Science.gov

Sample records for aerodynamic size distribution

  1. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    NASA Astrophysics Data System (ADS)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  2. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Stein, Stephen W; Myrdal, Paul B

    2015-02-01

    Pressurized metered dose inhalers (pMDIs) are frequently used for the treatment of asthma and chronic obstructive pulmonary disease. The aerodynamic particle size distribution (APSD) of the residual particles delivered from a pMDI plays a key role in determining the amount and region of drug deposition in the lung and thereby the efficacy of the inhaler. In this study, a simulation model that predicts the APSD of residual particles from suspension pMDIs was utilized to identify the primary determinants for APSD. These findings were then applied to better understand the effect of changing drug concentration and micronized drug size on experimentally observed APSDs determined through Andersen Cascade Impactor testing. The experimental formulations evaluated had micronized drug mass median aerodynamic diameters (MMAD) between 1.2 and 2.6 μm and drug concentrations ranging from 0.01 to 1% (w/w) with 8.5% (w/w) ethanol in 1,1,1,2-tetrafluoroethane (HFA-134a). It was determined that the drug concentration, micronized drug size, and initially atomized droplet distribution have a significant impact in modulating the proportion of atomized droplets that contain multiple suspended drug particles, which in turn increases the residual APSD. These factors were found to be predictive of the residual particle MMAD for experimental suspension HFA-134a formulations containing ethanol. The empirical algebraic model allows predicting the residual particle size for a variety of suspension formulations with an average error of 0.096 μm (standard deviation of 0.1 μm). PMID:25273026

  3. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  4. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-08-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1 μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in

  5. Fluorescent Biological Aerosol Particle Concentrations and Size Distributions Measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-12-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (< 1 µm), but not for coarse particles (1 - 20 µm). Averaged over the four-month measurement period (August - December 2006), the mean number concentration of coarse FBAPs was ~3x10-2 cm-3, corresponding to ~4% of total coarse particle number [1]. The mean mass concentration of FBAPs was ~1 µg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 µm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 µm, geometric standard deviation 1.3, number concentration 1.6 x 10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 µm, ~5 µm, and ~13 µm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of

  6. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2010-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany we used an Ultraviolet Aerodynamic Particle Sizer (UV-APS) to measure Fluorescent Biological Aerosol Particles (FBAPs), which provide an estimate of viable bioaerosol particles and can be regarded as an approximate lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle (24-h) with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical

  7. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  8. IN-SITU AERODYNAMIC SIZING OF AEROSOL PARTICLES WITH THE SPART ANALYZER

    EPA Science Inventory

    A single particle aerodynamic relaxation time (SPART) analyzer has been developed to measure the aerodynamic size distribution of aerosol particulates in the range 0.1 to 10.0 micrometer in diameter. The analyzer sizes and counts individual suspended particles and droplets from s...

  9. Aerodynamic size associations of natural radioactivity with ambient aerosols

    SciTech Connect

    Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

    1986-04-01

    The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

  10. Aerodynamic Control using Distributed Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2015-11-01

    The global aerodynamic loads on a stationary and pitching airfoil at angles of attack beyond the static and dynamic stall margins, respectively are controlled in wind tunnel experiments using regulated distributed bleed driven by surface pressure differences. High-speed PIV and proper orthogonal decomposition of the vorticity flux on the static airfoil show that the bleed engenders trains of discrete vortices that advect along the surface and are associated with a local instability that is manifested by a time-averaged bifurcation of the vorticity layer near the bleed outlets and alters the vorticity flux over the airfoil and thereby the aerodynamic loads. Active bleed is used on a dynamically pitching airfoil (at reduced frequencies up to k = 0.42) to modulate the evolution of vorticity concentrations during dynamic stall. Time-periodic bleed improved the pitch stability by reducing adverse pitching moment (``negative damping'') that can precipitate structural instabilities. At the same time, the maintains the cycle-average loads to within 5% of the base flow levels by segmenting the vorticity layer during upstroke and promoting early flow attachment during downstroke segments of the pitch cycle. Supported by Georgia Tech VLRCOE.

  11. Aerodynamic levitator for large-sized glassy material production.

    PubMed

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept. PMID:26429456

  12. A method of simultaneously measuring particle shape parameter and aerodynamic size

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Zhang, JinBi; Zheng, HaiYang; Wang, YingPing; Fang, Li

    2016-08-01

    For the purpose of classification of airborne particles, this paper describes an experimental apparatus for simultaneously measuring shape characteristics and aerodynamic size at single particle level. The shape of a particle is indicated through near forward scattering light collected by 3 PMTs placed at 120-degree offset azimuthal angles and the aerodynamic diameter is obtained by time-of-flight that a particle takes to traverse double laser beams. Laboratory experiments are performed on sampled aerosol particles in spherical, cuboid and elongated shape, and preliminary results indicate that the experimental apparatus has a good capability of discriminating between spherical and irregular particles. A variance factor of scattered light related to shape of ambient airborne particles under different conditions are also presented, which can be modeled using lognormal probability density distribution. Combined with aerodynamic size information, these results suggest potential uses in environmental aerosol monitoring for characterizing constituents of particles.

  13. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    PubMed

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering. PMID:27019208

  14. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff

    PubMed Central

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier–Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering. PMID:27019208

  15. Business size distributions

    NASA Astrophysics Data System (ADS)

    D'Hulst, R.; Rodgers, G. J.

    2001-10-01

    In a recent work, we introduced two models for the dynamics of customers trying to find the business that best corresponds to their expectation for the price of a commodity. In agreement with the empirical data, a power-law distribution for the business sizes was obtained, taking the number of customers of a business as a proxy for its size. Here, we extend one of our previous models in two different ways. First, we introduce a business aggregation rate that is fitness dependent, which allows us to reproduce a spread in empirical data from one country to another. Second, we allow the bankruptcy rate to take a different functional form, to be able to obtain a log-normal distribution with power-law tails for the size of the businesses.

  16. Aerodynamic size associations of 212Pb and 214Pb in ambient aerosols.

    PubMed

    Papastefanou, C; Bondietti, E A

    1987-11-01

    The aerodynamic size distributions of short-lived Rn daughters (reported as 214Pb and 212Pb) in ambient aerosol particles were measured using low-pressure as well as conventional low-volume and high-volume impactors. The activity distribution of 214Pb and 212Pb, measured by alpha spectroscopy, was largely associated with submicron aerosols in the accumulation mode (0.08 to 2 microns). The activity median aerodynamic diameter ranged from 0.09 to 0.37 micron (mean 0.16 micron) for 214Pb and from 0.07 to 0.25 micron (mean 0.13 micron) for 212Pb. The mean values of the geometric standard deviation (sigma g) were 2.97 and 2.86, respectively. By comparison, the median diameters of cosmogenic 7Be and ambient SO4(2-) were about 0.24 micron higher. In almost 70% of the low-pressure impactor measurements, the activity distribution of 214Pb showed a small shift to larger particle sizes relative to 212Pb. This shift probably results from alpha-recoil detachment of parent 218Po, which preferentially depletes 214Pb from smaller particles. The subsequent recondensation of 214Pb causes an enrichment of larger aerosols. Early morning and afternoon measurements indicated that similar size associations of 214Pb occur, despite humidity differences and the potential for fresh particle production in the afternoon. Health physics implications of the results are also discussed. PMID:3667271

  17. Hail Size Distribution Mapping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.

  18. AERODYNAMIC SIZE MEASUREMENT OF AIRBORNE FIBERS AND HEALTH EFFECTS IMPLICATIONS

    EPA Science Inventory

    The constituent particles of many ambient and workplace aerosols of health effects concerns are of fibrous and aggregate geometric shapes. lthough the deposition sites of particles in the human respiratory system are primarily related to their aerodynamic diameters, for rod-like ...

  19. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  20. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  1. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  2. Lunar soil grain size distribution

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III

    1973-01-01

    A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 microns. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.

  3. Charge separation in the aerodynamic breakup of micrometer-sized water droplets.

    PubMed

    Zilch, Lloyd W; Maze, Joshua T; Smith, John W; Ewing, George E; Jarrold, Martin F

    2008-12-25

    Charged water droplets generated by electrospray, sonic spray, and a vibrating orifice aerosol generator (VOAG) have been studied by digital macrophotography and image charge detection mass spectrometry. Image charge detection mass spectrometry provides information on the droplet size, charge, and velocity after transmission through a capillary interface. The digital images provide the droplet size distribution before they enter the capillary. Droplets with 10-100 microm radii generated by sonic spray and VOAG are reduced to 2-3 microm radii by transmission through the capillary interface. The droplets from sonic spray and VOAG are much more highly charged than expected for random charging, and positive droplets are much more prevalent than negative. For positive mode electrospray, >99% of the detected droplets carry a positive charge, whereas for negative mode electrospray, <30% of the detected droplets carry a negative charge (i.e., >70% carry a positive charge). These observation can all be accounted for by the aerodynamic breakup of the droplets in the capillary interface. This breakup reduces the droplets to a terminal size at which point further breakup does not occur. Charge separation during droplet breakup is responsible for the relatively high charges on the sonic spray and VOAG droplets and for the preference for positively charged droplets. The charge separation can be explained using the bag mechanism for droplet breakup and the electrical bilayer at the surface of water. PMID:19035820

  4. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  5. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  6. A system for aerodynamically sizing ultrafine environmental radioactive particles

    SciTech Connect

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  7. Centaur size distribution with DECam

    NASA Astrophysics Data System (ADS)

    Fuentes, Cesar; Trilling, David E.; Schlichting, Hilke

    2014-11-01

    We present the results of the 2014 centaur search campaign on the Dark Energy Camera (DECam) in Tololo, Chile. This is the largest debiased Centaur survey to date, measuring for the first time the size distribution of small Centaurs (1-10km) and the first time the sizes of planetesimals from which the entire Solar System formed are directly detected.The theoretical model for the coagulation and collisional evolution of the outer solar system proposed in Schlichting et al. 2013 predicts a steep rise in the size distribution of TNOs smaller than 10km. These objects are below the detection limit of current TNO surveys but feasible for the Centaur population. By constraining the number of Centaurs and this feature in their size distribution we can confirm the collisional evolution of the Solar System and estimate the rate at which material is being transferred from the outer to the inner Solar System. If the shallow power law behavior from the TNO size distribution at ~40km can be extrapolated to 1km, the size of the Jupiter Family of Comets (JFC), there would not be enough small TNOs to supply the JFC population (Volk & Malhotra, 2008), debunking the link between TNOs and JFCs.We also obtain the colors of small Centaurs and TNOs, providing a signature of collisional evolution by measuring if there is in fact a relationship between color and size. If objects smaller than the break in the TNO size distribution are being ground down by collisions then their surfaces should be fresh, and then appear bluer in the optical than larger TNOs that are not experiencing collisions.

  8. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  9. Size distribution of detached drops

    NASA Astrophysics Data System (ADS)

    Baluev, V. V.; Stepanov, V. M.

    1989-10-01

    The law governing the size distribution of detached gas-liquid streams of drops has been determined analytically, and a comparison is carried out against experimental data existing in the literature. The derived theoretical relationships offer an excellent description of existing experimental results.

  10. Glottal aerodynamics in compliant, life-sized vocal fold models

    NASA Astrophysics Data System (ADS)

    McPhail, Michael; Dowell, Grant; Krane, Michael

    2013-11-01

    This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.

  11. Size distribution of ring polymers

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-06-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 ‑ d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  12. Size distribution of ring polymers

    PubMed Central

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  13. Size distribution of ring polymers.

    PubMed

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 - d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  14. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  15. Body Size Distribution of the Dinosaurs

    PubMed Central

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  16. Scaling in animal group-size distributions

    PubMed Central

    Bonabeau, Eric; Dagorn, Laurent; Fréon, Pierre

    1999-01-01

    An elementary model of animal aggregation is presented. The group-size distributions resulting from this model are truncated power laws. The predictions of the model are found to be consistent with data that describe the group-size distributions of tuna fish, sardinellas, and African buffaloes. PMID:10200286

  17. Mining airborne particulate size distribution data by positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Zhou, Liming; Kim, Eugene; Hopke, Philip K.; Stanier, Charles; Pandis, Spyros N.

    2005-04-01

    Airborne particulate size distribution data acquired in Pittsburgh from July 2001 to June 2002 were analyzed as a bilinear receptor model solved by positive matrix factorization (PMF). The data were obtained from two scanning mobility particle spectrometers and an aerodynamic particle sampler with a temporal resolution of 15 min. Each sample contained 165 size bins from 0.003 to 2.5 μm. Particle growth periods in nucleation events were identified, and the data in these intervals were excluded from this study so that the size distribution profiles associated with the factors could be regarded as sufficiently constant to satisfy the assumptions of the receptor model. The values for each set of five consecutive size bins were averaged to produce 33 new size intervals. Analyses were made on monthly data sets to ensure that the changes in the size distributions from the source to the receptor site could be regarded as constant. The factors from PMF could be assigned to particle sources by examination of the number size distributions associated with the factors, the time frequency properties of the contribution of each source (Fourier analysis of source contribution values), and the correlations of the contribution values with simultaneous gas phase measurements (O3, NO, NO2, SO2, CO) and particle composition data (sulfate, nitrate, organic carbon/elemental carbon). Seasonal trends and weekday/weekend effects were investigated. Conditional probability function analyses were performed for each source to ascertain the likely directions in which the sources were located. Five factors were separated. Two factors, local traffic and nucleation, are clear sources, but each of the other factors appears to be a mixture of several sources that cannot be further separated.

  18. Experimental determination of size distributions: analyzing proper sample sizes

    NASA Astrophysics Data System (ADS)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  19. Asteroid Size-Frequency Distribution

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6 inch PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e. 12 micron) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i,e., between 150 and 350 times fainter than any of the asteroids observed by IRAS. These data provide the first direct measurement of the 12 pm sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  20. Size distributions of solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Cliver, E.; Reames, D.; Kahler, S.; Cane, H.

    1991-01-01

    NASA particle detectors on the IMP-8 are employed to determine the size distributions of the peak fluxes of events related to solar-energetic particles including protons and electrons. The energetic proton events show a flatter size distribution which suggests that not all flares are proton flares. Both the electron and proton events are classified as either 'impulsive' or 'gradual', and the impulsive events tend to have a steeper power-law distribution.

  1. Particle size distribution instrument. Topical report 13

    SciTech Connect

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  2. Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades

    NASA Astrophysics Data System (ADS)

    Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

    2014-02-01

    The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating under unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.

  3. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  4. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-04-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm-10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1-1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  5. Domain Size Distribution in Segregating Binary Superfluids

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hiromitsu

    2016-05-01

    Domain size distribution in phase separating binary Bose-Einstein condensates is studied theoretically by numerically solving the Gross-Pitaevskii equations at zero temperature. We show that the size distribution in the domain patterns arising from the dynamic instability obeys a power law in a scaling regime according to the dynamic scaling analysis based on the percolation theory. The scaling behavior is kept during the relaxation dynamics until the characteristic domain size becomes comparable to the linear size of the system, consistent with the dynamic scaling hypothesis of the phase-ordering kinetics. Our numerical experiments indicate the existence of a different scaling regime in the size distribution function, which can be caused by the so-called coreless vortices.

  6. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  7. Langevin granulometry of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kákay, Attila; Gutowski, M. W.; Takacs, L.; Franco, V.; Varga, L. K.

    2004-06-01

    The problem of deriving the particle size distribution directly from superparamagnetic magnetization curves is studied by three mathematical methods: (1) least-squares deviation with regularization procedure, (2) simulated annealing and (3) genetic algorithm. Software has been developed for the latest versions of all these methods and its performance compared for various models of underlying particle size distributions (Dirac dgr-like, lognormal- and Gaussian-shaped). For single peak distributions all three methods give reasonable and similar results, but for bimodal distributions the genetic algorithm is the only acceptable one. The genetic algorithm is able to recover with the same precision both the lognormal and Gaussian single and double (mixed) model distributions. The sensitivity of the genetic algorithm—the most promising method—to uncertainty of measurements was also tested; correct peak position and its half width were recovered for Gaussian distributions, when the analysed data were contaminated with noise of up to 5% of MS.

  8. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  9. Exponential Size Distribution of von Willebrand Factor

    PubMed Central

    Lippok, Svenja; Obser, Tobias; Müller, Jochen P.; Stierle, Valentin K.; Benoit, Martin; Budde, Ulrich; Schneppenheim, Reinhard; Rädler, Joachim O.

    2013-01-01

    Von Willebrand Factor (VWF) is a multimeric protein crucial for hemostasis. Under shear flow, it acts as a mechanosensor responding with a size-dependent globule-stretch transition to increasing shear rates. Here, we quantify for the first time, to our knowledge, the size distribution of recombinant VWF and VWF-eGFP using a multilateral approach that involves quantitative gel analysis, fluorescence correlation spectroscopy, and total internal reflection fluorescence microscopy. We find an exponentially decaying size distribution of multimers for recombinant VWF as well as for VWF derived from blood samples in accordance with the notion of a step-growth polymerization process during VWF biosynthesis. The distribution is solely described by the extent of polymerization, which was found to be reduced in the case of the pathologically relevant mutant VWF-IIC. The VWF-specific protease ADAMTS13 systematically shifts the VWF size distribution toward smaller sizes. This dynamic evolution is monitored using fluorescence correlation spectroscopy and compared to a computer simulation of a random cleavage process relating ADAMTS13 concentration to the degree of VWF breakdown. Quantitative assessment of VWF size distribution in terms of an exponential might prove to be useful both as a valuable biophysical characterization and as a possible disease indicator for clinical applications. PMID:24010664

  10. Establishing different size distributions in the asteroid belt

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Morbidelli, Alessandro

    2016-05-01

    While gas is present in the protoplanetary disk, aerodynamic drag circularizes, equatorializes and shrinks planetesimal orbits. The strength of this effect is size-dependent effecting smaller planetesimals more severely. During planet formation debris from giant impacts amongst the growing terrestrial embryos can be transported to the asteroid belt via scattering events and secular resonances. The effectiveness of this transport is strongly size dependent due to the aforementioned gas drag. Thus transported debris in the asteroid belt can have a strong size sorting. Further processing due to collisions and YORP-induced rotational fission during the lifetime of the solar system must be taken into account before a model population of debris can be compared to suspected planetary debris in the asteroid belt, such as the A-type asteroids. Furthermore, scenarios such as the Grand Tack may establish size distributions since they predict that S-type asteroids are transported from an inner planetesimal disk while C-type asteroids are transporeted from an outer planetesimal disk.

  11. Intraspecific body size frequency distributions of insects.

    PubMed

    Gouws, E Jeanne; Gaston, Kevin J; Chown, Steven L

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n ≥ 100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  12. Intraspecific Body Size Frequency Distributions of Insects

    PubMed Central

    Gouws, E. Jeanne; Gaston, Kevin J.; Chown, Steven L.

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n≥100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  13. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles

    SciTech Connect

    Goodarz Ahmadi

    2008-06-30

    A computational model for supersonic flows of compressible gases in an aerodynamic lens with several lenses and in a supersonic/hypersonic impactor was developed. Airflow conditions in the aerodynamic lens were analyzed and contour plots for variation of Mach number, velocity magnitude and pressure field in the lens were evaluated. The nano and micro-particle trajectories in the lens and their focusing and transmission efficiencies were evaluated. The computational model was then applied to design of a aerodynamic lens that could generate focus particle beams while operating under atmospheric conditions. The computational model was also applied to airflow condition in the supersonic/hypersonic impactor. Variations of airflow condition and particle trajectories in the impactor were evaluated. The simulation results could provide understanding of the performance of the supersonic and hypersonic impactors that would be helpful for the design of such systems.

  14. Magnetite Particle Size Distribution and Pellet Oxidation

    NASA Astrophysics Data System (ADS)

    Cho, Hyeon Jeong; Tang, Ming; Pistorius, Petrus Christiaan

    2014-08-01

    Oxidation of magnetite pellets is commonly performed to prepare strong pellets for ironmaking. This article presents a contribution to quantitative understanding of fundamental pellet oxidation kinetics, based on measured oxidation kinetics of magnetite particles and pellets. The commonly observed "plateau" oxidation behavior is confirmed to be consistent with the effect of very large differences in magnetite particle sizes in the concentrate from which pellets are produced. The magnetite particles range in size from less than a micron to several tens of a microns; changing the size distribution by inert sintering of pellets decreases both the plateau level of oxidation and the specific surface area, in ways that are compatible with an assumed Rosin-Rammler magnetite particle size distribution.

  15. Comparison of drop size distributions from two droplet sizing systems

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.; Ide, Robert F.

    1990-01-01

    A comparison between the Phase Doppler Particle Analyzer and the combined measurements from Particle Measuring Systems' Forward Scattering Spectrometer Probe and the Optical Array Probe was conducted in an icing wind tunnel using NASA Icing Research Tunnel spray nozzles to produce the supercooled water droplet cloud. Clouds having a range of volume median diameters from 10 to greater than 50 microns were used for the instrument comparisons. A volume median diameter was calculated from combining the droplet distributions of the Optical Array Probe and the Forward Scattering Spectrometer Probe. A comparison of the combined volume median diameters and the Phase Doppler Particle Analyzer volume median diameters showed agreement from 10 microns up to 30 microns. Typical drop size distributions from the Phase Doppler Particle Analyzer, the Forward Scattering Spectrometer Probe, and Optical Array Probe are presented for several median volume diameters. A comparison of the distributions illustrates regions of the distributions where there is good agreement and other regions where there are discrepancies between the Phase Doppler Particle Analyzer and the Particle Measuring Systems' droplet size instruments.

  16. Aerosol and air pollution size distribution

    NASA Astrophysics Data System (ADS)

    Shani, Gad; Haccoun, A.; Kushelevsky, A.

    The size distribution of aerosols was measured in a moderately industrial city, in a semi-arid zone on the Negev desert border. The aerosols in the city of Beer Sheva are from two sources: the dust coming from the desert and urban pollution. The size measurements were done with a cascade impactor. The elemental content of the aerosols was investigated by neutron activation analysis and X-ray fluorescence. The main elements of the dust are: Ca, Si, Fe, Na and the trace elements are: Sc, Se, La, Sm, Hf and others. The main elements of the urban pollution are S, Br, Pb, Cl, Hg and others. It was found that the elements belonging to each group can easily be classified by the size distribution. The analytical consideration of the aerosol size distribution of each group are discussed and two corresponding analytical expressions are suggested. It is shown that aerosols originating in the dust have a hump shape distribution around ~ 4μm, and those originating in urban pollution have a distribution decreasing with increasing aerosol diameter. Many examples are given to prove the conclusions.

  17. The size-distribution of Earth's lakes.

    PubMed

    Cael, B B; Seekell, D A

    2016-01-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth's lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km(2) are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05; d = 4/3). Lakes <8.5 km(2) are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales. PMID:27388607

  18. Size distributions in two porous chondritic micrometeorites

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1993-01-01

    Quantitative size measurements of granular units (GUs), and nm-sized minerals in these units, in two porous chondritic micrometeorites are investigated. The matrix of these micrometeorites consist of loosely packed, 0.1 micron-sized, GUs. These objects were a major component of the solar nebula dust that accreted into protoplanets. The matrix in micrometeorite W7010*A2 has a fractal dimension with a small coefficient that supports efficient sticking of carbon-rich GUs during accretion. The fractal nature of the matrix provides a way to calculate the density using the aggregate size. The resulting very low density for porous chondritic micrometeorites is 0.08-0.14 g/cu cm, which supports the view that they are the solid debris from unconsolidated solar system bodies. Chondritic GUs contain ultrafine olivines, pyroxenes, and sulfides, embedded in hydrocarbons and amorphous carbons. Nanocrystals in the micrometeorites W7010*A2 and U2015*B show log normal size distributions. The high incidence of disk-shaped grains, a changeover from disk-shaped to euhedral grains, the unevolved nature of the size distributions, and multiple populations for grains less than 127 nm in size, are consistent with continuous postaccretion nucleation and growth in amorphous GUs, including coarsening via Ostwald ripening.

  19. Acoustical concept for measuring particle size distributions

    SciTech Connect

    Mahler, D.S.; Kaufman, M.

    1981-02-01

    A new concept is investigated for measuring particle size and distribution for air pollution control applications. This study illustrates that the proposed device--the Acoustic Particulate Monitor (APM)--can measure total mass loading, mean particle diameter, and width of particle size distributions on an in-situ basis. The concept for such an instrument is based upon experimental and theoretical observations that the presence of dust in air causes a reduction in the speed of sound as a function of the transmitted frequency. These percentage reductions in the speed of sound are small and the research results illustrate how the accompanying shift in the acoustical phase is a highly sensitive method for detecting such effects. The magnitudes of the phase shift are related to mass loading. The frequency associated with the maximum phase shift is defined as the acoustic frequency, fA. Experimentally determining fA provides a measure of the mean particle size of the distribution. The detailed shape of the phase shift as a function of frequency is a measure of the spread in the size distribution of the entrained particulate. Experiments were performed using several configurations. Results were verified using direct mass measurements and microphotographs.

  20. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  1. Aerodynamic heating rate distributions induced by trailing edge controls on hypersonic aircraft configurations at Mach 8

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1984-01-01

    Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.

  2. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  3. Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing

    NASA Astrophysics Data System (ADS)

    Jin-Bi, Zhang; Lei, Ding; Ying-Ping, Wang; Li, Zhang; Jin-Lei, Wu; Hai-Yang, Zheng; Li, Fang

    2016-03-01

    Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascertaining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio, which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5:1 in consideration of the experimental errors. Project supported by the National Natural Science Foundation of China (Grant No. 41275132).

  4. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Han, Menghu; Li, Jun; Liang, Hua; Niu, Zhongguo; Zhao, Guangyin

    2015-06-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. supported by National Natural Science Foundation of China (Nos. 51276197, 51207169 and 51336011)

  5. Indoor aerosol size distributions in a gymnasium.

    PubMed

    Castro, Amaya; Calvo, Ana I; Alves, Célia; Alonso-Blanco, Elisabeth; Coz, Esther; Marques, Liliana; Nunes, Teresa; Fernández-Guisuraga, Jose Manuel; Fraile, Roberto

    2015-08-15

    In this study, an indoor/outdoor monitoring program was carried out in a gymnasium at the University of Leon, Spain. The main goal was a characterization of aerosol size distributions in a university gymnasium under different conditions and sports activities (with and without magnesia alba) and the study of the mass fraction deposited in each of the parts of the respiratory tract. The aerosol particles were measured in 31 discrete channels (size ranges) using a laser spectrometer probe. Aerosol size distributions were studied under different conditions: i) before sports activities, ii) activities without using magnesia alba, iii) activities using magnesia alba, iv) cleaning procedures, and v) outdoors. The aerosol refractive index and density indoors were estimated from the aerosol composition: 1.577-0.003i and 2.055 g cm(-3), respectively. Using the estimated density, the mass concentration was calculated, and the evolution of PM1, PM2.5 and PM10 for different activities was assessed. The quality of the air in the gymnasium was strongly influenced by the use of magnesia alba (MgCO3) and the number of gymnasts who were training. Due to the climbing chalk and the constant process of resuspension, average PM10 concentrations of over 440 μg m(-3) were reached. The maximum daily concentrations ranged from 500 to 900 μg m(-3). Particle size determines the place in the respiratory tract where the deposition occurs. For this reason, the inhalable, thoracic, tracheobronchial and respirable fractions were assessed for healthy adults and high risk people, according to international standards. The estimations show that, for healthy adults, up to 300 μg m(-3) can be retained by the trachea and bronchi, and 130 μg m(-3) may reach the alveolar region. The different physical activities and the attendance rates in the sports facility have a significant influence on the concentration and size distributions observed. PMID:25897726

  6. Aerodynamically-driven condensate layer thickness distributions on isothermal cylindrical surfaces

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gunes, D.; Nazih-Anous, N.

    1983-01-01

    A simple yet rather general mathematical model is presented for predicting the distribution of condensate layer thickness when aerodynamic shear is the dominant mechanism of liquid flow along the surface. The Newtonian condensate film is treated using well-known thin-layer (lubrication theory) approximations, and condensate supply is taken to be the result of either convective diffusion or inertial impaction. Illustrative calculations for a circular cylinder in a crossflow at Re = 100,000 reveal the consequences of alternate condensate arrival mechanisms and the existence of thicker reverse-flow films behind the position of gas boundary-layer separation. The present formulation is readily generalized to include transient liquid layer flows on noncircular objects of variable surface temperature, as encountered in turbine-blade materials testing or operation.

  7. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  8. Genome Sizes and the Benford Distribution

    PubMed Central

    Friar, James L.; Goldman, Terrance; Pérez–Mercader, Juan

    2012-01-01

    Background Data on the number of Open Reading Frames (ORFs) coded by genomes from the 3 domains of Life show the presence of some notable general features. These include essential differences between the Prokaryotes and Eukaryotes, with the number of ORFs growing linearly with total genome size for the former, but only logarithmically for the latter. Results Simply by assuming that the (protein) coding and non-coding fractions of the genome must have different dynamics and that the non-coding fraction must be particularly versatile and therefore be controlled by a variety of (unspecified) probability distribution functions (pdf’s), we are able to predict that the number of ORFs for Eukaryotes follows a Benford distribution and must therefore have a specific logarithmic form. Using the data for the 1000+ genomes available to us in early 2010, we find that the Benford distribution provides excellent fits to the data over several orders of magnitude. Conclusions In its linear regime the Benford distribution produces excellent fits to the Prokaryote data, while the full non-linear form of the distribution similarly provides an excellent fit to the Eukaryote data. Furthermore, in their region of overlap the salient features are statistically congruent. This allows us to interpret the difference between Prokaryotes and Eukaryotes as the manifestation of the increased demand in the biological functions required for the larger Eukaryotes, to estimate some minimal genome sizes, and to predict a maximal Prokaryote genome size on the order of 8–12 megabasepairs.These results naturally allow a mathematical interpretation in terms of maximal entropy and, therefore, most efficient information transmission. PMID:22629319

  9. Remote Laser Diffraction Particle Size Distribution Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  10. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  11. Physical Causes of Drop Size Distribution Variability

    NASA Astrophysics Data System (ADS)

    Zawadzki, I.

    Drop size distributions are measured at ground by instruments (disdrometers) that mostly sample one drop at a time or at best, a small number of drops simultaneously. To obtain a representative sample a time window of the observations is required. This introduces a spurious variability due to the differential fall speed of drops coupled with a highly variable field of precipitation in rapid displacement respect to the dis- drometer. A filter has been studied to minimize this spurious variability as well as instrumental uncertainty. The use of filtered data allows to see case to case differences in DSDs that are hidden in the large scatter in the raw data. These differences can be associated to physical processes revealed by a vertically pointing radar such as the de- gree of aggregation, riming, etc. Numerical modeling of particle size evolution using the quasi-stochastic growth equation serves as guide for the understanding of these processes.

  12. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Qi, L.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-04-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels. The combustion facility at the USDA Forest Service's Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which was attributable to dilution of the fresh smoke. Comparing volume size distribution from Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS) measurements, ~30% of particle volume was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in Modified Combustion Efficiency (MCE) vs. geometric mean diameter from each mode of combustion than only using MCE values.

  13. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  14. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  15. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  16. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  17. Aerodynamic characteristics of a powered, externally blown flap STOL transport model with two engine simulator sizes

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1975-01-01

    The low-speed aerodynamic characteristics are investigated of a general research model - a swept-wing, jet-powered STOL transport with externally blown flaps. The model was tested with four-engine simulators mounted on pylons under the 9.3-percent-thick supercritical airfoil wing. Two sets of air ejectors were used to provide data with large and small engines. Tests were conducted in the Langley V/STOL tunnel over an angle-of-attack range of -4 deg to 22 deg and a thrust-coefficient range from 0 to approximately 4. The effects are described of power, wing leading-edge slat configuration, T-tail and low horizontal-tail positions, and double-slotted flap deflection. Additional untrimmed and trimmed engine-out data and tail-body data are included.

  18. Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing.

    PubMed

    Gao, Min; Qiu, Tianlei; Jia, Ruizhi; Han, Meilin; Song, Yuan; Wang, Xuming

    2015-03-01

    Accumulation of airborne particulate matter (PM) has profoundly affected the atmospheric environment of Beijing, China. Although studies on health risks have increased, characterization of specific factors that contribute to increased health risks remains an area of needed exploration. Chemical composition studies on PM can readily be found in the literature but researches on biological composition are still limited. In this study, the concentration and size distribution of viable airborne bacteria and fungi were determined in the atmosphere from May to July 2013 in Beijing, China. Samples were collected during non-haze days and haze days based on the value of air quality index (AQI) PM2.5. Multiple linear regression results indicated that concentrations of viable bioaerosol exhibited a negative correlation with PM2.5 (AQI) ranging from 14 to 452. There was a little difference in size distribution of bioaerosol between non-haze and haze days that all airborne bacteria showed skewed trends toward larger sizes and airborne fungi followed a Gaussian distribution. Spearman's correlation analysis showed that a fraction of bioaerosol with fine and coarse particles had negative and positive relations with PM2.5 (AQI), respectively. Moreover, the temporal variation of d g (aerodynamic diameter) of bioaerosol with PM2.5 (AQI) fluctuated from 9:00 to 21:00, which suggested that their deposition pattern would vary during a day. The primary research in this study implied that aerodynamic size variation should be considered in assessing the bioaerosol exposure during haze weather. PMID:25300183

  19. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles. PMID:19204485

  20. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    aggregate size distribution which is led to nutrient and organic matter redistribution is one of a key questions to improve erosion estimation. G. Jakab was supported by the János Bolyai fellowship of the HAS.

  1. Power laws, discontinuities and regional city size distributions

    USGS Publications Warehouse

    Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.

    2008-01-01

    Urban systems are manifestations of human adaptation to the natural environment. City size distributions are the expression of hierarchical processes acting upon urban systems. In this paper, we test the entire city size distributions for the southeastern and southwestern United States (1990), as well as the size classes in these regions for power law behavior. We interpret the differences in the size of the regional city size distributions as the manifestation of variable growth dynamics dependent upon city size. Size classes in the city size distributions are snapshots of stable states within urban systems in flux. ?? 2008.

  2. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  3. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2016-02-01

    Four years of continuous aerosol number size distribution measurements from the Arctic Climate Observatory in Tiksi, Russia, are analyzed. Tiksi is located in a region where in situ information on aerosol particle properties has not been previously available. Particle size distributions were measured with a differential mobility particle sizer (in the diameter range of 7-500 nm) and with an aerodynamic particle sizer (in the diameter range of 0.5-10 μm). Source region effects on particle modal features and number, and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July, with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June (0.42 μg m-3) and in September-October (0.36-0.57 μg m-3). These seasonal cycles in number and mass concentrations are related to isolated processes and phenomena such as Arctic haze in early spring, which increases accumulation and coarse-mode numbers, and secondary particle formation in spring and summer, which affects the nucleation and Aitken mode particle concentrations. Secondary particle formation was frequently observed in Tiksi and was shown to be slightly more common in marine, in comparison to continental, air flows. Particle formation rates were the highest in spring, while the particle growth rates peaked in summer. These results suggest two different origins for secondary particles, anthropogenic pollution being the important source in spring and biogenic emissions being significant in summer. The impact of temperature-dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant: the increase in both the particle mass and the CCN (cloud condensation nuclei) number with temperature was found to be higher than in any previous study done over the boreal forest region. In addition

  4. Pore size distribution and accessible pore size distribution in bituminous coals

    SciTech Connect

    Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B; Radlinski, Andrzej Pawell; Blach, Tomasz P

    2012-01-01

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total

  5. Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants

    PubMed Central

    Saleem, Imran Y.; Smyth, Hugh D. C.

    2013-01-01

    Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381

  6. Determination of size distribution of elliptical microvessels from size distribution measurement of their section profiles.

    PubMed

    Krasnoperov, R A; Gerasimov, A N

    2003-01-01

    In transmission electron microscopy, microvessels (MVs) are studied as profiles on ultrathin sections. To determine MV sizes from measurements made on MV profiles, an assumption must be made about MV shape, a circular cylinder being used to approximate the latter on limited lengths. However, this model is irrelevant in case MVs have some flatness. The elliptical cylinder model is preferable, although relationships between the cylinder profile (two-dimensional; 2D) and its true (three-dimensional; 3D) sizes are not yet known. We have obtained the 2D/3D functions that express the relationships between such profile sizes as the minor radius (Y), major radius (X), axial ratio (X/Y), area (S), and perimeter (P) on the one hand, and the corresponding MV sizes (Y(0), X(0), X(0)/Y(0), S(0), and P(0)) on the other. The 2D/3D functions make it possible to derive elliptical MV sizes from section profile size distributions, probability density functions (PDFs) for the latter being determined. We have applied the 2D/3D functions in studying axial ratios of thyroid hemocapillaries. A factual X/Y frequency histogram has been constructed and fitted by theoretical X/Y PDFs plotted for different sets of capillary sizes. The thyroid capillaries have been revealed to be clustered, 72.7% of them having X(0)/Y(0) approximately 1.6, 17.6%, X(0)/Y(0) approximately 1.0, and 9.7%, X(0)/Y(0) approximately 3.2. The proposed technique is instrumental in precise modeling of microcirculatory network geometry. PMID:12524478

  7. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  8. Accounting for dust aerosol size distribution in radiative transfer

    NASA Astrophysics Data System (ADS)

    Li, Jiangnan; Min, Qilong; Peng, Yiran; Sun, Zhian; Zhao, Jian-Qi

    2015-07-01

    The impact of size distribution of mineral dust aerosol on radiative transfer was investigated using the Aerosol Robotic Network-retrieved aerosol size distributions. Three methods for determining the aerosol optical properties using size distributions were discussed. The first is referred to as a bin method in which the aerosol optical properties are determined for each bin of the size distribution. The second is named as an assembly mean method in which the aerosol optical properties are determined with an integration of the aerosol optical parameters over the observed size distribution. The third is a normal parameterization method based on an assumed size distribution. The bin method was used to generate the benchmark results in the radiation calculations against the methods of the assembly mean, and parameterizations based on two size distribution functions, namely, lognormal and gamma were examined. It is seen that the assembly mean method can produce aerosol radiative forcing with accuracy of better than 1%. The accuracies of the parameterizations based on lognormal and gamma size distributions are about 25% and 5%, respectively. Both the lognormal and gamma size distributions can be determined by two parameters, the effective radius and effective variance. The better results from the gamma size distribution can be explained by a third parameter of skewness which is found to be useful for judging how close the assumed distribution is to the observation result. The parameterizations based on the two assumed size distributions are also evaluated in a climate model. The results show that the reflected solar fluxes over the desert areas determined by the scheme based on the gamma size distribution are about 1 W m-2 less than those from the scheme based on the lognormal size distribution, bringing the model results closer to the observations.

  9. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  10. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  11. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers

    PubMed Central

    Muijres, Florian T.; Bowlin, Melissa S.; Johansson, L. Christoffer; Hedenström, Anders

    2012-01-01

    Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a ‘feathered upstroke’ during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called ‘normal hovering’ as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body–tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as

  12. Determination of the cumulus size distribution from LANDSAT pictures

    NASA Technical Reports Server (NTRS)

    Karg, E.; Mueller, H.; Quenzel, H.

    1983-01-01

    Varying insolation causes undesirable thermic stress to the receiver of a solar power plant. The rapid change of insolation depends on the size distribution of the clouds; in order to measure these changes, it is suitable to determine typical cumulus size distributions. For this purpose, LANDSAT-images are adequate. Several examples of cumulus size distributions will be presented and their effects on the operation of a solar power plant are discussed.

  13. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  14. The distribution of bubble sizes during reionization

    NASA Astrophysics Data System (ADS)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  15. Lunar soil: Size distribution and mineralogical constituents

    USGS Publications Warehouse

    Duke, M.B.; Woo, C.C.; Bird, M.L.; Sellers, G.A.; Finkelman, R.B.

    1970-01-01

    The lunar soil collected by Apollo 11 consists primarily of submillimeter material and is finer in grain size than soil previously recorded photographically by Surveyor experiments. The main constituents are fine-grained to glassy rocks of basaltic affinity and coherent breccia of undetermined origin. Dark glass, containing abundant nickel-iron spheres, coats many rocks, mineral, and breccia fragments. Several types of homogeneous glass occur as fragments and spheres. Colorless spheres, probably an exotic component, are abundant in the fraction finer than 20 microns.

  16. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  17. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.

    PubMed

    Page, Steven J

    2003-01-01

    Since 1982 standard calibration materials recommended for respirable crystalline silica analysis by the Mine Safety and Health Administration (MSHA) P7 Infrared Method and the National Institute for Occupational Safety and Health (NIOSH) X-ray Diffraction (XRD) Analytical Method 7500 have undergone minor changes in size distribution. However, a critical assumption has been made that the crystalline silica in ambient mine atmosphere respirable dust samples has also remained essentially unchanged in particle size distribution. Therefore, this work compared recent particle size distributions of underground coal mine dust and the silica component of these dusts with estimated aerodynamic particle size distributions of calibration standard materials MIN-U-SIL 5, Berkeley 5, and SRM 1878 used by two crystalline silica analysis techniques. Dust impactor sampling data for various locations in 13 underground coal mines were analyzed for the respirable mass median aerodynamic diameters. The data suggest that the MSHA P7 method will underestimate the silica content of the sample by at most 7.4% in the median size range 0.9 to 3.6 microm, and that it is unlikely one would obtain any significant error in the MSHA P7 method analysis when the method uses Berkeley 5, MIN-U-SIL 5, or SRM 1878 as a calibration standard material. The results suggest that the NIOSH Analytical Method 7500 would be more appropriate for a dust sample that is representative of the total (no cyclone classifier) rather than the respirable airborne dust, particularly because the mass fraction in the size range below 4 microm is usually a small percentage of the total airborne dust mass. However, NIOSH Analytical Method 7500 is likely to underestimate the silica content of an airborne respirable dust sample by only 5 to 10%. The results of this study also suggest that any changes that may have occurred in the median respirable size of airborne coal mine dust are not significant enough to cause any appreciable

  18. Aerosol size distribution in a uranium processing and fuel fabrication facility.

    PubMed

    Prasad, K Vishwa; Balbudhe, A Y; Srivastava, G K; Tripathi, R M; Puranik, V D

    2010-08-01

    In the nuclear fuel complex, magnesium diuranate is processed to produce UO(2) through different chemical and metallurgical processes. UO(2) powder is compacted to produce uranium pallets as fuel. International Commission on Radiological Protection has considered default particle size of 5-mum activity median aerodynamic diameter (AMAD) and 2.5 of geometric standard deviation (GSD) for working out dose coefficients. There is a likelihood of variation in the particle size during each stage of operation. The present study is undertaken to determine the prevailing uranium aerosol size distribution at every stage of operation using Anderson impactor with glass fibre filter paper as collection substrate. AMAD and respective GSD were determined. Aerosol size distribution was studied. Airborne uranium concentration was found to be higher for higher particle sizes in all areas. Average AMAD for different locations varied from 5.8 to 7.7 mum with GSD from 1.63 to 6.73 and the ratio of calculated ALI to standard varies from 1.13 to 1.55. PMID:20406743

  19. Knife mill operating factors effect on switchgrass particle size distributions

    SciTech Connect

    Bitra, V.S.P.; Womac, A.R.; Yang, Y.T.; Igathinathane, C.; Miu, P.I; Chevanan, Nehru; Sokhansanj, Shahabaddine

    2009-06-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin Rammler function fit the chopped switchgrass size distribution data with an R2 > 0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced strongly fine skewed mesokurtic particles with 12.7 25.4 mm screens and fine skewed mesokurtic particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  20. Distributions of region size and GDP and their relation

    NASA Astrophysics Data System (ADS)

    Sen, Hu; Chunxia, Yang; Xueshuai, Zhu; Zhilai, Zheng; Ya, Cao

    2015-07-01

    We first analyze the distribution of metropolitan (city) size, the distribution of metropolitan (city) GDP and the relation of both distributions. It is found that (1) the tails of distributions of size and GDP both obey Pareto Law with the Pareto exponent 1; (2) compared with Pareto exponent in GDP, Pareto exponent in size is bigger. Then an agent model is built to study the underlying formation mechanism of distributions of region size and GDP. Our model presents the mechanism how economic factors flow between regions to reproduce the tail behavior and the difference between the Pareto exponents of size and those of GDP. At last, the simulated results agree with the real empirical well.

  1. The Italian primary school-size distribution and the city-size: a complex nexus

    NASA Astrophysics Data System (ADS)

    Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-06-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.

  2. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  3. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    PubMed Central

    Usherwood, James R.

    2012-01-01

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels. PMID:22736891

  4. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  5. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    NASA Astrophysics Data System (ADS)

    Usherwood, James R.

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.

  6. The aerodynamic forces and pressure distribution of a revolving pigeon wing

    NASA Astrophysics Data System (ADS)

    Usherwood, James R.

    2009-05-01

    The aerodynamic forces acting on a revolving dried pigeon wing and a flat card replica were measured with a propeller rig, effectively simulating a wing in continual downstroke. Two methods were adopted: direct measurement of the reaction vertical force and torque via a forceplate, and a map of the pressures along and across the wing measured with differential pressure sensors. Wings were tested at Reynolds numbers up to 108,000, typical for slow-flying pigeons, and considerably above previous similar measurements applied to insect and hummingbird wing and wing models. The pigeon wing out-performed the flat card replica, reaching lift coefficients of 1.64 compared with 1.44. Both real and model wings achieved much higher maximum lift coefficients, and at much higher geometric angles of attack (43°), than would be expected from wings tested in a windtunnel simulating translating flight. It therefore appears that some high-lift mechanisms, possibly analogous to those of slow-flying insects, may be available for birds flapping with wings at high angles of attack. The net magnitude and orientation of aerodynamic forces acting on a revolving pigeon wing can be determined from the differential pressure maps with a moderate degree of precision. With increasing angle of attack, variability in the pressure signals suddenly increases at an angle of attack between 33° and 38°, close to the angle of highest vertical force coefficient or lift coefficient; stall appears to be delayed compared with measurements from wings in windtunnels.

  7. An Instrument Employing a Coronal Discharge for the Determination of Droplet-Size Distribution in Clouds

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Levine, Joseph; Kleinknecht, Kenneth S.

    1951-01-01

    A flight instrument that uses electric means for measuring the droplet-size distribution in above-freezing clouds has been devised and given preliminary evaluation in flight. An electric charge is placed on the droplets and they are separated aerodynamically according to their mass. Because the charge placed on the droplets is a. function of the droplet size, the size spectrum can 'be determined by measurement of the charge deposited on cylinders of several different sizes placed to intercept the charged droplets. An expression for the rate of charge acquisition by a water droplet in a field of coronal discharge is derived. The results obtained in flight with an instrument based on the method described indicate that continuous records of droplet-size spectrum variations in clouds can be obtained. The experimental instrument was used to evaluate the method and was not refined to the extent necessary for obtaining conclusive meteorological data. The desirable features of an instrument based on the method described are (i) The instrument can be used in clouds with temperatures above freezing; (2) the size and the shape of the cylinders do not change during the exposure time; (3) the readings are instantaneous and continuous; (4) the available sensitivity permits the study of variations in cloud structures of less than 200 feet in extent.

  8. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  9. Analytic scaling function for island-size distributions.

    PubMed

    Dubrovskii, V G; Sibirev, N V

    2015-04-01

    We obtain an explicit solution for the island-size distribution described by the rate equations for irreversible growth with the simplified capture rates of the form σ(s)(Θ)∝Θ(p)(a+s-1) for all s≥1, where s is the size and Θ is the time-dependent coverage. The intrinsic property of this solution is its scaling form in the continuum limit. The analytic scaling function depends on the two parameters a and p and is capable of describing very dissimilar distribution shapes, both monomodal and monotonically decreasing. The obtained results suggest that the scaling features of the size distributions are closely related to the size linearity of the capture rates. A simple analytic scaling is obtained rigorously here and helps to gain a better theoretical understanding of possible origins of the scaling behavior of the island-size distributions. PMID:25974509

  10. An alternative way to determine the size distribution of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Cuccia, Eleonora; Bernardoni, Vera; Massabò, Dario; Prati, Paolo; Valli, Gianluigi; Vecchi, Roberta

    We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, Dae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods.

  11. Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany

    PubMed Central

    Yue, Wei; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Heinrich, Joachim; Kreyling, Wolfgang G.; Wichmann, H.-Erich; Peters, Annette; Wang, Sheng; Hopke, Philip K.

    2008-01-01

    Particle size distribution data collected between September 1997 and August 2001 in Erfurt, Germany were used to investigate the sources of ambient particulate matter by positive matrix factorization (PMF). A total of 29,313 hourly averaged particle size distribution measurements covering the size range of 0.01 to 3.0 μm were included in the analysis. The particle number concentrations (cm−3) for the 9 channels in the ultrafine range, and mass concentrations (ng m−3) for the 41 size bins in the accumulation mode and particle up to 3 μm in aerodynamic diameter were used in the PMF. The analysis was performed separately for each season. Additional analyses were performed including calculations of the correlations of factor contributions with gaseous pollutants (O3, NO, NO2, CO and SO2) and particle composition data (sulfate, organic carbon and elemental carbon), estimating the contributions of each factor to the total number and mass concentration, identifying the directional locations of the sources using the conditional probability function, and examining the diurnal patterns of factor scores. These results were used to assist in the interpretation of the factors. Five factors representing particles from airborne soil, ultrafine particles from local traffic, secondary aerosols from local fuel combustion, particles from remote traffic sources, and secondary aerosols from multiple sources were identified in all seasons. PMID:18433834

  12. The origin of bimodal grain-size distribution for aeolian deposits

    NASA Astrophysics Data System (ADS)

    Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue

    2016-03-01

    Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (<20 μm size fraction) change with temporal and spatial variation. Fine component from dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.

  13. THE COLLISIONAL DIVOT IN THE KUIPER BELT SIZE DISTRIBUTION

    SciTech Connect

    Fraser, Wesley C.

    2009-11-20

    This paper presents the results of collisional evolution calculations for the Kuiper Belt starting from an initial size distribution similar to that produced by accretion simulations of that region-a steep power-law large object size distribution that breaks to a shallower slope at r approx 1-2 km, with collisional equilibrium achieved for objects r approx< 0.5 km. We find that the break from the steep large object power law causes a divot, or depletion of objects at r approx 10-20 km, which, in turn, greatly reduces the disruption rate of objects with r approx> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper Belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink radius and the radius of the divot center depend on the strength scaling law in the gravity regime for Kuiper Belt objects. These simulations suggest that the sky density of r approx 1 km objects is approx10{sup 6}-10{sup 7} objects per square degree. A detection of the divot in the size distribution would provide a measure of the strength of large Kuiper Belt objects, and constrain the shape of the size distribution at the end of accretion in the Kuiper Belt.

  14. Temporal change in the size distribution of airborne Radiocesium derived from the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu; Akata, Naofumi

    2013-04-01

    The accident of Fukushima Dai-ichi nuclear power plant discharged a large amount of radioactive materials into the environment. After 40 days of the accident, we started to collect the size-segregated aerosol at Tsukuba City, Japan, located 170 km south of the plant, by use of a low-pressure cascade impactor. The sampling continued from April 28, through October 26, 2011. The number of sample sets collected in total was 8. The radioactivity of 134Cs and 137Cs in aerosols collected at each stage were determined by gamma-ray with a high sensitivity Germanic detector. After the gamma-ray spectrometry analysis, the chemical species in the aerosols were analyzed. The analyses of first (April 28-May 12) and second (May 12-26) samples showed that the activity size distributions of 134Cs and 137Cs in aerosols reside mostly in the accumulation mode size range. These activity size distributions almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the results, we regarded that sulfate is the main transport medium of these radionuclides, and re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances by the end of May, 2011 (Kaneyasu et al., 2012). We further conducted the successive extraction experiment of radiocesium from the aerosol deposits on the aluminum sheet substrate (8th stage of the first aerosol sample, 0.5-0.7 μm in aerodynamic diameter) with water and 0.1M HCl. In contrast to the relatively insoluble property of Chernobyl radionuclides, those in aerosols collected at Tsukuba in fine mode are completely water-soluble (100%). From the third aerosol sample, the activity size distributions started to change, i.e., the major peak in the accumulation mode size range seen in the first and second aerosol samples became smaller and an additional peak appeared in the coarse mode size range. The comparison of the activity size distributions of radiocesium and the mass size distributions of

  15. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  16. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  17. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  18. The distribution of species range size: a stochastic process.

    PubMed Central

    Gaston, Kevin J; He, Fangliang

    2002-01-01

    The major role played by environmental factors in determining the geographical range sizes of species raises the possibility of describing their long-term dynamics in relatively simple terms, a goal which has hitherto proved elusive. Here we develop a stochastic differential equation to describe the dynamics of the range size of an individual species based on the relationship between abundance and range size, derive a limiting stationary probability model to quantify the stochastic nature of the range size for that species at steady state, and then generalize this model to the species-range size distribution for an assemblage. The model fits well to several empirical datasets of the geographical range sizes of species in taxonomic assemblages, and provides the simplest explanation of species-range size distributions to date. PMID:12028767

  19. SELF-CONSISTENT SIZE AND VELOCITY DISTRIBUTIONS OF COLLISIONAL CASCADES

    SciTech Connect

    Pan, Margaret; Schlichting, Hilke E. E-mail: hilke@ucla.edu

    2012-03-10

    The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan and Sari can steepen to values as large as q = 3.26. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies for the Kuiper belt, the asteroid belt, and extrasolar debris disks may constrain the mass and number of large bodies stirring the cascade as well as the colliding bodies' internal strengths.

  20. Number size distribution of particulate emissions of heavy-duty engines in real world test cycles

    NASA Astrophysics Data System (ADS)

    Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef

    Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.

  1. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    SciTech Connect

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-08-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R {approx} 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R {approx} 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R {approx}< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R {approx} 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from

  2. INTEGRATING NEPHELOMETER RESPONSE CORRECTIONS FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    Correction factors are calculated for obtaining true scattering extinction coefficients from integrating nephelometer measurements. The corrections are based on the bimodal representation of ambient aerosol size distributions, and take account of the effects of angular truncation...

  3. The best nanoparticle size distribution for minimum thermal conductivity

    PubMed Central

    Zhang, Hang; Minnich, Austin J.

    2015-01-01

    Which sizes of nanoparticles embedded in a crystalline solid yield the lowest thermal conductivity? Nanoparticles have long been demonstrated to reduce the thermal conductivity of crystals by scattering phonons, but most previous works assumed the nanoparticles to have a single size. Here, we use optimization methods to show that the best nanoparticle size distribution to scatter the broad thermal phonon spectrum is not a similarly broad distribution but rather several discrete peaks at well-chosen nanoparticle radii. For SiGe, the best size distribution yields a thermal conductivity below that of amorphous silicon. Further, we demonstrate that a simplified distribution yields nearly the same low thermal conductivity and can be readily fabricated. Our work provides important insights into how to manipulate the full spectrum of phonons and will guide the design of more efficient thermoelectric materials. PMID:25757414

  4. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  5. Remote sensing of floe size distribution and surface topography

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Thorndike, A. S.

    1984-01-01

    Floe size can be measured by several properties p- for instance, area or mean caliper diameter. Two definitions of floe size distribution seem particularly useful. F(p), the fraction of area covered by floes no smaller than p; and N(p), the number of floes per unit area no smaller than p. Several summertime distributions measured are a graph, their slopes range from -1.7 to -2.5. The variance of an estimate is also calculated.

  6. Nanocrystal size distribution analysis from transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    van Sebille, Martijn; van der Maaten, Laurens J. P.; Xie, Ling; Jarolimek, Karol; Santbergen, Rudi; van Swaaij, René A. C. M. M.; Leifer, Klaus; Zeman, Miro

    2015-12-01

    We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect.We propose a method, with minimal bias caused by user input, to quickly detect and measure the nanocrystal size distribution from transmission electron microscopy (TEM) images using a combination of Laplacian of Gaussian filters and non-maximum suppression. We demonstrate the proposed method on bright-field TEM images of an a-SiC:H sample containing embedded silicon nanocrystals with varying magnifications and we compare the accuracy and speed with size distributions obtained by manual measurements, a thresholding method and PEBBLES. Finally, we analytically consider the error induced by slicing nanocrystals during TEM sample preparation on the measured nanocrystal size distribution and formulate an equation to correct this effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06292f

  7. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  8. Influence of particle size distributions on magnetorheological fluid performances

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Stoian, G.

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  9. Particle size and shape distributions of hammer milled pine

    SciTech Connect

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  10. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  11. Johnson SB as general functional form for raindrop size distribution

    NASA Astrophysics Data System (ADS)

    Cugerone, Katia; De Michele, Carlo

    2015-08-01

    Drop size distribution represents the statistical synthesis of rainfall dynamics at particle size scale. Gamma and Lognormal distributions have been widely used in the literature to approximate the drop diameter variability, contrarily to the natural upper boundary of the variable, with almost always site-specific studies and without the support of statistical goodness-of-fit tests. In this work, we present an extensive statistical investigation of raindrop size distribution based on eight data sets, well distributed on the Earth's surface, which have been analyzed by using skewness-kurtosis plane, AIC and BIC indices and Kolmogorov-Smirnov test. Here for the first time, the Johnson SB is proposed as general functional form to describe the drop diameter variability specifically at 1 min time scale. Additional analyses demonstrate that the model is well suitable even for larger time intervals (≥1 min).

  12. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  13. Charge distribution over dust particles configured with size distribution in a complex plasma

    NASA Astrophysics Data System (ADS)

    Misra, Shikha; Mishra, Sanjay K.

    2016-02-01

    A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.

  14. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  15. Crater size distributions on Ganymede and Callisto: fundamental issues

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Schmedemann, Nico; Werner, Stefanie; Ivanov, Boris; Stephan, Katrin; Jaumann, Ralf

    2015-04-01

    Crater size distributions on the two largest Jovian satellites Ganymede and Callisto and the origin of impactors are subject of intense and controversial debates. In this paper, we reinvestigate crater size distributions measured in surface units derived from a recently published global geologic map, based on Voyager and Galileo SSI images at a scale of 1 km/pxl (Collins G. C. et al. (2013), U. S. Geol. Surv., Sci. Inv. Map 3237). These units are used as a context to units mapped in more detail at higher resolution in Galileo SSI images. We focus on the following fundamental issues: (1) Similarity between shapes of crater distributions on the Galilean satellites and on inner solar system bodies; (2) production versus equilibrium distributions; (3) apex/antapex variations in crater distributions. First, our results show a strong similarity in shape between the crater distributions on the most densely cratered regions on Ganymede and Callisto with those in the lunar highlands. We conclude that the shape of the crater distributions on these two Jovian satellites implies the craters were preferentially formed from members of a collisionally evolved projectile family, derived either from Main Belt asteroids as candidates of impactors on the Jovian satellites, or from projectiles stemming from the outer solar system which have undergone collisional evolution, resulting in a size distribution similar to those of Main Belt asteroids. Second, the complex shape of the crater distributions on Ganymede and Callisto indicates they are mostly production distributions and can be used to infer the underlying shape of the projectile size distribution. Locally, equilibrium distributions occur, especially at smaller sub-kilometer diameters. Third, the most densely cratered regions on both satellites do not show apex-antapex variations in crater frequency, as inferred for bodies from heliocentric orbits (e.g., Zahnle K. et al. (2003), Icarus 163, 263-289). This indicates that these

  16. Measurement of aggregates' size distribution by angular light scattering

    NASA Astrophysics Data System (ADS)

    Caumont-Prim, Chloé; Yon, Jérôme; Coppalle, Alexis; Ouf, François-Xavier; Fang Ren, Kuan

    2013-09-01

    A novel method is introduced for in situ determination of the size distribution of submicronic fractal aggregate particles by unique measurement of angular scattering of light. This method relies on the dependence of a new defined function Rg⋆ on the polydispersity of the aggregates' size distribution. The function Rg⋆ is then interpreted by the use of iso-level charts to determine the parameters of the log-normal soot size distribution. The main advantage of this method is its independence of the particle optical properties and primary sphere diameter. Moreover, except for the knowledge of fractal dimension, this method does not require any additional measurement. It is validated on monodisperse particles selected by a differential mobility analyzer and polydisperse soot from ethylene diffusion flame whose size distribution is independently determined by Transmission Electron Microscopy. Finally, the size distribution of soot generated by a commercial apparatus is measured by the proposed method and the comparison to that given by a commercial granulometer shows a good agreement.

  17. Templated formation of giant polymer vesicles with controlled size distributions

    NASA Astrophysics Data System (ADS)

    Howse, Jonathan R.; Jones, Richard A. L.; Battaglia, Giuseppe; Ducker, Robert E.; Leggett, Graham J.; Ryan, Anthony J.

    2009-06-01

    Unilamellar polymer vesicles are formed when a block copolymer self-assembles to form a single bilayer structure, with a hydrophobic core and hydrophilic surfaces, and the resulting membrane folds over and rearranges by connecting its edges to enclose a space. The physics of self-assembly tightly specifies the wall thickness of the resulting vesicle, but, both for polymer vesicles and phospholipids, no mechanism strongly selects for the overall size, so the size distribution of vesicles tends to be very polydisperse. We report a method for the production of controlled size distributions of micrometre-sized (that is, giant) vesicles combining the `top-down' control of micrometre-sized features (vesicle diameter) by photolithography and dewetting with the `bottom-up' control of nanometre-sized features (membrane thickness) by molecular self-assembly. It enables the spontaneous creation of unilamellar vesicles with a narrow size distribution that could find applications in drug and gene delivery, nano- and micro-reactors, substrates for macromolecular crystallography and model systems for studies of membrane function.

  18. Thresholded Power law Size Distributions of Instabilities in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-11-01

    Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

  19. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  20. Bayesian analysis of size-dependent overwinter mortality from size-frequency distributions.

    PubMed

    Carlson, Stephanie M; Kottas, Athanasios; Mangel, Marc

    2010-04-01

    Understanding the relationship between body size and mortality is an important problem in ecology. We introduce a novel Bayesian method that can be used to quantify this relationship when the only data available are size-frequency distributions of unmarked individuals measured at two successive time periods. The inverse Gaussian distribution provides a parametric form for the statistical model development, and we use Markov chain Monte Carlo methods to evaluate posterior distributions. We illustrate the method using data on threespine stickleback (Gasterosteus aculeatus) collected before and after the winter season in an Alaskan lake. Our method allows us to compare the intensity of size-biased mortality in different years. We discuss generalizations that include more complicated relationships between size and survival as well as time-series modeling. PMID:20462116

  1. The Italian primary school-size distribution and the city-size: a complex nexus.

    PubMed

    Belmonte, Alessandro; Di Clemente, Riccardo; Buldyrev, Sergey V

    2014-01-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features. PMID:24954714

  2. Use of atmospheric elemental size distributions in estimating aerosol sources in the Helsinki area

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Kerminen, Veli-Matti; Korhonen, Christina H.; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Maenhaut, Willy

    In June 1996-June 1997 Berner impactors were used in the Helsinki area to measure size distributions of atmospheric aerosols simultaneously at an urban and at a rural site. Ten sample pairs were collected in the size range of 0.03-15.7 μm of equivalent aerodynamic diameter (EAD). Average size distributions at the two sites were calculated for 29 elements, particulate mass, and sulphate. At both sites especially sulphate, As, B, Bi, Cd, Ni, Tl, and V were enriched in fine particles (EAD<2.3 μm). In order to estimate local fine-particle sources of the various chemical components, the similarities and dissimilarities in the accumulation-mode parameters were studied separately for both sites. It was observed that often in different samples, different components had similar accumulation modes. At both sites, particulate mass, As, and Pb had similar accumulation modes to sulphate which suggests that long-range transport (LRT) is important for these components. V, Ni, Mo, and Co formed another group of similar accumulation modes at both sites suggesting that these elements largely originated from local and regional oil combustion. In addition, other groups of similar accumulation modes were observed but these groups were different between the sites. The meteorological parameters indicated that seven sample pairs formed a subset of the data in which the local emissions of the Helsinki area were transported to the urban site but not to the rural site. For this subset the rural fine-particle concentrations were considered to represent an upper limit estimate for the LRT. These upper limit LRT estimations were further improved by utilising the quantitative relative size distributions (QRSD) method at the rural site. The QRSD method supposes that in the fine-particle size range the LRT fractions of all chemical components have a similar shape in their size distributions. Fine-particle sulphate is typically long-range transported, and was therefore selected as the model

  3. The Size Frequency Distribution of Small Main-Belt Asteroids

    NASA Technical Reports Server (NTRS)

    Burt, Brian J.; Trilling, David E.; Hines, Dean C.; Stapelfeldt, Karl R.; Rebull, Luisa M.; Fuentes, Cesar I.; Hulsebus, Alan

    2012-01-01

    The asteroid size distribution informs us about the formation and composition of the Solar System. We build on our previous work in which we harvest serendipitously observed data of the Taurus region and measure the brightness and size distributions of Main-belt asteroids. This is accomplished with the highly sensitive MIPS 24 micron channel. We expect to catalog 104 asteroids, giving us a statistically significant data set. Results from this investigation will allow us to characterize the total population of small, Main-belt asteroids. Here we will present new results on the completeness of our study; on the presence of size distribution variations with inclination and radial distance in the belt; and early result on other archival fields.

  4. Production, depreciation and the size distribution of firms

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru

    2008-05-01

    Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.

  5. Size and composition distributions of particulate matter emissions: part 2--heavy-duty diesel vehicles.

    PubMed

    Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load

  6. Porosity, pore size distribution and in situ strength of concrete

    SciTech Connect

    Kumar, Rakesh; Bhattacharjee, B

    2003-01-01

    In this study, in situ strength of concrete was determined through compression test of cores drilled out from laboratory cast beams. The apparent porosity and pore size distribution of the same concrete were determined through mercury intrusion porosimetry, performed on small-drilled cores. The normal-strength concrete mixes used in the experimental investigation were designed to exhibit a wide variation in their strengths. To ensure further variation in porosity, pore size distribution and strength, two modes of compaction, two varieties of coarse aggregates, different levels of age, curing period and exposure condition of concrete were also introduced in experimental scheme. With the data so generated, an appraisal of the most frequently referred relationships involving strength, porosity and pore size of cement-based materials was carried out. Finally, a new empirical model relating the in situ strength of concrete with porosity, pore size characteristics, cement content, aggregate type, exposure conditions, etc., is presented.

  7. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  8. Rank-Size Distribution of Notes in Harmonic Music: Hierarchic Shuffling of Distributions

    NASA Astrophysics Data System (ADS)

    Del Río, Manuel Beltrán; Cocho, Germinal

    We trace the rank size distribution of notes in harmonic music, which on previous works we suggested was much better represented by the Two-parameter, first class Beta distribution than the customary power law, to the ranked mixing of distributions dictated by the harmonic and instrumental nature of the piece. The same representation is shown to arise in other fields by the same type of ranked shuffling of distributions. We include the codon content of intergenic DNA sequences and the ranked distribution of sizes of trees in a determined area as examples. We show that the fittings proposed increase their accuracy with the number of distributions that are mixed and ranked.

  9. Size distributions of PM, carbons and PAHs emitted from a generator using blended fuels containing water.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Hsieh, Lien-Te; Lin, Chih-Chung; Tsai, Chin-Cheng

    2015-12-01

    This investigation studied the size distributions of particulate matter (PM), particulate carbon, and polycyclic aromatic hydrocarbons (PAHs) that are emitted from a generator that is fueled by diesel that is blended with waste-edible-oil-biodiesel and water-containing acetone. PM samples were collected using a micro-orifice uniform deposit impactor (MOUDI) and a Nano-MOUDI (with aerodynamic diameters of 0.01-18 μm). The results reveal that waste-edible biodiesel blended with water-containing acetone (W5WA3 or W20WA3) at a load of 3 kW emitted lower ΣPM, ΣPM-EC, ΣPM-OC, ΣT-PAHs or ΣT-BaPeq concentrations than did D100, in all 13 particle size ranges, and these reductions of emissions of submicron particles exceeded 85%. Furthermore, W20WA3 emitted significantly lower concentrations of Total-PAHs and Total-BaPeq in four nano/ultrafine particle size ranges. Therefore, water-containing acetone biodieselhols can be utilized as alternatives to petroleum diesel as fuel to reduce the dangers to human health that are posed by emissions from diesel engines. PMID:26218564

  10. Influence of multidroplet size distribution on icing collection efficiency

    NASA Technical Reports Server (NTRS)

    Chang, H.-P.; Kimble, K. R.; Frost, W.; Shaw, R. J.

    1983-01-01

    Calculation of collection efficiencies of two-dimensional airfoils for a monodispersed droplet icing cloud and a multidispersed droplet is carried out. Comparison is made with the experimental results reported in the NACA Technical Note series. The results of the study show considerably improved agreement with experiment when multidroplet size distributions are employed. The study then investigates the effect of collection efficiency on airborne particle droplet size sampling instruments. The biased effect introduced due to sampling from different collection volumes is predicted.

  11. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    SciTech Connect

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  12. Comparison of aerosol size distribution in coastal and oceanic environments

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; van Eijk, Alexander M.

    2006-08-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected at the Irish Atlantic coast in 1994 and 1995, the second one data collected during the Rough Evaporation Duct (RED) experiment that took place off Oahu, Hawaii in 2001. The main finding is that aerosol size distributions can be represented by a superposition of the mean size distribution and the first eigenvector multiplied by an amplitude function. For the two aerosol data sets the mean size distribution is very similar in the range of small particles sizes (radius < 1μm) but the main difference appears for larger aerosols (radius > 1μm). It is also reflected by the spectral shape of the eigenvector. The differences can be related to the type of aerosols present at both locations, and the amplitude function can be associated to meteorological conditions. The amplitude function also indicates the episodes with the maximum/minimum continental influence. The results of this analysis will be used in upgrades of the ANAM model.

  13. Saturn's rings - Particle size distributions for thin layer model

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Marouf, E. A.; Tyler, G. L.

    1985-01-01

    A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.

  14. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  15. On the upper tail of Italian firms’ size distribution

    NASA Astrophysics Data System (ADS)

    Cirillo, Pasquale; Hüsler, Jürg

    2009-04-01

    In this paper we analyze the upper tail of the size distribution of Italian companies with limited liability belonging to the CEBI database. Size is defined in terms of net worth. In particular, we show that the largest firms follow a power law distribution, according to the well-known Pareto law, for which we give estimates of the shape parameter. Such a behavior seems to be quite persistent over time, view that for almost 20 years of observations, the shape parameter is always in the vicinity of 1.8. The power law hypothesis is also positively tested using graphical and analytical methods.

  16. Aerodynamics Improve Wind Wheel

    NASA Technical Reports Server (NTRS)

    Ramsey, V. W.

    1982-01-01

    Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.

  17. Size distribution of Portuguese firms between 2006 and 2012

    NASA Astrophysics Data System (ADS)

    Pascoal, Rui; Augusto, Mário; Monteiro, A. M.

    2016-09-01

    This study aims to describe the size distribution of Portuguese firms, as measured by annual sales and total assets, between 2006 and 2012, giving an economic interpretation for the evolution of the distribution along the time. Three distributions are fitted to data: the lognormal, the Pareto (and as a particular case Zipf) and the Simplified Canonical Law (SCL). We present the main arguments found in literature to justify the use of distributions and emphasize the interpretation of SCL coefficients. Methods of estimation include Maximum Likelihood, modified Ordinary Least Squares in log-log scale and Nonlinear Least Squares considering the Levenberg-Marquardt algorithm. When applying these approaches to Portuguese's firms data, we analyze if the evolution of estimated parameters in both lognormal power and SCL is in accordance with the known existence of a recession period after 2008. This is confirmed for sales but not for assets, leading to the conclusion that the first variable is a best proxy for firm size.

  18. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  19. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  20. Effects of roughness size on the position of boundary-layer transition and on the aerodynamic characteristics of a 55 deg. swept delta wing at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.

    1977-01-01

    An experimental investigation was conducted to determine the effects of roughness size on the position of boundary layer transition and on the aerodynamic characteristics of a 55 deg swept delta wing model. Results are presented and discussed for wind tunnel tests conducted at free stream Mach numbers from 1.50 to 4.63, Reynolds numbers per meter from 3,300,000 to 1.6 x 10 to the 7th power, angles of attack from -8 to 16 deg, and roughness sizes ranging from 0.027 cm sand grit to 0.127 cm high cylinders. Comparisons were made with existing flat plate data. An approximate method was derived for predicting the drag of roughness elements used in boundary layer trips.

  1. Size distributions of gold nanoclusters studied by liquid chromatography

    SciTech Connect

    WILCOXON,JESS P.; MARTIN,JAMES E.; PROVENCIO,PAULA P.

    2000-05-23

    The authors report high pressure liquid chromatography, (HPLC), and transmission electron microscopy, (TEM), studies of the size distributions of nanosize gold clusters dispersed in organic solvents. These metal clusters are synthesized in inverse micelles at room temperature and those investigated range in diameter from 1--10 nm. HPLC is sensitive enough to discern changes in hydrodynamic volume corresponding to only 2 carbon atoms of the passivating agent or metal core size changes of less than 4 {angstrom}. The authors have determined for the first time how the total cluster volume (metal core + passivating organic shell) changes with the size of the passivating agent.

  2. Aggregation dynamics explain vegetation patch-size distributions.

    PubMed

    Irvine, M A; Bull, J C; Keeling, M J

    2016-04-01

    Vegetation patch-size distributions have been an intense area of study for theoreticians and applied ecologists alike in recent years. Of particular interest is the seemingly ubiquitous nature of power-law patch-size distributions emerging in a number of diverse ecosystems. The leading explanation of the emergence of these power-laws is due to local facilitative mechanisms. There is also a common transition from power law to exponential distribution when a system is under global pressure, such as grazing or lack of rainfall. These phenomena require a simple mechanistic explanation. Here, we study vegetation patches from a spatially implicit, patch dynamic viewpoint. We show that under minimal assumptions a power-law patch-size distribution appears as a natural consequence of aggregation. A linear death term also leads to an exponential term in the distribution for any non-zero death rate. This work shows the origin of the breakdown of the power-law under increasing pressure and shows that in general, we expect to observe a power law with an exponential cutoff (rather than pure power laws). The estimated parameters of this distribution also provide insight into the underlying ecological mechanisms of aggregation and death. PMID:26742959

  3. The size-distribution of Earth’s lakes

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Seekell, D. A.

    2016-07-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth’s lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km2 are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05 d = 4/3). Lakes <8.5 km2 are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales.

  4. The size-distribution of Earth’s lakes

    PubMed Central

    Cael, B. B.; Seekell, D. A.

    2016-01-01

    Globally, there are millions of small lakes, but a small number of large lakes. Most key ecosystem patterns and processes scale with lake size, thus this asymmetry between area and abundance is a fundamental constraint on broad-scale patterns in lake ecology. Nonetheless, descriptions of lake size-distributions are scarce and empirical distributions are rarely evaluated relative to theoretical predictions. Here we develop expectations for Earth’s lake area-distribution based on percolation theory and evaluate these expectations with data from a global lake census. Lake surface areas ≥8.5 km2 are power-law distributed with a tail exponent (τ = 1.97) and fractal dimension (d = 1.38), similar to theoretical expectations (τ = 2.05; d = 4/3). Lakes <8.5 km2 are not power-law distributed. An independently developed regional lake census exhibits a similar transition and consistency with theoretical predictions. Small lakes deviate from the power-law distribution because smaller lakes are more susceptible to dynamical change and topographic behavior at sub-kilometer scales is not self-similar. Our results provide a robust characterization and theoretical explanation for the lake size-abundance relationship, and form a fundamental basis for understanding and predicting patterns in lake ecology at broad scales. PMID:27388607

  5. Aerosol mobility imaging for rapid size distribution measurements

    DOEpatents

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  6. Particle Size Distribution in Saturn’s Ring C

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Wong, K.; French, R.; Rappaport, N.

    2012-10-01

    Information about particle sizes in Saturn’s rings is provided by two complementary types of Cassini radio occultation measurements. The first is differential extinction of three coherent sinusoidal signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The differential measurements strongly constraint three parameters of an assumed power-law size distribution n(a) = n0 (a/a0)q, amin ≤ a ≤ amax: namely, the power law index q, the minimum radius amin, and reference abundance n0 at reference radius a0. The differential measurements are particularly sensitive to radii in the range 0.1 mm < a < 1 m. Complementing this capability, is a second type of measurements that is particularly sensitive to the larger radii 1 m < a < 20 m and their abundance. Signature of the collective near-forward scattering by these particles is captured in power spectrum measurements as broadened component of width, shape, and strength that depend on ring particle sizes, their spatial distribution, and observation geometry. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. We use three inverse scattering algorithms (Bayes, constrained linear inversion, generalized singular-value-decomposition) to recover the size distribution of particles of resolved ring features over the size range 1 m < a < 20 m without assuming an explicit size distribution model. We also investigate consistency of the results with a single power-law model extending over 0.1 mm < a < 20 m and implications to the spatial distribution of ring particles normal to the ring plane (vertical ring thickness). We present example results for selected features across Saturn’s Ring C where little evidence for gravitational wakes is present, hence the approaches above are applicable.

  7. Distributional shifts in size structure of phytoplankton community

    NASA Astrophysics Data System (ADS)

    Waga, H.; Hirawake, T.; Fujiwara, A.; Nishino, S.; Kikuchi, T.; Suzuki, K.; Takao, S.

    2015-12-01

    Increased understanding on how marine species shift their distribution is required for effective conservation of fishery resources under climate change. Previous studies have often predicted distributional shifts of fish using satellite derived sea surface temperature (SST). However, SST may not fully represent the changes in species distribution through food web structure and as such this remains an open issue due to lack of ecological perspective on energy transfer process in the earlier studies. One of the most important factors in ecosystem is composition of phytoplankton community, and its size structure determines energy flow efficiency from base to higher trophic levels. To elucidate spatiotemporal variation in phytoplankton size structure, chlorophyll-a size distribution (CSD) algorithm was developed using spectral variance of phytoplankton absorption coefficient through principal component analysis. Slope of CSD (CSD slope) indicates size structure of phytoplankton community where, strong and weak magnitudes of CSD slope indicate smaller and larger phytoplankton structure, respectively. Shifts in CSD slope and SST were derived as the ratio of temporal trend over the 12-year period (2003-2014) to 2-dimensional spatial gradient and the resulting global median velocity of CSD slope and SST were 0.361 and 0.733 km year-1, respectively. In addition, the velocity of CSD slope monotonically increases with increasing latitude, while relatively complex latitudinal pattern for SST emerged. Moreover, angle of shifts suggest that species are required to shift their distribution toward not limited to simple pole-ward migration, and some regions exhibit opposite direction between the velocity of CSD slope and SST. These findings further imply that combined phytoplankton size structure and SST may contribute for more accurate prediction of species distribution shifts relative to existing studies which only considering variations in thermal niches.

  8. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  9. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  10. Size distribution of aerosol particles produced during mining and processing uranium ore.

    PubMed

    Mala, Helena; Tomasek, Ladislav; Rulik, Petr; Beckova, Vera; Hulka, Jiri

    2016-06-01

    The aerosol particle size distributions of uranium and its daughter products were studied and determined in the area of the Rožná mine, which is the last active uranium mine in the Czech Republic. A total of 13 samples were collected using cascade impactors from three sites that had the highest expected levels of dust, namely, the forefield, the end of the ore chute and an area close to workers at the crushing plant. The characteristics of most size distributions were very similar; they were moderately bimodal, with a boundary approximately 0.5 μm between the modes. The activity median aerodynamic diameter (AMAD) and geometric standard deviation (GSD) were obtained from the distributions beyond 0.39 μm, whereas the sizes of particles below 0.39 μm were not differentiated. Most AMAD and GSD values in the samples ranged between 3.5 and 10.5 μm and between 2.8 and 5.0, respectively. The geometric means of the AMADs and GSDs from all of the underground sampling sites were 4.2 μm and 4.4, respectively, and the geometric means of the AMADs and GSDs for the crushing plant samplings were 9.8 μm and 3.3, respectively. The weighted arithmetic mean of the AMADs was 4.9 μm, with a standard error of 0.7 μm, according to the numbers of workers at the workplaces. The activity proportion of the radon progeny to (226)Ra in the aerosol was 0.61. PMID:27032340

  11. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources

    NASA Astrophysics Data System (ADS)

    Li, Xingru; Wang, Lili; Ji, Dongsheng; Wen, Tianxue; Pan, Yuepeng; Sun, Ying; Wang, Yuesi

    2013-10-01

    To investigate the characteristics of aerosols in north China, the samples of water-soluble ions, including anions (F-, Cl-, NO2-, NO3-, SO42-) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle fractions, are collected using a sampler from Sep. 2009 to Aug. 2010 at four sites in urban areas (Beijing, Tianjin and Tangshan) and a background region (Xinglong) in the Jing-Jin-Ji urban agglomeration. High spatial variability is observed between the urban areas and the background region. The results of chemical composition analysis showed that secondary water soluble ions (SO42- + NO3- + NH4+) (SWSI) composed more than half the total ions, and are mainly found in fine particles (aerodynamic diameters less than 2.1 μm), while Mg2+ and Ca2+ contributed to a large fraction of the total water-soluble ions in coarse particles (aerodynamic diameters greater than 2.1 μm and less than 9.0 μm). The concentrations of SO42-, NO3- and NH4+ are higher in summer and winter and lower in spring and autumn. Mg2+ and Ca2+ are obviously abundant in winter in Beijing, Tianjin and Tangshan. In contrast, Mg2+ and Ca2+ are abundant in autumn in Xinglong. The SWSI showed a bimodal size distribution with the fine mode at 0.43-1.1 μm and the coarse mode at 4.7-5.8 μm, and had different seasonal variations and bimodal shapes. NH4+ played an important role in the size distributions and the formations of SO42- and NO3-. Heterogeneous reaction is the main formation mechanism of SO42- and NO3-, which tended to be enriched in the coarse mode of aerosol. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) indicated high photochemical oxidation property over the whole Jing-Jin-Ji urban agglomeration.

  12. Size and moisture distribution characteristics of walnuts and their components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the size characteristics and moisture content (MC) distributions of individual walnuts and their components, including hulls, shells and kernels under different harvest conditions. Measurements were carried out for three walnut varieties, Tulare, Howard a...

  13. Pore-size distributions of N-isopropylacrylamide (NIPA) hydrogels

    SciTech Connect

    Walther, D.H.; Blanch, H.W.; Prausnitz, J.M. |

    1993-11-01

    Pore-size distributions have been measured for N-isopropylacrylamide (NIPA) hydrogels at 25 and 32{degrees}C with swelling capacities 11.3 and 6.0 g swollen gel per g dry gel. The mixed-solute-exclusion method (introduced by Kuga) was used to obtain the experimental solute-exclusion curve which represents the amount of imbibed liquid inside the gel inaccessible for a solute of radius r. The pore-size distributions were obtained by using Casassa`s Brownian-motion model and numerically solving the Fredholm integral equation. The pore-size distributions of temperature-sensitive NIPA hydrogels are strongly dependent on temperature which determines swelling capacity. With increasing swelling capacity (from 6.0 to 11.3), the pore-size distribution shifts to higher mode values (27.3 to 50.6 {angstrom}) and to higher variance (1.07{center_dot}10{sup 3} to 3.58{center_dot}10{sup 3} {angstrom}{sup 2}).

  14. Sample Size Tables, "t" Test, and a Prevalent Psychometric Distribution.

    ERIC Educational Resources Information Center

    Sawilowsky, Shlomo S.; Hillman, Stephen B.

    Psychology studies often have low statistical power. Sample size tables, as given by J. Cohen (1988), may be used to increase power, but they are based on Monte Carlo studies of relatively "tame" mathematical distributions, as compared to psychology data sets. In this study, Monte Carlo methods were used to investigate Type I and Type II error…

  15. APPARATUS AND PROCEDURE FOR DETERMINING OIL DROPLET SIZE DISTRIBUTION

    EPA Science Inventory

    This program was initiated to develop a method and apparatus for determining the oil drop size distribution in flowing oily brine during brine cleanup treatment. An automated photomicrographic apparatus for taking time-lapse photographs of oily brine that was briefly at rest is d...

  16. DROPLET SIZE DISTRIBUTION MEASUREMENTS OF ISO NOZZLES BY SHADOWGRAPHY METHOD.

    PubMed

    De Cock, N; Massinon, M; Salah, S Ouled Taleb; Mercatoris, B C; Lebeau, F

    2015-01-01

    The droplet size distribution of agricultural sprays is a key parameter during the plant protection product applications. Therefore, measurement of the drop size distribution is an important concern for spray users as well as nozzle manufacturers. The present work assessed the capability of a shadowgraphy technique to distinguish correctly the 6 spray class boundaries defined in the ISO draft standard (ISO 25358). The measurement set-up is composed by a high speed camera synchronized with a LED backlighting. The tested spray is positioned between the camera and the light. The droplets appear on the images as shadows on a brighter background. For each acquisition, two frames are recorded within a small time laps (38 μI. The droplet diameter and velocity are retrieved by using advanced image analysis algorithm on each pair of frames. Then, the drop size distribution is obtained by gathering the data retrieved from all the images. The global results showed that the 6 drop size distributions were correctly separated highlighting the ability of the method to measure small as well as large droplets using the same set-up configuration. The spatial analysis showed that the spray scanning should be extended in the minor axis direction in order to catch the whole spray. PMID:27141727

  17. Tracing Particle Size Distribution Curves Using an Analogue Circuit.

    ERIC Educational Resources Information Center

    Bisschop, F. De; Segaert, O.

    1986-01-01

    Proposes an analog circuit for use in sedimentation analysis of finely divided solid materials. Discusses a method of particle size distribution analysis and provides schematics of the circuit with list of components as well as a discussion about the operation of the circuit. (JM)

  18. Asymmetric competition causes multimodal size distributions in spatially structured populations.

    PubMed

    Velázquez, Jorge; Allen, Robert B; Coomes, David A; Eichhorn, Markus P

    2016-01-27

    Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts. PMID:26817778

  19. Factors influencing the effect size distribution of adaptive substitutions

    PubMed Central

    Oakley, Christopher G.; Gould, Billie A.; Schemske, Douglas W.

    2016-01-01

    The distribution of effect sizes of adaptive substitutions has been central to evolutionary biology since the modern synthesis. Early theory proposed that because large-effect mutations have negative pleiotropic consequences, only small-effect mutations contribute to adaptation. More recent theory suggested instead that large-effect mutations could be favoured when populations are far from their adaptive peak. Here we suggest that the distributions of effect sizes are expected to differ among study systems, reflecting the wide variation in evolutionary forces and ecological conditions experienced in nature. These include selection, mutation, genetic drift, gene flow, and other factors such as the degree of pleiotropy, the distance to the phenotypic optimum, whether the optimum is stable or moving, and whether new mutation or standing genetic variation provides the source of adaptive alleles. Our goal is to review how these factors might affect the distribution of effect sizes and to identify new research directions. Until more theory and empirical work is available, we feel that it is premature to make broad generalizations about the effect size distribution of adaptive substitutions important in nature. PMID:27053750

  20. Soil signature simulation of complex mixtures and particle size distributions

    NASA Astrophysics Data System (ADS)

    Carson, Tyler; Bachmann, Charles M.; Salvaggio, Carl

    2015-09-01

    Soil reflectance signatures were modeled using the digital imaging and remote sensing image generation model and Blender three-dimensional (3-D) graphic design software. Using these tools, the geometry, radiometry, and chemistry of quartz and magnetite were exploited to model the presence of particle size and porosity effects in the visible and the shortwave infrared spectrum. Using the physics engines within the Blender 3-D graphic design software, physical representations of granular soil scenes were created. Each scene characterized a specific particle distribution and density. Chemical and optical properties of pure quartz and magnetite were assigned to particles in the scene based on particle size. This work presents a model to describe an observed phase-angle dependence of beach sand density. Bidirectional reflectance signatures were simulated for targets of varying size distribution and density. This model provides validation for a phenomenological trade space between density and particle size distribution in complex, heterogeneous soil mixtures. It also confirms the suggestion that directional reflectance signatures can be defined by intimate mixtures that depend on pore spacing. The study demonstrated that by combining realistic target geometry and spectral measurements of pure quartz and magnetite, effects of soil particle size and density could be modeled without functional data fitting or rigorous analysis of material dynamics. This research does not use traditional function-based models for simulation. The combination of realistic geometry, physically viable particle structure, and first-principles ray-tracing enables the ability to represent signature changes that have been observed in experimental observations.

  1. Airborne particulate size distributions in underground mines and their relationship to size-selective sampling criteria

    SciTech Connect

    Rubow, K.L.; Marple, V.A.; Cantrell, B.K.

    1995-12-31

    Researchers are becoming increasingly concerned with airborne particulate matter, not only in the respirable size range, but also in larger size ranges. International Standards Organization (ISO) and the American Conference of Governmental Industrial Hygienist (ACGIH) have developed standards for {open_quotes}inhalable{close_quotes} and {open_quotes}thoracic{close_quotes} particulate matter. These require sampling particles up to approximately 100 {mu}m in diameter. The size distribution and mass concentration of airborne particulate matter have been measured in air quality studies of the working sections of more than 20 underground mines by University of Minnesota and U.S. Bureau of Mines personnel. Measurements have been made in more than 15 coal mines and five metal/nonmetal mines over the past eight years. Although mines using diesel-powered equipment were emphasized, mines using all-electric powered equipment were also included. Particle sampling was conducted at fixed locations, i.e., mine portal, ventilation intake entry, haulageways, ventilation return entry, and near raincars, bolters and load-haul-dump equipment. The primary sampling device used was the MSP Model 100 micro-orifice uniform deposit impactor (MOUDI). The MOUDI samples at a flow rate of 30 LPM and. provides particle size distribution information for particles primarily in the 0.1 to 18 {mu}m size range. Up to five MOUDI samplers were simultaneously deployed at the fixed locations. Sampling times were typically 4 to 6 hrs/shift. Results from these field studies have been summarized to determine the average size distributions and mass concentrations at various locations in the mine section sampled. From these average size distributions, predictions are made regarding the expected levels of respirable and thoracic mass concentrations as defined by various health-based size-selective aerosol-sampling criteria.

  2. Size distribution and structure of Barchan dune fields

    NASA Astrophysics Data System (ADS)

    Durán, O.; Schwämmle, V.; Lind, P. G.; Herrmann, H. J.

    2011-07-01

    Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  3. Determination of atmospheric particle size distribution from forward scattering data.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1973-01-01

    Description of an analytic method of reconstructing the particle size distribution of atmospheric aerosols when no a priori information is available regarding the refractive index of the particles, the analytic form of the distribution, the size range, and the size extremal values. The method applies in principle to angle-dependent scattering data at a fixed wave number, or to wave-number-dependent scattering data at a fixed angle, or to a combination of the two. Some results of an angular scan study of the aureole are presented to illustrate the effectiveness of the method. In conclusion, an analysis is made of the efficiency and accuracy of the method, the uniqueness of the inverse solutions, and the stability of the method relative to experimental noise.

  4. Turbulent Concentration of Chondrules: Size Distribution and Multifractal Scaling

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Paque, Julie M.; Dobrovolskis, Anthony R.

    1999-01-01

    Size-selective concentration of particles in 3D turbulence may be related to collection of chondrules and other constituents into primitive bodies in a weakly turbulent protoplanetary nebula. In the terrestrial planet region, both the characteristic size and narrow size distribution of chondrules are explained, whereas "fluffier" particles would be concentrated in lower density, or more intensely turbulent, regions of the nebula. The spatial distribution of concentrated particle density obeys multifractal scaling, suggesting a dose tie to the turbulent cascade process. This scaling behavior allows predictions of the concentration probabilities to be made in the protoplanetary nebula, which are so large (> 10(exp 3) - 10(exp 4)) that further studies must be made of the role of mass loading.

  5. Effect of disjunct size distributions on foraminiferal species abundance determinations

    SciTech Connect

    Martin, R.E.; Liddell, W.D.

    1988-02-01

    Studies of foraminiferal distribution and abundance have typically employed a procedure (standard method) that entails counting approximately 300 specimens from a size range greater than some specified minimum (commonly 63 or 125 ..mu..m). This method fails to take into account that foraminifera may be found only within certain size fractions, either because of species specific size ranges or taphonomic processes (sorting, transport, abrasion). Use of a modified counting procedure (sieve method) takes into account foraminiferal size distributions. The sieve method uses counts of up to 300 specimens in each sand-size fraction (0.125-0.25, 0.25-0.5, 0.5-1, 1-2 mm) of each sample. Counts are then totaled for each sample (up to 1200 specimens per site) and used in determination of species abundances for each site. The sieve method has been of considerable utility in recognition of a foraminiferal bathymetric zonation preserved in sediment assemblages from fringing reef environments at Discovery Bay, north Jamaica. Well-documented reef zones (based on corals and physiography) are clearly defined in Q-mode cluster analysis (UPGMA) of species abundances determined using the sieve method. In contrast, individual fore reef zones are not recognized in cluster analysis of foraminiferal species abundances based on the standard method, nor by cluster analysis of species abundances within individual size fractions.

  6. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  7. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  8. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  9. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  10. Aged boreal biomass burning aerosol size distributions from BORTAS 2011

    NASA Astrophysics Data System (ADS)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2014-09-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1-2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in

  11. Aged Boreal Biomass Burning Size Distributions from Bortas 2011

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Sakamoto, K.; Allan, J. D.; Coe, H.; Taylor, J.; Duck, T.

    2014-12-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are strong functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ~ 1.5 - 2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 232 nm, σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA/ΔCO) along the path of Flight b622 show values of 0.08-0.18 μg m-3 ppbv-1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution and flux corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes only based on the insignificant net OA production/evaporation derived from the ΔOA/ΔCO enhancement ratios. Depending on the, we estimate that the fresh-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8. Thus, the size of the freshly emitted particles is somewhat unconstrained due to the uncertainties in the plume dilution rates.

  12. Transneptunians as probes of planet building: The Plutino size distribution

    NASA Astrophysics Data System (ADS)

    Alexandersen, M.; Gladman, B.; Kavelaars, J.; Petit, J.; Gwyn, S.

    2014-07-01

    Planetesimals that formed during planet formation are the building blocks of giant planet cores; some are preserved as large transneptunian objects (TNOs). Previous work has shown steep power-law size distributions for TNOs of diameters > 100 km. Recent results claim a dramatic roll-over or divot in the size distribution of Neptunian Trojans (1:1 resonance with Neptune) and scattering TNOs, with a significant lack of intermediate-size D < 100 km planetesimals [1,2,3]. One theoretical explanation for this is that planetesimals were born big, skipping the intermediate sizes, contrary to the expectation of bottom-up planetesimal formation. Exploration of the TNO size distribution requires more precisely calibrated detections in order to improve statistics on these results. We have searched a 32 sq.deg. area near RA=2 hr to an r-band limiting magnitude of m_r=24.6 using the Canada-France-Hawaii Telescope. This coverage was near the Neptunian L4 region to maximise our detection rate, as this is where Neptunian Trojans reside and where Plutinos (and several other resonant populations) come to perihelion. This program successfully detected and tracked 77 TNOs and Centaurs for up to 17 months, giving us both the high-quality orbits and the quantitative detection efficiency needed for precise modelling. Among our detections were one Uranian Trojan, two Neptunian Trojans, 18 Plutinos (3:2 resonance with Neptune) and other resonant objects. We test TNO size and orbital-distribution models using a survey simulator, which simulates the detectability of model objects, accounting for the survey biases. We show that the Plutino size distribution cannot continue as a rising power law past H_r˜8.3 (equivalent to ˜100 km). A single power law is found rejectable at 99.5 % confidence, and a knee (a broken power law to a softer slope) is also rejectable. A divot (sudden drop in number of objects at a transition size), with parameters found independently for scattering TNOs by Shankman

  13. The vertical distribution of Martian aerosol particle size

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Smith, Michael D.; Wolff, Michael J.

    2014-12-01

    Using approximately 410 limb-viewing observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), we retrieve the vertical distribution of Martian dust and water ice aerosol particle sizes. We find that dust particles have an effective radius of 1.0 µm over much of the atmospheric column below 40 km throughout the Martian year. This includes the detached tropical dust layers detected in previous studies. Little to no variation with height is seen in dust particle size. Water ice clouds within the aphelion cloud belt exhibit a strong sorting of particle size with height, however, and the effective radii range from >3 µm below 20 km to near 1.0 µm at 40 km altitude. Conversely, water ice clouds in the seasonal polar hoods show a near-uniform particle size with an effective radius of approximately 1.5 µm throughout the atmospheric column.

  14. Measuring droplet size distributions from overlapping interferometric particle images.

    PubMed

    Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem

    2015-02-01

    Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes. PMID:25725854

  15. Emulsification in turbulent flow: 3. Daughter drop-size distribution.

    PubMed

    Tcholakova, Slavka; Vankova, Nina; Denkov, Nikolai D; Danner, Thomas

    2007-06-15

    Systematic set of experiments is performed to clarify the effects of several factors on the size distribution of the daughter drops, which are formed as a result of drop breakage during emulsification in turbulent flow. The effects of oil viscosity, etaD, interfacial tension, sigma, and rate of energy dissipation in the turbulent flow, epsilon, are studied. As starting oil-water premixes we use emulsions containing monodisperse oil drops, which have been generated by membrane emulsification. By passing these premixes through a narrow-gap homogenizer, working in turbulent regime of emulsification, we monitor the changes in the drop-size distribution with the emulsification time. The experimental data are analyzed by using a new numerical procedure, which is based on the assumption (supported by the experimental data) that the probability for formation of daughter drops with diameter smaller than the maximum diameter of the stable drops, dsize distribution of these daughter drops depend strongly on the viscosity of the dispersed phase. Different scaling laws are found to describe the experimental results for the oils of low and high viscosity. The obtained results for the daughter drop-size distribution are in a reasonably good agreement with the experimental results reported by other authors. In contrast, the comparison with several basic model functions, proposed in the literature, does not show good agreement and the possible reasons are discussed. The proposed numerical procedure allows us to describe accurately the evolution of all main characteristics of the drop-size distribution during emulsification, such as the number and volume averaged diameters, and the distributive and cumulative functions by

  16. Packing fraction of particles with a Weibull size distribution

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  17. Packing fraction of particles with a Weibull size distribution.

    PubMed

    Brouwers, H J H

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ_{1}, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1-φ_{1})β as function of φ_{1} is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data. PMID:27575204

  18. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  19. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  20. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  1. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI).

    PubMed

    Kero, Ida; Naess, Mari K; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm - 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  2. A New Method to Generate Micron-Sized AerosolS With Narrow Size Distribution

    NASA Astrophysics Data System (ADS)

    Gañón-Calvo, Alfonso; Barrero, Antonio

    1996-11-01

    Aerosols in the micron-size range with a remarkable monodisperse size distribution can be generated from the breaking up process of a capillary microjet. The size of the main droplets and satellites depend on the jet diameter, d_j, as well as the flow rate, Q, and liquid properties which eventually determine the jet`s breaking up. Therefore, the generation and control of capillary microjets is essential to produce sprays of small droplets with narrow size histograms. Electrosprays has been up to now one of the most successful techniques to produce monodisperse micron-size aerosols. As an alternative, we report here a new method, aerospray, to generate capillary micro jets which can compete against the electrospray for the production of aerosols of small droplets with very narrow size distribution. The method is outlined in the following. Liquid coming out from the exit of a capillary needle is sucked by means of a high speed gas stream (usually air) which flows throughout a hole separating two chambers at different pressures. Under certain parametric conditions of liquid properties, liquid and air flow rates, and geometric characteristics (needle and hole diameters, distance from the needle to the hole, etc), the liquid forms a steady capillary microjet of very small diameter which is speeded up an stabilized by the action of the viscous stresses at the gas liquid interface. The jet passes through the hole and goes out the outside chamber where eventually breaks up into microdroplets by varicose instabilities. Measurements from Laser-Doppler PDA Analizer of these aerosprays show that both the droplet size and its standard deviation are comparable to those obtained by electrospray techniques. On the other hand, using the aerospray, the standard deviation of the resulting droplet size distribution is of the order of those that can be obtained by ultrasonic atomization but the mean diameters can be more than one order of magnitude smaller.

  3. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  4. Wind-tunnel investigation of aerodynamic load distribution on a variable-wing-sweep fighter airplane with a NASA supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Hallissy, J. B.; Harris, C. D.

    1974-01-01

    Wind-tunnel tests have been conducted at Mach numbers of 0.85, 0.88, and 0.90 to determine the aerodynamic load distribution for the 39 deg swept-wing configuration of a variable-wing-sweep fighter airplane with a NASA supercritical airfoil. Chordwise pressure distributions were measured at two wing stations. Also measured were the overall longitudinal aerodynamic force and moment characteristics and the buffet characteristics. The analysis indicates that localized regions of shock-induced flow separation may exist on the rearward portions of the supercritical wing at high subsonic speeds, and caution must be exercised in the prediction of buffet onset when using variations in trailing-edge pressure coefficients at isolated locations.

  5. Activity size distributions of some naturally occurring radionuclides 7Be, 40K and 212Pb in indoor and outdoor environments.

    PubMed

    Mohamed, A

    2005-05-01

    The activity size distributions of natural radionuclides (7)Be and (40)K were measured outdoor in El-Minia city, Egypt by means of gamma spectroscopy. A low-pressure Berner cascade impactor was used as a sampling device. The activity size distribution of both (7)Be and (40)K was described by one log-normal distribution, which was represented by the accumulation mode. The activity median aerodynamic diameter (AMAD) of (7)Be and (40)K was determined to be 530 and 1550 nm with a relative geometric standard deviation (delta, which was defined as the dispersion of the peak) of 2.4 and 2, respectively. The same sampling device (Berner impactor) and a screen diffusion battery were used to measure the activity size distribution, activity concentration and unattached fraction (f(P)) of (212)Pb in indoor air of El-Minia City, Egypt. The mean activity median aerodynamic diameter (AMAD) of the accumulation mode for attached (212)Pb was determined to be 250 nm with a mean geometric standard deviation (delta) of 2.6. The mean value of the specific concentration of (212)Pb associated with that mode was determined to be 460+/-20 mBq m(-3). The activity median thermodynamic diameter (AMTD) of unattached (212)Pb was determined to be 1.25 nm with delta of 1.4. A mean unattached fraction (f(p)) of 0.13+/-0.02 was obtained at a mean aerosol particle concentration of 1.8 x 10(3) cm(-3). The mean activity concentration of unattached (212)Pb was found to be 19+/-3 mBq m(-3). It was found that the aerosol concentration played an important role in varying the unattached, attached activity concentration and unattached fraction (f(P)). PMID:15763482

  6. The measurement of the size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Cliff, W. C.; Mcdonald, J. R.; Ozarski, R.; Thomson, J. A. L.; Huffaker, R. M.

    1974-01-01

    The size-distribution of the fog droplets at various fog particle concentrations in fog chamber was determined by two methods: (1) the Stokes' velocity photographic method and (2) using the active scattering particle spectrometer. It is shown that the two techniques are accurate in two different ranges of particle size - the former in the radii range (0.1 micrometers to 10.0 micrometers), and the latter for radii greater than 10.0 micrometers. This was particularly true for high particle concentration, low visibility fogs.

  7. Method for determining the droplet size distribution of emulsified water

    SciTech Connect

    Rzaev, A.G.

    1988-09-10

    Accelerating crude-oil processing requires estimation of the major parameters, including the droplet size distribution of the oil emulsion (OE) in the flow ahead of the settlers. This is handled here as follows. Under industrial conditions, samples are taken ahead of the settler into a calibrated vessel specially designed for the purpose and allowed to separate at a temperature equal to the flow temperature, where the amount of water deposited and the settling time are recorded. A hyperbolic relation applies quite closely to those data. The model expresses the droplet size as a function of the hydrodynamic parameters and can be used in optimizing dewatering and desalting oil.

  8. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  9. Synthesis of supported metal oxide nanoparticles with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Salem, Diana; Smolyakov, Georgiy; Schosseler, François; Petit, Pierre

    2012-06-01

    We report a versatile synthetic route allowing the formation of transition metal oxide nanoparticles supported on solid surfaces. Basically, the method lies on the complexation of metal cations with both anionic surfactant and hydroxilated surfaces, which results in the formation of small aggregates onto the surface. At thermodynamical equilibrium, the resulting balance between the loss of entropy due to the aggregation and the gain in enthalpy due to hydrophobic interactions between the alkyl chains of the surfactant governs the size of these aggregates. After calcination in air, metal oxide nanoparticles with very narrow size distribution are obtained.

  10. Number size distribution measurements of biological aerosols under contrasting environments and seasons from southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Cv, Biju; Krishna, Ravi; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2016-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. Though omnipresent, their concentration and composition exhibit large spatial and temporal variations depending up on their sources, land-use, and local meteorology. The Indian tropical region, which constitutes approximately 18% of the world's total population exhibits vast geographical extend and experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the sources, properties and characteristics of biological aerosols are also expected to have significant variations over the Indian subcontinent depending upon the location and seasons. Here we present the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) from two contrasting locations in Southern tropical India measured during contrasting seasons using Ultra Violet Aerodynamic Particle Sizer (UV-APS). Measurements were carried out at a pristine high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) during two contrasting seasons, South-West Monsoon (June-August, 2014) and winter (Jan - Feb, 2015) and in Chennai, a coastal urban area, during July - November 2015. FBAP concentrations at both the locations showed large variability with higher concentrations occurring at Chennai. Apart from regional variations, the FBAP concentrations also exhibited variations over two different seasons under the same environmental condition. In Munnar the FBAP concentration increased by a factor of four from South-West Monsoon to winter season. The average size distribution of FBAP at both

  11. Droplet Size Distributions in Atomization of Dilute Viscoelastic Solutions

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; McKinley, Gareth; Houze, Eric; Moore, John; Pottiger, Michael; Cotts, Patricia; M. I. T. Collaboration; DuPont Collaboration

    2012-11-01

    The droplet size probability distribution functions (PDF) for atomization/fragmentation processes in Newtonian fluids are now generally accepted to be close to Gamma distributions. Despite the great practical importance, little is known about the nature of corresponding distributions for viscoelastic liquids, e.g. polymeric solutions such as pesticide sprays and paints. We present data from air-assisted atomization experiments for model viscoelastic solutions composed of very dilute solutions of polyethylene oxide. Although the addition of small amounts of high molecular weight polymer keeps the fluid shear viscosity and surface tension close to the solvent values, the size distributions are skewed towards higher values of the Sauter mean diameter. We show that the PDF curves for these weakly-elastic fluids are well described by Gamma distributions, but the exponent n is systematically decreased by fluid elasticity. Flow visualization images show that this behavior arises from the non-linear dynamics close to the break-up point which are dominated by an elasto-capillary force balance within the thinning ligaments and the magnitude of the extensional viscosity in the viscoelastic fluid. Mechanical Engineering Department, Cambridge, MA.

  12. Rapid determination of particle size distribution of microbead catalysts

    SciTech Connect

    Mirshii, Y.V.; Goos, T.V.; Kaviev, V.M.; Kazahov, G.I.; Klimov, A.V.; Nesmeyanova, T.S.

    1986-05-01

    The authors have developed a rapid method for the determination of the particle size distribution of microbead catalysts by a photosedimentation method. This method is based on a determination of the settling velocity of the particles according to the change in optical density of the suspension as the particles settle. The design of the instrument was modified for application to the analysis of microbead cracking catalysts and microbead zeolites; it was originally developed for studies of particle size distribution in other materials. The measuring part of the AFS-2M photosedimentograph is shown schematically. For the high-zeolite catalysts, the results obtained by photosedimenation analysis are somewhat different from those obtained by the pipette method. The photosedimentation method can also be used in the analysis of microbead zeolites that are intended for use in the fluid-bed recovery of liquid paraffins.

  13. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  14. The size-frequency distribution of elliptical impact craters

    NASA Astrophysics Data System (ADS)

    Collins, G. S.; Elbeshausen, D.; Davison, T. M.; Robbins, S. J.; Hynek, B. M.

    2011-10-01

    Impact craters are elliptical in planform if the impactor's trajectory is below a threshold angle of incidence. Laboratory experiments and 3D numerical simulations demonstrate that this threshold angle decreases as the ratio of crater size to impactor size increases. According to impact cratering scaling laws, this implies that elliptical craters occur at steeper impact angles as crater size or target strength increases. Using a standard size-frequency distribution for asteroids impacting the terrestrial planets we estimate the fraction of elliptical craters as a function of crater size on the Moon, Mars, Earth, Venus and Mercury. In general, the expected fraction of elliptical craters is ~ 2-4% for craters between 5 and 100-km in diameter, consistent with the observed population of elliptical craters on Mars. At larger crater sizes both our model and observations suggest a dramatic increase in the fraction of elliptical craters with increasing crater diameter. The observed fraction of elliptical craters larger than 100-km diameter is significantly greater than our model predictions, which may suggest that there is an additional source of large elliptical craters other than oblique impact.

  15. The fossilized size distribution of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Hal

    2005-05-01

    Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law QD∗. In contrast to previous efforts, we find our derived QD∗ function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a "fossil" from this violent early epoch. We find that most diameter D≳120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation

  16. Aerodynamics of yacht sails: viscous flow features and surface pressure distributions

    NASA Astrophysics Data System (ADS)

    Viola, Ignazio Maria

    2014-11-01

    The present paper presents the first Detached Eddy Simulation (DES) on a yacht sails. Wind tunnel experiments on a 1:15th model-scale sailing yacht with an asymmetric spinnaker (fore sail) and a mainsails (aft sail) were modelled using several time and grid resolutions. Also the Reynolds-average Navier-Stokes (RANS) equations were solved for comparison with DES. The computed forces and surface pressure distributions were compared with those measured with both flexible and rigid sails in the wind tunnel and good agreement was found. For the first time it was possible to recognise the coherent and steady nature of the leading edge vortex that develops on the leeward side of the asymmetric spinnaker and which significantly contributes to the overall drive force. The leading edge vortex increases in diameter from the foot to the head of the sail, where it becomes the tip vortex and convects downstream in the direction of the far field velocity. The tip vortex from the head of the mainsail rolls around the one of the spinnaker. The spanwise twist of the spinnaker leads to a mid-span helicoidal vortex, which has never been reported by previous authors, with an horizontal axis and rotating in the same direction of the tip vortex.

  17. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  18. Activity size distribution and residence time of 7Be aerosols in the Arctic atmosphere

    NASA Astrophysics Data System (ADS)

    Ioannidou, Alexandra; Paatero, Jussi

    2014-05-01

    The activity size distributions of the natural radionuclide tracer 7Be in different size range fractions (<0.39 μm, 0.39-0.69 μm, 0.69-1.3 μm, 1.3-2.1 μm, 2.1-4.2 μm, 4.2-10.2 μm and >10.2 μm) were determined in the boreal atmosphere in the Arctic Research Centre of the Finnish Meteorological Institute (FMI) at Sodankylä, Finland (67°22‧ N, 26°38‧ E, 180 m asl). The activity median aerodynamic diameter (AMAD) ranged from 0.54 μm to 1.05 μm (average 0.83 μm). A residence time of about 8 days applies to aerosols of 0.83 μm diameter, representing the residence of aerosol particles in arctic environment. The observed positive correlation between AMAD values and RH% can be explained by the fact that condensation during high relative humidity conditions becomes more intense, resulting in increased particle sizes of atmospheric aerosols. However, greater aerosol particle sizes means higher wet scavenging rate of aerosols and as a result lower activity concentration of 7Be in the atmosphere, explaining the anti-correlation between the AMAD values and activity concentrations of 7Be. But this associated with possibly higher scavenging rates of aerosols does not necessarily alone explain the anti-correlation between the AMAD and the 7Be activities. The air mass origin associated with synoptic scale weather phenomena may contribute to that too. The Flextra model was used to assess the transport pattern and to explain the deviation in radionuclide activity concentrations and AMAD values observed in the site of investigation.

  19. USE OF THE AERODYNAMIC PARTICLE SIZER TO MEASURE PM-COARSE

    EPA Science Inventory

    The aerodynamic particle sizer (APS 3321, TSI, Inc.) measures particle size distributions from 0.5 µm to 20 µm by determining the time-of-flight of individual particles in an accelerating flow field. A complete particle size distribution may be determined in a matter of ...

  20. USE OF THE AERODYNAMIC PARTICLE SIZER TO MEASURE PM-COARSE

    EPA Science Inventory

    The aerodynamic particle sizer (APS 3321, TSI, Inc.) measures particle size distributions from 0.5 µm to 20 µm by determining the time-of-flight of individual particles in an accelerating flow field. A complete particle size distribution may be determined in a matter of s...

  1. Particle size distribution dynamics during precipitative softening: declining solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2009-02-01

    Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron "sweep-floc" coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques. In this work, we extend those findings to systems more closely emulating the conditions in actual softening processes (i.e., declining solution composition). Key findings include the strong dependence of the rate of flocculation on the initial saturation ratio and demonstration of the benefits of seeding precipitative softening from the perspective of optimizing the effluent particle size distribution. The mixing intensity during precipitation was also shown to strongly influence the final particle size distribution. Implications of the findings with respect to softening practice are discussed. PMID:18976791

  2. Raindrop Size Distribution Observation for GPM/DPR algorithm development

    NASA Astrophysics Data System (ADS)

    Nakagawa, Katsuhiro; Hanado, Hiroshi; Nishikawa, Masanori; Nakamura, Kenji; Kaneko, Yuki; Kawamura, Seiji; Iwai, Hironori; Minda, Haruya; Oki, Riko

    2013-04-01

    In order to evaluate and improve the accuracy of rainfall intensity from space-borne radars (TRMM/PR and GPM/DPR), it is important to estimate the rain attenuation, namely the k-Z relationship (k is the specific attenuation, Z is the radar reflectivity) correctly. National Institute of Information and Communications Technology (NICT) developed the mobile precipitation observation system for the dual Ka-band radar field campaign for GPM/DPR algorithm development. The precipitation measurement instruments are installed on the roof of container. The installed instruments for raindrop size distribution (DSD) measurements are 2-dimensional Video disdtrometer (2DVD), Joss-type disdrometer, and Laser Optical disdrometr (Parsival). 2DVD and Persival can measure not only raindrop size distribution but also ice and snow size distribution. Observations using the mobile precipitation observation system were performed in Okinawa Island, in Tsukuba, over the slope of Mt. Fuji, in Nagaoka, and in Sapporo Japan. Using these observed DSD data in the different provinces, the characteristics of DSD itself are analyzed and the k-Z relationship is estimated for evaluation and improvement of the TRMM/PR and GPM/DPR algorithm.

  3. Grain-size Distributions from Deconvolved Broadband Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2014-12-01

    A magnetic susceptibility meter with several-decade frequency band has recently made it possible to obtain superparamagnetic grain-size distributions only by room-temperature measurement. A rigorous deconvolution scheme of frequency dependence of susceptibility is already available. I have made some corrections on the deconvolution scheme and present its applications to broadband susceptibility data on loess and volcanic rocks. Deconvolution of frequency dependence of susceptibility was originally developed by Shchervakov and Fabian [2005]. Suppose an ensemble of grains distributed for two independent variables of volume (grain-size) and energy barrier. Applying alternating magnetic field with varying frequency results in differentiating grains by energy barrier - not directly by volume. Since the response function for frequency is known, deconvolution of frequency dependence of susceptibility provide a rigorous solution for the second moment of volume on the volume-energy barrier distribution. Based on a common assumption of a linear relation between volume and energy barrier, we can obtain analytical volume or grain-size distributions of superparamagnetic grains. A ZH broadband susceptibility meter comprises of two separated devices for lower (SM-100, 65 - 16kHz) and higher (SM-105, 16k - 512kHz) frequency ranges. At every frequency susceptibility calibration was conducted using three kinds of paramagnetic rare earth oxides [Fukuma and Torii, 2011]. Almost all samples exhibited seemingly linear dependences of in-phase susceptibility on logarithmic frequency. This indicates that the measured data do not suffer serious noise, and that the second moment of volume is relatively constant against energy barrier. Nonetheless, third-order polynomial fittings revealed slight deflections from the quasi-linear susceptibility - logarithmic frequency relations. Deconvolving the polynomials showed that such slight defections come from peaks or troughs in varying second moment

  4. Controls on phytoplankton cell size distributions in contrasting physical environments

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Daines, S. J.; Lenton, T. M.

    2012-04-01

    A key challenge for marine ecosystem and biogeochemical models is to capture the multiple ecological and evolutionary processes driving the adaptation of diverse communities to changed environmental conditions over different spatial and temporal scales. These range from short-term acclimation in individuals, to population-level selection, immigration and ecological succession on intermediate scales, to shifts in the global biogeochemical cycling of key elements. As part of the "EVE" project, we have been working toward improving the representation of ecological and evolutionary processes in models, with a focus on understanding the role of marine ecosystems in the past, present, and future Earth system. Our approach is to develop a mechanistic understanding of trade-offs between different functional traits through the explicit representation of resource investment in sub-cellular components controlled by a synthetic genome. Trait expression (including size, metabolic strategies on a continuum from autotrophy to heterotrophy, and predation strategies) and adaptation to the environment are then emergent properties of the model, following from natural selection operating in the model environment. Here we show results relating to controls on phytoplankton cell size - a key phytoplankton trait which is inextricably linked to the structuring and functioning of marine ecosystems. Coupled to the MIT OGCM, we use the model to derive dynamic optimal size-class distributions at representative oligotrophic and high-latitude time series sites, which are then compared with in situ data. Particular attention is given to the relative importance of top-down vs bottom-up drivers for phytoplankton cell size, and their influence on global patterns in phytoplankton cell size, as well as changes in the cell size distribution during phytoplankton bloom periods.

  5. New acquisition techniques and statistical analysis of bubble size distributions

    NASA Astrophysics Data System (ADS)

    Proussevitch, A.; Sahagian, D.

    2005-12-01

    Various approaches have been taken to solve the long-standing problem of determining size distributions of objects embedded in an opaque medium. In the case of vesicles in volcanic rocks, the most reliable technique is 3-D imagery by computed X-Ray tomography. However, this method is expensive, requires intensive computational resources and thus limited and not always available for an investigator. As a cheaper alternative, 2-D cross-sectional data is commonly available, but requires stereological analysis for 3-D conversion. A stereology technique for spherical bubbles is quite robust but elongated non-spherical bubbles require complicated conversion approaches and large observed populations. We have revised computational schemes of applying non-spherical stereology for practical analysis of bubble size distributions. The basic idea of this new approach is to exclude from the conversion those classes (bins) of non-spherical bubbles that provide a larger cross-section probability distribution than a maximum value which depends on mean aspect ratio. Thus, in contrast to traditional stereological techniques, larger bubbles are "predicted" from the rest of the population. As a proof of principle, we have compared distributions so obtained with direct 3-D imagery (X-Ray tomography) for non-spherical bubbles from the same samples of vesicular basalts collected from the Colorado Plateau. The results of the comparison demonstrate that in cases where x-ray tomography is impractical, stereology can be used with reasonable reliability, even for non-spherical vesicles.

  6. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    SciTech Connect

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  7. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  8. Morphology, size distribution and elemental composition of several dental debris

    NASA Astrophysics Data System (ADS)

    Abe, Shigeaki; Iwadera, Nobuki; Esaki, Mitsue; Aoyama, Ken-Ichi; Akasaka, Tsukasa; Uo, Motohiro; Morita, Manabu; Yawaka, Yasutaka; Watari, Fumio

    2012-12-01

    We investigated morphologies, size distributions and elemental compositions of dental debris formed by cutting/grinding teeth or dental alloys. The average size of debris formed by cutting/grinding dental alloy was around 100 μm and that of teeth was 20 μm. The debris formed by grinding with diamond or carborundum point had isotropic irregular shape, while the debris formed by cutting with carbide bar had characteristic lathe-cut shape. The elemental analysis indicated that the debris formed by grinding dental alloy with carborundum point consisted of not only the particles of the alloy but also the particles of Si compounds with the size of around 10 μm. The particles of Si compounds would be formed by abrasion of the grinding instrument (carborundum, SiC). Similarly, the debris formed by grinding with diamond point also contained submicro-sized particles consisting of C compounds. The results indicate that the morphology and composition of dental debris are varied depending on the combination between the workpiece and the cutting/grinding materials and that the dental debris consist of both the workpiece and the cutting/grinding materials in some combination. In addition, some of the debris of tooth had the size less than 2 μm, which has a potential to induce inflammation. Though the inflammation can be expected at low level, it is required to investigate the details in future.

  9. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  10. Universal functional form of 1-minute raindrop size distribution?

    NASA Astrophysics Data System (ADS)

    Cugerone, Katia; De Michele, Carlo

    2015-04-01

    Rainfall remains one of the poorly quantified phenomena of the hydrological cycle, despite its fundamental role. No universal laws describing the rainfall behavior are available in literature. This is probably due to the continuous description of rainfall, which is a discrete phenomenon, made by drops. From the statistical point of view, the rainfall variability at particle size scale, is described by the drop size distribution (DSD). With this term, it is generally indicated as the concentration of raindrops per unit volume and diameter, as the probability density function of drop diameter at the ground, according to the specific problem of interest. Raindrops represent the water exchange, under liquid form, between atmosphere and earth surface, and the number of drops and their size have impacts in a wide range of hydrologic, meteorologic, and ecologic phenomena. DSD is used, for example, to measure the multiwavelength rain attenuation for terrestrial and satellite systems, it is an important input for the evaluation of the below cloud scavenging coefficient of the aerosol by precipitation, and is of primary importance to make estimates of rainfall rate through radars. In literature, many distributions have been used to this aim (Gamma and Lognormal above all), without statistical supports and with site-specific studies. Here, we present an extensive investigation of raindrop size distribution based on 18 datasets, consisting in 1-minute disdrometer data, sampled using Joss-Waldvogel or Thies instrument in different locations on Earth's surface. The aim is to understand if an universal functional form of 1-minute drop diameter variability exists. The study consists of three main steps: analysis of the high order moments, selection of the model through the AIC index and test of the model with the use of goodness-of-fit tests.

  11. INITIAL SIZE DISTRIBUTION OF THE GALACTIC GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Shin, Jihye; Kim, Sungsoo S.; Yoon, Suk-Jin; Kim, Juhan

    2013-01-10

    Despite the importance of their size evolution in understanding the dynamical evolution of globular clusters (GCs) of the Milky Way, studies that focus specifically on this issue are rare. Based on the advanced, realistic Fokker-Planck (FP) approach, we theoretically predict the initial size distribution (SD) of the Galactic GCs along with their initial mass function and radial distribution. Over one thousand FP calculations in a wide parameter space have pinpointed the best-fit initial conditions for the SD, mass function, and radial distribution. Our best-fit model shows that the initial SD of the Galactic GCs is of larger dispersion than today's SD, and that the typical projected half-light radius of the initial GCs is {approx}4.6 pc, which is 1.8 times larger than that of the present-day GCs ({approx}2.5 pc). Their large size signifies greater susceptibility to the Galactic tides: the total mass of destroyed GCs reaches 3-5 Multiplication-Sign 10{sup 8} M {sub Sun }, several times larger than previous estimates. Our result challenges a recent view that the Milky Way GCs were born compact on the sub-pc scale, and rather implies that (1) the initial GCs were generally larger than the typical size of the present-day GCs, (2) the initially large GCs mostly shrank and/or disrupted as a result of the galactic tides, and (3) the initially small GCs expanded by two-body relaxation, and later shrank by the galactic tides.

  12. Measuring Technique of Bubble Size Distributions in Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  13. Binary nucleation kinetics. I. Self-consistent size distribution

    SciTech Connect

    Wilemski, G.; Wyslouzil, B.E. ||

    1995-07-15

    Using the principle of detailed balance, we derive a new self-consistency requirement, termed the kinetic product rule, relating the evaporation coefficients and equilibrium cluster distribution for a binary system. We use this result to demonstrate and resolve an inconsistency for an idealized Kelvin model of nucleation in a simple binary mixture. We next examine several common forms for the equilibrium distribution of binary clusters based on the capillarity approximation and ideal vapor behavior. We point out fundamental deficiencies for each expression. We also show that each distribution yields evaporation coefficients that formally satisfy the new kinetic product rule but are physically unsatisfactory because they depend on the monomer vapor concentrations. We then propose a new form of the binary distribution function that is free of the deficiencies of the previous functions except for its reliance on the capillarity approximation. This new self-consistent classical (SCC) size distribution for binary clusters has the following properties: It satisfies the law of mass action; it reduces to an SCC unary distribution for clusters of a single component; and it produces physically acceptable evaporation rate coefficients that also satisfy the new kinetic product rule. Since it is possible to construct other examples of similarly well-behaved distributions, our result is not unique in this respect, but it does give reasonable predictions. As an illustration, we calculate binary nucleation rates and vapor activities for the ethanol--hexanol system at 260 K using the new SCC distribution and compare them to experimental results. The theoretical rates are uniformly higher than the experimental values over the entire vapor composition range. Although the predicted activities are lower, we find good agreement between the measured and theoretical slope of the critical vapor activity curve at a constant nucleation rate of 10{sup 7} cm{sup {minus}3} s{sup {minus}2}.

  14. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  15. Average size and size distribution of large droplets produced in a free-jet expansion of a liquid

    NASA Astrophysics Data System (ADS)

    Knuth, E. L.; Henne, U.

    1999-02-01

    The experimental parameters and fluid properties affecting the average size N¯ and the size distribution P(N) of droplets formed by fragmentation of a liquid after expansion into a vacuum are investigated. The mean droplet size is found to be a function of the surface tension of the liquid, the nozzle diameter, and a characteristic flow speed. The size distribution is found to be a linear exponential distribution; measurements deviate from this distribution at small sizes if a factor which is a function of the cluster size is included in the measuring process. Good agreement with measured distributions of both positive and negative droplet ions formed from neutral 4He droplets by electron impact is found. The strong dependence of mean droplet size on source-orifice diameter found in the present analysis indicates that earlier correlations of droplet size with specific entropy in the source were useful at best only for a fixed nozzle size.

  16. Size distribution and number concentration of particles at the stack of a municipal waste incinerator.

    PubMed

    Buonanno, G; Ficco, G; Stabile, L

    2009-02-01

    A large number of particles and gaseous products are generated by waste combustion processes. Of particular importance are the ultrafine particles (less than 0.1 microm in aerodynamic diameter) that are emitted in large quantities from all the combustion sources. Recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent health and environmental risks. Quantifying particulate emissions from combustion sources is important: (i) to examine the source status in compliance with regulations; (ii) to create inventories of such emissions at local, regional and national levels, for developing appropriate management and control strategies in relation to air quality; (iii) to predict ambient air quality in the areas involved at the source and (iv) to perform source apportionment and exposure assessment for the human populations and/or ecological systems involved. In order to control and mitigate the particles in the view of health and environmental risk reduction, a good understanding of the relative and absolute contribution from the emission sources to the airborne concentrations is necessary. For these purposes, the concentration and size distribution of particles in terms of mass and number in a waste gas of a municipal waste incineration plant were measured in the stack gas. The mass concentrations obtained are well below the imposed daily threshold value for both incineration lines and the mass size distribution is on average very stable. The total number concentrations are between 1 x 10(5) and 2 x 10(5)particles/cm(3) and are on average relatively stable from one test to another. The measured values and the comparison with other point sources show a very low total number concentration of particles at the stack gas, revealing the importance of the flue gas treatment also for ultrafine particles. Also in respect to linear sources (high and light duty vehicles), the comparison shows a negligible emission in

  17. Aerodynamic load distributions at transonic speeds for a close-coupled wing-canard configuration: Tabulated pressure data

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1978-01-01

    Wind tunnel studies are reported on both the canard and wing surfaces of a model that is geometrically identical to one used in several force and moment tests to provide insight into the various aerodynamic interference effects. In addition to detailed pressures measurements, the pressures were integrated to illustrate the effects of Mach number, canard location, and canard-wing interference on various aerodynamic parameters. Transonic pressure tunnel Mach numbers ranged from 0.70 to 1.20 for data taken from 0 deg to approximately 16 deg angle-of-attack at 0 deg sideslip.

  18. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  19. Marked point process models of raindrop-size distributions

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    1993-01-01

    The principal process considered in this paper is the flux of raindrops through a volume of the atmosphere. This process is of fundamental importance for a wide variety of engineering and environmental problems, notably remote sensing of precipitation, infiltration of rainfall, soil erosion, atmospheric deposition of pollutants, and design of microwave communication systems. A marked point process model is developed in which the point process represents the arrival times of drops at the upper surface of a sample volume and the mark associated with a drop is its diameter. In the model, both the rate of occurrence of raindrops and the distribution of drop diameters vary randomly over time. Results that relate the drop-size distribution within the sample volume to the probability law of the drop-arrival process are presented. These results allow straightforward comparisons between temporal characterizations of drop-size distributions and spatial characterizations. Representations for derived processes such as rainfall rate and reflectivity are shown to be quite accurate using raindrop data from North Carolina.

  20. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  1. Analysis of hailstone size distributions from a hailpad network

    NASA Astrophysics Data System (ADS)

    Fraile, R.; Castro, A.; Sánchez, J. L.

    In the province of León, a network of 250 hailpads has been installed in an area of 1000 km 2. After the individual calibration of every plate, the dents are measured by a manual method which stores data in files that can be analyzed by computer. Once the hailstones are classified according to their size, difficulties may arise when fitting linearly this distribution to a function of the type log N = log N0- βx, where N is the number of hailstones in the size class x. A discussion is presented on the universal validity of parameters N0 and β, on the problem of empty classes (to which it is impossible to apply logarithms), and on the discrimination of the smallest hail classes when making such a fitting. In conclusion, statistical methods are proposed for fitting the exponential or gamma distribution. The latter of these distributions assumes the former as a particular case and offers a better fit to the experimental data.

  2. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  3. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  4. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  5. The Size Distribution of Arecibo Interstellar Particles and Its Implications

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Janches, Diego; Mathews, John D.

    2002-11-01

    Size histograms of all Arecibo ultra-high-frequency radar micrometeors detected in 1997-1998 whose radii were measured by atmospheric drag are presented. Most can be fitted with either a lognormal function or, alternatively, one or more power-law functions. Either form is indicative of significant fragmentation. The interplanetary dust particle (IDP) histogram results are discussed and compared with those considered to be extrasolar particles, including a subset of those deemed to be true interstellar particles (ISPs). The Arecibo IDP power-law results are shown to agree well with those derived from IRAS dust bands and Long-Duration Exposure Facility cratering, thus confirming the applicability of the sample to the derivation of mass estimates. A dichotomy between size histograms of particles with preperihelion Earth encounters and those with postperihelion encounters is evidence that significant size histogram change occurs when the smallest particles, including all ISPs, pass close to the Sun, even if only once. A small sample of previously undetected Arecibo postperihelion ISPs coming from the direction of the known Ulysses gas and dust flow are shown to have a size distribution and solar system dynamical properties similar to other Arecibo ISPs and therefore can be combined with previous ISP results to obtain a more robust sample. Derived mass flux points for the Arecibo ISPs agree well (over 5 orders of magnitude of mass) with a previously derived mass flux distribution function for Ulysses/Galileo spacecraft dust. This combined spacecraft and ground-based mass flux function is then used to infer a number of interesting mass-related solar system and astrophysical quantities.

  6. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  7. The size frequency distribution of dormant Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Whitman, Kathryn; Morbidelli, Alessandro; Jedicke, Robert

    2006-07-01

    We estimate the total number and the slope of the size-frequency distribution (SFD) of dormant Jupiter family comets (JFCs) by fitting a one-parameter model to the known population. We first select 61 near-Earth objects (NEOs) that are likely to be dormant JFCs because their orbits are dynamically coupled to Jupiter [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J., Levison, H.F., Michel, P., Metcalfe, T.S., 2002a. Icarus 156, 399-433]. Then, from the numerical simulations of Levison and Duncan [1997. Icarus 127, 13-32], we construct an orbit distribution model for JFCs in the NEO orbital element space. We assume an orbit-independent SFD for all JFCs, the slope of which is our unique free parameter. Finally, we compute observational biases for dormant JFCs using a calibrated NEO survey simulator [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J., Bottke, W.F., 2003. Icarus 161, 17-33]. By fitting the biased model to the data, we estimate that there are ˜75 dormant JFCs with H<18 in the NEO region and that the slope of their cumulative SFD is -1.5±0.3. Our slope for the SFD of dormant JFCs is very close to that of active JFCs as determined by Weissman and Lowry [2003. Lunar Planet. Sci. 34. Abstract 2003]. Thus, we argue that when JFCs fade they are likely to become dormant rather than to disrupt and that the fate of faded comets is size-independent. Our results imply that the size distribution of the JFC progenitors—the scattered disk trans-neptunian population—either (i) has a similar and shallow SFD or ( i) is slightly steeper and physical processes acting on the comets in a size-dependent manner creates the shallower active comet SFD. Our measured slope, typical of collisionally evolved populations with a size-dependent impact strength [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20], suggests that scattered disk bodies reached collisional equilibrium inside the protoplanetary disk prior to their removal from the planetary region.

  8. Grain size distribution of the matrix in the Allende chondrite

    NASA Astrophysics Data System (ADS)

    Toriumi, M.

    1989-03-01

    Results are presented from analytical TEM, high-resolution TEM, and SEM studies of the Allende chondrite, showing that the matrix consists of very fine-grained Fe-rich olivine, Ca-poor and Fe-rich clinopyroxene, Fe-rich spinel, and Ni-bearing troilite. Slightly sintered and non-sintered very fine-grained aggregates are observed. The results suggest that the coarse-grained olivine aggregates experienced a heating event, whereas the ultrafine-grained aggregates did not. The size and frequency distributions of matrix grains are measured. The frequency distribution displays a long-term tail with power law and a log-normal pattern with a peak at 5 nm in the range from 1 to 10 nm. This suggests that the fine-grained matrix was probably formed at conditions far from equilibrium in the protosolar cloud.

  9. Mass size distributions of elemental aerosols in industrial area

    PubMed Central

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2014-01-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba) to 89.62 ng/m3 (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources. PMID:26644919

  10. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  11. Debiased Orbital and Size Distributions of the NEOs

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Morbidelli, A.; Jedicke, R.; Petit, J. M.; Levison, H. F.

    2001-11-01

    The orbital and absolute magnitude distribution of the Near-Earth Objects (NEOs) is difficult to compute, partly because known NEOs are biased by complicated observational selection effects but also because only a modest fraction of the entire NEO population has been discovered so far. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test bodies from four ``intermediate sources'': three in or adjacent to the main asteroid belt (Bottke et al. 2000, Science 288, 2190.) and one in the Kuiper belt (Levison and Duncan 1997, Icarus 127, 13). The test bodies which passed into the NEO region were tracked until they were eliminated. Next, we calculated the observational biases and assumed a functional form for the absolute magnitude (H) distribution associated with objects on those orbits. By merging the observational biases with our NEO dynamical ``roadmaps'' and an observed NEO H distribution, we produced a probability distribution which was fit to the biased NEO population. By testing a range of possible source combinations, a ``best-fit'' distribution was then deconvolved to provide the debiased orbital and H distributions for the NEO population as well as the relative importance of each NEO replenishment source. Our best-fit model predicts there are ~ 1010 H < 18 NEOs out to T > 2 (i.e., a < ~ 7.4 AU), with ~ 55% coming from the inner main belt (a < 2.5 AU), ~ 30% from the central main belt (2.5 < a < 2.8 AU), and ~ 15% from the Jupiter-family comet region. These results suggest that roughly 40% of the H < 18 NEOs have been found. The Amor, Apollo, and Aten populations contain 30%, 64%, and 6% of the H < 22 NEO population, respectively. The population of objects inside Earth's orbit (IEOs) are about 2% the size of the NEO population. Active and extinct comets make up a third of the entire km-sized NEO population with T

  12. Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma.

    PubMed

    Mitchell, D M; Solomon, M A; Tolfree, S E; Short, M; Spiro, S G

    1987-06-01

    The particle size of bronchodilator aerosols may be important in determining the site of deposition in the lung and their therapeutic effect. The distribution of aerosols (labelled with technetium-99m diethylene triamine pentacetic acid) of two different particle sizes has been studied by gamma camera imaging. The particles had mass median aerodynamic diameters (geometric standard deviations) of 1.4 (1.4) and 5.5 (2.3) micron, and they were administered from a jet nebuliser to eight patients with chronic severe stable asthma. There was no significant difference in peripheral lung deposition with the two aerosols in any patient. The bronchodilator effect of the two aerosols was determined from cumulative dose-response studies. To avoid large doses that might mask possible differences in effect due to aerosol size, small, precisely determined incremental amounts of salbutamol (25-250 micrograms total lung dose) were used. The two doses were given via a nebuliser on separate occasions and the bronchodilator response was measured from FEV1, forced vital capacity, and peak expiratory flow 30 minutes after each dose. Bronchodilatation was similar with the two aerosols at each dose of salbutamol. There was therefore no difference in distribution within the lung or any difference in bronchodilator effect between an aerosol of small (1.4 micron) particle size and an aerosol of 5.5 microns in patients with severe but stable asthma. PMID:3660305

  13. Throughfall Drop Size Distribution in relation to Leaf Canopy State

    NASA Astrophysics Data System (ADS)

    Hudson, S.; Nanko, K.; Levia, D. F., Jr.

    2014-12-01

    The partitioning of incident precipitation by a forest canopy into throughfall and stemflow varies as a function of meteorological conditions, tree species, leaf morphology and surface roughness. Little work quantified the throughfall drop size signature of precipitation events relative to changes in leaf canopy state of deciduous forests. This is the first study to compare throughfall drop size distributions in the presence and absence of foliage. To quantify individual throughfall drops, a laser disdrometer gauge was deployed below an observed drip point under a Liriodendron tulipifera L. (yellow poplar) tree, in northeastern Maryland, USA. More than 750,000 individual throughfall droplets have been counted and measured from precipitation events generating more than 5 mm gross rainfall over a period of 12 months. Throughfall during leafless events had significantly larger maximum drop diameters (6.74mm leafless, 5.55mm leafed) and median volume diameter of drops (5.44mm leafless, 3.31mm leafed) than throughfall generated when leaves were present. Statistical techniques have demonstrated the substantial influence of canopy state over the drop size spectra. Principal component analysis and factor analysis both resulted in canopy state loading positively with increases in maximum drop diameter while loading negatively with air temperature. Boosted regression trees analysis corroborated these findings. Our findings correspond with the physical conditions of a leafless canopy, and illustrated the greater extent of surface adhesion of intercepted water films on woody surfaces as opposed to foliar surfaces, thereby underscoring the importance of canopy state on throughfall inputs.

  14. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  15. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2004-05-01

    The main asteroid belt evolved into its current state via two processes: dynamical depletion and collisional evolution. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). To explain this mass loss, we suggest the PMB evolved in the following manner: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of > 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size-frequency distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. We will show that the constraints provided by asteroid families and the shape of the main belt size distribution are essential to obtaining a unique solution from our model's initial conditions. We also use our model results to solve for the asteroid disruption scaling law Q*D, a critical function needed in all planet formation codes that include

  16. Electron structure: Shape, size, and generalized parton distributions in QED

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.

    2014-12-01

    The shape of the electron is studied using lowest-order perturbation theory. Quantities used to probe the structure of the proton—form factors, generalized parton distributions, transverse densities, Wigner distributions and the angular momentum content—are computed for the electron-photon component of the electron wave function. The influence of longitudinally polarized photons, demanded by the need for infrared regularization via a nonzero photon mass, is included. The appropriate value of the photon mass depends on experimental conditions, and consequently the size of the electron (as defined by the slope of its Dirac form factor) bound in a hydrogen atom is found to be about four times larger than when the electron is in a continuum scattering state. The shape of the electron, as determined from the transverse density and generalized parton distributions, is shown not to be round, and the continuum electron is shown to be far less round than the bound electron. An electron distribution function (analogous to the quark distribution function) is defined, and that of the bound electron is shown to be suppressed compared to that of the continuum electron. If the relative transverse momentum of the virtual electron and photon is large compared with the electron mass, the virtual electron and photon each carry nearly the total angular momentum of the physical electron (1 /2 ), with the orbital angular momentum being nearly (-1 /2 ). Including the nonzero photon mass leads to the suppression of end-point contributions to form factors. Implications for proton structure and color transparency are discussed.

  17. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-09-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1). Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m-3 and the WSOC concentrations were between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that

  18. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    PubMed

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  19. Grain-size distribution of volcaniclastic rocks 2: Characterizing grain size and hydraulic sorting

    NASA Astrophysics Data System (ADS)

    Jutzeler, Martin; McPhie, Jocelyn; Allen, Sharon R.; Proussevitch, A. A.

    2015-08-01

    Quantification of the grain size distribution of sediments allows interpretation of processes of transport and deposition. Jutzeler et al. (2012) developed a technique to determine grain size distribution of consolidated clastic rocks using functional stereology, allowing direct comparison between unconsolidated sediments and rocks. Here, we develop this technique to characterize hydraulic sorting and infer transport and deposition processes. We compare computed grain size and sorting of volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which transport and depositional mechanisms have been inferred. We studied pumice-rich, subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation (Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These sequences differ in bed thickness, grading and abundance of matrix. We propose to evaluate grain size and sorting of volcaniclastic deposits by values of their modes, matrix proportion (< 2 mm; F-1) and D16, instead of median diameter (D50) and standard deviation parameters. F-1 and D16 can be uniformly used to characterize and compare sieving and functional stereology data. Volcaniclastic deposits typically consist of mixtures of particles that vary greatly in density and porosity. Hydraulic sorting ratios can be used to test whether mixed clast populations of pumice and dense clasts are hydraulically sorted with each other, considering various types of transport underwater. Evaluation of this ratio for our samples shows that most studied volcaniclastic facies are deposited by settling from density currents, and that basal dense clast breccias are emplaced by shear rolling. These hydraulic sorting ratios can be applied to any type of clastic rocks, and indifferently on consolidated and unconsolidated samples.

  20. Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol

    NASA Astrophysics Data System (ADS)

    Plaza, J.; Pujadas, M.; Gómez-Moreno, F. J.; Sánchez, M.; Artíñano, B.

    2011-09-01

    This paper analyzes the mass size distribution of some inorganic species present in the atmospheric aerosol from a field campaign carried out in Madrid throughout a complete year (February 2007-February 2008). Samplings were performed by means of a micro-orifice uniform deposit impactor (MOUDI). Ambient air was sampled during consecutive nocturnal and diurnal periods, and diurnal/nocturnal behaviors were compared for the twenty night-day sampling pairs that were gathered. Annual and seasonal averages were obtained, and some case studies under specific atmospheric conditions are discussed in the paper. Results have shown that the sulfate and ammonium mass was concentrated in the accumulation mode, between 0.18 and 0.56 μm, so that gas-phase and condensation processes for secondary aerosol formation prevailed during the sampling periods in this area. An exception to this behavior was found during a fog event when distributions for these two species were centered in the 0.56-1 and 1-1.8 μm size stages, corresponding to the droplet mode. In most of the samples, the ammonium mass measured in these size ranges was enough or almost enough to neutralize inorganic acidity by formation of ammonium sulfate and nitrate. However, a significant sulfate mass not neutralized by ammonium was found in the impactor backup quartz filter (aerodynamic diameter < 0.056 μm). The concentration of this sulfate and its contribution to the ultrafine fraction mass was higher under good dispersive conditions, prevailing in summer, when particle growth processes are not so favored due to the higher atmospheric dilution factors. The origin of this ultrafine sulfate has been attributed to direct emissions from traffic, associated to the nucleation mode. Regarding the nitrate concentration, it was found higher in the coarse mode than in the accumulation mode on an annual basis. The highest concentrations were measured in winter episodic situations. The marked seasonal variability shown in the

  1. Scale effects on the variability of the raindrop size distribution

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Berne, Alexis

    2016-04-01

    The raindrop size distribution (DSD) is of utmost important to the study of rainfall processes and microphysics. All important rainfall variables can be calculated as weighted moments of the DSD. Qualitative precipitation estimation (QPE) algorithms and numerical weather prediction (NWP) models both use the DSD in order to calculate quantities such as the rain rate. Often these quantities are calculated at a pixel scale: radar reflectivities, for example, are integrated over a volume, so a DSD for the volume must be calculated or assumed. We present results of a study in which we have investigated the change of support problem with respect to the DSD. We have attempted to answer the following two questions. First, if a DSD measured at point scale is used to represent an area, how much error does this introduce? Second, how representative are areal DSDs calculated by QPE and NWP algorithms of the microphysical process happening inside the pixel of interest? We simulated fields of DSDs at two representative spatial resolutions: at the 2.1x2.1 km2 resolution of a typical NWP pixel, and at the 5x5 km2 resolution of a Global Precipitation Mission (GPM) satellite-based weather radar pixel. The simulation technique uses disdrometer network data and geostatistics to simulate the non-parametric DSD at 100x100 m2 resolution, conditioned by the measured DSD values. From these simulations, areal DSD measurements were derived and compared to point measurements of the DSD. The results show that the assumption that a point represents an area introduces error that increases with areal size and drop size and decreases with integration time. Further, the results show that current areal DSD estimation algorithms are not always representative of sub-grid DSDs. Idealised simulations of areal DSDs produced representative values for rain rate and radar reflectivity, but estimations of drop concentration and characteristic drop size that were often outside the sub-grid value ranges.

  2. AnalySize: New software for analyzing and unmixing sediment grain size distribution spectra

    NASA Astrophysics Data System (ADS)

    Paterson, G. A.; Heslop, D.

    2015-12-01

    Grain size distribution (GSD) data are a widely used tool in Earth sciences, particularly in understanding sediment transportation and sourcing. Although large data sets are regularly generated, detailed numerical analyses, such as grain size unmixing, are not routinely performed. Unmixing of GSD data involves approximating a given data set by a small number of GSDs, known as end members. These end members, along with their relative abundances, can be used to fully characterize the variability of the data. End member analysis (EMA), which fits one set of end members to a single data set, is one the most robust ways to do this. This approach estimates the form of the end members from the data set itself; hence it is a non-parametric approach. Available algorithms, however, either produce sub-optimal solutions, or are time consuming. To aid investigators in exploring the full potential of their data, we introduce AnalySize, which is a GUI based tool that allows for comprehensive processing and unmixing of grain size data obtained from laser diffraction particle grain size analyzers. AnalySize brings together methods from other disciplines in Earth sciences as well as introducing new techniques and improvements to provide a complete software package for unmixing GSD data. The software utilizes the rapid HALS-NMF algorithm from hyperspectral image analysis to perform non-parametric EMA, which is demonstrated to yield results that are an improvement over algorithms currently used in GSD analysis. Non-parametric EMA, however, is often unable to clearly identify discrete unimodal grain size sub-populations, which can more detailed information about sediment sources. To alleviate this, we introduce a new algorithm to perform parametric EMA, whereby an entire GSD data set can be unmixed into unimodal parametric end members (e.g., lognormal or Weibull end members). This allows individual grain size sub-populations to be more readily identifiable in highly mixed data set

  3. [Size distribution characteristics of particulate mercury on haze and non-haze days].

    PubMed

    Zhu, Qiong-yu; Cheng, Jin-ping; Wei, Yu-qing; Bo, Dan-dan; Chen, Xiao-jia; Jiang, Xuan; Wang, Wen-hua

    2015-02-01

    With the rapid economic development, China suffers from the severe haze and atmospheric mercury pollution. Particulate mercury transport has an important significance in its global cycle. In order to investigate the distribution characteristics of particulate mercury, 12 degrees Nano-moudi (6.2-9.9 μm, 3.1-6.2 μm, 1.8-3.1 μm, 1.0-1.8 μm, 0.56-1.0 μm, 0.32-0.56 μm, 0.18- 0.32 μm, 0.10-0.18 μm, 0.056-0.10 μm, 0.032-0.056 μm, 0.018-0.032 μm, 0.010-0.018 μm) impactor was used to measure the size distributions of atmospheric particulate mercury on both haze and non-haze days in Shanghai. The results indicated that particulate mercury levels were positively correlated with those of the particles. The average concentration of particulate mercury (0.31 ng x m (-3)) on haze days was 2-3 times than that on non-haze days (0.11 ng x m(-3)). The mass size distributions of aerosols and particulate mercury showed bimodal distributions. The peak shifted from 0.56-1.0 μm and 3.1-6.2 μm on haze days to 0.32-0.56 μm and 3.1-6.2 μm on non-haze days. The particles with aerodynamic diameter smaller than 1 μm which could stay for a long time and transport for a long distance, had higher particulate mercury concentrations. The average contribution of particulate mercury to total PM aerosol were higher on haze days (0.029 ng x μg(-1)) than on non-haze days (0.015 ng x μg(-1)), indicating that secondary particles typically grew faster than mercury during the haze pollution events. The particulate mercury concentration in accumulation mode was 2.06 ng x m(-3) on haze days, while it was 0.55 ng x m(-3) on non-haze days. The large increase of the accumulation mode particles was a main reason for the formation of haze. Emissions from the coal burning as well as road surface dust and dust from long-range transport accounted for the serious pollution on haze days. PMID:26031059

  4. Size distributions and formation of dicarboxylic acids in atmospheric particles

    NASA Astrophysics Data System (ADS)

    Yao, Xiaohong; Fang, Ming; Chan, Chak K.

    The PM2.5 concentrations and the size distributions of dicarboxylic acids in Hong Kong were studied. Eleven sets of daily PM2.5 samples were obtained at a downtown sampling site during the period of 5-16 December 2000 using an R&P speciation PM2.5 sampler. About 6-12% of the total oxalic acid was found in the gas phase in some samples. A good correlation between succinate and sulfate ( R2=0.88) and a moderate correlation between oxalate and sulfate ( R2=0.74) were found. Sampling artifacts of oxalate, malonate and succinate were found to be negligible. A total of 18 sets of 48-96 h size distribution data on dicarboxylic acids, sulfate, nitrate and sodium at an urban site and a rural site from June 2000 to May 2001 were obtained using a Micro-Orifice Uniform Deposit Impactor. Data from both sites show similar size distribution characteristics of the dicarboxylic acids. The condensation mode of oxalate was usually observed at 0.177-0.32 μm. The location of the peak of the droplet mode of oxalate was associated with that of sulfate. When the peak of sulfate in the droplet mode appeared at 0.32-0.54 μm, the peak of oxalate sometimes appeared at 0.32-0.54 μm and sometimes shifted to 0.54-1.0 μm. When the peak of sulfate in the droplet mode appeared at 0.54-1.0 μm, the peak of oxalate sometimes appeared at 0.54-1.0 μm and sometimes shifted to 1.0-1.8 μm. Oxalate, succinate and sulfate found in the droplet mode were attributed to in-cloud formation. The slight shift of the oxalate peak from 0.32-0.54 to 0.54-1.0 μm or from 0.54-1.0 to 1.0-1.8 μm was ascribed to minor oxalate evaporation after in-cloud formation. The maximum peak of malonate sometimes appeared in the droplet mode and sometimes appeared at 3.1-6.2 μm. The formation of malonate is associated to the reactions between sea salt and malonic acid.

  5. Effect Of Grain Size-Distribution And Nonthermal Ion Distribution On Dust Acoustic Solitons

    SciTech Connect

    Annou, K.; Annou, R.

    2005-10-31

    The investigation of the formation of non-linear coherent structures in dusty plasmas taking into account the dust size and non-thermal ion distributions is conducted. Conditions of the existence of solitons in terms of the Mach number, concentration of non-thermal ions, dust charge and the permeability of the grains are evaluated.

  6. On the asteroid belt's orbital and size distribution

    NASA Astrophysics Data System (ADS)

    Gladman, Brett J.; Davis, Donald R.; Neese, Carol; Jedicke, Robert; Williams, Gareth; Kavelaars, J. J.; Petit, Jean-Marc; Scholl, Hans; Holman, Matthew; Warrington, Ben; Esquerdo, Gil; Tricarico, Pasquale

    2009-07-01

    For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H = 15, down to sub-kilometer sizes (H > 18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a / e / i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR = 12- 22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR = 23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR = 18 down to the mR ≃ 23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H = 15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H ≃ 15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H = 15- 19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.

  7. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  8. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  9. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  10. Monte Carlo predictions of DNA fragment-size distributions for large sizes after HZE particle irradiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.

    2001-01-01

    DSBs (double-strand breaks) produced by densely ionizing space radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. DSB clustering at large scales, from >100 Mbp down to approximately 2 kbp, is modeled using a Monte-Carlo algorithm. A random-walk model of chromatin is combined with a track model, that predicts the radial distribution of energy from an ion, and the RLC (randomly-located-clusters) formalism, in software called DNAbreak. This model generalizes the random-breakage model, whose broken-stick fragment-size distribution is applicable to low-LET radiation. DSB induction due to track interaction with the DNA volume depends on the radiation quality parameter Q. This dose-independent parameter depends only weakly on LET. Multi-track, high-dose effects depend on the cluster intensity parameter lambda, proportional to fluence as defined by the RLC formalism. After lambda is determined by a numerical experiment, the model reduces to one adjustable parameter Q. The best numerical fits to the experimental data, determining Q, are obtained. The knowledge of lambda and Q allows us to give biophysically based extrapolations of high-dose DNA fragment-size data to low doses or to high LETs.

  11. Particle size distribution dynamics during precipitative softening: constant solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2008-08-01

    In the treatment of surface water for potable use, precipitative coagulation (e.g., lime softening, alum or iron sweep coagulation) is widely utilized prior to particle removal processes. The particle size distribution (PSD) formed during such processes is a prime determinant of the removal efficiency for suspended and dissolved contaminants, but little is known quantitatively about how PSDs change by simultaneous precipitation and flocculation. Using precipitative softening as an example, detailed measurements of the PSD (using electronic particle counting) were made during precipitation of CaCO(3) under conditions of constant solution composition. Examination of the time-varying PSDs revealed dramatic changes resulting from nucleation, crystal growth, and flocculation. The influence of the saturation ratio, seed concentration, and mixing intensity on those processes was quantified. Implications with respect to the design and operation of water treatment facilities are discussed. PMID:18656223

  12. Particle-size distribution in soils of West Antarctica

    NASA Astrophysics Data System (ADS)

    Abakumov, E. V.

    2010-03-01

    The particle-size distribution in soils sampled near Russian polar stations in West Antarctica has been studied. It is shown that the soils of the Subantarctic zone (the Bellingshausen Station on King George Island) are characterized by a higher content of silt and clay in the fine earth fraction and by a higher content of the fine earth fraction in comparison with the soils of the proper Antarctic tundra barrens near the Lenin-gradskaya Station and the Antarctic cold desert near the Russkaya Station. In the latter soils, the content of rock fragments is higher than that in the soils of the Antarctic tundra barrens. In the soils of the tundra barrens, a considerable accumulation of fine earth may take place in large cavities (hollows) on the stony bedrock surface. Desert pavements are formed in both types of Antarctic landscapes.

  13. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  14. Detailed Mass Size Distributions of Aerosol Species and Trace Elements at Skukuza, South Africa, During SAFARI 2000

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Maenhaut, W.; Cafmeyer, J.; Chi, X.; Annegarn, H. J.

    2001-12-01

    Two types of cascade impactors were used to collect size-fractionated aerosol samples during August-September 2001 at Skukuza, South Africa, as part of the SAFARI 2000 final dry season campaign. The impactors were a 10-stage microorifice uniform deposit impactor (MOUDI), with cut-points down to 53 nm equivalent aerodynamic diameter (EAD), and a 12-stage small deposit area low pressure impactor (SDI), with cut-points down to 45 nm EAD. Separate day and night samples were collected, starting at about 7:00 and at about 18:00 local time, respectively. The MOUDI samples were analysed for the particulate mass (PM) by weighing, and for organic carbon (OC) and elemental carbon (EC) by a thermal-optical transmission technique. The SDI samples were analysed for 28 elements by particle-induced X-ray emission (PIXE). The total concentrations (summed over all stages) varied quite substantially during the campaign (up to a factor of 50 for certain elements), but no systematic day/night difference pattern was observed. Also the size distributions were rather similar during day and night. PM, OC, EC, S, K, Zn, As, Se, Br, Rb, and Pb had most of their mass in the submicrometer size range, with maximum typically at about 0.3 to 0.5 micrometer EAD. Several of those species and elements are good indicators for biomass burning. Mass median aerodynamic diameters (MMADs) were calculated for the various elements and compared with those obtained during SAFARI-92. During this earlier campaign, which also took place in the dry season, daily samples were taken at Skukuza with a PIXE International cascade impactor (PCI). For the crustal and sea-salt elements, fairly similar MMADs were obtained in the two campaigns. For the fine-mode elements, however, the MMADs were substantially lower during SAFARI 2000 than during SAFARI-92. During this earlier campaign, the MMADs were most likely overestimated.

  15. Size Distribution of Main-Belt Asteroids with High Inclination

    NASA Astrophysics Data System (ADS)

    Terai, Tsuyoshi; Itoh, Yoichi

    2011-04-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) so as to explore asteroid collisional evolution under hypervelocity collisions of around 10 km s-1. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg² with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of the candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17±0.02 for low-inclination (<15°) MBAs and 2.02±0.03 for high-inclination (>15°) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with the inclination in the C-like group. The most probable cause of the shallow CSD of the high-inclination S-like MBAs is the large power-law index in the diameter-impact strength curve in hypervelocity collisions. The collisional evolution of MBAs may have advanced with oligopolistic survival during the dynamical excitation phase in the final stage of planet formation.

  16. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  17. Concentrations and size distributions of Antarctic stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Neish, E.; Schultz, M.

    1989-01-01

    Particle Measuring Systems laser particle spectrometer (ASAS-X and FSSP) probes were used to measure aerosol particle concentrations and size distributions during 11 ER-2 flights between Punta Arenas (53 deg S) and Antarctica (up to 72 deg S) from August 17 to September 22, 1987. The time resolution was 10 s, corresponding to a spatial resolution of 2 km. The data were divided into two size classes (0.05-0.25 and 0.53-5.5 micron radius) to separate the small particle from the coarse particle populations. Results show that the small-particle concentrations are typical for a background aerosol during volcanic quiescence. This concentration is generally constant along a flight track; in only one instance a depletion of small particles during a polar stratospheric cloud (PSC) encounter was measured, suggesting a nucleation of type I PSC particles on background aerosols. Temporary increases of the coarse particle concentrations indicated the presence of tenuous polar stratospheric clouds that were encountered most frequently at the southernmost portion of a flight track and when the aircraft descended to lower altitudes. During 'particle events', particle modes were found at 0.6-micron radius, corresponding to type I PSCs, and occasionally, at 2.0-micron radius corresponding to type II PSCs.

  18. THE EFFECT OF THE DUST SIZE DISTRIBUTION ON ASTEROID POLARIZATION

    SciTech Connect

    Masiero, Joseph; Hartzell, Christine; Scheeres, Daniel J. E-mail: christine.hartzell@colorado.edu

    2009-12-15

    We have developed a theoretical description of how of an asteroid's polarization-phase curve will be affected by the removal of the dust from the surface due to a size-dependent phenomenon such as radiation pressure-driven escape of levitated particles. We test our calculations against new observations of four small (D {approx} 1 km) near-Earth asteroids (NEAs; (85236), (142348), (162900), and 2006 SZ{sub 217}) obtained with the Dual Beam Imaging Polarimeter on the University of Hawaii's 2.2 m telescope, as well as previous observations of (25143) Itokawa and (433) Eros. We find that the polarization of the light reflected from an asteroid is controlled by the mineralogical and chemical composition of the surface and is independent of dust particle. The relation between the slope of the polarization-phase curve beyond the inversion angle and the albedo of an asteroid is thus independent of the surface regolith size distribution and is valid for both Main Belt and NEAs.

  19. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    PubMed

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  20. Bubble size distribution under saltwater and freshwater breaking waves

    NASA Astrophysics Data System (ADS)

    Cartmill, John W.; Yang Su, Ming

    1993-11-01

    The chemical composition of salt water profoundly alters the process of microbubble formation and must be accounted for in extrapolating freshwater results to the ocean environment. Results are presented of the measurement of bubble size distributions generated by breaking waves in both freshwater and saltwater laboratory tanks. Bubble radii in the range of 34-1200 μ m were measured by an acoustic resonator at various positions and depths in a large-scale wave tank at Oregon State University. This experiment represents the first attempt to measure bubbles produced by breaking waves at this large scale in a saltwater tank. Mechanically generated wave groups, with maximum wave height of 4 ft, were used to produce breaking waves and bubble plumes comparable in scale with moderate ocean waves. During the experiment salt was added to bring the salinity of the water to 30%. This salinity alters the nature of the bubbles produced and their subsequent evolution. An order of magnitude increase in the number density over the entire size range was observed for salt water vs. fresh water.

  1. Size distribution of airborne particles controls outcome of epidemiological studies.

    PubMed

    Harrison, Roy M; Giorio, Chiara; Beddows, David C S; Dall'Osto, Manuel

    2010-12-15

    Epidemiological studies typically using wide size range mass metrics (e.g. PM(10)) have demonstrated associations between airborne particulate matter and several adverse health outcomes. This approach ignores the fact that mass concentration may not correlate with regional lung dose, unlike the case of trace gases. When using measured particle size distributions as the basis for calculating regional lung dose, PM(10) mass concentration is found to be a good predictor of the mass dose in all regions of the lung, but is far less predictive of the surface area and particle number dose. On the other hand, measurements of particle number do not well predict mass dose, indicating that the chosen particle metric is likely to determine the health outcomes detectable by an epidemiological study. Consequently, epidemiological studies using mass metrics (PM(2.5) and PM(10)) may fail to recognise important health consequences of particulate matter exposure, leading to an underestimate of the public health consequences of particle exposure. PMID:21109288

  2. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Petersen, Walter A.; Gatlin, Patrick; Wingo, Matthew

    2013-01-01

    An impact-type Joss-Waldvogel disdrometer (JWD), a two-dimensional video disdrometer (2DVD), and a laser optical OTT Particle Size and Velocity (PARSIVEL) disdrometer (PD) were used to measure the raindrop size distribution (DSD) over a 6-month period in Huntsville, Alabama. Comparisons indicate event rain totals for all three disdrometers that were in reasonable agreement with a reference rain gauge. In a relative sense, hourly composite DSDs revealed that the JWD was more sensitive to small drops (,1 mm), while the PD appeared to severely underestimate small drops less than 0.76mm in diameter. The JWD and 2DVD measured comparable number concentrations of midsize drops (1-3mm) and large drops (3-5 mm), while the PD tended to measure relatively higher drop concentrations at sizes larger than 2.44mm in diameter. This concentration disparity tended to occur when hourly rain rates and drop counts exceeded 2.5mm/h and 400/min, respectively. Based on interactions with the PD manufacturer, the partially inhomogeneous laser beam is considered the cause of the PD drop count overestimation. PD drop fall speeds followed the expected terminal fall speed relationship quite well, while the 2DVD occasionally measured slower drops for diameters larger than 2.4mm, coinciding with events where wind speeds were greater than 4m/s. The underestimation of small drops by the PD had a pronounced effect on the intercept and shape of parameters of gamma-fitted DSDs, while the overestimation of midsize and larger drops resulted in higher mean values for PD integral rain parameters

  3. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  4. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  5. The Fossilized Size Distribution of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.

    2003-05-01

    At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt

  6. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass

  7. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes. PMID:24508948

  8. Wind-tunnel investigation of aerodynamic characteristics and wing pressure distributions of an airplane with variable-sweep wings modified for laminar flow

    NASA Technical Reports Server (NTRS)

    Hallissy, James B.; Phillips, Pamela S.

    1989-01-01

    A wind tunnel test was conducted to evaluate the aerodynamic characteristics and wing pressure distributions of a variable wing sweep aircraft having wing panels that are modified to promote laminar flow. The modified wing section shapes were incorporated over most of the exposed outer wing panel span and were obtained by extending the leading edge and adding thickness to the existing wing upper surface forward of 60 percent chord. Two different wing configurations, one each for Mach numbers 0.7 and 0.8, were tested on the model simultaneously, with one wing configuration on the left side and the other on the right. The tests were conducted at Mach numbers 0.20 to 0.90 for wing sweep angles of 20, 25, 30, and 35 degrees. Longitudinal, lateral and directional aerodynamic characteristics of the modified and baseline configurations, and selected pressure distributions for the modified configurations, are presented in graphical form without analysis. A tabulation of the pressure data for the modified configuration is available as microfiche.

  9. Effect of traffic restriction on atmospheric particle concentrations and their size distributions in urban Lanzhou, Northwestern China.

    PubMed

    Zhao, Suping; Yu, Ye; Liu, Na; He, Jianjun; Chen, Jinbei

    2014-02-01

    During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions (0.5-20 microm) obtained using an aerodynamic particle sizer (model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5-10 microm were (15.0 +/- 2.1) cm(-3), (11.8 +/- 2.6) microm2/cm3 and (1.9 +/- 0.6) microm2/cm3, respectively, on the traffic-restricted day (Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5-0.7 and 0.5-0.8 microm, respectively, while for volume concentration, the most affected size ranges were 0.5-0.8, 1.7-2.0 and 5.0-5.4 microm. Number and volume concentrations of particles in size range 0.5-1.0 microm correlated well with the number of non-CNG (Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality. PMID:25076527

  10. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  11. Mars: New Determination of Impact Crater Production Function Size Distribution

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2006-12-01

    Several authors have questioned our knowledge of Martian impact crater production function size-frequency distribution (PFSFD), especially at small diameters D. Plescia (2005) questioned whether any area of Mars shows size distributions used for estimating crater retention ages on Mars. McEwen et al. (2005) and McEwen and Bierhaus (2006) suggested existing PFSFD’s are hopelessly confused by the presence of secondaries, and that my isochrons give primary crater densities off by factors of several thousand at small D. In 2005, I addressed some of these concerns, noting my curves do not estimate primary crater densities per se, but show total numbers of primaries + semi-randomly “distant secondaries” (negating many McEwen et al. critiques). In 2006 I have conducted new crater counts on a PFSFD test area suggested by Ken Tanaka. This area shows young lava flows of similar crater density, west of Olympus Mons (around 30 deg N, 100 deg W). Multiple crater counts were made on several adjacent Odyssey THEMIS images and MGS MOC images, giving the SFD over a range of 11m

  12. Can vesicle size distributions assess eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-10-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April-May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma-water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in

  13. Retrieval of particle size distribution from aerosol optical thickness using an improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Li, Jinxuan

    2015-10-01

    Particle size distribution is essential for describing direct and indirect radiation of aerosols. Because the relationship between the aerosol size distribution and optical thickness (AOT) is an ill-posed Fredholm integral equation of the first type, the traditional techniques for determining such size distributions, such as the Phillips-Twomey regularization method, are often ambiguous. Here, we use an approach based on an improved particle swarm optimization algorithm (IPSO) to retrieve aerosol size distribution. Using AOT data measured by a CE318 sun photometer in Yinchuan, we compared the aerosol size distributions retrieved using a simple genetic algorithm, a basic particle swarm optimization algorithm and the IPSO. Aerosol size distributions for different weather conditions were analyzed, including sunny, dusty and hazy conditions. Our results show that the IPSO-based inversion method retrieved aerosol size distributions under all weather conditions, showing great potential for similar size distribution inversions.

  14. Influence of impactor operating flow rate on particle size distribution of four jet nebulizers.

    PubMed

    Zhou, Yue; Brasel, Trevor L; Kracko, Dean; Cheng, Yung-Sung; Ahuja, Amitkumar; Norenberg, Jeffrey P; Kelly, H William

    2007-01-01

    When a nebulizer is evaluated by the Andersen Cascade Impactor (ACI), the flow rate is generally maintained at 28.3 L/min, as recommended by the manufacturer. However, the nebulizer flow rate that a patient inhales is only around 18 L/min. Because the drive flow of a nebulizer is approximately 6-8 L/min, the nebulized drug is mixed with outside air when delivered. Evaluating impactor performance at the 28.3 L/min flow rate is less than ideal because an additional 10 L/min of outside air is mixed with the drug, thereby affecting the drug size distribution and dose before inhalation and deposition in the human lung. In this study we operated the ACI at an 18.0 L/min flow rate to test whether the effect of the changing ambient humidity was being exaggerated by the 28.3 L/min flow rate. The study was carried out at three different relative humidity levels and two different impactor flow rates with four commercially available nebulizers. The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) of the droplets were found to increase when the impactor was operated at a flow rate of 18 L/min compared to that of 28.3 L/min. The higher MMAD and GSD could cause the patient to inhale less of the drug than expected if the nebulizer was evaluated by the ACI at the operating flow rate of 28.3 L/min. PMID:17763140

  15. Population size and winter distribution of eastern American oystercatchers

    USGS Publications Warehouse

    Brown, S.C.; Schulte, Shiloh A.; Harrington, B.; Winn, Brad; Bart, J.; Howe, M.

    2005-01-01

    Conservation of the eastern subspecies of the American oystercatcher (Haematopus palliatus palliatus) is a high priority in the U.S. Shorebird Conservation Plan, but previous population estimates were unreliable, information on distribution and habitat associations during winter was incomplete, and methods for long-term monitoring had not been developed prior to this survey. We completed the aerial survey proposed in the U.S. Shorebird Conservation Plan to determine population size, winter distribution, and habitat associations. We conducted coastal aerial surveys from New Jersey to Texas during November 2002 to February 2003. This area comprised the entire wintering range of the eastern American oystercatcher within the United States. Surveys covered all suitable habitat in the United States for the subspecies, partitioned into 3 survey strata: known roost sites, high-use habitat, and inter-coastal tidal habitat. We determined known roost sites from extensive consultation with biologists and local experts in each state. High-use habitat included sand islands, sand spits at inlets, shell rakes, and oyster reefs. Partner organizations conducted ground counts in most states. We used high resolution still photography to determine detection rates for estimates of the number of birds in particular flocks, and we used ground counts to determine detection rates of flocks. Using a combination of ground and aerial counts, we estimated the population of eastern American oystercatchers to be 10,971 +/- 298. Aerial surveys can serve an important management function for shorebirds and possibly other coastal waterbirds by providing population status and trend information across a wide geographic scale.

  16. Deposition Rate and Size Distribution of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Hikida, M.

    2006-12-01

    Sakurajima Volcano has been in violent activity since 1955 and erupting large amount of volcanic ash and stones from the crater. Volcanic fallouts have caused damages to the agricaltural products in the area and denuded the mountainside of vegitation. Deposited ash and stones on the mountainside has also caused hazardrous debris flows in the rivers. Therefore, it is necessary to know the deposition rate of the fallouts in prediction of debris flow. Due to the violent volcanic activity, however, it is prohibited to enter within two kilometers of the crater, making it impossible to measure the depth of deposited fallouts in the area. Theoretical study on deposition rate of volcanic fallouts should be needed to estimate the amount of fallouts in the upstream area. At first, motion of a particle erupted from the crater into the air was computed to examine its trajectory. From the simulation of the trajectory, a particle was assumed to fall at its terminal veloctity, and theoretical equation which give the deposition rate of volcanic ash and the distribution of deposited ash were obtained. In the derivation of these equations, the probability density functions of eruption column height, the terminal velocity of the erupted particles and the wind velocity were introduced. The computed values of amount of deposited ash show good agreement with the data taken from 93 collection points around Sakurajima Volcano. The annual amount of erupted volcanic ash was estimated to be about thirteen millions tons. The sample of deposited fallouts were taken to analize the size distribution. The data was also used to check the applicability of the theory presented.

  17. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Milutinović, S.; Marinov, I.; Cabré, A.

    2015-05-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth System models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing algorithms to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 μm in diameter), nanophytoplankton (2-20 μm) and microphytoplankton (20-50 μm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e. oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have large biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield on average ~0.2-0.3 Gt of C, consistent with analogous estimates from two other ocean color algorithms, and several state-of-the-art Earth System models. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, because the PSD-based algorithm is not a priori empirically constrained and introduces improvement over the assumptions of the other approaches. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm

  18. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  19. Concentrations, size distributions and temporal variations of fluorescent biological aerosol particles in southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Krishna R, Ravi; CV, Biju; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2015-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. The Indian tropical region, where large fraction of the world's total population is residing, experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the properties and characteristics of biological aerosols are also expected to be very diverse over the Indian subcontinent depending upon the seasons. Here we characterize the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) at a high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) in South India during the South-West monsoon, which constitute around 80 percent of the annual rainfall in Munnar. Continuous three months measurements (from 01 June 2014 to 21 Aug 2104) FBAPs were carried out at Munnar using Ultra Violet Aerodynamic Particle Sizer (UVAPS) during IMS. The mean number and mass concentration of coarse FBAP averaged over the entire campaign was 1.7 x 10-2 cm-3 and 0.24 µg m-3 respectively, which corresponds to 2 percent and 6 percent of total aerosol particle number and mass concentration. In agreement to other previous measurements the number size distribution of FBAP also peaks at 3.2 micron indicating the strong presence of fungal spores. This was also supported by the Scanning Electron Microscopic analysis of bioaerosols on filter paper. They also displayed a strong diurnal cycle with maximum concentration occurring at early morning hours. During periods of heavy and continuous rain where the wind is consistently blowing from South-West direction it was

  20. Variability of the raindrop size distribution at small spatial scales

    NASA Astrophysics Data System (ADS)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  1. Regional variability of raindrop size distribution over Indonesia

    NASA Astrophysics Data System (ADS)

    Marzuki, M.; Hashiguchi, H.; Yamamoto, M. K.; Mori, S.; Yamanaka, M. D.

    2013-11-01

    Regional variability of raindrop size distribution (DSD) along the Equator was investigated through a network of Parsivel disdrometers in Indonesia. The disdrometers were installed at Kototabang (KT; 100.32° E, 0.20° S), Pontianak (PT; 109.37° E, 0.00° S), Manado (MN; 124.92° E, 1.55° N) and Biak (BK; 136.10° E, 1.18° S). It was found that the DSD at PT has more large drops than at the other three sites. The DSDs at the four sites are influenced by both oceanic and continental systems, and majority of the data matched the maritime-like DSD that was reported in a previous study. Continental-like DSDs were somewhat dominant at PT and KT. Regional variability of DSD is closely related to the variability of topography, mesoscale convective system propagation and horizontal scale of landmass. Different DSDs at different sites led to different Z-R relationships in which the radar reflectivity at PT was much larger than at other sites, at the same rainfall rate.

  2. Extrahypophysial distribution of corticotropin as a function of brain size.

    PubMed Central

    Moldow, R; Yalow, R S

    1978-01-01

    Determination by radioimmunoassay of corticotropin in the brains of rats, rabbits, dogs, monkeys, and human beings reveals that the dimensions within which the hormone is found is about the same for each of these species but that the anatomical regions in which the hormone is found depends on brain size. Corticotropin is widely distributed in the brain of rats but is found only in the hypothalamic region of the primate brain. The patterns of immunoreactivity observed after Sephadex gel filtration confirm that the molecular forms of corticotropin found in extrahypophysial regions are similar to those in the pituitary of each species. These findings suggest that the mammalian pituitary is the sole site of synthesis of the hormone. The observation of persistence of corticotropin in the brains of commerically hypophysectomized rats has been interpreted by others as suggesting diencephalic as well as pituitary origin for this peptide. However, our studies demonstrate that 8 weeks after hypophysectomy the rats we have received from commerical sources manifest stress-stimulated plasma corticotropin concentrations about 80% of that found in intact rats in spite of the fact that residual pituitary tissue was not found by visual inspection of the sella. Scrapings from the sella revealed a corticotropin content up to 5% that of the average rat pituitary. Images PMID:204943

  3. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2015-07-01

    Four years of continuous aerosol number size distribution measurements from an Arctic Climate Observatory in Tiksi Russia are analyzed. Source region effects on particle modal features, and number and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June of 0.42 μg m-3 and in September-October of 0.36-0.57 μg m-3. These seasonal cycles in number and mass concentrations are related to isolated aerosol sources such as Arctic haze in early spring which increases accumulation and coarse mode numbers, and biogenic emissions in summer which affects the smaller, nucleation and Aitken mode particles. The impact of temperature dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant. Therefore, in addition to the precursor emissions of biogenic volatile organic compounds, the frequent Siberian forest fires, although far are suggested to play a role in Arctic aerosol composition during the warmest months. During calm and cold months aerosol concentrations were occasionally increased by nearby aerosol sources in trapping inversions. These results provide valuable information on inter-annual cycles and sources of Arctic aerosols.

  4. A study of aerodynamic heating distributions on a tip-fin controller installed on a Space Shuttle Orbiter model

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1982-01-01

    The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.

  5. Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months) Measurements

    PubMed Central

    Krasa, Andrzej; Rogula-Kozłowska, Wioletta; Błaszczak, Barbara

    2013-01-01

    This work presents results from the long-term measurements of particle number carried out at an urban background station in Zabrze, Poland. Ambient particles with aerodynamic diameters of between 28 nm and 10 μm were investigated by means of a DEKATI thirteen-stage electrical low pressure impactor (ELPI). The particle number-size distribution was bimodal, whilst its density function had the local maxima in the aerodynamic diameter intervals 0.056–0.095 μm and 0.157–0.263 μm. The average particle number in winter was nearly twice as high as in summer. The greatest number concentrations in winter were those of the particles with diameters of between 0.617 and 2.41 μm, that is, the anthropogenic particles from fossil fuel combustion. Approximately 99% of the particles observed in Zabrze had aerodynamic diameters ≤1 μm—they may have originated from the combustion of biomass, liquid, and gaseous fuels in domestic stoves or in car engines. The daily variation of particle number was similar for both seasons—the highest values were observed in the morning (traffic rush hour) and in the afternoon/late evening (traffic and house heating emissions). An additional maximum (0.028–0.056 μm) observed in the early afternoon in summer was due to the intensive formation of new PM particles from gas precursors. PMID:24288492

  6. Detailed mass size distributions of elements and species, and aerosol chemical mass closure during fall 1999 at Gent, Belgium

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Cafmeyer, Jan; Dubtsov, Sergei; Chi, Xuguang

    2002-04-01

    A 10-stage microorifice uniform deposit impactor (MOUDI) and a 12-stage small deposit area low pressure impactor (SDI) were operated at Gent from 6 September to 30 October 1999. Thirty-four parallel samples (of typically 24 h) were collected. The MOUDI samples were analysed for the particulate mass (PM) by weighing, and for organic carbon (OC) and elemental carbon (EC) by a thermal-optical transmission technique. The SDI samples were analysed for 27 elements by PIXE. PM and OC exhibited typically a rather similar bimodal size distribution, with most of their mass in the submicrometer size range. EC was predominantly associated with fine particles, with maximum typically at around 0.2 μm equivalent aerodynamic diameter (EAD). Sulphur was also mainly in the fine size range, but with maximum at 0.5 μm EAD. Other elements with mainly a fine mode were V, Ni, As, Se and Pb. The crustal elements (Al, Si, Ti, Fe, Zr) exhibited mostly a unimodal coarse mode size distribution, with maximum at about 4 μm EAD. Other elements with mainly a coarse mode were Na, Mg, P, Ca, Cr, Mn, Cu, Ga and Sr. The elements K, Zn and Rb were generally bimodal. Aerosol chemical mass closure calculations indicated that organic aerosol and crustal matter were the major aerosol types in the supermicrometer size range, and that the dominant aerosol types in the submicrometer fraction were organic aerosol and sulphate. On average, 74% of the gravimetric PM was accounted for by the aerosol types considered.

  7. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  8. The Effect of Grain Size and Grain Size Distribution on Deep-Marine Channel Evolution

    NASA Astrophysics Data System (ADS)

    Arnott, R. W. C.

    2015-12-01

    Like continental environments, sinuous channels are common geomorphic features on deep-marine slopes. However unlike their fluvial counterparts well developed lateral accretion surfaces related to episodes of lateral channel migration are comparatively rare. Instead most deep-marine channels fill aggradationally. This, then, begs the question as to the nature and origin of the seemingly uncommon sedimentological conditions that result in laterally accreting deep-marine channels. In the Neoproterozoic Windermere Supergroup (WSG) channels filled with well developed lateral accretion surfaces are well exposed and occur at the top of much larger, aggradationally-filled (sinuous) channels, or as isolated clusters. Channel fills are 10-15 m thick and consist of amalgamated beds of decimeter-thick, very coarse sandstone/granule conglomerate. These, in turn, are overlain abruptly vertically and obliquely-upward by mudstone interbedded with thin-bedded turbidites. These finer, thinner strata are interpreted to be the inner-bend levee deposits onto which the channel-filling, thicker-bedded, coarser grained strata onlap. Moreover, the successive several-meter-scale lateral-offset stacking of these strata is interpreted to be caused by the continuous lateral migration of a single channel. Notably also these strata are generally coarser than those that fill the many other WSG channels that lack lateral accretion. The coarseness, but more importantly the bimodal grain size distribution of the sediment supply, is interpreted to have had caused the channelized flows to be highly density stratified, and for density to be equally distributed throughout the lower part of the flow. Together these conditions caused the momentum and related fluid circulation patterns in the lower part of the flow to resemble those observed in rivers, and hence sediment transport patterns to be meandering-river-like with deposition along the inner bend and erosion along the outer bend.

  9. Combining size distribution and chemical species measurements into a multivariate receptor model of PM2.5

    NASA Astrophysics Data System (ADS)

    Larson, Timothy V.; Covert, David S.; Kim, Eugene; Elleman, Robert; Schreuder, Astrid B.; Lumley, Thomas

    2006-05-01

    We introduce an extended receptor model, implemented with the multilinear engine ME2, which combines simultaneous but separate filter-based species information with size-resolved particle volume information. Our chemical data set consisted of 24-hour filter measurements reported by the EPA Speciation Trends Network at Beacon Hill in Seattle, Washington, from February 2000 to June 2003. We measured the particle size distribution at this site from December 2000 to April 2002 using a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS). The combined model extends the traditional chemical mass balance approach by including a simultaneous set of conservation equations for both particle mass and volume, linked by a unique value of apparent particle density for each source. The model distinguished three mobile source features, two consistent with previous identifications of "gasoline" and "diesel" sources, and an additional minor feature enriched in EC, Fe and Mn and ultrafine particle mass that would have been difficult to interpret in the absence of particle size information. This study has also demonstrated the feasibility of defining missing mass as an additional variable, and thereby providing additional useful model constraints and eliminating the posthoc regression step that is traditionally used to rescale the results.

  10. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  11. The effects of ball size distribution on attritor efficiency

    SciTech Connect

    Cook, T.M.; Courtney, T.H.

    1995-09-01

    A study was undertaken to determine how media dynamics are altered when differently sized grinding balls are used in an attritor. Cinematographic techniques identify the extent of segregation/mixing of the differently sized balls within the attritor as a function of impeller rotational velocity and small ball number fraction. This permits determination of rotational velocities needed to most efficiently use the tactic of milling with differently sized media. Cinematographic observations show that the close-packed media array, assumed when balls of the same size are used for milling, is disrupted when differently sized balls are used. Monitoring powder particle numbers as a function of milling time for the situations when the same and differently sized balls are used can be used to assess relative milling efficiencies. Results indicate powder deformation, fracture, and welding are enhanced through employment of differently sized balls. This conclusion is reinforced by observations of microstructural characteristics of powder processed with the different type of media.

  12. Characterization of Nanocrystal Size Distribution using Raman Spectroscopy with a Multi-particle Phonon Confinement Model.

    PubMed

    Doğan, İlker; van de Sanden, Mauritius C M

    2015-01-01

    Analysis of the size distribution of nanocrystals is a critical requirement for the processing and optimization of their size-dependent properties. The common techniques used for the size analysis are transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). These techniques, however, are not suitable for analyzing the nanocrystal size distribution in a fast, non-destructive and a reliable manner at the same time. Our aim in this work is to demonstrate that size distribution of semiconductor nanocrystals that are subject to size-dependent phonon confinement effects, can be quantitatively estimated in a non-destructive, fast and reliable manner using Raman spectroscopy. Moreover, mixed size distributions can be separately probed, and their respective volumetric ratios can be estimated using this technique. In order to analyze the size distribution, we have formulized an analytical expression of one-particle PCM and projected it onto a generic distribution function that will represent the size distribution of analyzed nanocrystal. As a model experiment, we have analyzed the size distribution of free-standing silicon nanocrystals (Si-NCs) with multi-modal size distributions. The estimated size distributions are in excellent agreement with TEM and PL results, revealing the reliability of our model. PMID:26327524

  13. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  14. Grain-size Distribution of Apollo 11 Soil 10084

    NASA Technical Reports Server (NTRS)

    Basu, A.; Wentworth, S. J.; McKay, D. S.

    2000-01-01

    Results of a new grain size analysis of 0.99 g of the submillimeter fraction of the soil 10084, using the JSC methodology, are: 4.28 phi =(51 micrometers) and 2.23 phi (=213 micrometers). A significant fraction (14.2%) of the soil is less than 10 micrometers in size.

  15. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.

    PubMed

    Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey

    2011-10-25

    Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results

  16. New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution

    NASA Astrophysics Data System (ADS)

    Beggan, Ciarán; Hamilton, Christopher W.

    2010-04-01

    Geological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance, radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN) statistics. The NN analyses include tests for (1) Poisson, (2) Normalized Poisson, (3) Scavenged k=1, and (4) Scavenged k=2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface (GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery, photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation, and spatial organization of a wide range of geological features. This information expedites quantitative measurements of 2D object properties, provides criteria for validating the use of stereology to transform 2D object sections into 3D models, and establishes a standardized NN methodology that can be used to compare the results of different geospatial studies and identify objects using non-morphological parameters.

  17. A Program for Partitioning Shifted Truncated Lognormal Distributions into Size-Class Bins

    USGS Publications Warehouse

    Attanasi, E.D.; Charpentier, Ronald R.

    2007-01-01

    In recent years, oil and gas accumulation-size frequency distributions have become a standard way to characterize undiscovered conventional oil and gas resources that have been postulated by geologic assessments. The preparation of such distributions requires the assessment geologists to explicitly choose parameters for the probability distribution for the sizes of undiscovered accumulations. The purpose of this report is to present a computational scheme for obtaining a binned size frequency distribution of undiscovered accumulations when the undiscovered accumulation size distribution is shifted truncated lognormal.

  18. Size distributions of different orders of kernels within the oat spikelet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat kernel size uniformity is of interest to the oat milling industry because of the importance of kernel size in the dehulling process. Previous studies have indicated that oat kernel size distributions fit a bimodal better than a normal distribution. Here we have demonstrated by spikelet dissectio...

  19. Thermal Properties, Size Distribution, and Albedo Distribution of Jupiter-Family Comets

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Kelley, M. S.; Lamy, P. L.; Toth, I.; Groussin, O.; Lisse, C. M.; A'Hearn, M. F.; Bauer, J. M.; Campins, H.; Fitzsimmons, A.; Licandro, J.; Lowry, S. C.; Meech, K. J.; Pittichova, J.; Reach, W. T.; Weaver, H. A.

    2007-10-01

    We present results from SEPPCoN (Survey of Ensemble Physical Properties of Cometary Nuclei), a survey of 100 Jupiter-family comets (JFCs) using the Spitzer Space Telescope for mid-infrared measurements of thermal emission and several ground-based telescopes for visible-wavelength measurements of reflected sunlight. Our sample represents about 30% of all known JFCs. The Spitzer observations are complete, and each comet was observed at either two wavelengths (16 and 22 μm) or at one wavelength twice (24 μm). Our survey constrains the effective radii of the JFC nuclei and thence the size distribution while only assuming that cometary geometric albedos are low (few percent); we need not assume that they are all the same. Also, nearly all survey targets were observed when farther than 4 AU from the Sun to minimize (and in most cases eliminate) coma confusion. Using the observations of comets at two wavelengths, and using the Near-Earth Asteroid Thermal Model, we have estimated the JFC ensemble-average beaming parameter to be about 1.1. On average, cometary nuclei seem to have low thermal inertia and not have significant infrared beaming, although we do find that some of our survey targets have significantly higher parameters and thus likely higher thermal inertia. Analysis on the cumulative size distribution continues and we present our preliminary estimate of its shape, as well as the implications for the assumption of uniform albedo and for the extent of the small-comet (sub-km) population. So far we have obtained visible magnitudes on almost half of our targets; we plan to complete this part of the survey in the coming years. With these data we will constrain the JFC albedo distribution and again address the question of albedo uniformity; current progress on this task is reported as well. We thank the Spitzer Science Center for supporting this research.

  20. A generalized statistical model for the size distribution of wealth

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  1. Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution.

    PubMed

    Pal, Nibedita; Dev Verma, Sachin; Singh, Moirangthem Kiran; Sen, Sobhan

    2011-10-15

    Fluorescence correlation spectroscopy (FCS) is an ideal tool for measuring molecular diffusion and size under extremely dilute conditions. However, the power of FCS has not been utilized to its best to measure diffusion and size parameters of complex chemical systems. Here, we apply FCS to measure the size, and, most importantly, the size distribution and polydispersity of a supramolecular nanostructure (i.e., microemulsion droplets, MEDs) in dilute solution. It is shown how the refractive index mismatch of a solution can be corrected in FCS to obtain accurate size parameters of particles, bypassing the optical matching problem of light scattering techniques that are used often for particle-size measurements. We studied the MEDs of 13 different W(0) values from 2 to 50 prepared in a ternary mixture of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and isooctane, with sulforhodamine-B as a fluorescent marker. We find that, near the optical matching point of MEDs, the dynamic light scattering (DLS) measurements underestimate the droplet sizes while FCS estimates the accurate ones. A Gaussian distribution model (GDM) and a maximum-entropy-based FCS data fitting model (MEMFCS) are used to analyze the fluorescence correlation curves that unfold Gaussian-type size distributions of MEDs in solution. We find the droplet size varies linearly with W(0) up to ~20, but beyond this W(0) value, the size variation deviates from this linearity. To explain nonlinear variation of droplet size for W(0) values beyond ~20, we invoke a model (the coated-droplet model) that incorporates the size polydispersity of the droplets. PMID:21899251

  2. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  3. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  4. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  5. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  6. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  7. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles

    NASA Astrophysics Data System (ADS)

    Souza, T. G. F.; Ciminelli, V. S. T.; Mohallem, N. D. S.

    2016-07-01

    The accuracy of dynamic light scattering (DLS) measurements are compared with transmission electron microscopy (TEM) studies for characterization of size distributions of ceramic nanoparticles. It was found that measurements by DLS using number distribution presented accurate results when compared to TEM. The presence of dispersants and the enlargement of size distributions induce errors to DLS particle sizing measurements and shifts its results to higher values.

  8. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: weakly absorbing aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L. K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A.

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from mobility and aerodynamic particle size spectrometers commonly referred to as a scanning mobility particle sizer and an aerodynamic particle sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the

  9. Effects of lint cleaning on lint trash particle size distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...

  10. Particle size distributions in and exhausted from a poultry house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...

  11. Multi-component Erlang distribution of plant seed masses and sizes

    NASA Astrophysics Data System (ADS)

    Fan, San-Hong; Wei, Hua-Rong

    2012-12-01

    The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.

  12. [Characteristics of mass size distributions of water-soluble, inorganic ions during summer and winter haze days of Beijing].

    PubMed

    Huang, Yi-Min; Liu, Zi-Rui; Chen, Hong; Wang, Yue-Si

    2013-04-01

    To investigate the size distribution characteristics of water soluble inorganic ions in haze days, the particle samples were collected by two Andersen cascade impactors in Beijing during summer and winter time and each sampling period lasted two weeks. Online measurement of PM10 and PM2.5 using TEOM were also conducted at the same time. Sources and formation mechanism of water soluble inorganic ions were analyzed based on their size distributions. The results showed that average concentrations of PM10 and PM 2.5 were (245.5 +/- 8.4) microg x m(-3) and (120.2 +/- 2.0) microg x m(-3) during summer haze days (SHD), and were (384.2 +/- 30.2) microg x m(-3) and (252.7 +/- 47.1) microg x m(-3) during winter haze days (WHD), which suggested fine particles predominated haze pollution episode in both seasons. Total water-soluble inorganic ions concentrations were higher in haze days than those in non-haze days, especially in fine particles. Furthermore, concentrations of secondary inorganic ions (SO4(2-), NO3(-) and NH4(+)) increased quicker than other inorganic ions in fine particles during haze days, indicating secondary inorganic ions played an important role in the formation of haze pollution. Similar size distributions were found for all Sinorganic water soluble ions except for NO3(-), during SHD and WHD. SO4(2-) and NH4(+) dominated in the fine mode (PM1.0) while Mg2+ and Ca2+ accumulated in coarse fraction, Na+, Cl- and K+ showed a bimodal distribution. For NO3(-), however, it showed a bimodal distribution during SHD and a unimodal distribution dominated in the fine fraction was found during WHD. The average mass median aerodynamic diameter (MMAD) of SO4(2-) was 0.64 microm in SHD, which suggested the formation of SO4(2-) was mainly attributed to in-cloud processes. Furthermore, a higher apparent conversion rate of sulfur dioxide (SOR) was found in SHD, indicating more fine particles were produced by photochemical reaction in haze days than that in non-haze days. The

  13. Aerodynamic characteristics of popcorn ash particles

    SciTech Connect

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S.

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  14. The Modelled Raindrop Size Distribution of Skudai, Peninsular Malaysia, Using Exponential and Lognormal Distributions

    PubMed Central

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance. PMID:25126597

  15. The modelled raindrop size distribution of Skudai, Peninsular Malaysia, using exponential and lognormal distributions.

    PubMed

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance. PMID:25126597

  16. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  17. On Size-Biased Negative Binomial Distribution and its Use in Zero-Truncated Cases

    NASA Astrophysics Data System (ADS)

    Mir, Khurshid Ahmad

    2009-01-01

    A size-biased negative binomial distribution, a particular case of the weighted negative binomial distribution, taking the weights as the variate values has been defined. A Bayes' estimator of size-biased negative binomial distribution (SBNBD) has been obtained by using non-informative and gamma prior distributions. Also comparison has been made of this estimator with the corresponding maximum likelihood estimator (MLE) with the help of R- Software.

  18. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    NASA Astrophysics Data System (ADS)

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-07-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution.

  19. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    PubMed Central

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  20. Size and distribution controllable silica microballs fabricated by electrospraying

    NASA Astrophysics Data System (ADS)

    Xu, Bojing; Wu, Pan; Jiang, Qi; Gu, Wenhua

    2015-10-01

    Silica microballs have a wide range of applications in the field of optics, electronics, biotechnology chemical industry, and so on. In this work, a new approach, electrospraying, was used to coat the silica microballs onto the glass substrate, and the coating results were compared to spin-coating and dip-coating. Good microball size control could be achieved using the electrospraying method. X-Ray Diffraction (XRD) results showed that amorphous silica microballs were obtained. From Scanning Electron Microscopy (SEM) images, we can see that uniform microball size was achieved. In general, the results are better than what can be achieved by spin-coating, and comparable to that of dip-coating. However, electrospraying has great potential in mass production, especially for large-area fabrication.

  1. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  2. Body Size Diversity and Frequency Distributions of Neotropical Cichlid Fishes (Cichliformes: Cichlidae: Cichlinae)

    PubMed Central

    Steele, Sarah E.; López-Fernández, Hernán

    2014-01-01

    Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale. PMID:25180970

  3. Gradually truncated log-normal in USA publicly traded firm size distribution

    NASA Astrophysics Data System (ADS)

    Gupta, Hari M.; Campanha, José R.; de Aguiar, Daniela R.; Queiroz, Gabriel A.; Raheja, Charu G.

    2007-03-01

    We study the statistical distribution of firm size for USA and Brazilian publicly traded firms through the Zipf plot technique. Sale size is used to measure firm size. The Brazilian firm size distribution is given by a log-normal distribution without any adjustable parameter. However, we also need to consider different parameters of log-normal distribution for the largest firms in the distribution, which are mostly foreign firms. The log-normal distribution has to be gradually truncated after a certain critical value for USA firms. Therefore, the original hypothesis of proportional effect proposed by Gibrat is valid with some modification for very large firms. We also consider the possible mechanisms behind this distribution.

  4. Automated Measurements of Ambient Aerosol Chemical Composition and its Dry and Wet Size Distributions at Pittsburgh Supersite

    NASA Astrophysics Data System (ADS)

    Khlystov, A. Y.; Stanier, C.; Chun, W.; Vayenas, D.; Mandiro, M.; Pandis, S. N.

    2001-12-01

    Ambient aerosol particles change size with changes in ambient relative humidity. The magnitude of the size change depends on the hygroscopic properties of the particles, which is determined by their chemical composition. Hygroscopic properties of particles influence many environmentally important aerosol qualities, such as light scattering and partitioning between the gas and particle phases of semivolitile compounds. Studying the hygroscopic growth of ambient particles is thus of paramount importance. The highroscopic growth of ambient particles and their chemical composition are measured continuously within the Pittsburgh Air Quality Study (EPA supersite program). The hygroscopic size changes are measured using an automated system built for this study. The system consists of two Scanning Mobility Particle Sizers (SMPS, TSI Inc.) and an Aerodynamic Particle Sizer (APS, TSI Inc.). The three instruments measure aerosol size distribution between 5 nanometers and 10 micrometers in diameter. The inlets of the instruments and the sheath air lines of the SMPS systems are equipped with computer controlled valves that direct air through Nafion dryers (PermaPure Inc.) or bypass them. The Nafion dryers are drying the air stream below 40% RH at which point ambient particles are expected to lose most or all water and thus be virtually dry. To avoid changes in relative humidity and evaporation of volatile particles due to temperature differences the system is kept at ambient temperature. The system measures alternatively dry (below 40% RH) and wet (actual ambient RH) aerosol size distributions every 6 minutes. The hygroscopic growth observed with the size-spectrometer system is compared with theoretic predictions based on the chemical composition of aerosol particles. A modified semi-continuous Steam-Jet Aerosol Collector provides the total available budget (particles and gas) of water-soluble species, which is used as an input to the thermodynamic model. The model calculates

  5. Interpretation of size-exclusion chromatography for the determination of molecular-size distribution of human immunoglobulins.

    PubMed

    Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E

    2016-01-01

    Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs

  6. Size distributions of fly ash using Coulter Multisizer: Use of multiple orifices and fitting to truncated log-normal distributions

    SciTech Connect

    Ghosal, S.; Ebert, J.L.; Self, S.A.

    1991-11-01

    Fly ash particles, which are predominantly spherical and glassy, are produced by melting of the mineral inclusions in the coal during combustion. Particle diameters can range from sub-micrometer (micron or {mu}m) to greater than 100 {mu}m. The size distribution of fly ash is needed to determine its role in the radiation transfer process in pulverized coal combustors. The Coulter Multisizer is an useful instrument for sizing powders with a broad size distribution. A single Multisizer orifice can size particles only within a specific size range limited at the lower end to a few percent of orifice diameter by sensitivity and at the upper end by increasing non-linearity of the signal-volume relation. A scheme for combining data obtained using orifices of different diameters is described. The manufacturers state that the smallest particle which can be sized accurately is nominally 2% of the diameter of the orifice. However, it was found that the data for particles less than 4% of the orifice diameter were not reliable. In order to use the smaller orifices, the larger particles have to be removed from the sample. A wet-sieving apparatus, designed for accurate separation of the particles by size, is described. A log-normal distribution function, truncated outside the measurement limits, fits the size distribution data well. Size parameters for fly ashes of six representative US coals are presented.

  7. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    PubMed

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. PMID:23548563

  8. An analysis of the size distribution of Italian firms by age

    NASA Astrophysics Data System (ADS)

    Cirillo, Pasquale

    2010-02-01

    In this paper we analyze the size distribution of Italian firms by age. In other words, we want to establish whether the way that the size of firms is distributed varies as firms become old. As a proxy of size we use capital. In [L.M.B. Cabral, J. Mata, On the evolution of the firm size distribution: Facts and theory, American Economic Review 93 (2003) 1075-1090], the authors study the distribution of Portuguese firms and they find out that, while the size distribution of all firms is fairly stable over time, the distributions of firms by age groups are appreciably different. In particular, as the age of the firms increases, their size distribution on the log scale shifts to the right, the left tails becomes thinner and the right tail thicker, with a clear decrease of the skewness. In this paper, we perform a similar analysis with Italian firms using the CEBI database, also considering firms’ growth rates. Although there are several papers dealing with Italian firms and their size distribution, to our knowledge a similar study concerning size and age has not been performed yet for Italy, especially with such a big panel.

  9. Runoff, erosion, and size distribution of sediment from beef cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The size distribution of sediment affects erosion rates, settling velocity, and the transport of chemical constituents. Little information is currently available concerning the size distribution of materials transported in runoff from beef cattle feedlots. The objectives of this study were to: a) me...

  10. MORTALITY RATES FROM SIZE DISTRIBUTION: THE APPLICATION OF A CONSERVATION LAW

    EPA Science Inventory

    A population model explicitly describing the dynamics of an arbitrary population size distribution is presented. One consequence of the model is an equation for the exact shape of the size distribution of a stationary or steady-state population. The shape is expressed as a functi...

  11. Evolution of pore size distribution during sintering of oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Devyatko, Y. N.; Tenishev, A. V.; Mikhalchik, V. V.; Khomyakov, O. V.

    2016-04-01

    Uranium dioxide pellets were sintered at various temperature routes and atmospheres with different oxygen content. Statistically calculated pore size distribution of the sintered pellets and distribution function was obtained. It is shown that the average pore size is almost unchanged at intermediate stage of sintering while the total number of pores reduced.

  12. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    NASA Technical Reports Server (NTRS)

    Lane, John

    2013-01-01

    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  13. DOES SIZE MATTER? THE UNDERLYING INTRINSIC SIZE DISTRIBUTION OF RADIO SOURCES AND IMPLICATIONS FOR UNIFICATION BY ORIENTATION

    SciTech Connect

    DiPompeo, M. A.; Runnoe, J. C.; Myers, A. D.; Boroson, T. A.

    2013-09-01

    Unification by orientation is a ubiquitous concept in the study of active galactic nuclei. A gold standard of the orientation paradigm is the hypothesis that radio galaxies and radio-loud quasars are intrinsically the same, but are observed over different ranges of viewing angles. Historically, strong support for this model was provided by the projected sizes of radio structure in luminous radio galaxies, which were found to be significantly larger than those of quasars, as predicted due to simple geometric projection. Recently, this test of the simplest prediction of orientation-based models has been revisited with larger samples that cover wider ranges of fundamental properties-and no clear difference in projected sizes of radio structure is found. Cast solely in terms of viewing angle effects, these results provide convincing evidence that unification of these objects solely through orientation fails. However, it is possible that conflicting results regarding the role orientation plays in our view of radio sources simply result from insufficient sampling of their intrinsic size distribution. We test this possibility using Monte Carlo simulations constrained by real sample sizes and properties. We develop models for the real intrinsic size distribution of radio sources, simulate observations by randomly sampling intrinsic sizes and viewing angles, and analyze how likely each sample is to support or dispute unification by orientation. We find that, while it is possible to reconcile conflicting results purely within a simple, orientation-based framework, it is very unlikely. We analyze the effects that sample size, relative numbers of radio galaxies and quasars, the critical angle that separates the two subclasses, and the shape of the intrinsic size distribution have on this type of test.

  14. The size distribution of the earth-approaching asteroids

    NASA Astrophysics Data System (ADS)

    Rabinowitz, D. L.

    1993-04-01

    The discovery circumstances of the first asteroids ever observed outside the earth's atmosphere but within the neighborhood of the earth-moon system are described. Four natural objects with diameters in the range 5-50 m were detected during a search for earth-approaching asteroids conducted each month at the 0.91-m Spacewatch Telescope at Kitt Peak. An additional 19 earth approachers with sizes in the range 50 m to 5 km were discovered. These obervations determine the cumulative flux of asteroids near earth as a function of absolute magnitude. For asteroids larger than about 100 m, a power-law dependence with exponent of about 0.9 is observed, consistent with their evolution from the main-belt population. At about 10 m, the flux is more than two orders of magnitude greater than this power-law extrapolation.

  15. The comparative study of particle size distribution in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Koneracká, M.; Skumiel, A.; Labowski, M.; Jozefczak, A.; Bica, Doina; Bâlâu, Oana; Vékás, L.; Fannin, P. C.; Giannitsis, A. T.

    2002-01-01

    Water- and physiology-solution-based biocompatible magnetic fluids have been studied in order to determine the size of magnetic particles and their colloidal stability. The results of magnetorheological measurements at room temperature and measurements of the frequency-dependent complex magnetic susceptibility indicate that the fluids have good stability and that the particles are finely dispersed without aggregation. The mean particle diameter for physiology-solution-based magnetic fluid, estimated from measurements of anisttropy of the magnetic susceptibility, was found to be 9.4 nm. This value is in good agreement with an estimate of 11.6 nm obtained from transmission electron microscopy (TEM) particularly when allowance is made for the thickness of surfactant layer (approx. 2 nm).

  16. Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product.

    PubMed

    Mazzoli, Alida; Moriconi, Giacomo

    2014-12-01

    The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management. PMID:25195092

  17. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter

    NASA Astrophysics Data System (ADS)

    Infante, Rafael; Acosta, Iris L.

    The atmospheric particulate size distribution of nine heavy metals was measured in Ponce, a moderately industrial city in the south of Puerto Rico. Samples were collected in the city center and outlying suburban and rural locations during 1986. The size measurements were done with a cascade impactor. The elemental content of the size fractionated aerosol samples was determined by inductively coupled plasma atomic emission spectroscopy. The particle size distributions observed for Cu, Cd, Pb, Mn and Fe were bimodal with a gradual progression from mainly coarse mode to mainly fine mode. Al, Ni and Zn were mostly associated with coarse particles and V size distribution was unimodal with maxima associated with fine particles. The particle size distribution did not vary significantly with the sites sampled in the urban area although some regional characteristics are observed. The data obtained strongly suggest motor vehicle traffic and fuel combustion as the principal pollution pources in Ponce aerosol.

  18. Seasonal Variability of the Black Carbon Size Distribution in the Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Kozlov, V. S.; Shmargunov, V. P.; Panchenko, M. V.; Chernov, D. G.; Kozlov, A. S.; Malyshkin, S. B.

    2016-04-01

    Round-the-clock measurements of the black carbon size distribution in the submicron near-ground aerosol of Western Siberia performed in 2014 by the diffusion method developed by the authors are analyzed. It is revealed that the tendency for decreasing the volume median diameter and the amplitude of distribution of the black carbon is traced in the seasonal dynamics of the average monthly black carbon particle size distribution (approximated by a single-mode lognormal function) during winter-to-summer season transition. The shape of the black carbon size distributions is in agreement with measurements by other well-known methods in different geographic regions.

  19. Particle Size Distributions During Laboratory-Scale Biomass Burns and Prescribed Burns Using Fast Response Instruments

    NASA Astrophysics Data System (ADS)

    Jung, H.; Hosseini, E.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Princevac, M.; Mahalingam, S.

    2010-12-01

    Particle size distribution from biomass combustion in an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies varies not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels and compare with that from prescribed burns. The combustion laboratory at the USDA Forest Service’s Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing volume size distribution from FMPS and APS measurement ~30 % of particle volume was attributable to the particles ranging from 0.5 to 10 µm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in MCE vs geometric mean diameter from each mode of combustion than only using MCE values. Prescribed burns were carried out at wildland managed by military bases. Evolution of particle distribution in and out of the plume will be compared with particle distribution from lab scale burning.

  20. Effects of grain size distribution on the creep damage evolution of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Huiji

    2010-04-01

    It is evident that realistic microstructures of polycrystalline materials demonstrate a certain distribution of grain size, which has not been widely studied in most analyses of mechanical properties of materials at high temperatures. In this work, the effects of grain size distribution on the creep damage evolution induced by void growth of polycrystalline materials were investigated by the Voronoi tessellation approach, taking into account the void evolution on the grain boundaries in a grain aggregate cell. The results indicate that with the decrease in mean grain size, the damage variable increases faster. When the mean grain sizes are the same, the more uniform the grain size is, the faster the damage variable increases.

  1. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  2. Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook

    SciTech Connect

    Collins, D

    2010-06-18

    The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

  3. Laboratory study of the particle-size distribution of Decabromodiphenyl ether (BDE-209) in ambient air.

    PubMed

    Su, Peng-hao; Hou, Chun-yan; Sun, Dan; Feng, Dao-lun; Halldorson, Thor; Ding, Yong-sheng; Li, Yi-fan; Tomy, Gregg T

    2016-02-01

    Laboratory measurements for particle-size distribution of Decabromodiphenyl ether (BDE-209) were performed in a 0.5 m(3) sealed room at 25 °C. BDE-209 was manually bounded to ambient particles. An electrostatic field-sampler was employed to collect particles. The number of collected particles (n(i,j), i and j was the class of particle diameter and applied voltage on electrostatic field-sampler sampler, respectively) and the corresponding mass of BDE-209 in collected particles (m(∑i,j)) were determined in a series of 6 experiments. The particle-size distribution coefficient (ki) was calculated through equations related to n(i,j) and m(∑i,j), and the particle-size distribution of BDE-209 was determined by ki·n(i,j). Results revealed that BDE-209 distributed in particles of all size and were not affiliated with fine particles as in field measurements. The particle size-fraction should be taken into account when discussing the particle-size distribution of BDE-209 in ambient air due to the normalized coefficients (normalized to k1) and were approximately in the same order of magnitude for each diameter class. The method described in the present study was deemed feasible in determining the particle-size distribution of BDE-209 from vaporization sources and helpful to understanding the instinct rule of particle-size distribution of BDE-209, and potentially feasible for other SVOCs. PMID:26363326

  4. Asteroid Size-Frequency Distribution (The ISO Deep Asteroid Survey)

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6" PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e., 12 micro-m) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described by Desert, et al. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i.e., between 150 and 350 times fainter than any of the asteroids observed by Infrared Astronomy Satellite (IRAS). These data provide the first direct measurement of the 12 micro-m sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  5. Uncertainty in volcanic ash particle size distribution and implications for infrared remote sensing and airspace management

    NASA Astrophysics Data System (ADS)

    Western, L.; Watson, M.; Francis, P. N.

    2014-12-01

    Volcanic ash particle size distributions are critical in determining the fate of airborne ash in drifting clouds. A significant amount of global airspace is managed using dispersion models that rely on a single ash particle size distribution, derived from a single source - Hobbs et al., 1991. This is clearly wholly inadequate given the range of magmatic compositions and eruptive styles that volcanoes present. Available measurements of airborne ash lognormal particle size distributions show geometric standard deviation values that range from 1.0 - 2.5, with others showing mainly polymodal distributions. This paucity of data pertaining to airborne sampling of volcanic ash results in large uncertainties both when using an assumed distribution to retrieve mass loadings from satellite observations and when prescribing particle size distributions of ash in dispersion models. Uncertainty in the particle size distribution can yield order of magnitude differences to mass loading retrievals of an ash cloud from satellite observations, a result that can easily reclassify zones of airspace closure. The uncertainty arises from the assumptions made when defining both the geometric particle size and particle single scattering properties in terms of an effective radius. This has significant implications for airspace management and emphasises the need for an improved quantification of airborne volcanic ash particle size distributions.

  6. Magnetic pattern at supergranulation scale: the void size distribution

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Del Moro, D.

    2014-08-01

    The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.

  7. Comparison of Large and Mid-Size Lunar Crater Distributions

    NASA Astrophysics Data System (ADS)

    Povilaitis, R.; Robinson, M. S.; Nelson, D.; Ostrach, L. R.; van der Bogert, C.; Hiesinger, H.

    2013-12-01

    Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) team digitized rims of a total of 22,746 craters 5 to 20 km in diameter. A global areal crater density map using this dataset was created and compared to a ≥20 km diameter crater density map produced from Lunar Orbiter Laser Altimeter data [1]. The resulting difference map revealed several regions of crater density differences. Mapping: All craters between ~4 km and ~21 km in diameter (to ensure completeness) were digitized at a scale between 1:250,000 and 1:500,000 in ArcGIS. Basemaps used included: 1) a 100 m/pixel scale LROC Wide Angle Camera (WAC) monochrome (643 nm) mosaic with an average solar incidence of 60°, and 2) a 100 m/pixel LROC WAC Digital Elevation Model mosaic to help demarcate craters in shadowed regions at the poles and/or subdued craters. Craters outside the 5-20 km diameter range were not used in the creation of the global crater density map. Crater Density: We determined areal crater density for each diameter range (5-20 km and ≥20 km) independently using a moving neighborhood method with a radius of 500 km and an output cell size 15 km. Density magnitude values for each map were divided into 10 equal-interval bins and reclassified with a ranking of 1-10 (1 being lowest density and 10 being highest). The resulting 5-20 km density map was subtracted from the ≥20 km density map to produce a crater density difference map. Output cell values of the difference map range from -4 to +5. Positive difference values represent a high density of ≥20 km craters relative to 5-20 km craters, and negative values represent low density of ≥20 km craters relative to 5-20 km craters. Discussion: The difference map shows a high density difference west of the Mare Australe region (50° S to 70° S, 15° E to 45° E) with a value of +5, potentially indicative of widespread resurfacing. Alternatively, weaker crater retention due to topographic, regolith, and/or target property effects may also

  8. Snowflake Size Distribution Measurements in South Central Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Tokay, A.; Bringi, V. N.; Huang, G.; Schoenhuber, M.; Bashor, P. G.; Hudak, D.; Jackson, G. S.; Petersen, W. A.

    2007-05-01

    In support of NASA's Global Precipitation Measurement (GPM) mission ground validation program, NASA's two laser optical disdrometers (Parsivel) and Colodaro State University (CSU) two-dimensional video disdrometer (2dvd) were deployed to a well-equipped precipitation observation site in South Central Ontario, Canada. The instruments were collocated and have been operating since late November 2006. So far, there has been numerous lake effect and synoptic winter storms over the site. In one event, parsivel disdrometers recorded 50 cm of snowfall. In addition, there have been at least 10 storms where the snow accumulation exceeded 4 cm. The leading objective of this study was to compare the parsivel and 2dvd size and fall velocity measurements for selected cases and relate the findings to the physical processes within and below the cloud. Unlike 2dvd, parsivel measures the maximum dimension of the snowflake in a single plane, while the fall velocity is calculated from the duration of the flake within the laser beam. The 2dvd samples the same flake in two planes from which fall velocity is obtained. The 2dvd also measures the maximum width and height in both planes. At the time of this abstract, two parsivels and 2dvd were operated nearly continuously for almost three months and preliminary data analysis is encouraging. The field site, which is known as Centre for Atmospheric Research Experiments (CARE), is an atmospheric research facility operated by the Air Quality Research Branch of the Meteorological Service of Canada and is located 80 km north of Toronto, Ontario, Canada in a rural agricultural and forested region. During the past three winters, a field campaign was conduced in support of Canadian CloudSat/CALIPSO validation project (c3vp). However, 2006-07 winter was the first since the satellites were in orbit. The coordinated efforts of aircraft missions over the CARE facility during the Intensive Operation Periods will enhance our understanding of cold cloud

  9. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  10. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  11. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  12. Sifting attacks in finite-size quantum key distribution

    NASA Astrophysics Data System (ADS)

    Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.

    2016-05-01

    A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133–65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

  13. ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES

    SciTech Connect

    Huang Xu; Zhou Tingtao; Lin, D. N. C.

    2013-05-20

    Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. In this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.

  14. Distribution and Size of Pyroxenite Bodies in the Mantle

    NASA Astrophysics Data System (ADS)

    Herzberg, C.

    2006-12-01

    lower in pyroxenite-source lavas owing to higher melt fractions. Peridotite-source lavas for the above-mentioned OIB from the Atlantic, Cook-Austral in the Pacific, and Turkana in East Africa have HIMU and FOZO isotopic characteristics, and have low Y/Nb and Zr/Nb. In contrast, peridotite-source lavas from the Caribbean, Ontong Java and North Atlantic display greater isotopic and trace element variability, indicating variable mixing and degradation of subducted crust. Pyroxenite is likely to range in size from grain boundary films to shield volcanoes.

  15. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  16. Size Distribution of NaK Droplets Released During Rorsat Reactor Core Ejection

    NASA Astrophysics Data System (ADS)

    Wiedemann, C.; Oswald, M.; Stabroth, S.; Klinkrad, H.; Vörsmann, P.

    NaK droplets consist of eutectic sodium-potassium alloy and have been released during RORSAT reactor core ejections mostly on orbits close to 950 km altitude. They contributed to the space debris environment in the centimeter and millimeter size regime. NaK droplets have been modeled before in ESA's MASTER Debris and Meteoroid Environment Model. The approach is currently revised for the MASTER 2005 upgrade. The new NaK model gives estimations of the parameters of the size distribution function, which are based on physical relations only. This physical approach confirms NASA radar observations. The core ejection causes an opening of the primary coolant circuit. The liquid coolant is released into space forming droplets up to a diameter of 5.5 cm. The reactor design is investigated to understand the possible mechanisms that cause the droplets generation. It is likely that the droplet generation process can be both capillary jet breakup and atomization. This paper presents results of the estimation of droplets sizes. A droplet size distribution is introduced, which is scientifically justified. The physical process of atomization resp. liquid jet breakup is considered, to derive the parameters of the size distribution function. The introduction of an improved distribution function is important. So far the cumulative size distribution function was a combination of several fitting curve segments to agree with measured data. The definition of several functions results in a large number of parameters. This drawback is corrected. The droplet size can be defined as function of the orifice diameter. The droplets sizes are related to the parameters of the size distribution function. The size distribution function shall contain only two parameters, which can be derived from the orifice diameter and the atomization conditions. In this way scientifically based estimations of the parameters are introduced. An estimation of the maximum droplet diameter assuming capillary jet

  17. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  18. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  19. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  20. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI.

    PubMed

    Shemesh, Noam; Álvarez, Gonzalo A; Frydman, Lucio

    2015-01-01

    Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220

  1. Particle size distribution measurements of manganese-doped ZnS nanoparticles.

    PubMed

    Dieckmann, Yvonne; Cölfen, Helmut; Hofmann, Heinrich; Petri-Fink, Alke

    2009-05-15

    We performed particle size and particle size distribution measurements for L-cysteine-stabilized ZnS/Mn nanoparticles in the size region below 10 nm. For this we applied transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), dynamic light scattering (DLS), and asymmetric flow field flow fractionation (aF-FFF) measurements, and we calculated particle sizes with the help of X-ray diffraction (XRD) patterns and the shift of the band gap absorption in the UV-vis spectrum. The different methods are explained, and their limitations are discussed, with the conclusion that only a combination of different techniques can yield a realistic and complete picture about the size distribution of the sample. From these methods TEM, AUC, DLS, and aF-FFF measure the actual particle size distribution either in dispersion or after drying of the sample, whereas the particle size obtained from XRD patterns and with the help of the band gap widening corresponds to the average size of the crystal domains within the particles. We obtained particle size distributions with their maximum between 3 and 7 nm and a mean crystallite size of 3.5-4 nm. PMID:19374425

  2. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles. PMID:26750519

  3. An Analysis of Exact and Approximate Equations for the Temperature Distribution in an Insulated Thick Skin Subjected to Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Harris, Robert S., Jr.; Davidson, John R.

    1961-01-01

    The problem of calculating the temperature distribution in an insulated slab is investigated. Exact and approximate solutions are obtained, and the results are compared to determine the ranges of applicability of the approximations. The approximations are found to be within 5 percent of the exact solution when the ratio of the thermal capacitance of the metal to that of the insulation and the ratio of the conductance of the metal to that of the insulation are sufficiently large. The roots of the characteristic equation of the exact solution are generally applicable to the two-slab heat-transfer problem and are tabulated up to the first nine roots.

  4. Size distribution of interplanetary iron and stony particles related with deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Matsuzaki, H.; Yamakoshi, K.

    1993-01-01

    To study origin and evolution of the interplanetary dust, it is very important to investigate the size distribution. Here the changes of the size distributions of meteoroid particles due to the ablative effects during atmospheric entry were investigated by numerical computer simulation. Using the results, the pre-atmospheric size distributions of the interplanetary dust particles could be estimated from that of ablated spherules taken from deep-sea sediments. We are now analyzing deep-sea spherules from some aspects and examining if we could get any information about the interplanetary dust.

  5. Ostwald ripening of supported Pt nanoclusters with initial size-selected distributions

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Schweinberger, Florian F.; Heiz, Ueli; Langhammer, Christoph

    2015-07-01

    The use of a laser ablation cluster source made it recently possible to study Ostwald ripening of supported Pt nanoclusters with atomic control of the initial size distributions, such as Pt68 or Pt22 + Pt68 (K. Wettergren et al., Nano Lett. (2014)). Monodispersed clusters were found to be more stable compared to the bimodal ones and to those with wide polydisperse initial size distribution. To clarify the results of the experiments, we present here the corresponding kinetic Monte Carlo simulations of Ostwald ripening with emphasis on the role of the initial size distribution with control at the atomic level.

  6. Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons

    SciTech Connect

    Ishak-Boushaki, M.; Djellout, D.; Annou, R.

    2012-07-15

    The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.

  7. Methods of computing vocabulary size for the two-parameter rank distribution

    NASA Technical Reports Server (NTRS)

    Edmundson, H. P.; Fostel, G.; Tung, I.; Underwood, W.

    1972-01-01

    A summation method is described for computing the vocabulary size for given parameter values in the 1- and 2-parameter rank distributions. Two methods of determining the asymptotes for the family of 2-parameter rank-distribution curves are also described. Tables are computed and graphs are drawn relating paris of parameter values to the vocabulary size. The partial product formula for the Riemann zeta function is investigated as an approximation to the partial sum formula for the Riemann zeta function. An error bound is established that indicates that the partial product should not be used to approximate the partial sum in calculating the vocabulary size for the 2-parameter rank distribution.

  8. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    NASA Astrophysics Data System (ADS)

    Rice, Stephen B.; Chan, Christopher; Brown, Scott C.; Eschbach, Peter; Han, Li; Ensor, David S.; Stefaniak, Aleksandr B.; Bonevich, John; Vladár, András E.; Hight Walker, Angela R.; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A.

    2013-12-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin-Rammler-Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  9. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  10. Particle size distribution on surfaces in clean rooms. Final technical report September 1983-February 1984

    SciTech Connect

    Hamberg, O.; Shon, E.M.

    1984-04-30

    Experimental particle size distributions of surfaces in clean rooms, resulting from the gravity settling of airborne particulates (fallout), are presented and found to be significantly different from the distributions described by Military Standard 1246A. Theoretical surface size distributions, based on fallout from a Federal Standard 209B airborne particle distribution, are derived and show good correlation with experimental data. Further experimental data and analysis are provided to show that surface cleaning tends to make a particle size distribution resulting from fallout approach the MIL-STD-1246A distribution. Recommendations are made to limit the use of MIL-STD-1246A, when specifying surface cleanliness levels, to surfaces that have been cleaned after exposure to fallout.

  11. Simultaneous retrieval of effective refractive index and density from size distribution and light scattering data: weakly absorbing aerosol

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L. K.; Shilling, J.; Flynn, C.; Mei, F.; Jefferson, A.

    2014-05-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define "weakly absorbing" as aerosol single-scattering albedos that exceed 0.95 at 0.5 μm. The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE ~ 3%) and reasonable (RMSE ~ 28%) agreement is obtained for the retrieved real refractive index (1.49 ± 0.02) and effective density (1.68 ± 0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10

  12. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the

  13. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables.

    PubMed

    Hewett, P

    1995-02-01

    Particle size distributions were measured for fumes from mild steel (MS) and stainless steel (SS); shielded metal arc welding (SMAW) and gas metal arc welding (GMAW) consumables. Up to six samples of each type of fume were collected in a test chamber using a micro-orifice uniform deposit (cascade) impactor. Bulk samples were collected for bulk fume density and specific surface area analysis. Additional impactor samples were collected using polycarbonate substrates and analyzed for elemental content. The parameters of the underlying mass distributions were estimated using a nonlinear least squares analysis method that fits a smooth curve to the mass fraction distribution histograms of all samples for each type of fume. The mass distributions for all four consumables were unimodal and well described by a lognormal distribution; with the exception of the GMAW-MS and GMAW-SS comparison, they were statistically different. The estimated mass distribution geometric means for the SMAW-MS and SMAW-SS consumables were 0.59 and 0.46 micron aerodynamic equivalent diameter (AED), respectively, and 0.25 micron AED for both the GMAW-MS and GMAW-SS consumables. The bulk fume densities and specific surface areas were similar for the SMAW-MS and SMAW-SS consumables and for the GMAW-MS and GMAW-SS consumables, but differed between SMAW and GMAW. The distribution of metals was similar to the mass distributions. Particle size distributions and physical properties of the fumes were considerably different when categorized by welding method. Within each welding method there was little difference between MS and SS fumes. PMID:7856513

  14. The Collisional Evolution of the Trans-Neptunian Object Size Distribution

    NASA Astrophysics Data System (ADS)

    O'Brien, D. P.; Greenberg, R.

    2004-11-01

    The HST survey of trans-Neptunian objects (TNOs) by Bernstein et al. [1] detected two distinct populations, `classical' and `excited', and found a deficit of smaller (≲100 km) TNOs relative to the power law found earlier for larger bodies. Using the analytical model of O'Brien and Greenberg [2] and a numerical collisional evolution model [3] with reasonable strength parameters for icy bodies [4], we find that the TNO populations likely started with shallow initial size distributions, and that bodies ≳ 10 km in diameter are likely not in a collisional steady state. If the initial size distributions were steeper than the current size distributions, collisional erosion could not remove enough bodies over the age of the solar system to match the observations. The size distribution of TNOs ≳ 10 km in diameter must therefore be primordial. We also use our numerical model to address the origin of Jupiter-family comets (JFCs). Comparing the `classical' and `excited' size distributions to the results of numerical simulations of the supply of JFCs, Bernstein et al. find that most JFCs are ˜1 km in diameter and come from the `excited' population. An upturn in the size distribution at sizes below their survey limit could increase the size of JFC precursors and possibly allow the `classical' population to contribute a significant number of JFCs. Our numerical simulations show that the collisional production of bodies below ˜10 km in diameter can create a small upturn in the `classical' and `excited' size distributions, but it is not able to substantially increase the contribution of JFCs from the `classical' population or increase the size of JFC precursors. [1] Bernstein et al., AJ, submitted (AstroPH/0308467 v.3). [2] O'Brien and Greenberg, Icarus 164, 2003. [3] O'Brien and Greenberg, in prep. [4] Benz and Asphaug, Icarus 142, 1999.

  15. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    SciTech Connect

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-07-05

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy’s Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  16. Modelling mass transport through a porous partition: Effect of pore size distribution

    NASA Astrophysics Data System (ADS)

    Khayet, Mohamed; Velázquez, Armando; Mengual, Juan I.

    2004-09-01

    Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated.

  17. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure

    PubMed Central

    Kozawa, Kathleen H.; Winer, Arthur M.; Fruin, Scott A.

    2013-01-01

    High ambient ultrafine particle (UFP) concentrations may play an important role in the adverse health effects associated with living near busy roadways. However, UFP size distributions change rapidly as vehicle emissions dilute and age. These size changes can influence UFP lung deposition rates and dose because deposition in the respiratory system is a strong function of particle size. Few studies to date have measured and characterized changes in near-road UFP size distributions in real-time, thus missing transient variations in size distribution due to short-term fluctuations in wind speed, direction, or particle dynamics. In this study we measured important wind direction effects on near-freeway UFP size distributions and gradients using a mobile platform with 5-s time resolution. Compared to more commonly measured perpendicular (downwind) conditions, parallel wind conditions appeared to promote formation of broader and larger size distributions of roughly one-half the particle concentration. Particles during more parallel wind conditions also changed less in size with downwind distance and the fraction of lung-deposited particle number was calculated to be 15% lower than for downwind conditions, giving a combined decrease of about 60%. In addition, a multivariate analysis of several variables found meteorology, particularly wind direction and temperature, to be important in predicting UFP concentrations within 150 m of a freeway (R2 = 0.46, p = 0.014). PMID:24415904

  18. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.

    2016-05-01

    We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.

  19. Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations.

    PubMed

    Wang, M; Gordon, H R

    1995-10-20

    We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560

  20. Influence of Particle Size Distribution on Micromechanical Properties of thin Nanoparticulate Coatings

    NASA Astrophysics Data System (ADS)

    Barth, Nina; Schilde, Carsten; Kwade, Arno

    In this study the production of thin nanoparticulate coatings on solid stainless-steel substrates using dip-coating was investigated. Defined particle sizes and particle size distributions of Al2O3-nanoparticles were adjusted by stirred media milling using various operating parameters. Using nanoindentation the influence of particle size and width of the particle size distribution on the mechanical properties was investigated. In particular the establishment of nanoindentation routines for particulate thin films in contrast to hard coatings is discussed. Nanoindentation appears to be an efficient method for analysing mechanical properties of said thin coatings. It will be shown, that the influence of the substrate can be neglected for small indent depth while the coating's surface roughness influences the employed routine of the nanoindentation. The effect of the median particle size and the width of the particle size distribution on the coating structure and the micromechanical coating properties will be discussed. As a result, the maximum indentation force decreases with decreasing particle size but rises again once the nanoparticles reach very small sizes. A change in the width of the particle size distribution influences the micromechanical properties and coating structure as well.

  1. Golf Aerodynamics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A former Martin Marietta Manned Space Systems engineer, Robert T. Thurman went from analyzing airloads on the Space Shuttle External Tank to analyzing airloads on golf balls for Wilson Sporting Goods Company. Using his NASA know-how, Thurman designed the Ultra 500 golf ball, which has three different-sized dimples in 60 triangular faces (instead of the usual 20) formed by a series of intersecting "parting" lines. This balances the asymmetry caused by the molding line in all golf balls. According to Wilson, the ball sustains initial velocity longer and produces the most stable ball flight for "unmatched" accuracy and distance.

  2. A new stochastic algorithm for inversion of dust aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  3. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  4. PARTICLE SIZE DISTRIBUTIONS FROM SELECT RESIDENCES PARTICIPATING IN THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    Particle Size Distributions from Select Residences Participating in the NERL RTP PM Panel Study. Alan Vette, Ronald Williams, and Michael Riediker, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711; Jonathan Thornburg...

  5. Ductility of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Skripnyak, Nataliya V.; Skripnyak, Evgeniya G.

    Ductility of ultrafine grained (UFG) metal alloys with a distribution of grain size was investigated in wide loading conditions by numerical simulation. The multiscale models with a unimodal and a bimodal grain size distributions were developed using the data of structure research of hexagonal close packed and face center cubic UFG alloys. Macroscopic fracture is considered as a result of the formation of percolation clusters of damage at the mesoscopic level. The critical fracture strain of UFG alloys on the mesoscale level depends on the relative volumes of coarse grains. The nucleation of damages at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. The concentration of damages arise in the vicinity of the boundaries of coarse and ultrafine grains. The occurrence of a bimodal grain size distributions causes the increase of UFG alloys' ductility, but decrease of their tensile strength. Linkoping University, Sweden.

  6. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  7. Development of a simplified optical technique for the simultaneous measurement of particle size distribution and velocity

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Existing techniques were surveyed, an experimental procedure was developed, a laboratory test model was fabricated, limited data were recovered for proof of principle, and the relationship between particle size distribution and amplitude measurements was illustrated in an effort to develop a low cost, simplified optical technique for measuring particle size distributions and velocities in fluidized bed combustors and gasifiers. A He-Ne laser illuminated Rochi Rulings (range 10 to 500 lines per inch). Various samples of known particle size distributions were passed through the fringe pattern produced by the rulings. A photomultiplier tube converted light from the fringe volume to an electrical signal which was recorded using an oscilloscope and camera. The signal amplitudes were correlated against the known particle size distributions. The correlation holds true for various samples.

  8. Species-range size distributions: products of speciation, extinction and transformation

    PubMed Central

    Gaston, K. J.

    1998-01-01

    One basic summary of the spatial pattern of biodiversity across the surface of the Earth is provided by a species-range size distribution, the frequency distribution of the numbers of species exhibiting geographic ranges of different sizes. Although widely considered to be approximately lognormal, increasingly it appears that across a variety of groups of organisms this distribution systematically departs from such a form. Whatever its detailed shape, however, the distribution must arise as a product of three processes, speciation, extinction and transformation (the temporal dynamics of the range sizes of species during their life times). Considering the role potentially played by each of these processes necessitates drawing on information from a diverse array of research fields, and highlights the possible role of geographic range size as a common currency uniting them.

  9. Cluster mass fraction and size distribution determined by fs-time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2009-11-01

    Characterization of supersonic gas jets is important for accurate interpretation and control of laser-cluster experiments. While average size and total atomic density can be found by standard Rayleigh scatter and interferometry, cluster mass fraction and size distribution are usually difficult to measure. Here we determine the cluster fraction and the size distribution with fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The fs-time-resolved refractive index measured with frequency domain interferometer (FDI) shows different contributions from monomer plasma and cluster plasma in the time domain, enabling us to determine the cluster fraction. The fs-time-resolved absorption measured by a delayed probe shows the contribution from clusters of various sizes, allowing us to find the size distribution.

  10. Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows

    NASA Technical Reports Server (NTRS)

    McKenzie, D.; Savage, S.

    2011-01-01

    The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.

  11. DISTRIBUTION FUNCTIONS OF SIZES AND FLUXES DETERMINED FROM SUPRA-ARCADE DOWNFLOWS

    SciTech Connect

    McKenzie, D. E.; Savage, S. L.

    2011-07-01

    The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage and McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.

  12. The κ-generalized distribution: A new descriptive model for the size distribution of incomes

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G.

    2008-05-01

    This paper proposes the κ-generalized distribution as a model for describing the distribution and dispersion of income within a population. Formulas for the shape, moments and standard tools for inequality measurement-such as the Lorenz curve and the Gini coefficient-are given. A method for parameter estimation is also discussed. The model is shown to fit extremely well the data on personal income distribution in Australia and in the United States.

  13. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones. PMID:27463039

  14. Characterizations of particle size distribution of the droplets exhaled by sneeze.

    PubMed

    Han, Z Y; Weng, W G; Huang, Q Y

    2013-11-01

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed. PMID:24026469

  15. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a

  16. The magnetized sheath of a dusty plasma with grains size distribution

    SciTech Connect

    Ou, Jing Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.

  17. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  18. Polymorphic mountain whitefish (Prosopium williamsoni) in a coastal riverscape: size class assemblages, distribution, and habitat associations

    USGS Publications Warehouse

    Starr, James C.; Torgersen, Christian

    2015-01-01

    We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.

  19. Demographic properties shape tree size distribution in a Malaysian rain forest.

    PubMed

    Kohyama, Takashi S; Potts, Matthew D; Kohyama, Tetsuo I; Kassim, Abd Rahman; Ashton, Peter S

    2015-03-01

    Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory. PMID:25674691

  20. A facile synthesis of Tenanoparticles with binary size distribution by green chemistry

    NASA Astrophysics Data System (ADS)

    He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E.; Dickerson, James H.

    2011-04-01

    Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated.Our work reports a facile route to colloidal Tenanocrystals with binary uniform size distributions at room temperature. The binary-sized Tenanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated. Electronic supplementary information (ESI) available: Synthetic procedures, FTIR analysis, ED pattern, AFM image, and EPD current curve. See DOI: 10.1039/c1nr10025d

  1. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter <0.31 μm but paraffinic fuel blends could decrease particles with diameter <1 μm. The mass median diameter of overall particles (MMD o) and σg,o are 0.439 μm and 3.88 for D100; 0.380 μm and 3.24 for B20; 0.465 μm and 4.22 for B100; 1.40 μm and 4.92 for BP9505; 1.46 μm and 2.25 for BP8020. There are more particles with low aerodynamic diameters (diameter <0.31 μm) in the exhaust of D100, B20 and B100 fuels. On the other hand, a greater fraction of particulate matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic

  2. The Effect of Mineralization on Pore-size Distribution Patterns in Sandstone

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Ague, J. J.

    2008-12-01

    In geological media, pore-size distributions can strongly influence important physical parameters such as permeability and specific surface area. Mineralization in rock and soil often reduces the overall porosity and can also induce changes in the distribution of pore sizes. However, the way in which mineralization affects pore size is poorly understood, with relatively little data available from field-based studies. Here, we present a high-resolution profile of pore-size distributions from a variably mineralized sandstone section. The samples were obtained from a Barents Sea core in which quartz cement had preferentially precipitated around stylolite (pressure solution) interfaces; pore-size distributions were measured in 15 samples using mercury injection porosimetry. The results demonstrate that mineralization led to a reduction in porosity of around 40% in samples closest to the stylolite. However, this reduction was not uniform over the range of pore-sizes: the greatest level of porosity reduction occurred in the 10-5-10-4 m size range, while there was no discernible change in the porosity associated with smaller pores. A reactive transport model - simulating the dissolution of quartz at the stylolite interface and subsequent reprecipitation in the rock matrix - was used to predict the evolution of the porosity associated with multiple pore-sizes; the model was successfully able to reproduce the observed porosity patterns, indicating that such an approach could be integrated into efforts to model the evolution of porosity in geological formations, including during CO2 sequestration.

  3. Nanofiltration membranes with narrowed pore size distribution via pore wall modification.

    PubMed

    Du, Yong; Lv, Yan; Qiu, Wen-Ze; Wu, Jian; Xu, Zhi-Kang

    2016-06-30

    We propose a novel strategy for narrowing down the pore size distribution of ready-made nanofiltration membranes (NFMs) via pore wall modification. NFMs were subjected to the filtration of a highly reactive molecule solution, during which large pores were selectively reduced in size. The as-treated NFMs have high monovalent ion/divalent ion selectivity. PMID:27321407

  4. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  5. Empirical evidence for multi-scaled controls on wildfire size distributions in California

    NASA Astrophysics Data System (ADS)

    Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.

    2014-12-01

    Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California

  6. Changes in Arctic Sea Ice Floe Size Distribution in the Marginal Ice Zone in a Thickness and Floe Size Distribution Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Stern, H. L., III; Hwang, P. B.; Schweiger, A. J. B.; Stark, M.; Steele, M.

    2015-12-01

    To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. We have developed a FSD theory [Zhang et al., 2015] that is coupled to the ITD theory of Thorndike et al. [1975] in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice opening, ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. It is also based on the assumption that floes of larger sizes are easier to break because they are subject to larger flexure-induced stresses and strains than smaller floes that are easier to ride with waves with little bending; larger floes also have higher areal coverages and therefore higher probabilities to break. These assumptions with corresponding formulations ensure that the simulated FSD follows a power law as observed by satellites and airborne surveys. The FSD theory has been tested in the Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS). The existing PIOMAS has 12 categories each for ice thickness, ice enthalpy, and snow depth. With the implementation of the FSD theory, PIOMAS is able to represent 12 categories of floe sizes ranging from 0.1 m to ~3000 m. It is found that the simulated 12-category FSD agrees reasonably well with FSD derived from SAR and MODIS images. In this study, we will

  7. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, J. W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-08-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in well controlled repeatable lab scale biomass fires for southwestern United States fuels with focus on chaparral. The combustion laboratory at the United States Department of Agriculture-Forest Service's Fire Science Laboratory (USDA-FSL), Missoula, MT provided a repeatable combustion and dilution environment ideal for measurements. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing mass size distribution from FMPS and APS measurement 51-68% of particle mass was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most fuels produced a unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using the slopes in MCE (Modified Combustion Efficiency) vs. geometric mean diameter than only using MCE values.

  8. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar

    2015-05-01

    Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first

  9. Evaluation of eruptive energy of a pyroclastic deposit applying fractal geometry to fragment size distributions

    NASA Astrophysics Data System (ADS)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    Fractal fragmentation theory has been applied to characterize the particle size distribution of pyroclastic deposits generated by volcanic explosions. Recent works have demonstrated that fractal dimension on grain size distributions can be used as a proxy for estimating the energy associated with volcanic eruptions. In this work we seek to establish a preliminary analytical protocol that can be applied to better characterize volcanic fall deposits and derive the potential energy for fragmentation that was stored in the magma prior/during an explosive eruption. The methodology is based on two different techniques for determining the grain-size distribution of the pyroclastic samples: 1) dry manual sieving (particles larger than 297μm), and 2) automatic grain size analysis via a CamSizer-P4®device, the latter measure the distribution of projected area, obtaining a cumulative distribution based on volume fraction for particles up to 30mm. Size distribution data have been analyzed by applying the fractal fragmentation theory estimating the value of Df, i.e. the fractal dimension of fragmentation. In order to test our protocol we studied the Cretaio eruption, Ischia island, Italy. Results indicate that size distributions of pyroclastic fall deposits follow a fractal law, indicating that the fragmentation process of these deposits reflects a scale-invariant fragmentation mechanism. Matching the results from manual and automated techniques allows us to obtain a value of the "fragmentation energy" from the explosive eruptive events that generate the Cretaio deposits. We highlight the importance of these results, based on fractal statistics, as an additional volcanological tool for addressing volcanic risk based on the analyses of grain size distributions of natural pyroclastic deposits. Keywords: eruptive energy, fractal dimension of fragmentation, pyroclastic fallout.

  10. A technique for estimating rangeland canopy-gap size distributions from high resolution digital imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount and distribution of gaps in vegetation canopy is a useful indicator of multiple ecosystem processes and functions. We describe a semi-automated approach for estimating canopy-gap size distributions in rangelands from high-resolution (HR) digital images using image interpretation by observ...

  11. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    SciTech Connect

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  12. A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.

    2013-02-01

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.

  13. The temperature and size distribution of large water clusters from a non-equilibrium model.

    PubMed

    Gimelshein, N; Gimelshein, S; Pradzynski, C C; Zeuch, T; Buck, U

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H2O)n clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments. PMID:26133426

  14. The CONTIN algorithm and its application to determine the size distribution of microgel suspensions

    SciTech Connect

    Scotti, A.; Liu, W.; Hyatt, J. S.; Fernandez-Nieves, A.; Herman, E. S.; Lyon, L. A.; Choi, H. S.; Kim, J. W.; Gasser, U.

    2015-06-21

    We review a powerful regularization method, known as CONTIN, for obtaining the size distribution of colloidal suspensions from dynamic light scattering data. We show that together with the so-called L-curve criterion for selecting the optimal regularization parameter, the method correctly describes the average size and size distribution of microgel suspensions independently characterized using small-angle neutron scattering. In contrast, we find that when using the default regularization process, where the regularizer is selected via the “probability to reject” method, the results are not as satisfactory.

  15. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  16. The temperature and size distribution of large water clusters from a non-equilibrium model

    SciTech Connect

    Gimelshein, N.; Gimelshein, S.; Pradzynski, C. C.; Zeuch, T.; Buck, U.

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H{sub 2}O){sub n} clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.

  17. The size distributions of asteroid families in the SDSS Moving Object Catalog 4

    NASA Astrophysics Data System (ADS)

    Parker, A.; Ivezić, Ž.; Jurić, M.; Lupton, R.; Sekora, M. D.; Kowalski, A.

    2008-11-01

    Asteroid families, traditionally defined as clusters of objects in orbital parameter space, often have distinctive optical colors. We show that the separation of family members from background interlopers can be improved with the aid of SDSS colors as a qualifier for family membership. Based on an ˜88,000 object subset of the Sloan Digital Sky Survey Moving Object Catalog 4 with available proper orbital elements, we define 37 statistically robust asteroid families with at least 100 members (12 families have over 1000 members) using a simple Gaussian distribution model in both orbital and color space. The interloper rejection rate based on colors is typically ˜10% for a given orbital family definition, with four families that can be reliably isolated only with the aid of colors. About 50% of all objects in this data set belong to families, and this fraction varies from about 35% for objects brighter than an H magnitude of 13 and rises to 60% for objects fainter than this. The fraction of C-type objects in families decreases with increasing H magnitude for H>13, while the fraction of S-type objects above this limit remains effectively constant. This suggests that S-type objects require a shorter timescale for equilibrating the background and family size distributions via collisional processing. The size distribution varies significantly among families, and is typically different from size distributions for background populations. The size distributions for 15 families display a well-defined change of slope and can be modeled as a "broken" double power-law. Such "broken" size distributions are twice as likely for S-type familes than for C-type families (73% vs. 36%), and are dominated by dynamically old families. The remaining families with size distributions that can be modeled as a single power law are dominated by young families (<1 Gyr). When size distribution requires a double power-law model, the two slopes are correlated and are steeper for S-type families

  18. Narrowly size-distributed cobalt salt containing poly(2-hydroxyethyl methacrylate) particles by inverse miniemulsion.

    PubMed

    Cao, Zhihai; Wang, Zhuo; Herrmann, Christine; Ziener, Ulrich; Landfester, Katharina

    2010-05-18

    Cobalt-containing hybrid particles have been prepared through the encapsulation of cobalt tetrafluoroborate hexahydrate (CoTFB) via inverse miniemulsion polymerization of 2-hydroxyethyl methacrylate (HEMA). We systematically varied the amount and type of cosolvent (water, methanol, ethanol, ethylene glycol), apolar continuous phase (cyclohexane, isooctane, isopar M, hexadecane), amount of cobalt salt, and molecular weight of the polymeric surfactant. The influence of those parameters on the particle size, size distribution, and particle morphology were investigated. Narrowly size-distributed hybrid particles with good colloidal stability could be obtained in a wide range of cobalt content between 5.7 and 22.6 wt % salt relative to the monomer. The addition of a cosolvent such as water not only promotes the loading of metal salt but also has a positive influence on narrowing the particle size distribution. We assume that generally narrowly size-distributed particles can be obtained for a large variety of combinations of polar/apolar phase by adjusting the balance between osmotic and Laplace pressure via the solubility of the metal salt in the continuous phase and lowering the interfacial tension by adjusting the hydrophilic-lipophilic balance (HLB) value of the surfactant. The results show a significant advantage of the inverse miniemulsion over the direct system with respect to the variability and total amount of metal salt without losing the narrow particle size distribution and colloidal stability. PMID:20112941

  19. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  20. ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. I. CLASSIFYING THE EVOLUTION OF SIZE DISTRIBUTION

    SciTech Connect

    Okuzumi, Satoshi; Sakagami, Masa-aki; Tanaka, Hidekazu; Takeuchi, Taku

    2011-04-20

    Collisional growth of submicron-sized dust grains into macroscopic aggregates is the first step of planet formation in protoplanetary disks. These grains are expected to carry nonzero negative charges in the weakly ionized disks, but its effect on their collisional growth has not been fully understood so far. In this paper, we investigate how the charging affects the evolution of the dust size distribution properly taking into account the charging mechanism in a weakly ionized gas as well as porosity evolution through low-energy collisions. To clarify the role of the size distribution, we divide our analysis into two steps. First, we analyze the collisional growth of charged aggregates assuming a monodisperse (i.e., narrow) size distribution. We show that the monodisperse growth stalls due to the electrostatic repulsion when a certain condition is met, as was already expected in our previous work. Second, we numerically simulate dust coagulation using Smoluchowski's method to see how the outcome changes when the size distribution is allowed to freely evolve. We find that, under certain conditions, the dust undergoes bimodal growth where only a limited number of aggregates continue to grow, carrying a major part of the dust mass in the system. This occurs because remaining small aggregates efficiently sweep up free electrons to prevent the larger aggregates from being strongly charged. We obtain a set of simple criteria that allows us to predict how the size distribution evolves for a given condition. In Paper II, we apply these criteria to dust growth in protoplanetary disks.

  1. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm. PMID:26890386

  2. Aerosol size distribution estimation and associated uncertainty for measurement with a Scanning Mobility Particle Sizer (SMPS)

    NASA Astrophysics Data System (ADS)

    Coquelin, L.; Fischer, N.; Motzkus, C.; Mace, T.; Gensdarmes, F.; Le Brusquet, L.; Fleury, G.

    2013-04-01

    Scanning Mobility Particle Sizer (SMPS) is a high resolution nanoparticle sizing system that has long been hailed as the researcher's choice for airborne nanoparticle size characterization for nano applications including nanotechnology research and development. SMPS is widely used as the standard method to measure airborne particle size distributions below 1 μm. It is composed of two devices: a Differential Mobility Analyzer (DMA) selects particle sizes thanks to their electrical mobility and a Condensation Particle Counter (CPC) enlarges particles to make them detectable by common optical counters. System raw data represent the number of particles counted over several classes of mobility diameters. Then, common inversion procedures lead to the estimation of the aerosol size distribution. In this paper, we develop a methodology to compute the uncertainties associated with the estimation of the size distribution when several experiences have been carried out. The requirement to repeat the measure ensures a realistic variability on the simulated data to be generated. The work we present consists in considering both the uncertainties coming from the experimental dispersion and the uncertainties induced by the lack of knowledge on physical phenomena. Experimental dispersion is quantified with the experimental data while the lack of knowledge is modelled via the existing physical theories and the judgements of experts in the field of aerosol science. Thus, running Monte-Carlo simulations give an estimation of the size distribution and its corresponding confidence region.

  3. Body size distributions signal a regime shift in a lake ecosystem.

    PubMed

    Spanbauer, Trisha L; Allen, Craig R; Angeler, David G; Eason, Tarsha; Fritz, Sherilyn C; Garmestani, Ahjond S; Nash, Kirsty L; Stone, Jeffery R; Stow, Craig A; Sundstrom, Shana M

    2016-06-29

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. PMID:27335415

  4. Particle size distribution of halogenated flame retardants and implications for atmospheric deposition and transport.

    PubMed

    Okonski, Krzysztof; Degrendele, Céline; Melymuk, Lisa; Landlová, Linda; Kukučka, Petr; Vojta, Šimon; Kohoutek, Jiří; Čupr, Pavel; Klánová, Jana

    2014-12-16

    This study investigates the distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and a group of novel flame retardants (NFRs) on atmospheric aerosols. Two high volume cascade impactors were used to collect particulate fractions of ambient air over a one year period at urban and rural sites. The majority of FRs were found on the finest aerosols (<0.95 μm). Concentrations of HBCD were higher than those of ΣPBDEs. Moreover, we noted seasonality and spatial differences in particle size distributions, yet a large portion of the observed differences were due to differences in particulate matter (PM) itself. When normalized by PM, the size distributions of the FRs exhibited much greater heterogeneity. Differences existed between the FR distributions by molecular weight, with the higher molecular weight FRs (e.g., BDE-209, Dechlorane Plus) distributed more uniformly across all particulate size fractions. The seasonal, spatial, and compound-specific differences are of crucial importance when estimating dry and wet deposition of FRs as smaller aerosols have longer atmospheric residence times. Estimated wet and dry deposition of four representative FRs (BDE-47, BDE-209, HBCD, and Dechlorane Plus) using size-segregated aerosol data resulted in lower deposition estimates than when bulk aerosol data were used. This has implications for estimates of long-range atmospheric transport and atmospheric residence times, as it suggests that without size-specific distributions, these parameters could be underestimated for FRs. PMID:25380095

  5. Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution

    SciTech Connect

    Arduini, R.F.; Minnis, P.; Smith, W.L.Jr.; Ayers, J.K.; Khaiyer, M.M.; Heck, P.

    2005-03-18

    Cloud reflectance models currently used in cloud property retrievals from satellites have been developed using size distributions defined by a set of fixed effective radii with a fixed effective variance. The satellite retrievals used for the Atmospheric Radiation Measurement (ARM) program assume droplet size distributions with an effective variance value of 0.10 (Minnis et al. 1998); the International Satellite Cloud Climatology Project uses 0.15 (Rossow and Schiffer 1999); and the Moderate Resolution Imaging Spectroradiometer (MODIS) team uses 0.13 (Nakajima and King 1990). These distributions are not necessarily representative of the actual sizes present in the clouds being observed. Because the assumed distributions can affect the reflectance patterns and near-infrared absorption, even for the same droplet effective radius reff, it is desirable to use the optimal size distributions in satellite retrievals of cloud properties. Collocated observations of the same clouds from different geostationary satellites, at different viewing angles, indicate that the current models may not be optimal (Ayers et al. 2005). Similarly, hour-to-hour variations in effective radius and optical depth reveal an unexplained dependence on scattering angle. To explore this issue, this paper examines the sensitivity of the cloud reflectance at 0.65 and 3.90-{micro}m to changes in the effective variance, or the spectral dispersion, of the modeled size distributions. The effects on the scattering phase functions and on the cloud reflectances are presented, as well as some resultant effects on the retrieved cloud properties.

  6. Improved statistical characterization of particle-size distributions in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Huzurbazar, S.; Hajek, E.; Lynds, R.; Heller, P.; Mohrig, D.

    2007-12-01

    Measured particle-size distributions are commonly reduced to one characteristic value (e.g., median grain diameter) that is used in sediment transport modeling. While convenient, this approach cannot be used to explore the potential influence grain-size distributions may have on sediment transport and deposition. We statistically characterize grain-size distributions in samples of bed-material load, suspended load, and slackwater deposits from the sand-bedded Calamus, North Loup, and Niobrara rivers (Nebraska, USA). Transported sediment samples are best modeled with log-hyperbolic distributions, and slackwater deposits are bi- or multi-modal mixtures. Despite large overlaps in the grain sizes of bed-material-load and suspended-load samples, estimated parameters of fitted log-hyperbolic distributions show consistent differences between these samples across all rivers. Bed-material load samples have higher modes and positive (coarse-grained) asymmetry, whereas suspended load samples have lower modes and weaker asymmetry. In all three rivers, slackwater deposits contain the entire range of grain sizes present in suspended load, but with a significant component of very fine-grained (< 0.02 mm) material that is undetectable in suspended sediment samples. This suggests some degree of fractionated deposition of suspended sediment in areas of near-zero flow velocities. Ultimately, in order to explore the effect of grain-size distributions on sediment transport and river processes, these modeled distributions can be incorporated into a Bayesian hierarchical framework where standard sediment transport equations can be modeled in relation to probability-density particle curves for grain size.

  7. Does a theoretical estimation of the dust size distribution at emission suggest more bioavailable iron deposition.

    SciTech Connect

    Ito, A; Kok, J; Feng, Y; Penner, J

    2012-01-01

    Global models have been used to deduce atmospheric iron supply to the ocean, but the uncertainty remains large. We used a global chemical transport model to investigate the effect of the estimated size distribution of dust on the bioavailable iron deposition. Simulations are performed with six different size distributions for dust aerosols at emission using similar aerosol optical depths (AODs) to constrain the total emission flux of dust. The global dust emission rate using a recent theoretical estimate for the dust size distribution at emission (2116 Tg yr{sup -1}) is about two times larger than the average of estimates using the other four empirical size distributions (1089 {+-} 469 Tg yr{sup -1}). In contrast to the large differences in total emissions, the emission of fine dust (diameter < 2.5 {mu}m) is relatively robust (176 {+-} 34 Tg yr{sup -1}), due to the strong constraint of AOD on fine dust emission. Our model results indicate that soluble iron (SFe) deposition is relatively invariant to the dust size distribution at emission in regions where most soluble iron is provided by acid mobilization of fine dust. In contrast, the use of the theoretical size distribution suggests a larger deposition of SFe (by a factor of 1.2 to 5) in regions where the concentration of acidic gases is insufficient to promote iron dissolution in dust particles, such as the South Atlantic. These results could have important implications for the projection of marine ecosystem feedbacks to climate change and highlight the necessity to improve the dust size distribution.

  8. Nutrient conditions and reactor configuration influence floc size distribution and settling properties.

    PubMed

    Ehlers, G A C; Wagachchi, D; Turner, S J

    2012-01-01

    Floc formation and settleability is critical for effective solid-liquid separation in many wastewater treatment processes. This study aimed to investigate the relationship between particle size distribution and nutrient conditions in different bioreactor configurations. Size distribution profiles of flocs that formed in continuous (B1), continuous with clarifier and return sludge (B2) and SBR (B3) reactors were investigated in parallel under identical nutrient conditions. An eight-fold dilution of the influent COD of a synthetic dairy processing wastewater resulted in a 'feast and famine' regime that triggered significant effects on the biomass and flocculation characteristics. Floc size analysis of reactor MLSS revealed a shift in floc sizes when reactors were fed with the minimum (famine) COD wastewater feed (0.61 g L(-1)). Increasing floc size distributions were detected for all reactors during the minimum COD feed although different size patterns were observed for different reactor configurations. These increases corresponded with variations in aggregation and EPS quantities. The SBR yielded comparatively larger flocs when operated under both COD feeds as indicated by d(0.9) values (90% of particles ≤ d in size). Overall the results indicated that floc formation and floc size are mediated by nutrient concentrations and represents an important step towards improved solid-liquid separation. PMID:22173420

  9. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  10. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  11. New Measurements of the Particle Size Distribution of Apollo 11 Lunar Soil 10084

    NASA Technical Reports Server (NTRS)

    McKay, D.S.; Cooper, B.L.; Riofrio, L.M.

    2009-01-01

    We have initiated a major new program to determine the grain size distribution of nearly all lunar soils collected in the Apollo program. Following the return of Apollo soil and core samples, a number of investigators including our own group performed grain size distribution studies and published the results [1-11]. Nearly all of these studies were done by sieving the samples, usually with a working fluid such as Freon(TradeMark) or water. We have measured the particle size distribution of lunar soil 10084,2005 in water, using a Microtrac(TradeMark) laser diffraction instrument. Details of our own sieving technique and protocol (also used in [11]). are given in [4]. While sieving usually produces accurate and reproducible results, it has disadvantages. It is very labor intensive and requires hours to days to perform properly. Even using automated sieve shaking devices, four or five days may be needed to sieve each sample, although multiple sieve stacks increases productivity. Second, sieving is subject to loss of grains through handling and weighing operations, and these losses are concentrated in the finest grain sizes. Loss from handling becomes a more acute problem when smaller amounts of material are used. While we were able to quantitatively sieve into 6 or 8 size fractions using starting soil masses as low as 50mg, attrition and handling problems limit the practicality of sieving smaller amounts. Third, sieving below 10 or 20microns is not practical because of the problems of grain loss, and smaller grains sticking to coarser grains. Sieving is completely impractical below about 5- 10microns. Consequently, sieving gives no information on the size distribution below approx.10 microns which includes the important submicrometer and nanoparticle size ranges. Finally, sieving creates a limited number of size bins and may therefore miss fine structure of the distribution which would be revealed by other methods that produce many smaller size bins.

  12. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yang, Shengli; Yan, Maodu

    2015-01-01

    studies demonstrate that particle size separation based on gravitational settling and detailed rock magnetic measurements of the resulting fractionated samples constitutes an effective approach to evaluating the relative contributions of pedogenic and detrital components in the loess and paleosol sequences on the Chinese Loess Plateau. So far, however, similar work has not been undertaken on the loess deposits in Central Asia. In this paper, 17 loess and paleosol samples from three representative loess sections in Central Asia were separated into four grain size fractions, and then systematic rock magnetic measurements were made on the fractions. Our results demonstrate that the content of the <4 μm fraction in the Central Asian loess deposits is relatively low and that the samples generally have a unimodal particle distribution with a peak in the medium-coarse silt range. We find no significant difference between the particle size distributions obtained by the laser diffraction and the pipette and wet sieving methods. Rock magnetic studies further demonstrate that the medium-coarse silt fraction (e.g., the 20-75 μm fraction) provides the main control on the magnetic properties of the loess and paleosol samples in Central Asia. The contribution of pedogenically produced superparamagnetic (SP) and stable single-domain (SD) magnetic particles to the bulk magnetic properties is very limited. In addition, the coarsest fraction (>75 μm) exhibits the minimum values of χ, χARM, and SIRM, demonstrating that the concentrations of ferrimagnetic grains are not positively correlated with the bulk particle size in the Central Asian loess deposits.

  13. Spatial distribution and size of small canopy gaps created by Japanese black bears: estimating gap size using dropped branch measurements

    PubMed Central

    2013-01-01

    Background Japanese black bears, a large-bodied omnivore, frequently create small gaps in the tree crown during fruit foraging. However, there are no previous reports of black bear-created canopy gaps. To characterize physical canopy disturbance by black bears, we examined a number of parameters, including the species of trees in which canopy gaps were created, gap size, the horizontal and vertical distribution of gaps, and the size of branches broken to create gaps. The size of black bear-created canopy gaps was estimated using data from branches that had been broken and dropped on the ground. Results The disturbance regime was characterized by a highly biased distribution of small canopy gaps on ridges, a large total overall gap area, a wide range in gap height relative to canopy height, and diversity in gap size. Surprisingly, the annual rate of bear-created canopy gap formation reached 141.3 m2 ha–1 yr–1 on ridges, which were hot spots in terms of black bear activity. This rate was approximately 6.6 times that of tree-fall gap formation on ridges at this study site. Furthermore, this rate was approximately two to three times that of common tree-fall gap formation in Japanese forests, as reported in other studies. Conclusions Our findings suggest that the ecological interaction between black bears and fruit-bearing trees may create a unique light regime, distinct from that created by tree falls, which increases the availability of light resources to plants below the canopy. PMID:23758683

  14. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash

    SciTech Connect

    Wohletz, K.H. ); Sheridan, M.F. ); Brown, W.K. )

    1989-11-10

    The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: {ital n}({ital l})={ital kl}{sup {alpha}} exp(-{ital l}{beta}), where {ital n}({ital l}) represents the number of particles of diameter {ital l}, {ital l} is the normalized particle diameter, and {ital k}, {alpha}, and {beta} are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass {ital m}{prime}: {ital n}({ital x}, {ital m})={ital C} {integral}{integral} {ital n}({ital x}{prime}, {ital m}{prime}){ital p}({xi}) {ital dx}{prime} {ital dm}{prime}, where {ital x}{prime} denotes spatial location along a linear axis, {ital C} is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to {ital m}.

  15. Inferring local competition intensity from patch size distributions: a test using biological soil crusts

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.

    2012-01-01

    Dryland vegetation is inherently patchy. This patchiness goes on to impact ecology, hydrology, and biogeochemistry. Recently, researchers have proposed that dryland vegetation patch sizes follow a power law which is due to local plant facilitation. It is unknown what patch size distribution prevails when competition predominates over facilitation, or if such a pattern could be used to detect competition. We investigated this question in an alternative vegetation type, mosses and lichens of biological soil crusts, which exhibit a smaller scale patch-interpatch configuration. This micro-vegetation is characterized by competition for space. We proposed that multiplicative effects of genetics, environment and competition should result in a log-normal patch size distribution. When testing the prevalence of log-normal versus power law patch size distributions, we found that the log-normal was the better distribution in 53% of cases and a reasonable fit in 83%. In contrast, the power law was better in 39% of cases, and in 8% of instances both distributions fit equally well. We further hypothesized that the log-normal distribution parameters would be predictably influenced by competition strength. There was qualitative agreement between one of the distribution's parameters (μ) and a novel intransitive (lacking a 'best' competitor) competition index, suggesting that as intransitivity increases, patch sizes decrease. The correlation of μ with other competition indicators based on spatial segregation of species (the C-score) depended on aridity. In less arid sites, μ was negatively correlated with the C-score (suggesting smaller patches under stronger competition), while positive correlations (suggesting larger patches under stronger competition) were observed at more arid sites. We propose that this is due to an increasing prevalence of competition transitivity as aridity increases. These findings broaden the emerging theory surrounding dryland patch size distributions

  16. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI

    PubMed Central

    Shemesh, Noam; Álvarez, Gonzalo A.; Frydman, Lucio

    2015-01-01

    Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems – ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE’s ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions – where the ground truth can be determined from ancillary microscopy – corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE’s potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220

  17. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-02-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely, clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  18. Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days

    NASA Astrophysics Data System (ADS)

    Gao, Min; Jia, Ruizhi; Qiu, Tianlei; Han, Meilin; Song, Yuan; Wang, Xuming

    2015-10-01

    In recent years, haze events in Beijing have significantly increased in frequency. On haze days, airborne microorganisms are considered to be a potential risk factor for various health concerns. However, limited information on bioaerosols has prevented our proper understanding of the possible threat to human health due to these bioaerosols. In this study, we used a six-stage impactor for sampling culturable bioaerosols and the LUDEP 2.07 computer-based model for calculating their deposition on human lungs to investigate seasonal concentration, size distribution, and corresponding deposition efficiency and flux in the human respiratory tract during different haze-level events. The current results of the analysis of 398 samples over four seasons indicate that the concentration of culturable airborne bacteria decreased with increasing haze severity. The bioaerosol concentration ratio was skewed towards larger particle sizes on heavy haze days leading to larger bioaerosol aerodynamic diameters than on non-haze days. During nasal breathing by an adult male engaged in light exercise in an outdoor environment, the total deposition efficiency of culturable bioaerosols is 80-90% including approximately 70% in the upper respiratory tract, 5-7% in the alveoli, and about 3% in the bronchial couple with bronchiolar regions. Although the difference in culturable bioaerosol aerodynamic diameters at different haze levels was not large enough to cause obvious differences in lung deposition efficiency, the deposition fluxes clearly varied with the degree of haze owing to the varied concentration of culturable airborne bacteria and fungi. The results here could improve our understanding of the seasonal health threat due to culturable bioaerosols during non-haze and haze days.

  19. Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf

    NASA Astrophysics Data System (ADS)

    Li, Yunhai; Li, Dongyi; Fang, Jianyong; Yin, Xijie; Li, Haidong; Hu, Wenye; Chen, Jian

    2015-06-01

    Two surveys were conducted on the East China Sea inner shelf before and after the passage of Typhoon Morakot in 2009. The typhoon-induced variations in the size distributions of suspended matters were studied based on the data collected by a Laser In Situ Scattering Transmissometer (LISST). A comparison of the measurements from the two surveys revealed significant changes in seafloor sediment grain size, suspended matter volume concentration and size distribution due to Typhoon Morakot. The mean seafloor sediment grain size increased generally, while the sorting coefficient decreased after the typhoon. Before the typhoon, suspended matter size was generally >100 μm, which was significantly reduced to between 20-50 μm after the typhoon. The single-grain fraction with sizes <36 μm and microflocs with sizes between 36-133 μm significantly increased in volume concentrations and percentage after the typhoon. On the other hand, the volume concentration of macroflocs (with sizes >133 μm) were largely reduced from >40% before the typhoon to <20% after the typhoon in the entire water body. Our analyzes suggest that the dynamic process of the typhoon caused the seafloor sediment resuspension, which significantly increased the suspended matter volume concentration in addition to the increase of terrigenous materials due to high-intensity rainfall accompanying the typhoon. The typhoon process also decreased the suspended matter size and macrofloc (>133 μm) concentration by strong disturbance of water column and the temporary demise of plankton under heavy cloudy condition.

  20. Are range-size distributions consistent with species-level heritability?

    PubMed

    Borregaard, Michael K; Gotelli, Nicholas J; Rahbek, Carsten

    2012-07-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes. PMID:22759297

  1. An estimate of field size distributions for selected sites in the major grain producing countries

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1977-01-01

    The field size distributions for the major grain producing countries of the World were estimated. LANDSAT-1 and 2 images were evaluated for two areas each in the United States, People's Republic of China, and the USSR. One scene each was evaluated for France, Canada, and India. Grid sampling was done for representative sub-samples of each image, measuring the long and short axes of each field; area was then calculated. Each of the resulting data sets was computer analyzed for their frequency distributions. Nearly all frequency distributions were highly peaked and skewed (shifted) towards small values, approaching that of either a Poisson or log-normal distribution. The data were normalized by a log transformation, creating a Gaussian distribution which has moments readily interpretable and useful for estimating the total population of fields. Resultant predictors of the field size estimates are discussed.

  2. Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions

    USGS Publications Warehouse

    Rees, T.F.

    1990-01-01

    Photon correlation spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS. -from Author

  3. Finite-size effects on return interval distributions for weakest-link-scaling systems.

    PubMed

    Hristopulos, Dionissios T; Petrakis, Manolis P; Kaniadakis, Giorgio

    2014-05-01

    The Weibull distribution is a commonly used model for the strength of brittle materials and earthquake return intervals. Deviations from Weibull scaling, however, have been observed in earthquake return intervals and the fracture strength of quasibrittle materials. We investigate weakest-link scaling in finite-size systems and deviations of empirical return interval distributions from the Weibull distribution function. Our analysis employs the ansatz that the survival probability function of a system with complex interactions among its units can be expressed as the product of the survival probability functions for an ensemble of representative volume elements (RVEs). We show that if the system comprises a finite number of RVEs, it obeys the κ-Weibull distribution. The upper tail of the κ-Weibull distribution declines as a power law in contrast with Weibull scaling. The hazard rate function of the κ-Weibull distribution decreases linearly after a waiting time τ(c) ∝ n(1/m), where m is the Weibull modulus and n is the system size in terms of representative volume elements. We conduct statistical analysis of experimental data and simulations which show that the κ Weibull provides competitive fits to the return interval distributions of seismic data and of avalanches in a fiber bundle model. In conclusion, using theoretical and statistical analysis of real and simulated data, we demonstrate that the κ-Weibull distribution is a useful model for extreme-event return intervals in finite-size systems. PMID:25353774

  4. Size distribution of particles in Saturn’s rings from aggregation and fragmentation

    PubMed Central

    Brilliantov, Nikolai; Krapivsky, P. L.; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-01-01

    Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings. PMID:26183228

  5. Size distribution of particles in Saturn's rings from aggregation and fragmentation.

    PubMed

    Brilliantov, Nikolai; Krapivsky, P L; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-08-01

    Saturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ~r(-q) with q ≈ 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 ≤ q ≤ 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn's rings. PMID:26183228

  6. Determination of the pore size distribution and hydraulic properties from Nuclear Magnetic Resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura R.; Weihermüller, Lutz; Haber-Pohlmeier, Sabina; Stapf, Siegfried; Vereecken, Harry; Pohlmeier, Andreas

    2010-05-01

    Known pore size distributions can be directly linked to the water retention characteristic which is essential for the prognosis of water and solute movement through the material. In our study, we evaluated the feasibility to use Nuclear Magnetic Resonance (NMR) relaxometry measurements for the characterization of pore size distribution in four porous samples with different texture and composition. Therefore, NMR T2 and T1 relaxation measurements at 6.47 MHz were carried out for three model samples (medium sand; fine sand; and a homogenous sand / kaolin clay mixture) and a natural soil. To quantify the goodness of the approach, the NMR measurements were compared in terms of cumulated pore size distribution functions and mean pore diameter with the two classical techniques based on water retention and mercury porosimetry measurements. The results showed that T1 and T2 derived mean pore size diameters are in good agreement with each other but deviate from retention curve derived ones. This is especially the case for well sorted sands with n values > 2.7. For finer materials differences are less pronounced. A short study was performed to evaluate the influence of the variations observed in the pore diameter distributions on the hydraulic properties of the samples: θS, α, and n. In conclusion, NMR T1 and T2 relaxation measurements can be used to estimate pore size distribution, mean pore diameter, as well as the retention function and corresponding hydraulic properties.

  7. Aerosol Size Distribution Determined From Multiple Field-Of-View Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yabuki, M.; Tsuda, T.; Uesugi, T.

    2014-12-01

    Knowledge of aerosol size distribution is essential for its influence on atmosphere and human health, especially for small particles because they are able to penetrate lung tissues, thus increasing the risk of bronchitis or lung diseases. Lidar as an active optical remote sensing technique is effective for monitoring aerosols with high temporal and spatial variations. Particles with diameters comparable to the detecting light wavelength have been effectively detected by using UV, VIS, and near-IR wavelengths. However, to quantitatively estimate the shape of the particle size distribution, more information is required with respect to sub-micrometer and smaller particles. Conventional lidar employs tiny field-of-view (FOV) to detect single scatter reflected from aerosols in the direction opposite to incident light. However, the complicated reflection on the path of laser causes multiple scatter which contains also the size distribution information of aerosols. In this study, a UV Lidar with multiple FOV receiver was used for detecting such multiple scattering effects in order to obtain more quantitative information related to particle size distribution. The FOV of Lidar receiver was program controlled in a range from 0.1 mrad to 12.4 mrad. The pacific retrieval method for aerosol size distribution using this feature and field measurement results will be introduced in the presentation.

  8. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  9. Two-phase dynamics of volcanic eruptions: Particle size distribution and the conditions for choking

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya M.; Bercovici, David; Michaut, Chloé

    2015-03-01

    Explosive volcanic eruptions are studied using a two-phase model of polydisperse suspensions of solid particles in gas. Eruption velocities depend on choking conditions in the volcanic conduit, which depend on acoustic wave propagation that is, in turn, influenced by the particle size distribution in the two-phase mixture. The acoustic wave spectrum is divided into three regions of superfast short waves moving at the pure gas sound speed, purely attenuated domain at intermediate wavelengths, and slower long waves for a dusty pseudogas. The addition of solid phases with differing particle sizes qualitatively preserves the features of two-phase acoustic wave dispersion, although it narrows the regions of short-fast and intermediate-blocked waves. Choking conditions, however, strongly depend on the number and size distribution of solid phases. Changes in particle sizes lead to variations in the choking conditions, which determine the eruption velocities and the resulting height of the erupting column. Smaller particles always exit the choking point faster than big particles, as expected. Even though particle-particle interaction is neglected, the particle distributions influence each other by momentum exchange through the gas. Therefore, the structure of the dispersion relation as well as the eruption or choking velocities and subsequent column height and particle deposition bear information on how eruption dynamics are controlled by size distribution and relative volume fractions of small and big particles. We suggest that unimodal distributions, with one dominant small particle size, favor development of vertical plinian eruptions, while bimodal distributions, with a comparable mean size, lead to pyroclastic lateral flows.

  10. X-Ray Diffraction Microstructural Analysis of Bimodal-Size-Distribution MgO Nanopowders

    NASA Astrophysics Data System (ADS)

    Pratapa, Suminar; Hartono, Budi

    2010-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500, 800 and 1200° C for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then carefully blended in air to give the presumably strain-free, bimodal-size-distribution MgO nanopowder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (Dv) of 29(1) nm, 36(1) and 185(0) nm for the 500, 800 and 1200° C data respectively with the nanometric powder displays slightly narrower crystallite size distribution character, indicated by lognormal dispersion parameter (σ) of 0.22 as compared to 0.18 for the sub-nanometric 1200° C powder. The mixture exhibits relatively more asymmetric peak broadening. By analysing the x-ray diffraction data of the latter specimen by using the single phase approach the results obtained was not according to experimental finding. Introducing two phase models for the `double-phase' 500-1200 mixture to accommodate the bimodal-size-distribution characteristics give Dv = 34(2) and σ = 0.10 for the `nanometric phase' and Dv = 363(0) and σ = 1.38 for the `sub-nanometric phase'.

  11. Methods for obtaining true particle size distributions from cross section measurements

    SciTech Connect

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  12. Floc size distributions in dissolved air flotation of Winnipeg tap water.

    PubMed

    Gorczyca, B; Zhang, G

    2007-03-01

    A bench-scale continuous flow dissolved air flotation (DAF) system was operated using Winnipeg tap water. Three different dosages of alum were applied: 41.7 mg l(-1), 25.5 mg l(-1) and 15.5 mg l(-1). Floc size distributions formed at different coagulant dosages were analyzed to identify characteristics of floc size distribution optimal for flotation. Alum dose of 25.5 mg l(-1) was found to be optimal for the bench scale DAF unit in this study. At this dosage, the DAF effluent achieved a turbidity of 0.25 NTU and color of 3.8 TCU, significantly lower than that for the tap water. The optimum floc size distribution at the dose of 25 mg l(-1) had the logarithmic mean size of 27 microm which was close to the size of air bubbles produced by the saturator in this study (30 microm). The results of this study suggest that the DAF treatment process is optimized when the logarithmic mean floc size and bubble size are equal. PMID:17432377

  13. Grain-size distribution of volcaniclastic rocks 1: A new technique based on functional stereology

    NASA Astrophysics Data System (ADS)

    Jutzeler, M.; Proussevitch, A. A.; Allen, S. R.

    2012-09-01

    The power of explosive volcanic eruptions is reflected in the grain size distribution and dispersal of their pyroclastic deposits. Grain size also forms part of lithofacies characteristics that are necessary to determine transport and depositional mechanisms responsible for producing pyroclastic deposits. However, the common process of welding and rock lithification prevents quantification of grain size by traditional sieving methods for deposits in the rock record. Here we show that functional stereology can be used to obtain actual 3D volume fractions of clast populations from 2D cross-sectional images. Tests made on artificially consolidated rocks demonstrate successful correlations with traditional sieving method. We show that the true grain size distribution is finer grained than its representation on a random 2D section. Our method allows the original size of vesicular pumice clasts to be estimated from their compacted shapes. We anticipate that the original grain-size distribution of welded ignimbrites can also be characterized by this method. Our method using functional stereology can be universally applied to any type of consolidated, weakly to non-deformed clastic material, regardless of grain size or age and therefore has a wide application in geology.

  14. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distribute