical effect suppression method in the perspective of the optical window design. Based on planning experimental aircraft types and equipment installation location, we optimized the design parameters of the shape and thickness of the optical window, the shape and size of air-management kit. Finally, deformation of the optical window and air flow distribution were simulated by fluid simulation software in the different mach and different altitude fly condition. The simulation results showed that the optical window can inhibit the aerodynamic influence after optimization. In addition, the boundary layer is smoothed; the turbulence influence is reduced, which meets the requirements of the airborne laser communication.
On the Use of CAD and Cartesian Methods for Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.
2004-01-01
The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.
PROFILE: Airfoil Geometry Manipulation and Display. User's Guide
NASA Technical Reports Server (NTRS)
Collins, Leslie; Saunders, David
1997-01-01
This report provides user information for program PROFILE, an aerodynamics design utility for plotting, tabulating, and manipulating airfoil profiles. A dozen main functions are available. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions, pressure distributions)) are achieved via the general-purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. These three utilities should be distributed as one package. They were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California. They are all written in FORTRAN 77 and run on DEC and SGI systems under OpenVMS and IRIX.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.
2014-01-01
Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
NASA Technical Reports Server (NTRS)
Adamczyk, John J.
1999-01-01
This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.
NASA Astrophysics Data System (ADS)
Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen
2017-11-01
Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.
Simulations of Wakes and Parachute Environments for Supersonic Flight Test Design
NASA Astrophysics Data System (ADS)
Muppidi, Suman; O'Farrell, Clara; van Norman, John; Clark, Ian
2017-11-01
NASA's ASPIRE (Advanced Supersonic Parachute Inflation Research and Experiments) project is a risk-reduction activity for a future mission, Mars2020. ASPIRE will investigate the supersonic deployment, inflation and aerodynamics of a full-scale disk-gap-band (DGB) parachute in the wake of a slender body at high altitudes over Earth. The leading slender body has about 1/6-th the diameter of the entry capsule that will use this parachute for descent at Mars. ASPIRE flight test design (targeting, safety and recovery) requires models for deployment, inflation and aerodynamic performance of the parachute. However, there is limited flight and experimental data for supersonic DGBs behind slender bodies. This presentation describes the use of CFD in supplementing the available data to construct a parachute aerodynamics model for ASPIRE. Simulations are used to understand the effects of the leading body on the wake, and on the canopy loads, results of which will be presented. The first flight test is scheduled for September 2017. Comparisons of preliminary test data against the pre-test parachute model will be presented.
The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Maraz, M. R.; Hiley, P. E.
1981-01-01
A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.
Aerodynamic design and optimization of high altitude environment simulation system based on CFD
NASA Astrophysics Data System (ADS)
Ma, Pingchang; Yan, Lutao; Li, Hong
2017-05-01
High altitude environment simulation system (HAES) is built to provide a true flight environment for subsonic vehicles, with low density, high speed, and short time characteristics. Normally, wind tunnel experiments are based on similar principal, such as parameters of Re or Ma, in order to shorten test product size. However, the test products in HAES are trim size, so more attention is put on the true flight environment simulation. It includes real flight environment pressure, destiny and real flight velocity, and its type velocity is Ma=0.8. In this paper, the aerodynamic design of HAES is introduced and its rationality is explained according to CFD calculation based on Fluent. Besides, the initial pressure of vacuum tank in HAES is optimized, which is not only to meet the economic requirements, but also to decrease the effect of additional stress on the test product in the process of the establishment of the target flow field.
Modeling the effect of control on the wake of a utility-scale turbine via large-eddy simulation
NASA Astrophysics Data System (ADS)
Yang, Xiaolei; Annoni, Jennifer; Seiler, Pete; Sotiropoulos, Fotis
2014-06-01
A model of the University of Minnesota EOLOS research turbine (Clipper Liberty C96) is developed, integrating the C96 torque control law with a high fidelity actuator line large- eddy simulation (LES) model. Good agreement with the blade element momentum theory is obtained for the power coefficient curve under uniform inflow. Three different cases, fixed rotor rotational speed ω, fixed tip-speed ratio (TSR) and generator torque control, have been simulated for turbulent inflow. With approximately the same time-averaged ω, the time- averaged power is in good agreement with measurements for all three cases. Although the time-averaged aerodynamic torque is nearly the same for the three cases, the root-mean-square (rms) of the aerodynamic torque fluctuations is significantly larger for the case with fixed ω. No significant differences have been observed for the time-averaged flow fields behind the turbine for these three cases.
A method for simulating the atmospheric entry of long-range ballistic missiles
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr
1958-01-01
It is demonstrated with the aid of similitude arguments that a model launched from a hypervelocity gun upstream through a special supersonic nozzle should experience aerodynamic heating and resulting thermal stresses like those encountered by a long-range ballistic missile entering the earth's atmosphere. This demonstration hinges on the requirements that model and missile be geometrically similar and made of the same material, and that they have the same flight speed and Reynolds number (based on conditions just outside the boundary layer) at corresponding points in their trajectories. The hypervelocity gun provides the model with the required initial speed, while the nozzle scales the atmosphere, in terms of density variation, to provide the model with speeds and Reynolds numbers over its entire trajectory. Since both the motion and aerodynamic heating of a missile tend to be simulated in the model tests, this combination of hypervelocity gun and supersonic nozzle is termed an atmosphere entry simulator.
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-08-13
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
ERIC Educational Resources Information Center
Sneider, Cary; DeVore, Edna
1986-01-01
Reviews software packages under these headings: (1) simulations of experiments; (2) space flight simulators; (3) planetariums; (4) space adventure games; and (5) drill and practice packages (designed for testing purposes or for helping students learn basic astronomy vocabulary). (JN)
NASA Technical Reports Server (NTRS)
Andrews, C. D.; Cooper, C. E., Jr.
1974-01-01
An experimental aerodynamic investigation was conducted to provide data for studies to determine the criteria for simulating rocket engine plume induced aerodynamic effects in the wind tunnel using a simulated gaseous plume. Model surface and base pressure data were obtained in the presence of both a simulated and a prototype gaseous plume for a matrix of plume properties to enable investigators to determine the parameters that correlate the simulated and prototype plume-induced data. The test program was conducted in the Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel using two models, the first being a strut mounted cone-ogive-cylinder model with a fineness ratio of 9. Model exterior pressures, model plenum chamber and nozzle performance data were obtained at Mach numbers of 0.9, 1.2, 1.46, and 3.48. The exhaust plume was generated by using air as the simulant gas, or Freon-14 (CF4) as the prototype gas, over a chamber pressure range from 0 to 2,000 psia and a total temperature range from 50 to 600 F.
Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.
2008-01-01
The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and included in the development of the aerodynamic database uncertainty for pitching moment.
JT8D-15/17 High Pressure Turbine Root Discharged Blade Performance Improvement. [engine design
NASA Technical Reports Server (NTRS)
Janus, A. S.
1981-01-01
The JT8D high pressure turbine blade and seal were modified, using a more efficient blade cooling system, improved airfoil aerodynamics, more effective control of secondary flows, and improved blade tip sealing. Engine testing was conducted to determine the effect of these improvements on performance. The modified turbine package demonstrated significant thrust specific fuel consumption and exhaust gas temperature improvements in sea level and altitude engine tests. Inspection of the improved blade and seal hardware after testing revealed no unusual wear or degradation.
A Fixed-Wing Aircraft Simulation Tool for Improving the efficiency of DoD Acquisition
2015-10-05
simulation tool , CREATETM-AV Helios [12-14], a high fidelity rotary wing vehicle simulation tool , and CREATETM-AV DaVinci [15-16], a conceptual through...05/2015 Oct 2008-Sep 2015 A Fixed-Wing Aircraft Simulation Tool for Improving the Efficiency of DoD Acquisition Scott A. Morton and David R...multi-disciplinary fixed-wing virtual aircraft simulation tool incorporating aerodynamics, structural dynamics, kinematics, and kinetics. Kestrel allows
Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2012-07-15
The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of the Space Shuttle Ascent Debris using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.
Numerical simulation of aerodynamic performance of a couple multiple units high-speed train
NASA Astrophysics Data System (ADS)
Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng
2017-05-01
In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.
Hoffmann, Jörn; Leake, S.A.; Galloway, D.L.; Wilson, Alicia M.
2003-01-01
This report documents a computer program, the Subsidence and Aquifer-System Compaction (SUB) Package, to simulate aquifer-system compaction and land subsidence using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. The SUB Package simulates elastic (recoverable) compaction and expansion, and inelastic (permanent) compaction of compressible fine-grained beds (interbeds) within the aquifers. The deformation of the interbeds is caused by head or pore-pressure changes, and thus by changes in effective stress, within the interbeds. If the stress is less than the preconsolidation stress of the sediments, the deformation is elastic; if the stress is greater than the preconsolidation stress, the deformation is inelastic. The propagation of head changes within the interbeds is defined by a transient, one-dimensional (vertical) diffusion equation. This equation accounts for delayed release of water from storage or uptake of water into storage in the interbeds. Properties that control the timing of the storage changes are vertical hydraulic diffusivity and interbed thickness. The SUB Package supersedes the Interbed Storage Package (IBS1) for MODFLOW, which assumes that water is released from or taken into storage with changes in head in the aquifer within a single model time step and, therefore, can be reasonably used to simulate only thin interbeds. The SUB Package relaxes this assumption and can be used to simulate time-dependent drainage and compaction of thick interbeds and confining units. The time-dependent drainage can be turned off, in which case the SUB Package gives results identical to those from IBS1. Three sample problems illustrate the usefulness of the SUB Package. One sample problem verifies that the package works correctly. This sample problem simulates the drainage of a thick interbed in response to a step change in head in the adjacent aquifer and closely matches the analytical solution. A second sample problem illustrates the effects of seasonally varying discharge and recharge to an aquifer system with a thick interbed. A third sample problem simulates a multilayered regional ground-water basin. Model input files for the third sample problem are included in the appendix.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem
2016-09-01
Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.
Rarefaction effects on Galileo probe aerodynamics
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.
1996-01-01
Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.
Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2004-01-01
This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.
Aerodynamic load control strategy of wind turbine in microgrid
NASA Astrophysics Data System (ADS)
Wang, Xiangming; Liu, Heshun; Chen, Yanfei
2017-12-01
A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Wallace, H. W.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.
Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions
NASA Astrophysics Data System (ADS)
Chen, W.; Wu, S. P.; Zhang, Y.
2011-09-01
Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.
NASA Technical Reports Server (NTRS)
Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete;
2017-01-01
This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.
Modeling of a Sequential Two-Stage Combustor
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.
2005-01-01
A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
Numerical aerodynamic simulation facility feasibility study
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.
Vortex-flow aerodynamics - An emerging design capability
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1981-01-01
Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.
The microgravity environment of the Space Shuttle Columbia payload bay during STS-32
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Giesecke, Robert L.; Thomas, Donald A.
1991-01-01
Over 11 hours of three-axis microgravity accelerometer data were successfully measured in the payload bay of Space Shuttle Columbia as part of the Microgravity Disturbances Experiment on STS-32. These data were measured using the High Resolution Accelerometer Package and the Aerodynamic Coefficient Identification Package which were mounted on the Orbiter keel in the aft payload bay. Data were recorded during specific mission events such as Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine burns. Orbiter background levels were measured in the 10(exp -5) G range, treadmill operations in the 10(exp -3) G range, and the Orbiter engine burns in the 10(exp -2) G range. Induced acceleration levels resulting from the SYNCOM satellite deploy were in the 10 (exp -2) G range, and operations during the pre-entry Flight Control System checkout were in the 10(exp -2) to 10(exp -1) G range.
The Influence of Hoop Diameter on Aerodynamic Performance of O-Ring Paper Plane
NASA Astrophysics Data System (ADS)
Ismail, N. I.; Sharudin, Hazim; Talib, R. J.; Hassan, A. A.; Yusoff, H.
2018-05-01
The O-ring paper plane can be categorized as one of the Micro Air Vehicle (MAV) based on their characteristics and size. However, the aerodynamics performance of the O-ring paper plane was not fully discovered by previous researchers due to its aerodynamics complexity and various hoop diameters. Thus, the objective of this research is to study the influence of hoop diameters towards the aerodynamics performance of O-ring paper plane. In this works, three types of O-ring paper plane known as Design 1, 2 and 3 with different hoop diameter were initially developed by using the ANSYS-Design Modeler. All the design was analyzed based on aerodynamic simulations works executed on ANSYS-CFX solver. The results suggested that Design 3 (with larger hoop size) produced better CL, CLmax and AoAstall magnitude compared to other design. In fact, O-ring paper plane with larger hoop size configurations showed potential in providing at least 5.2% and 5.9% better performance in stability (ΔCM/ΔCL) and aerodynamic efficiency (CL/CDmax), respectively. Despite the advantages found in lift performances, however, O-ring paper plane with larger hoop size configurations slightly suffered from larger drag increment (CDincrement) compared to smaller hoop size configurations. Based on these results, it can be presumed that O-Ring paper plane with larger hoop sizes contributed into better lift, stability and aerodynamic efficiency performances but slightly suffered from larger drag penalty.
NASA Technical Reports Server (NTRS)
Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob
1994-01-01
An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'
Tondare, Vipin N; Villarrubia, John S; Vlada R, András E
2017-10-01
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.
1991-11-01
derivative. Both cases are of considerable interest to experiments). Therefore only one primary motion the study of hysteresis effects. variable, 4,, and its...conventional controls, several papers in this symposium on studying If this envelope can be expanded to angles of attack near aerodynamic phenomena...models. and an attempt to simulate higher Reynolds number on This does not appear to be the case for the more a trainer configuration in a rotary
NASA's supercomputing experience
NASA Technical Reports Server (NTRS)
Bailey, F. Ron
1990-01-01
A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.
Aerodynamics of powered missile separation from a wing
NASA Technical Reports Server (NTRS)
Shanks, S. P.; Ahmad, J. U.
1991-01-01
A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume of a finless missile separating from a wing in transonic flow. A powered missile separation case was considered to examine the influence of the missile and plume on the wing. The wing and missile is at a two degree angle of attack. The computational results show the details of the flow field.
Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings
NASA Astrophysics Data System (ADS)
Lashkajani, Kazem Hasanzadeh
This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.
Demonstration of an Aerocapture GN and C System Through Hardware-in-the-Loop Simulations
NASA Technical Reports Server (NTRS)
Masciarelli, James; Deppen, Jennifer; Bladt, Jeff; Fleck, Jeff; Lawson, Dave
2010-01-01
Aerocapture is an orbit insertion maneuver in which a spacecraft flies through a planetary atmosphere one time using drag force to decelerate and effect a hyperbolic to elliptical orbit change. Aerocapture employs a feedback Guidance, Navigation, and Control (GN&C) system to deliver the spacecraft into a precise postatmospheric orbit despite the uncertainties inherent in planetary atmosphere knowledge, entry targeting and aerodynamic predictions. Only small amounts of propellant are required for attitude control and orbit adjustments, thereby providing mass savings of hundreds to thousands of kilograms over conventional all-propulsive techniques. The Analytic Predictor Corrector (APC) guidance algorithm has been developed to steer the vehicle through the aerocapture maneuver using bank angle control. Through funding provided by NASA's In-Space Propulsion Technology Program, the operation of an aerocapture GN&C system has been demonstrated in high-fidelity simulations that include real-time hardware in the loop, thus increasing the Technology Readiness Level (TRL) of aerocapture GN&C. First, a non-real-time (NRT), 6-DOF trajectory simulation was developed for the aerocapture trajectory. The simulation included vehicle dynamics, gravity model, atmosphere model, aerodynamics model, inertial measurement unit (IMU) model, attitude control thruster torque models, and GN&C algorithms (including the APC aerocapture guidance). The simulation used the vehicle and mission parameters from the ST-9 mission. A 2000 case Monte Carlo simulation was performed and results show an aerocapture success rate of greater than 99.7%, greater than 95% of total delta-V required for orbit insertion is provided by aerodynamic drag, and post-aerocapture orbit plane wedge angle error is less than 0.5 deg (3-sigma). Then a real-time (RT), 6-DOF simulation for the aerocapture trajectory was developed which demonstrated the guidance software executing on a flight-like computer, interfacing with a simulated IMU and simulated thrusters, with vehicle dynamics provided by an external simulator. Five cases from the NRT simulations were run in the RT simulation environment. The results compare well to those of the NRT simulation thus verifying the RT simulation configuration. The results of the above described simulations show the aerocapture maneuver using the APC algorithm can be accomplished reliably and the algorithm is now at TRL-6. Flight validation is the next step for aerocapture technology development.
Flight simulation software at NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Norlin, Ken A.
1995-01-01
The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.
Simulator Studies of the Deep Stall
NASA Technical Reports Server (NTRS)
White, Maurice D.; Cooper, George E.
1965-01-01
Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.
NASA Technical Reports Server (NTRS)
Blair, M. F.
1991-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.
NASA Technical Reports Server (NTRS)
Booth, David; Flegel, Ashlie
2015-01-01
A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.
NASA Technical Reports Server (NTRS)
Booth, David T.; Flegel, Ashlie B.
2015-01-01
A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.
Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility
NASA Technical Reports Server (NTRS)
Watson, Velvin R.
1991-01-01
A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.
Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Qu, Min
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients
NASA Technical Reports Server (NTRS)
Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge
2003-01-01
Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.
Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet
NASA Technical Reports Server (NTRS)
Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.
1982-01-01
The scaled flutter model was a 1/6.5-size, semispan version of a supercritical wing (SCW) proposed for an executive-jet-transport airplane. The model was tested cantilever-mounted with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M = 0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5%, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect. Flutter characteristics calculated using a doublet-lattice analysis (which included interference effects) were in good agreement with the experimental results up to M = 0.82. Comparisons of measured static aerodynamic data with predicted data indicated that the model was aerodynamically representative of the airplane SCW.
Optimization of Root Section for Ultra-long Steam Turbine Rotor Blade
NASA Astrophysics Data System (ADS)
Hála, Jindřich; Luxa, Martin; Šimurda, David; Bobčík, Marek; Novák, Ondřej; Rudas, Bartoloměj; Synáč, Jaroslav
2018-04-01
This study presents the comparison of aerodynamic performances of two successive designs of the root profiles for the ultra-long rotor blade equipped with a straight fir-tree dovetail. Since aerodynamic and strength requirements laid upon the root section design are contradictory, it is necessary to aerodynamically optimize the design within the limits given by the foremost strength requirements. The most limiting criterion of the static strength is the size of the blade cross-section, which is determined by the number of blades in a rotor and also by the shape and size of a blade dovetail. The aerodynamic design requires mainly the zero incidence angle at the inlet of a profile and in the ideal case ensures that the load does not exceed a limit load condition. Moreover, the typical root profile cascades are transonic with supersonic exit Mach number, therefore, the shape of a suction side and a trailing edge has to respect transonic expansion of a working gas. In this paper, the two variants of root section profile cascades are compared and the aerodynamic qualities of both variants are verified using CFD simulation and two mutually independent experimental methods of measurements (optical and pneumatic).
Aerodynamic optimization of wind turbine rotor using CFD/AD method
NASA Astrophysics Data System (ADS)
Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang
2018-05-01
The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.
An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation
Nutaro, James
2014-11-03
In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Intelligent Control for the BEES Flyer
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Gundy-Burlet, Karen; Aftosmis, Mike; Nemec, Marian; Limes, Greg; Berry, Misty; Logan, Michael
2004-01-01
This paper describes the effort to provide a preliminary capability analysis and a neural network based adaptive flight control system for the JPL-led BEES aircraft project. The BEES flyer was envisioned to be a small, autonomous platform with sensing and control systems mimicking those of biological systems for the purpose of scientific exploration on the surface of Mars. The platform is physically tightly constrained by the necessity of efficient packing within rockets for the trip to Mars. Given the physical constraints, the system is not an ideal configuration for aerodynamics or stability and control. The objectives of this effort are to evaluate the aerodynamics characteristics of the existing design, to make recommendaaons as to potential improvements and to provide a control system that stabilizes the existing aircraft for nominal flight and damaged conditions. Towards this several questions are raised and analyses are presented to arrive at answers to some of the questions raised. CART3D, a high-fidelity inviscid analysis package for conceptual and preliminary aerodynamic design, was used to compute a parametric set of solutions over the expected flight domain. Stability and control derivatives were extracted from the database and integrated with the neural flight control system. The Integrated Vehicle Modeling Environment (IVME) was also used for estimating aircraft geometric, inertial, and aerodynamic characteristics. A generic neural flight control system is used to provide adaptive control without the requirement for extensive gain scheduling or explicit system identification. The neural flight control system uses reference models to specify desired handling qualities in the roll, pitch, and yaw axes, and incorporates both pre-trained and on-line learning neural networks in the inverse model portion of the controller. Results are presented for the BEES aircraft in the subsonic regime for terrestrial and Martian environments.
CFD-based design load analysis of 5MW offshore wind turbine
NASA Astrophysics Data System (ADS)
Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.
2012-11-01
The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.
Reynolds-Averaged Navier-Stokes Simulations of Two Partial-Span Flap Wing Experiments
NASA Technical Reports Server (NTRS)
Takalluk, M. A.; Laflin, Kelly R.
1998-01-01
Structured Reynolds Averaged Navier-Stokes simulations of two partial-span flap wing experiments were performed. The high-lift aerodynamic and aeroacoustic wind-tunnel experiments were conducted at both the NASA Ames 7-by 10-Foot Wind Tunnel and at the NASA Langley Quiet Flow Facility. The purpose of these tests was to accurately document the acoustic and aerodynamic characteristics associated with the principle airframe noise sources, including flap side-edge noise. Specific measurements were taken that can be used to validate analytic and computational models of the noise sources and associated aerodynamic for configurations and conditions approximating flight for transport aircraft. The numerical results are used to both calibrate a widely used CFD code, CFL3D, and to obtain details of flap side-edge flow features not discernible from experimental observations. Both experimental set-ups were numerically modeled by using multiple block structured grids. Various turbulence models, grid block-interface interaction methods and grid topologies were implemented. Numerical results of both simulations are in excellent agreement with experimental measurements and flow visualization observations. The flow field in the flap-edge region was adequately resolved to discern some crucial information about the flow physics and to substantiate the merger of the two vortical structures. As a result of these investigations, airframe noise modelers have proposed various simplified models which use the results obtained from the steady-state computations as input.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurtis R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
The NASA Environmentally Responsible Aviation (ERA) Project explored enabling technologies to reduce impact of aviation on the environment. One project research challenge area was the study of advanced airframe and engine integration concepts to reduce community noise and fuel burn. To address this challenge, complex wind tunnel experiments at both the NASA Langley Research Center's (LaRC) 14'x22' and the Ames Research Center's 40'x80' low-speed wind tunnel facilities were conducted on a BOEING Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion-airframe interference effects, including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on vehicle aerodynamics. This paper presents a high-level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as the development of some CFD simulation guidelines based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.;
2016-01-01
NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2
NASA Astrophysics Data System (ADS)
Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro
2018-01-01
The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators
that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.
Application of the FADS system on the Re-entry Module
NASA Astrophysics Data System (ADS)
Zhen, Huang
2016-07-01
The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.
Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan
2009-01-01
An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.
Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2016-01-01
An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package
NASA Astrophysics Data System (ADS)
Jaggi, S.
1993-02-01
The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.
XCAT/DRASIM: a realistic CT/human-model simulation package
NASA Astrophysics Data System (ADS)
Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.
2011-03-01
The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.
Air-cooling characteristics of simulated grape packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, R.L.; Comunian, F.
Experimental simulation of the external forced convection on the outside of grape packages was performed. Average heat transfer coefficients for air flow around such containers were found to range from 8 to 13.4 W/(m[sup 2]K). A physical description of the convective process was formulated on the basis of data obtained in three types of experiment. Expressions for the average heat transfer coefficient from single packages in air flow were proposed.
NASA Technical Reports Server (NTRS)
Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.
1973-01-01
The results of a real time piloted simulation to investigate the handling qualities and performance of a tilting rotor aircraft design are presented. The aerodynamic configuration of the aircraft is described. The procedures for conducting the simulator evaluation are reported. Pilot comments of the aircraft handling qualities under various simulated flight conditions are included. The time histories of selected pilot maneuvers are shown.
NASA Astrophysics Data System (ADS)
Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.
2012-12-01
We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
Aono, Hikaru; Liang, Fuyou; Liu, Hao
2008-01-01
We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.
Computational Aerodynamic Modeling of Small Quadcopter Vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.
2017-01-01
High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.
Aerodynamic preliminary analysis system. Part 2: User's manual and program description
NASA Technical Reports Server (NTRS)
Divan, P.; Dunn, K.; Kojima, J.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed. Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Devereaux, P. A.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.
Numerical method to compute acoustic scattering effect of a moving source.
Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei
2016-01-01
In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Development of V/STOL methodology based on a higher order panel method
NASA Technical Reports Server (NTRS)
Bhateley, I. C.; Howell, G. A.; Mann, H. W.
1983-01-01
The development of a computational technique to predict the complex flowfields of V/STOL aircraft was initiated in which a number of modules and a potential flow aerodynamic code were combined in a comprehensive computer program. The modules were developed in a building-block approach to assist the user in preparing the geometric input and to compute parameters needed to simulate certain flow phenomena that cannot be handled directly within a potential flow code. The PAN AIR aerodynamic code, which is higher order panel method, forms the nucleus of this program. PAN AIR's extensive capability for allowing generalized boundary conditions allows the modules to interact with the aerodynamic code through the input and output files, thereby requiring no changes to the basic code and easy replacement of updated modules.
A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R.
Wang, W; Hallow, K M; James, D A
2016-01-01
This tutorial presents the application of an R package, RxODE, that facilitates quick, efficient simulations of ordinary differential equation models completely within R. Its application is illustrated through simulation of design decision effects on an adaptive dosing regimen. The package provides an efficient, versatile way to specify dosing scenarios and to perform simulation with variability with minimal custom coding. Models can be directly translated to Rshiny applications to facilitate interactive, real-time evaluation/iteration on simulation scenarios.
Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment
NASA Technical Reports Server (NTRS)
Miller, Charles G.; Wells, W. L.
1992-01-01
The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.
1974-01-01
An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
ERIC Educational Resources Information Center
Gagne, Phill; Furlow, Carolyn; Ross, Terris
2009-01-01
In item response theory (IRT) simulation research, it is often necessary to use one software package for data generation and a second software package to conduct the IRT analysis. Because this can substantially slow down the simulation process, it is sometimes offered as a justification for using very few replications. This article provides…
Experimental Investigation of Ice Accretion Effects on a Swept Wing
NASA Technical Reports Server (NTRS)
Wong, S. C.; Vargas, M.; Papadakis, M.; Yeong, H. W.; Potapczuk, M.
2005-01-01
An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with the simulated ice shapes were similar to those obtained with the IRT ice shape castings. However, in most cases, the ice castings resulted in greater aerodynamic performance losses than those obtained with the LEWICE ice shapes. For the majority of the LEWICE ice shapes, the addition of 36-size grit roughness to the smooth ice shapes increased aerodynamic performance losses.
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.
2011-01-01
Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252
MAP stability, design, and analysis
NASA Technical Reports Server (NTRS)
Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.