Science.gov

Sample records for aerodynamic yawing moment

  1. High-angle-of-attack yawing moment asymmetry of the X-31 aircraft from flight test

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    1994-01-01

    Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries led to position saturations of the thrust vector vanes and trailing-edge flaps during some of the dynamic stability axis rolling maneuvers at high angles of attack. This slowed the high-angle-of-attack envelope expansion and resulted in maneuver restrictions. Several aerodynamic modifications were made to the X-31 forebody with the goal of minimizing the asymmetry. A method for determining the yawing moment asymmetry from flight data was developed and an analysis of the various configuration changes completed. The baseline aircraft were found to have significant asymmetries above 45 deg angle of attack with the largest asymmetry typically occurring around 60 deg angle of attack. Applying symmetrical boundary layer transition strips along the forebody sides increased the magnitude of the asymmetry and widened the angle-of-attack range over which the largest asymmetry acted. Installing longitudinal forebody strakes and rounding the sharp nose of the aircraft caused the yawing moment asymmetry magnitude to be reduced. The transition strips and strakes made the asymmetry characteristic of the aircraft more repeatable than the clean forebody configuration. Although no geometric differences between the aircraft were known, ship 2 consistently had larger yawing moment asymmetries than ship 1.

  2. Yaws

    MedlinePlus

    ... is closely related to the bacterium that causes syphilis, but this disease is not sexually transmitted. Yaws ... test for yaws. However, the blood test for syphilis is often positive in people with yaws because ...

  3. Performance of an aerodynamic yaw controller mounted on the space shuttle orbiter body flap at Mach 10

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.

    1995-01-01

    A wind-tunnel investigation of the effectiveness of an aerodynamic yaw controller mounted on the lower surface of a shuttle orbiter model body flap was conducted in the Langley 31-Inch Mach 10 Tunnel. The controller consisted of a 60 deg delta fin mounted perpendicular to the body flap lower surface and yawed 30 deg to the free stream direction. The control was tested at angles of attack from 20 deg to 40 deg at zero sideslip for a Reynolds number based on wing mean aerodynamic chord of 0.66 x 10(exp 6). The aerodynamic and control effectiveness characteristics are presented along with an analysis of the effectiveness of the controller in making a bank maneuver for Mach 18 flight conditions. The controller was effective in yaw and produced a favorable rolling moment. The analysis showed that the controller was as effective as the reaction control system in making the bank maneuver. These results warrant further studies of the aerodynamic/aerothermodynamic characteristics of the control concept for application to future transportation vehicles.

  4. Yaws

    MedlinePlus

    ... is closely related to the bacterium that causes syphilis, but this form of the bacterium is not ... test for yaws. However, the blood test for syphilis is often positive in people with yaws because ...

  5. Yaws

    PubMed Central

    Marks, Michael; Mitjà, Oriol; Solomon, Anthony W.; Asiedu, Kingsley B.; Mabey, David C.

    2015-01-01

    Introduction Yaws, caused by Treponema pallidum ssp. pertenue, is endemic in parts of West Africa, Southeast Asia and the Pacific. The WHO has launched a campaign based on mass treatment with azithromycin, to eradicate yaws by 2020. Sources of data We reviewed published data, surveillance data and data presented at yaws eradication meetings. Areas of agreement Azithromycin is now the preferred agent for treating yaws. Point-of-care tests have demonstrated their value in yaws. Areas of controversy There is limited data from 76 countries, which previously reported yaws. Different doses of azithromycin are used in community mass treatment for yaws and trachoma. Growing points Yaws eradication appears an achievable goal. The programme will require considerable support from partners across health and development sectors. Areas timely for developing research Studies to complete baseline mapping, integrate diagnostic tests into surveillance and assess the impact of community mass treatment with azithromycin are ongoing. PMID:25525120

  6. Yaws

    MedlinePlus

    ... and resolution WHA66.12 of the 2013 World Health Assembly, yaws is targeted for eradication by the year 2020. Pilot implementation of the “ Yaws Eradication Strategy ” in 5 countries (Congo, Ghana, Papua New Guinea, Solomon Islands and Vanuatu) has provided promising results and practical ...

  7. Yaws.

    PubMed

    Marks, Michael; Lebari, Dornubari; Solomon, Anthony W; Higgins, Stephen P

    2015-09-01

    Yaws is a non-venereal endemic treponemal infection caused by Treponema pallidum sub-species pertenue, a spirochaete bacterium closely related to Treponema pallidum ssp. pallidum, the agent of venereal syphilis. Yaws is a chronic, relapsing disease predominantly affecting children living in certain tropical regions. It spreads by skin-to-skin contact and, like syphilis, occurs in distinct clinical stages. It causes lesions of the skin, mucous membranes and bones which, without treatment, can become chronic and destructive. Treponema pallidum ssp. pertenue, like its sexually-transmitted counterpart, is exquisitely sensitive to penicillin. Infection with yaws or syphilis results in reactive treponemal serology and there is no widely available test to distinguish between these infections. Thus, migration of people from yaws-endemic areas to developed countries may present clinicians with diagnostic dilemmas. We review the epidemiology, clinical presentation and treatment of yaws. PMID:25193248

  8. Yaws.

    PubMed

    Mitjà, Oriol; Asiedu, Kingsley; Mabey, David

    2013-03-01

    Yaws is an infectious disease caused by Treponema pallidum pertenue-a bacterium that closely resembles the causative agent of syphilis-and is spread by skin-to-skin contact in humid tropical regions. Yaws causes disfiguring, and sometimes painful lesions of the skin and bones. As with syphilis, clinical manifestations can be divided into three stages; however, unlike syphilis, mother-to-child transmission does not occur. A major campaign to eradicate yaws in the 1950s and 1960s, by mass treatment of affected communities with longacting, injectable penicillin, reduced the number of cases by 95% worldwide, but yaws has reappeared in recent years in Africa, Asia, and the western Pacific. In 2012, one oral dose of azithromycin was shown to be as effective as intramuscular penicillin in the treatment of the disease, and WHO launched a new initiative to eradicate yaws by 2020. PMID:23415015

  9. Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Wenzinger, Carl J

    1932-01-01

    This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.

  10. The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Pan, D.

    1986-01-01

    This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed.

  11. Direct yaw moment control for distributed drive electric vehicle handling performance improvement

    NASA Astrophysics Data System (ADS)

    Yu, Zhuoping; Leng, Bo; Xiong, Lu; Feng, Yuan; Shi, Fenmiao

    2016-04-01

    For a distributed drive electric vehicle (DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control (DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error (ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to

  12. Direct yaw moment control for distributed drive electric vehicle handling performance improvement

    NASA Astrophysics Data System (ADS)

    Yu, Zhuoping; Leng, Bo; Xiong, Lu; Feng, Yuan; Shi, Fenmiao

    2016-05-01

    For a distributed drive electric vehicle (DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control (DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error (ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to

  13. Effects of Mach Numbers on Side Force, Yawing Moment and Surface Pressure

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Muhammad, Zaka; Husain, Mukkarum; Younis, Muhammad Yamin

    2011-09-01

    In this research, CFD simulations are performed for air vehicle configuration to compute the side force effect and yawing moment coefficients variations at high angle of attack and Mach numbers. As the angle of attack is increased then lift and drag are increased for cylinder body configurations. But when roll angle is given to body then side force component is also appeared on the body which causes lateral forces on the body and yawing moment is also produced. Now due to advancement of CFD methods we are able to calculate these forces and moment even at supersonic and hypersonic speed. In this study modern CFD techniques are used to simulate the hypersonic flow to calculate the side force effects and yawing moment coefficient. Static pressure variations along the circumferential and along the length of the body are also calculated. The pressure coefficient and center of pressure may be accurately predicted and calculated. When roll angle and yaw angle is given to body then these forces becomes very high and cause the instability of the missile body with fin configurations. So it is very demanding and serious problem to accurately predict and simulate these forces for the stability of supersonic vehicles.

  14. Comparison of X-31 Flight and Ground-Based Yawing Moment Asymmetries at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Croom, Mark A.

    2001-01-01

    Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries caused position saturations of the thrust-vectoring vanes and trailing-edge flaps during some stability-axis rolling maneuvers at high angles of attack. The two test aircraft had different asymmetry characteristics, and ship two has asymmetries that vary as a function of Reynolds number. Several aerodynamic modifications have been made to the X-31 forebody with the goal of minimizing the asymmetry. These modifications include adding transition strips on the forebody and noseboom, using two different length strakes, and increasing nose bluntness. Ultimately, a combination of forebody strakes, nose blunting, and noseboom transition strips reduced the yawing moment asymmetry enough to fully expand the high-angle-of-attack envelope. Analysis of the X-31 flight data is reviewed and compared to wind-tunnel and water-tunnel measurements. Several lessons learned are outlined regarding high-angle-of-attack configuration design and ground testing.

  15. 14 CFR 29.351 - Yawing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) and (c) of this section, with— (1) Unbalanced aerodynamic moments about the center of gravity which... paragraph (a) of this section, in unaccelerated flight with zero yaw, at forward speeds from zero up to 0.6... produce the load required in paragraph (a) of the section, in unaccelerated flight with zero yaw,...

  16. 14 CFR 29.351 - Yawing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) and (c) of this section, with— (1) Unbalanced aerodynamic moments about the center of gravity which... paragraph (a) of this section, in unaccelerated flight with zero yaw, at forward speeds from zero up to 0.6... produce the load required in paragraph (a) of the section, in unaccelerated flight with zero yaw,...

  17. 14 CFR 29.351 - Yawing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) and (c) of this section, with— (1) Unbalanced aerodynamic moments about the center of gravity which... paragraph (a) of this section, in unaccelerated flight with zero yaw, at forward speeds from zero up to 0.6... produce the load required in paragraph (a) of the section, in unaccelerated flight with zero yaw,...

  18. 14 CFR 29.351 - Yawing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) and (c) of this section, with— (1) Unbalanced aerodynamic moments about the center of gravity which... paragraph (a) of this section, in unaccelerated flight with zero yaw, at forward speeds from zero up to 0.6... produce the load required in paragraph (a) of the section, in unaccelerated flight with zero yaw,...

  19. 14 CFR 27.351 - Yawing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) and (c) of this section with— (1) Unbalanced aerodynamic moments about the center of gravity which the...) of this section, in unaccelerated flight with zero yaw, at forward speeds from zero up to 0.6 VNE— (1... required in paragraph (a) of this section, in unaccelerated flight with zero yaw, at forward speeds from...

  20. The estimation of the rate of change of yawing moment with sideslip

    NASA Technical Reports Server (NTRS)

    Imlay, Frederick H

    1938-01-01

    Wind-tunnel data are presented on the rate of change of yawing moment with sideslip for tests of 9 complete airplane models, 20 fuselage shapes, and 3 wing models with various combinations of dihedral, sweepback, and twist. The data were collected during a survey of existing information, which was made to find a reliable method of computing the yawing moment due to sideslip. Important errors common to methods of computation used at present appear to be due to large interference effects, the investigation of which will undoubtedly require an extensive program of systematic wind-tunnel tests. At present it is necessary to place considerable reliance on past design experience in proportioning an airplane so as to obtain a reasonable degree of directional stability.

  1. A yaw-moment control method based on a vehicle's lateral jerk information

    NASA Astrophysics Data System (ADS)

    Yamakado, Makoto; Nagatsuka, Keiichiro; Takahashi, Junya

    2014-10-01

    Previously, a new control concept called 'G-vectoring control (GVC)' to improve vehicle agility and stability was developed. GVC is an automatic longitudinal acceleration control method that responds to vehicle lateral jerk caused by the driver's steering manoeuvres. In this paper, a new yaw-moment control method, which generates a stabilising moment during the GVC command and has positive acceleration value and the driver's accelerator pedal input is zero, was proposed. A new hybrid control, which comprises GVC, electric stability control and this new control, was constructed, and it was installed in a test vehicle and tested on a snowy surface. The very high potential for improvement in both agility and stability was confirmed.

  2. Correlation of forebody pressures and aircraft yawing moments on the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Landers, Stephen

    1992-01-01

    In-flight pressure distributions at four fuselage stations on the forebody of the X-29A aircraft have been reported at angles of attack from 15 to 66 deg and at Mach numbers from 0.22 to 0.60. At angles of attack of 20 deg and higher, vortices shed from the nose strake caused suction peaks in the pressure distributions that generally increased in magnitude with angle of attack. Above 30 deg-angle of attack, the forebody pressure distributions became asymmetrical at the most forward station, while they remained nearly symmetrical until 50 to 55 deg-angle of attack for the aft stations. Between 59 to 66 deg-angle of attack, the asymmetry of the pressure distributions changed direction. Yawing moments for the forebody alone were obtained by integrating the forebody pressure distributions. At 45 deg-angle of attack, the aircraft yaws to the right and at 50 deg and higher, the aircraft yaws to the left. The forebody yawing moments correlated well with the aircraft left yawing moment at an angle of attack of 50 deg or higher. At a 45 deg-angle of attack, the forebody yawing moments did not correlate well with the aircraft yawing moment, but it is suggested that this was due to asymmetric pressures on the cockpit region of the fuselage which was not instrumented. The forebody was also shown to provide a positive component of directional stability of the aircraft at angles of attack of 25 deg or higher. A Mach number effect was noted at angles of attack of 30 deg or higher at the station where the nose strake was present. At this station, the suction peaks in the pressure distributions at the highest Mach number were reduced and much more symmetrical as compared to the lower Mach number pressure distributions.

  3. A theoretical and experimental investigation of the effects of yaw on pressures, forces, and moments during seaplane landings and planing

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F

    1952-01-01

    A theory for the side force, rolling moment, yawing moment, and pressure distribution during yawed landings and planing of seaplanes was developed. For the special case of the straight-sided wedge without chine immersion, the results of the theoretical analysis are presented in the form of generalized curves covering all step landing conditions. Experimental impact and planing data are presented for a prismatic wedge having an angle of dead rise of 22.5 degrees and are shown to be in reasonable agreement with the theoretical predictions.

  4. A study of the nonlinear aerodynamics of bodies in nonplanar motion. Ph.D. Thesis - Stanford Univ., Calif.; [numerical analysis of aerodynamic force and moment systems during large amplitude, arbitrary motions

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.

    1974-01-01

    Concepts from the theory of functionals are used to develop nonlinear formulations of the aerodynamic force and moment systems acting on bodies in large-amplitude, arbitrary motions. The analysis, which proceeds formally once the functional dependence of the aerodynamic reactions upon the motion variables is established, ensures the inclusion, within the resulting formulation, of pertinent aerodynamic terms that normally are excluded in the classical treatment. Applied to the large-amplitude, slowly varying, nonplanar motion of a body, the formulation suggests that the aerodynamic moment can be compounded of the moments acting on the body in four basic motions: steady angle of attack, pitch oscillations, either roll or yaw oscillations, and coning motion. Coning, where the nose of the body describes a circle around the velocity vector, characterizes the nonplanar nature of the general motion.

  5. The effect of area aspect ratio on the yawing moments of rudders at large angles of pitch on three fuselages

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L; Monish, B H

    1933-01-01

    This reports presents the results of measurements made of yawing moments produced by rudder displacement for seven rudders mounted on each of three fuselages at angles of pitch of 0 degree, 8 degrees, 12 degrees, 20 degrees, 30 degrees and 40 degrees. The dimensions of the rudders were selected to cover the range of areas and aspect ratios commonly used, while the ratios of rudder area to fin area and of rudder chord to fin chord were kept approximately constant. An important result of the measurements is to show that increased aspect ratio gives increased yawing moments for a given area, provided the maximum rudder displacement does not exceed 25 degrees. If large rudder displacements are used, the effect of aspect ratio is not so great.

  6. Effect of Variation of Chord and Span of Ailerons on Rolling and Yawing Moments at Several Angles of Pitch

    NASA Technical Reports Server (NTRS)

    Heald, R H; Strother, D H; Monish, B H

    1931-01-01

    This report presents the results of an extension to higher angles of attack of the investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U. S. A. 27 wings. The measurements were made at various angles of pitch but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The work was conducted on wing models of 60-inch span and 10-inch chord.

  7. Unsteady Aerodynamic and Dynamic Analysis of the Meridian UAS in a Rolling-Yawing Motion

    NASA Astrophysics Data System (ADS)

    Lykins, Ryan

    The nonlinear and unsteady aerodynamic effects of operating the Meridian unmanned aerial system (UAS) in crosswinds and at high angular rates is investigated in this work. The Meridian UAS is a large autonomous aircraft, with a V-tail configuration, operated in Polar Regions for the purpose of remotely measuring ice sheet thickness. The inherent nonlinear coupling produced by the V-tail, along with the strong atmospheric disturbances, has made classical model identification methods inadequate for proper model development. As such, a powerful tool known as Fuzzy Logic Modeling (FLM) was implemented to generate time-dependent, nonlinear, and unsteady aerodynamic models using flight test data collected in Greenland in 2011. Prior to performing FLM, compatibility analysis is performed on the data, for the purpose of systematic bias removal and airflow angle estimation. As one of the advantages of FLM is the ability to model unsteady aerodynamics, the reduced frequency for both longitudinal and lateral-directional motions is determined from the unbiased data, using Theodorsen's theory of unsteadiness, which serves as an input parameter in modeling. These models have been used in this work to identify pilot induced oscillations, unsteady coupling motions, unsteady motion due to the slipstream and cross wind interaction, and destabilizing motions and orientations. This work also assesses the accuracy of preliminary aircraft dynamic models developed using engineering level software, and addresses the autopilot Extended Kalman Filter state estimations.

  8. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  9. The Aerodynamic Forces and Moments on a Spinning Model of the F4B-2 Airplane as Measured by the Spinning Balance

    NASA Technical Reports Server (NTRS)

    Bamber, M J; Zimmerman, C H

    1935-01-01

    The aerodynamic forces and moments on a 1/12-scale model of the F4B-2 airplane were measured with the spinning balance in nine spinning attitudes with three sets of tail surfaces, namely, F4B-2 surfaces; F4B-4 fin and rudder with rectangular stabilizer; and with all tail surfaces removed. In one of these attitudes measurements were made to determine the effect upon the forces and moments of independent and of simultaneous displacement of the rudder and elevator for two of the sets of tail surfaces. Additional measurements were made for a comparison of model and full-scale data for six attitudes that were determined from flight tests with various control settings. The characteristics were found to vary in the usual manner with angle of attack and sideslip. The F4B-2 surfaces were quite ineffective as a source of yawing moments. The F4B-4 fin and F4B-2 stabilizer gave a greater damping yawing moment when controls were against the spin than did the F4B-2 surfaces but otherwise there was little difference. Substitution of a rectangular stabilizer for the F4B-2 stabilizer made no appreciable difference in the coefficient. Further comparisons with other airplane types are necessary before final conclusions can be drawn as to the relations between model and full-scale spin measurements.

  10. X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2008-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  11. Flight Test Determined Aerodynamics Force and Moment Characteristics of the X-43A Research Vehicle at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2006-01-01

    The second flight of the HYPER-X Program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe integrated scramjet powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pull-up/push-over maneuvers performed throughout the X-43A cowl-closed descent phase. The subject flight research maneuvers were conducted in a Mach number range of 6.8 to 0.95 at altitudes from 92,000 ft to sea level. In this flight regime, the dynamic pressure varied from 1300 psf to 400 psf with angle-of-attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with pre-flight predictions based on wind tunnel test data. The X-43A flight-derived axial force was found to be 10 to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers greater than 4, the X-43A flight-derived stability and control characteristics resulted in larger than predicted static margins, with the largest discrepancy approximately 5-inches forward along the X(CG) at Mach 6. This would result in less static margin in pitch. The X-43A predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle-of-sideslip.

  12. Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis. Marl C.; White, J. Terry

    2006-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  13. Interference effects of aft reaction-control yaw jets on the aerodynamic characteristics of a space shuttle orbiter model at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1983-01-01

    A wind tunnel investigation of the interference effects of aft reaction control system yaw jet plumes on a 0.0125 scale Space Shuttle orbiter model was conducted at Mach numbers from 2.50 to 4.50. Test variables included model angle of attack, model angle of sideslip, jet to free stream mass flow ratio, and number and position of operating jets. The aft reaction control jet plume creates a blockage above and behind the wing on the side in which the jet exhausts and results in flow separation on the wing upper surface and fuselage side. Positive pitching moment and side force increments and negative yawing moment and rolling moment increments due to the flow separations are incurred for left side firing jets, primarily at angles of attack above 10 deg. The yawing moment interference increments are favorable and result in a small jet thrust amplification. As a result of this investigation, the aft reaction control system was certified for operation at supersonic Mach numbers prior to the first flight of the space transportation system (STS-1).

  14. Supersonic aerodynamic damping and oscillatory stability in pitch and yaw fro a model of a variable-sweep fighter airplane with twin vertical tails

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.

    1972-01-01

    Wind-tunnel measurements of the aerodynamic damping and oscillatory in pitch and yaw for a 1/22-scale model of a proposed carrier-based variable-sweep fighter airplane have been made by using a small-amplitude forced-oscillation technique. Tests were made with a wing leading-edge sweep angle of 68 deg at angles of attack from about -1.5 deg to 15.6 deg at a Mach number of 1.60 and at angles of attack from about -3 deg to 21 deg at Mach numbers of 2.02 and 2.36. The results of the investigation indicate that the basic configuration has positive damping and positive oscillatory stability in pitch for all test conditions. In yaw, the damping is generally positive except near an angle of attack of 0 deg at a Mach number of 1.60. The oscillatory stability in yaw is positive except at angles of attack above 16 deg at Mach numbers of 2.02 and 2.36. The addition of external stores generally causes increases in both pitch and yaw damping. The oscillatory stability in pitch is reduced throughout the angle-of-attack range by the addition of the external stores. The effect of adding stores on the oscillatory stability in yaw is a function of angle of attack and Mach number. The effect of changing horizontal-tail incidence on the pitch parameters is also very dependent on angle of attack and Mach number.

  15. An Analysis of Once-per-revolution Oscillating Aerodynamic Thrust Loads on Single-Rotation Propellers on Tractor Airplanes at Zero Yaw

    NASA Technical Reports Server (NTRS)

    Rogallo, Vernon L; Yaggy, Paul F; Mccloud, John L , III

    1956-01-01

    A simplified procedure is shown for calculating the once-per-revolution oscillating aerodynamic thrust loads on propellers of tractor airplanes at zero yaw. The only flow field information required for the application of the procedure is a knowledge of the upflow angles at the horizontal center line of the propeller disk. Methods are presented whereby these angles may be computed without recourse to experimental survey of the flow field. The loads computed by the simplified procedure are compared with those computed by a more rigorous method and the procedure is applied to several airplane configurations which are believed typical of current designs. The results are generally satisfactory.

  16. An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method

    NASA Astrophysics Data System (ADS)

    Ding, Nenggen; Taheri, Saied

    2010-10-01

    In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.

  17. Method for calculating the rolling and yawing moments due to rolling for unswept wings with or without flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Martina, Albert P

    1953-01-01

    The methods of NACA Reports 865 and 1090 have been applied to the calculation of the rolling- and yawing-moment coefficients due to rolling for unswept wings with or without flaps or ailerons. The methods allow the use of nonlinear section lift data together with lifting-line theory. Two calculated examples are presented in simplified computing forms in order to illustrate the procedures involved.

  18. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  19. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Yang, C. X.; Li, S. T.

    2013-12-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia.

  20. Differential Canard deflection for generation of yawing moment on the X-31 with and without the vertical tail. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Whiting, Matthew Robert

    1996-01-01

    The feasibility of augmenting the available yaw control power on the X-31 through differential deflection of the canard surfaces was studied as well as the possibility of using differential canard control to stabilize the X-31 with its vertical tail removed. Wind-tunnel tests and the results of departure criteria and linear analysis showed the destabilizing effect of the reduction of the vertical tail on the X-31. Wind-tunnel testing also showed that differential canard deflection was capable of generating yawing moments of roughly the same magnitude as the thrust vectoring vanes currently in place on the X-31 in the post-stall regime. Analysis showed that the X-31 has sufficient aileron roll control power that with the addition of differential canard as a yaw controller, the wind-axis roll accelerations will remain limited by yaw control authority. It was demonstrated, however, that pitch authority may actually limit the maximum roll rate which can be sustained. A drop model flight test demonstrated that coordinated, wind axis rolls could be performed with roll rates as high as 50 deg/sec (full scale equivalent) at 50 deg angle of attack. Another drop model test was conducted to assess the effect of vertical tail reduction, and an analysis of using differential canard deflection to stabilize the tailless X-31 was performed. The results of six-degree-of-freedom, non-linear simulation tests were correlated with the drop model flights. Simulation studies then showed that the tailless X-31 could be controlled at angles of attack at or above 20 deg using differential canard as the only yaw controller.

  1. Semiempirical method for prediction of aerodynamic forces and moments on a steadily spinning light airplane

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.

    1987-01-01

    A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.

  2. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung-Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  3. Experimental static aerodynamic forces and moments at high subsonic speeds on a missile model during simulated launching from the midsemispan location of a 45 degree sweptback wing-fuselage-pylon combination

    NASA Technical Reports Server (NTRS)

    Alford, William J; King, Thomas, Jr

    1957-01-01

    An investigation was made at high subsonic speeds in the Langley high-speed 7- by 10-foot tunnel to determine the static aerodynamic forces and moments on a missile model during simulated launching from the midsemispan location of a 45 degree sweptback wing-fuselage-pylon combination. The results indicated significant variations in all the aerodynamic components with changes in chordwise location of the missile. Increasing the angle of attack caused increases in the induced effects on the missile model because of the wing-fuselage-pylon combination. Increasing the Mach number had little effect on the variations of the missile aerodynamic characteristics with angle of attack except that nonlinearities were incurred at smaller angles of attack for the higher Mach numbers. The effects of finite wing thickness on the missile characteristics, at zero angle of attack, increase with increasing Mach number. The effects of the pylon on the missile characteristics were to causeincreases in the rolling-moment variation with angle of attack and a negative displacement of the pitching-moment curves at zero angle of attack. The effects of skewing the missile in the lateral direction relative to and sideslipping the missile with the wing-fuselage-pylon combination were to cause additional increments in side force at zero angle of attack. For the missile yawing moments the effects of changes in skew or sideslip angles were qualitatively as would be expected from consideration of the isolated missile characteristics, although there existed differences in theyawing-moment magnitudes.

  4. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  5. Method for calculating the rolling and yawing moments due to rolling for unswept wings with or without flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Martina, Albert P

    1954-01-01

    The methods of NACA reports 865 and 1090 have been applied to the calculation of the rolling-moment and yawing-moment coefficients due to rolling for unswept wings with or without flaps or ailerons. The methods are based on lifting-line theory and allow the use of nonlinear section lift data. The method presented in this report permits calculations to be made somewhat beyond maximum lift for wings having no twist or continuous twist and employing airfoil sections which do not display large discontinuities in the lift curves. Calculations can be made up to maximum lift for wings with discontinuous twist such as that produced by partial-span flaps or ailerons, or both. Two calculated examples are presented in simplified computing forms in order to illustrate the procedures involve.

  6. An examination of the aerodynamic moment on rotor blade tips using flight test data and analysis

    NASA Technical Reports Server (NTRS)

    Maier, Thomas H.; Bousman, William G.

    1993-01-01

    The analysis CAMRAD/JA is used to model two aircraft, a Puma with a swept-tip blade and a UH-60A Black Hawk. The accuracy of the analysis in predicting the torsion loads is assessed by comparing the predicted loads with measurements from flight tests. The influence of assumptions in the analytical model is examined by varying model parameters and comparing the predicted results to baseline values for the torsion loads. Flight test data from a research Puma are used to identify the source of torsion loads. These data indicate that the aerodynamic section moment in the region of the blade tip dominates torsion loading in high-speed flight. Both the aerodynamic section moment at the blade tip and the pitch-link loads are characterized by large positive (nose-up) moments in the first quadrant with rapid reversal of load so that the moment is negative in the second quadrant. Both the character and magnitude of this loading are missed by the CAMRAD/JA analysis.

  7. Roll-yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  8. Roll-Yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  9. An integrated CFD/experimental analysis of aerodynamic forces and moments

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Robertson, David D.; Moyer, Seth A.

    1989-01-01

    Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.

  10. Comparison of X-31 flight, wind-tunnel, and water-tunnel yawing moment asymmetries at high angles of attack

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Croom, Mark A.; Tamrat, B. F.

    1994-01-01

    The X-31 aircraft are being used in the enhanced fighter maneuverability (EFM) research program, which is jointly funded by the (U.S.) Advanced Research Projects Agency (ARPA) and Germany's Federal Ministry of Defense (FMOD). The flight test portion of the program, which involves two aircraft, is being conducted by an International Test Organization (ITO) comprising the National Aeronautics and Space Administration (NASA), the U.S. Navy, the U.S. Air Force, Rockwell International, and Deutsche Aerospace (DASA). The goals of the flight program are to demonstrate EFM technologies, investigate close-in-combat exchange ratios, develop design requirements, build a database for application to future fighter aircraft, and develop and validate low-cost prototype concepts. For longitudinal control the X-31 uses canards, symmetrical movement of the trailing-edge flaps, and pitch deflection of the thrust vectoring system. The trim, inertial coupling, and engine gyroscopic coupling compensation tasks are performed primarily by the trailing-edge flaps. For lateral-directional control the aircraft uses differential deflection of the trailing-edge flaps for roll coordination and a conventional rudder combined with the thrust vectoring system to provide yaw control. The rudder is only effective up to about 40 deg angle of attack (alpha), after which the thrust vectoring becomes the primary yaw control effector. Both the leading-edge flaps and the inlet lip are scheduled with the angle of attack to provide best performance.

  11. Synthetic Jet Control of a Yawing Axisymmetric Body

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2012-11-01

    The global aerodynamic forces and moments on an axisymmetric yawing body are controlled in wind tunnel experiments by exploiting the interaction of an array of synthetic jet actuators with the cross flow over the tail section of the body. The model is supported by a vertical wire through its aerodynamic center and is free to move in yaw. The baseline motion of the model is a yaw oscillation with amplitude and frequency that both monotonously increase with free stream velocity, characteristic of vortex shedding. The aft-facing control jet actuators emanate from narrow, azimuthally segmented slots around the perimeter of the tail section, and activation of the control jets effects the model's path through localized flow attachment on integrated Coanda surfaces. The control jets are used to control the yaw trajectory of the model using a closed loop PID controller. The baseline and controlled model motion is monitored using a laser vibrometer, and the flow evolution near the body and in its near wake is investigated using PIV. The coupled, time dependent response of the model to the actuation is investigated with emphasis on controlling its unstable modes. Supported by ARO.

  12. The forces and moments acting on parts of the XN2Y-1 airplane during spins

    NASA Technical Reports Server (NTRS)

    Scudder, N F

    1937-01-01

    The magnitudes of the yawing moments produced by various parts of an airplane during spins have previously been found to be of major importance in determining the nature of the spin. Discrepancies in resultant yawing moments determined from model and full-scale tests, however, have indicated the probable importance of scale effect on the model. In order to obtain data for a more detailed comparison between full-scale and model results, flight tests were made to determine the yawing moments contributed by various parts of an airplane in spins. The inertia moment was determined by the usual measurement of the spinning motion, and the aerodynamic yawing moments on the fuselage, fin, and rudder were determined by pressure-distribution measurements over these parts of the airplane. The wing yawing moment was determined by taking the difference between the gyroscopic moment and the fuselage, fin, and rudder moments. The numerical values of the wing yawing moments were found to be of the same order of magnitude as those measured in wind tunnels.

  13. A novel technique to neutralize the Yawing moment due to asymmetric thrust in a hybrid buoyant aircraft

    NASA Astrophysics Data System (ADS)

    Haque, Anwar U.; Asrar, Waqar; Omar, Ashraf A.; Sulaeman, Erwin; J. S Ali, Mohamed

    2016-03-01

    Dorsal fin is used in swimming animals like shark for the generation of thrust as well as to meet the requirement of the lateral stability. In the case of aircraft, rudders are normally used for the said requirement. In the present work, this nature inspired idea is explored for its application to neutralize the unavoidable asymmetric thrust produced by the twin engines of a hybrid buoyant aircraft. First, the estimation of asymmetric thrust is obtained with the help of analytical techniques for maximum thrust condition at 4 degree angle of attack. The moment generated by it is utilized for the sizing of a dorsal fin which looks similar to a tapered wing and is placed aft of the center of gravity. Wind tunnel testing at subsonic speed is carried out to explore the design features of this rotatable dorsal fin. It is found that a small rotation of 5 degree can generate the required moment. However, such rotation requires a complete pneumatic/electro-mechanical system and an alternative of it is to use a cambered airfoil for the dorsal fin installed at fixed location. Such a flow controlling device can also be used as an antenna mast, which is commonly installed out the fuselage of the aircraft for communication purposes. Moreover, by incorporating this technique, a pilot doesn't have to put an extra effort to make the aircraft stable in the presence of side wind.

  14. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  15. Some Effects of Frequency on the Contribution of a Vertical Tail to the Free Aerodynamic Damping of a Model Oscillating in Yaw

    NASA Technical Reports Server (NTRS)

    Bird, John D; Fisher, Lewis R; Hubbard, Sadie M

    1953-01-01

    The damping in yaw and the directional stability of a model freely oscillating in yaw were measured tail-off and tail-on and compared with the values obtained by theoretical consideration of the unsteady lift associated with an oscillating vertical tail. A range of low frequencies comparable to those of the lateral motions of airplanes was covered. The analysis includes the effects of vertical-tail aspect ratio and the two-dimensional effects of compressibility.

  16. Exploratory studies of actuated forebody strakes for yaw control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Rao, Dhanvada M.

    1987-01-01

    Wind-tunnel studies have been conducted to evaluate the potential of actuated forebody strakes to provide increased levels of yaw control on fighter aircraft at extremely high angles of attack where conventional aerodynamic controls are ineffective. The studies involved low-speed wind-tunnel tests of actuated forebody strake concepts applied to a generic fighter model and included circumferential pressure and flow visualization surveys on an isolated forebody. Results showed that the actuated forebody strake concept can provide high levels of yaw control over wide ranges of angle-of-attack and sideslip. However, when lifting surfaces were placed in close proximity to the forebody/strake combination, significant interaction effects occurred which reduced the yaw control effectiveness of the strakes and induced coupled rolling and pitching moments.

  17. Kinematics and aerodynamics of the velocity vector roll

    NASA Technical Reports Server (NTRS)

    Durham, Wayne C.; Lutze, Frederick H.; Mason, W.

    1993-01-01

    The velocity vector roll is an angular rotation of an aircraft about its instantaneous velocity vector, constrained to be performed at constant angle-of-attack (AOA), no sideslip, and constant velocity. Consideration of the aerodynamic force equations leads to requirements for body-axis yawing and pitching rotations that satisfy these constraints. Here, the body axis rotations, and the constraints, are used in the moment equations to determine the aerodynamic moments required to perform the velocity vector roll. For representative tactical aircraft, the conditions for maximum pitching moment are a function of orientation, occurring at about 90 deg of bank in a level trajectory. Maximum required pitching moment occurs at peak roll rate, and is achieved at AOA above 45 deg. The conditions for maximum rolling moment depend on the value of the roll mode time constant. For a small time constant (fast response) the maximum rolling moment occurs at maximum roll acceleration and zero AOA, largely independent of aircraft orientation; for a large time constant, maximum required rolling moment occurs at maximum roll rate, at maximum AOA, and at 180 deg of bank in level flight. Maximum yawing moment occurs at maximum roll acceleration, maximum AOA, and is largely independent of airplane orientation.

  18. Free-molecule-flow force and moment coefficients of the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Hinson, Edwin W.

    1989-01-01

    Calculated results for the aerodynamic coefficients over the range of + or - 90 deg in both pitch and yaw attitude angles for the Aeroassist Flight Experiment (AFE) vehicle in free molecule flow are presented. The AFE body is described by a large number of small flat plate surface elements whose orientations are established in a wind axes coordinate system through the pitch and yaw attitude angles. Lift force, drag force, and three components of aerodynamic moment about a specified point are computed for each element. The elemental forces and moments are integrated over the entire body, and total force and moment coefficients are computed. The coefficients are calculated for the two limiting gas-surface molecular collision conditions, namely, specular and diffuse, which assume zero and full thermal accommodation of the incoming gas molecules with the surface, respectively. The individual contribution of the shear stress and pressure terms are calculated and also presented.

  19. Aerodynamic Lift and Moment Calculations Using a Closed-Form Solution of the Possio Equation

    NASA Technical Reports Server (NTRS)

    Lin, Jensen; Iliff, Kenneth W.

    2000-01-01

    In this paper, we present closed-form formulas for the lift and moment coefficients of a lifting surface in two dimensional, unsteady, compressible, subsonic flow utilizing a newly developed explicit analytical solution of the Possio equation. Numerical calculations are consistent with previous numerical tables based on series expansions or ad hoc numerical schemes. More importantly, these formulas lend themselves readily to flutter analysis, compared with the tedious table-look-up schemes currently in use.

  20. The effect of delta 3 on a yawing HAWT blade and on yaw dynamics

    NASA Technical Reports Server (NTRS)

    Perkins, F. W.; Jones, R.

    1982-01-01

    A single degree of freedom aeroelastic computer model, WMSTAB3, was employed to perform a parametric analysis of HAWT blade behavior during yaw maneuvers. Over 1,000 different combinations of delta sub 3 and normal frequency were analyzed. The effect of delta sub 3 and flapping stiffness on flapping frequency, phase, and magnitude are discussed. The moments transmitted to the fixed system during yaw maneuvers were calculated and reduced to time constants of response to step changes in wind direction. The significance of the time constants for the configurations considered relative to yaw response rate and lag angle is discussed, along with their possible significance for large HAWT.

  1. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  2. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  3. Aerodynamic damping and oscillatory stability of a model of a proposed HL-10 vehicle in pitch at Mach numbers from 0.20 to 2.86 and in YAW at Mach numbers from 0.20 to 1.20

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Davenport, E. E.

    1974-01-01

    Wind tunnel tests of a proposed HL-10 lifting body vehicle were conducted to determine the subsonic and transonic aerodynamic characteristics. The conditions under which the tests were conducted are described. The tests indicate that the configuration has slightly positive damping in pitch except at higher angles of attack at Mach numbers of 0.8, 0.9, and 1.0. At supersonic speeds, the configuration has positive damping in pitch for all test conditions. At subsonic and transonic speed, the configuration has positive damping and positive stability in yaw for all test conditions.

  4. Unconventional Rotor Power Response to Yaw Error Variations

    DOE PAGESBeta

    Schreck, S. J.; Schepers, J. G.

    2014-12-16

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  5. Unconventional Rotor Power Response to Yaw Error Variations

    NASA Astrophysics Data System (ADS)

    Schreck, S. J.; Schepers, J. G.

    2014-12-01

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, EU-JOULE DATA Project and UAE Phase VI experimental data were used to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  6. A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades

    SciTech Connect

    Simms, D A; Butterfield, C P

    1991-10-01

    Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

  7. Wing kinematics measurement and aerodynamics of free-flight maneuvers in drone-flies

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlai; Sun, Mao

    2010-06-01

    The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morphological parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly produced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.

  8. Gyroless Yaw-Estimating System

    NASA Technical Reports Server (NTRS)

    Stetson, John B., Jr.

    1993-01-01

    Algorithm estimates yaw of spacecraft from equations of motion and readings of nongyroscopic sensors. Intended to be used in monitoring and controlling yaw when yaw gyroscope fails. Modified version useful in monitoring and controlling yaw of terrestrial scientific instrument or aircraft.

  9. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  10. Experiments in aircraft roll-yaw control using forebody tangential blowing

    NASA Astrophysics Data System (ADS)

    Pedreiro, Nelson

    Flight at high angles of attack can provide improved maneuverability for fighter aircraft and increased lift capabilities for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and breakdown, which compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. In this work, the feasibility of using Forebody Tangential Blowing to control the roll-yaw motion of a wind tunnel model at high angles of attack is demonstrated. The method consists of injecting a thin sheet of air tangentially to the forebody of the vehicle to change the separation lines over the forebody and alter the aerodynamic loads. A unique model was developed that describes the unsteady aerodynamic moments generated by both vehicle motion and the applied blowing. This aerodynamic model is sufficiently detailed to predict transient motion of the wind-tunnel model, and is simple enough to be suitable for control logic design and implementation. Successful closed-loop control was demonstrated experimentally for a delta wing body model with a cone-cylinder fuselage. Experiments were performed at 45 degrees nominal angle of attack. At this condition, the natural motion of the system is divergent. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, roll and yaw angles on the flow structure were determined. It was shown that

  11. Aerodynamic damping and oscillatory stability in pitch and yaw of a model of a proposed manned lifting entry vehicle at Mach numbers from 0.20 to 1.20

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Davenport, E. E.

    1975-01-01

    Wind tunnel tests have been made at angles of attack from about -2 deg to about 22 deg at 0 deg angle of sideslip by using a small-amplitude forced-oscillation technique. Models were tested with upper and lower control flaps both deflected and undeflected. The configuration with flaps deflected has positive damping in both pitch and yaw and is stable in both pitch and yaw except at the higher angles of attack where the tail surfaces are submerged in the wake from the body.

  12. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  13. Aerodynamic control with passively pitching wings

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  14. Bilinear tangent yaw guidance

    NASA Technical Reports Server (NTRS)

    Brusch, R. G.

    1979-01-01

    This paper presents a parametric yaw steering law which has been used to provide closed-loop yaw guidance for the launch of the HEAO (High Energy Astronomy Observatory) satellite mission using the Atlas/Centaur launch vehicle. This bilinear tangent steering law provides near optimal yaw steering for maneuvers requiring insertion into orbits with a specified inclination and node. Bilinear tangent steering is shown to be optimal in both the pitch and yaw planes when a uniform gravitational field is assumed. The conditions under which the general bilinear tangent laws degenerate into linear tangent and constant attitude laws are presented. The flight computer implementation of these laws in a rotating coordinate system using real-time integration of the equations of motion is detailed. Explicit solution of the parametric guidance equations requires the inflight solution of (2x2) two-point boundary value problems in the pitch and yaw planes. Excellent results are obtained even for very large (greater than 50 deg) out-of-plane steering angles.

  15. A comprehensive estimate of the static aerodynamic forces and moments of the 8 x 8 x 20 ft. cargo container

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi; Kanning, Gerd

    1987-01-01

    A comprehensive static aerodynamic simulation model of the 8 by 8 by 20 ft MILVAN cargo container is determined by combining the wind tunnel data from a 1972 NASA Ames Research Center study taken over the restricted domain (0 is less than or equal to phi is less than or equal to 90 degrees; 0 is less than or equal to alpha is less than or equal to 45 degrees) with extrapolation relations derived from the geometric symmetry of rectangular boxes. It is found that the aerodynamics of any attitude can be defined from the aerodynamics at an equivalent attitude in the restricted domain (0 is less than phi is less than 45 degrees; 0 is less than alpha is less than 90 degrees). However, a similar comprehensive equivalence with the domain spanned by the data is not available; in particular, about two-thirds of the domain with the absolute value of alpha is greater than 45 degrees is unrelated to the data. Nevertheless, as estimate can be defined for this region consistent with the measured or theoretical values along its boundaries and the theoretical equivalence of points within the region. These descrepancies are assumed to be due to measurement errors. Data from independent wind tunnel studies are reviewed; these are less comprehensive than the NASA Ames Research Center but show good to fair agreement with both the theory and the estimate given here.

  16. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  17. Low-speed, high-lift aerodynamic characteristics of slender, hypersonic accelerator-type configurations

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.

    1989-01-01

    Two investigations were conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a generic hypersonic accelerator-type configuration. The model was a delta wing configuration incorporating a conical forebody, a simulated wrap-around engine package, and a truncated conical aftbody. Six-component force and moment data were obtained over a range of attack from -4 to 30 degrees and for a sideslip range of + or - 20 degrees. In addition to tests of the basic configuration, component build-up tests were conducted; and the effects of power, forebody nose geometry, canard surfaces, fuselage strakes, and engines on the lower surface alone were also determined. Control power available from deflections of wing flaps and aftbody flaps was also investigated and found to be significantly increased during power-on conditions. Large yawing moments resulted from asymmetric flow fields exhibited by the forebody as revealed by both surface pressure data and flow visualization. Increasing nose bluntness reduced the yawing-moment asymmetry, and the addition of a canard eliminated the yawing-moment asymmetry.

  18. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads from a Seamless Adaptive Compliant Trailing Edge Flap in Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete

    2016-01-01

    A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.

  19. Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    the model to two degrees-of-freedom, roll and yaw, was designed and built. The apparatus was used to conduct dynamic experiments which showed that the system was unstable, its natural motion divergent. A model for the unsteady aerodynamic loads was developed based on the basic physics of the flow and results from flow visualization experiments. Parameters of the aerodynamic model were identified from experimental data. The model was validated using data from dynamic experiments. The aerodynamic model completes the equations of motion of the system which were used in the design of control laws using blowing as the only actuator. The unsteady aerodynamic model was implemented as part of the real-time vehicle control system. A control strategy using asymmetric blowing was demonstrated experimentally. A discrete vortex method was developed to help understand the main physics of the flow. The method correctly captures the interactions between forebody and wing vortices. Moreover, the trends in static loads and flow structure are correctly represented. Flow visualization results revealed the vortical structure of the flow to be asymmetric even for symmetric flight conditions. The effects of blowing, and roll and yaw angles on the flow structure were determined. It is shown that superimposing symmetric and asymmetric blowing has a linearizing effect on the actuator characteristics. Transient responses of roll and yaw moments to step input blowing were characterized, and their differences were explained based on the physical mechanisms through which these loads are generated.

  20. Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Hui; Wu, Han; Lai, Jiang; Sheng, Hong-Zhi

    2014-12-01

    The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study. A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads: the aerodynamic loads can change the position of vehicle system (consequently the contact relations), the wheel/rail normal contact forces, the gravitational restoring forces/moments and the creep forces/moments. A mathematical model for hunting stability incorporating such influences was developed. A computer program capable of incorporating the effects of aerodynamic loads based on the model was written, and the critical speeds were calculated using this program. The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method, the results were also compared with the situations without aerodynamic loads. It is shown that the most dominant factors affecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not. The damping of yaw damper is the most dominant influencing factor for linear critical speeds, while the damping of lateral damper is most dominant for nonlinear ones. When the influences of aerodynamic loads are considered, the linear critical speeds decrease with the rise of crosswind velocity, whereas it is not the case for the nonlinear critical speeds. The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads. Combined actions of aerodynamic loads and suspension parameters also affect the critical speeds. The effects of such joint action are more obvious for nonlinear critical speeds.

  1. Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver

    NASA Technical Reports Server (NTRS)

    Kleb, William L.

    1996-01-01

    Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.

  2. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    NASA Astrophysics Data System (ADS)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  3. Aerodynamic design of a Coanda induced force and thruster anti-torque system

    NASA Technical Reports Server (NTRS)

    Velkoff, Henry R.; Tung, Chee

    1991-01-01

    A general method of analysis of the external and internal aerodynamics of a generic Coanda induced circulation anti-torque system is presented. The technique gives moment about the yaw axis and download induced on the boom as well as the force developed by an aft jet. The external flows including downwash, wake swirl and the boom circulation are considered. The internal flow and losses through the duct, fan, blown slots, cascades and nozzle are considered on a step-by-step basis. Limited comparison is made with open data where available.

  4. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  5. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  6. The influence of wing, fuselage and tail design on rotational flow aerodynamics data obtained beyond maximum lift with general aviation configurations

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Bowman, J. S., Jr.

    1980-01-01

    The NASA Langley Research Center has initiated a broad general aviation stall/spin research program. A rotary balance system was developed to support this effort. Located in the Langley spin tunnel, this system makes it possible to identify an airplane's aerodynamic characteristics in a rotational flow environment, and thereby permits prediction of spins. This paper presents a brief description of the experimental set-up, testing technique, five model programs conducted to date, and an overview of the rotary balance results and their correlation with spin tunnel free-spinning model results. It is shown, for example, that there is a large, nonlinear dependency of the aerodynamic moments on rotational rate and that these moments are pronouncedly configuration-dependent. Fuselage shape, horizontal tail and, in some instances, wing location are shown to appreciably influence the yawing moment characteristics above an angle of attack of 45 deg.

  7. Propellers in yaw

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S

    1945-01-01

    It was realized as early as 1909 that a propeller in yaw develops a side force like that of a fin. In 1917, R. G. Harris expressed this force in terms of the torque coefficient for the unyawed propeller. Of several attempts to express the side force directly in terms of the shape of the blades, however, none has been completely satisfactory. An analysis that incorporates induction effects not adequately covered in previous work and that gives good agreement with experiment over a wide range of operating conditions is presented. The present analysis shows that the fin analogy may be extended to the form of the side-force expression and that the effective fin area may be taken as the projected side area of the propeller.

  8. Combined pitching and yawing motion of airplanes

    NASA Technical Reports Server (NTRS)

    Baranoff, A V; Hopf, L

    1931-01-01

    This report treats the following problems: The beginning of the investigated motions is always a setting of the lateral controls, i.e., the rudder or the ailerons. Now, the first interesting question is how the motion would proceed if these settings were kept unchanged for some time; and particularly, what upward motion would set in, how soon, and for how long, since therein lie the dangers of yawing. Two different motions ensue with a high rate of turn and a steep down slope of flight path in both but a marked difference in angle of attack and consequently different character in the resultant aerodynamic forces: one, the "corkscrew" dive at normal angle, and the other, the "spin" at high angle.

  9. Epidemiology of yaws: an update

    PubMed Central

    Kazadi, Walter M; Asiedu, Kingsley B; Agana, Nsiire; Mitjà, Oriol

    2014-01-01

    Yaws, a neglected tropical disease, is targeted for eradication by 2020 through large-scale mass-treatment programs of endemic communities. A key determinant for the success of the eradication campaign is good understanding of the disease epidemiology. We did a review of historical trends and new information from endemic countries, with the aim of assessing the state of knowledge on yaws disease burden. Transmission of yaws is now present in Africa, Asia, and the South Pacific. At least 12 countries are known to harbor yaws cases and 21 to 42 million people live in endemic areas. Between 2008 and 2012 more than 300,000 new cases were reported to the World Health Organization. Yaws presented high geographical variation within a country or region, high seasonality for incidence of active disease, and evidence that low standards of hygiene predispose to suffering of the disease. Key data issues include low levels of reporting, potential misdiagnosis, and scarce documentation on prevalence of asymptomatic infections. Currently available data most likely underestimates the magnitude of the disease burden. More effort is needed in order to refine accuracy of data currently being reported. A better characterization of the epidemiology of yaws globally is likely to positively impact on planning and implementation of yaws eradication. PMID:24729728

  10. Epidemiology of yaws: an update.

    PubMed

    Kazadi, Walter M; Asiedu, Kingsley B; Agana, Nsiire; Mitjà, Oriol

    2014-01-01

    Yaws, a neglected tropical disease, is targeted for eradication by 2020 through large-scale mass-treatment programs of endemic communities. A key determinant for the success of the eradication campaign is good understanding of the disease epidemiology. We did a review of historical trends and new information from endemic countries, with the aim of assessing the state of knowledge on yaws disease burden. Transmission of yaws is now present in Africa, Asia, and the South Pacific. At least 12 countries are known to harbor yaws cases and 21 to 42 million people live in endemic areas. Between 2008 and 2012 more than 300,000 new cases were reported to the World Health Organization. Yaws presented high geographical variation within a country or region, high seasonality for incidence of active disease, and evidence that low standards of hygiene predispose to suffering of the disease. Key data issues include low levels of reporting, potential misdiagnosis, and scarce documentation on prevalence of asymptomatic infections. Currently available data most likely underestimates the magnitude of the disease burden. More effort is needed in order to refine accuracy of data currently being reported. A better characterization of the epidemiology of yaws globally is likely to positively impact on planning and implementation of yaws eradication. PMID:24729728

  11. Aerodynamics of a hybrid airship

    NASA Astrophysics Data System (ADS)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  12. Investigation of the transient aerodynamic phenomena associated with passing manoeuvres

    NASA Astrophysics Data System (ADS)

    Noger, C.; Regardin, C.; Széchényi, E.

    2005-11-01

    Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.

  13. Body appendages fine-tune posture and moments in freely manoeuvring fruit flies.

    PubMed

    Berthé, Ruben; Lehmann, Fritz-Olaf

    2015-10-01

    The precise control of body posture by turning moments is key to elevated locomotor performance in flying animals. Although elevated moments for body stabilization are typically produced by wing aerodynamics, animals also steer using drag on body appendages, shifting their centre of body mass, and changing moments of inertia caused by active alterations in body shape. To estimate the instantaneous contribution of each of these components for posture control in an insect, we three-dimensionally reconstructed body posture and movements of body appendages in freely manoeuvring fruit flies (Drosophila melanogaster) by high-speed video and experimentally scored drag coefficients of legs and body trunk at low Reynolds number. The results show that the sum of leg- and abdomen-induced yaw moments dominates wing-induced moments during 17% of total flight time but is, on average, 7.2-times (roll, 3.4-times) smaller during manoeuvring. Our data reject a previous hypothesis on synergistic moment support, indicating that drag on body appendages and mass-shift inhibit rather than support turning moments produced by the wings. Numerical modelling further shows that hind leg extension alters the moments of inertia around the three main body axes of the animal by not more than 6% during manoeuvring, which is significantly less than previously reported for other insects. In sum, yaw, pitch and roll steering by body appendages probably fine-tune turning behaviour and body posture, without providing a significant advantage for posture stability and moment support. Motion control of appendages might thus be part of the insect's trimming reflexes, which reduce imbalances in moment generation caused by unilateral wing damage and abnormal asymmetries of the flight apparatus. PMID:26347566

  14. Yaws in the Solomon Islands.

    PubMed

    Fegan, D; Glennon, M; Macbride-Stewart, G; Moore, T

    1990-02-01

    Yaws is a chronic, relapsing, non-venereally transmitted disease caused by Treponema pertenue. As a result of the WHO mass treatment campaign of the late 1950s, the prevalence in the Solomon Islands fell dramatically. Here the disease was thought to have been eradicated until an outbreak occurred in 1981. In 1984 a mass treatment survey following modified WHO guidelines was carried out. Subsequent to this campaign, yaws recurred and in 1987 a further treatment survey was required. Two observations were made as a result of our recent experience in controlling yaws in the Solomon Islands. (1) The disease appears to be attenuated. (2) WHO control policy may now be an inappropriate method for dealing with yaws in the Solomon Islands and should be replaced by a method which is integrated into the existing primary health care (PHC) structure. PMID:2304133

  15. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  16. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  17. Forebody vortex management for yaw control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Moskovitz, C.; Murri, D. G.

    1986-01-01

    The yaw-control potential of deployable forebody strakes at angles of attack above the range of conventional rudder effectiveness has been investigated. The conformally-stored strakes when deployed force asymmetrical vortex shedding from the forebody, thereby generating a controlled yawing moment. The concept was explored through low-speed wind tunnel tests on a conical forebody in isolation and in a generic fighter configuration. Force and moment measurements on the complete model were supplemented with circumferential pressure and flow-visualization surveys on an isolated forebody, in order to gain insight into the vortex flow mechanisms resulting from forced asymmetrical separations and to quantify the obtainable yaw power at angles of attack to 80 deg. This preliminary, low-Reynolds-number study showed asymmetrically-deployed forebody strakes to have considerable yaw control potential, whose sensitivity to scale effects needs further investigation.

  18. Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano

    2016-06-01

    HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.

  19. Catastrophic yaw. Why, what, how?

    NASA Astrophysics Data System (ADS)

    Morote, J.

    2013-11-01

    Flight dynamics problems in tail stabilized missiles and bombs appear when failing to achieve their design steady-state motion because the rolling velocity occasionally locks to the pitch frequency giving rise to wobbling motions that can reach the quality of catastrophic. The flight condition attained when the coincidence between the roll and the pitch frequency persists is called roll lock-in and the large amplitude oscillation regime, catastrophic yaw. This event can occur at subsonic and supersonic velocities and invariably leads to catastrophic failure of the flight. The purpose of this paper is to give a visual explanation of the mechanism conducive to roll lock-in and catastrophic yaw and relieving means by answering the three questions: Why does the wobbling motion appear?, What is it that makes the wobbling grow to very large amplitudes? and How can catastrophic yaw be prevented?

  20. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  1. Wing Warping and Its Impact on Aerodynamic Efficiency

    NASA Astrophysics Data System (ADS)

    Loh, Ben; Jacob, Jamey

    2007-11-01

    Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.

  2. 14 CFR 23.351 - Yawing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Yawing conditions. 23.351 Section 23.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Yawing conditions. The airplane must be designed for yawing loads on the vertical surfaces resulting...

  3. Reentry aerodynamics forces and moments on the engine nozzle of the 146-inch solid rocket booster model 473 tested in MSFC 14 by 14 inch trisonic wind tunnel (SA30F)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Braddock, W. F.

    1975-01-01

    A test of a model of the Space Shuttle Solid Rocket Boosters (SRB's) was performed in a 14 x 14 inch Trisonic Wind Tunnel to determine the aerodynamic forces and moments imposed on the nozzle of the SRB during reentry. The model, with scale dimensions equal to 0.5479 of the actual SRB dimensions, was instrumented with a six-component force balance attached to the model nozzle so that only forces and moments acting on the nozzle were measured. A total of 137 runs (20 deg pitch polars) were performed during this test. The angle of attack ranged from 60 to 185 deg, the Reynolds number from 5.2 million to 7.6 million. The Mach numbers investigated were 1.96, 2.74, and 3.48. Five external protuberances were simulated. The effective roll angle simulated was 180 deg. The effects of three different heat shield configurations were investigated.

  4. HAWT dynamic stall response asymmetries under yawed flow conditions

    NASA Astrophysics Data System (ADS)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-10-01

    Horizontal axis wind turbines can experience significant time-varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modelling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high-load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle-of-attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated. Published in 2000 by John Wiley & Sons, Ltd.

  5. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  6. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  7. Yaw dynamics of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw-controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they know they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  8. The development of a prescribed wake model for performance prediction in steady yawed flow

    SciTech Connect

    Robison, D.J.; Coton, F.N.; Galbraith, R.A.M.; Vezza, M.

    1995-09-01

    A new prescribed wake model for horizontal axis wind turbines (HAWTs) is presented. The model`s wake geometry is derived from simple prescriptive functions, based on momentum theory, defining the three-dimensional wake development from the near to the far field. The work described herein considers the analysis of both steady axial and yawed flow conditions. The detailed modelling of the yawed case is still in the initial stages, it is envisaged that this will eventually include fully unsteady aerodynamic effects. Model validation is by comparison with both experimental data and results from a free wake model.

  9. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  10. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  11. Global epidemiology of yaws: a systematic review

    PubMed Central

    Mitjà, Oriol; Marks, Michael; Konan, Diby J P; Ayelo, Gilbert; Gonzalez-Beiras, Camila; Boua, Bernard; Houinei, Wendy; Kobara, Yiragnima; Tabah, Earnest N; Nsiire, Agana; Obvala, Damas; Taleo, Fasiah; Djupuri, Rita; Zaixing, Zhang; Utzinger, Jürg; Vestergaard, Lasse S; Bassat, Quique; Asiedu, Kingsley

    2015-01-01

    Summary Background To achieve yaws eradication, the use of the new WHO strategy of initial mass treatment with azithromycin and surveillance twice a year needs to be extended everywhere the disease occurs. However, the geographic scope of the disease is unknown. We aimed to synthesise published and unpublished work to update the reported number of people with yaws at national and subnational levels and to estimate at-risk populations. Methods We searched PubMed and WHO databases to identify published data for prevalence of active and latent yaws from Jan 1, 1990, to Dec 31, 2014. We also searched for ongoing or recently completed unpublished studies from the WHO yaws surveillance network. We estimated yaws prevalence (and 95% CIs). We collected yaws incidence data from official national surveillance programmes at the first administrative level from Jan 1, 2010, to Dec 31, 2013, and we used total population data at the second administrative level to estimate the size of at-risk populations. Findings We identified 103 records, of which 23 published articles describing 27 studies and four unpublished studies met the inclusion criteria. Prevalence of active disease ranged from 0·31% to 14·54% in yaws-endemic areas, and prevalence of latent yaws ranged from 2·45% to 31·05%. During 2010–13, 256 343 yaws cases were reported to WHO from 13 endemic countries, all of which are low-income and middle-income countries. 215 308 (84%) of 256 343 cases reported to WHO were from three countries—Papua New Guinea, Solomon Islands, and Ghana. We estimated that, in 2012, over 89 million people were living in yaws-endemic districts. Interpretation Papua New Guinea, Solomon Islands, and Ghana should be the focus of initial efforts at implementing the WHO yaws eradication strategy. Community-based mapping and active surveillance must accompany the implementation of yaws eradication activities. Funding None. PMID:26001576

  12. Aerodynamics of an Axisymmetric Missile Concept Having Cruciform Strakes and In-Line Tail Fins From Mach 0.60 to 4.63

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.

    2005-01-01

    An experimental study has been performed to develop a large force and moment aerodynamic data set on a slender axisymmetric missile configuration having cruciform strakes and in-line control tail fins. The data include six-component balance measurements of the configuration aerodynamics and three-component measurements on all four tail fins. The test variables include angle of attack, roll angle, Mach number, model buildup, strake length, nose size, and tail fin deflection angles to provide pitch, yaw, and roll control. Test Mach numbers ranged from 0.60 to 4.63. The entire data set is presented on a CD-ROM that is attached to this paper. The CD-ROM also includes extensive plots of both the six-component configuration data and the three-component tail fin data. Selected samples of these plots are presented in this paper to illustrate the features of the data and to investigate the effects of the test variables.

  13. Aerodynamics of an Axisymmetric Missile Concept Having Cruciform Strakes and In-Line Tail Fins From Mach 0.60 to 4.63, Supplement

    NASA Technical Reports Server (NTRS)

    Allen, Jerry M.

    2005-01-01

    An experimental study has been performed to develop a large force and moment aerodynamic data set on a slender axisymmetric missile configuration having cruciform strakes and in-line control tail fins. The data include six-component balance measurements of the configuration aerodynamics and three-component measurements on all four tail fins. The test variables include angle of attack, roll angle, Mach number, model buildup, strake length, nose size, and tail fin deflection angles to provide pitch, yaw, and roll control. Test Mach numbers ranged from 0.60 to 4.63. The entire data set is presented on a CD-ROM that is attached to this paper. The CD-ROM also includes extensive plots of both the six-component configuration data and the three-component tail fin data. Selected samples of these plots are presented in this paper to illustrate the features of the data and to investigate the effects of the test variables.

  14. Numerical Investigation of Active Flow Control on Wind Turbines under Yaw Misalignment

    NASA Astrophysics Data System (ADS)

    Tran, Steven; Corson, David; Sahni, Onkar

    2012-11-01

    Yaw misalignment dramatically increases unsteady aerodynamic loading on wind turbine blades over each revolution. The resulting fluctuating loads on each blade cause fatigue in the system and subsequently, failure leading to increased maintenance costs and unnecessary downtime. In this study we numerically analyze the effects of yaw misalignment on complete rotating wind turbines with blades of O(5m) in length. We consider two wind speeds at rated and above-rated regimes, where the effect of yaw misalignment is more pronounced. For the baseline configuration comparisons are made with the existing experimental data. To mitigate the resulting unsteady aerodynamic loading, we apply synthetic-jet based fluidic actuation in order to achieve fast-time response (in contrast to traditional yaw control strategies). O(5-10) jets are placed along the outer half of blade span. Along the chord two jet locations (x/c = 0.05 and 0.40) are considered. Actuation strategies for jets are based on partial loop control with pulse modulation. All simulations are based on unsteady Reynolds-averaged Navier-Stokes (URANS) equations. NYSERDA.

  15. Determination of aerodynamic parameters of a fighter airplane from flight data at high angles of attack

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.; Abbasy, I.

    1983-01-01

    A procedure for the estimation of airplane model structure and parameters is applied to data from a modern fighter airplane operating within an angle of attack range of 5 to 60 deg. The paper briefly describes the airplane, flight and wind tunnel data available, and the estimation method. The results presented contain basic longitudinal characteristics of the airplane and the estimates of aerodynamic parameters in the yawing-moment equations. These estimates are obtained from small and large amplitude maneuvers. Because the latter set of data was not suitable for airplane identification, some of the large amplitude maneuvers were joined together and then partitioned into subsets according to the values of angle of attack. Each subset was then analyzed as a separate data set. Most of the estimated parameters and functions are in good agreement with the wind tunnel measurements. The estimated lateral parameters in the model equations also demonstrate good prediction capabilities.

  16. 14 CFR 27.351 - Yawing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Yawing conditions. 27.351 Section 27.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.351 Yawing conditions. (a) Each rotorcraft must be designed for...

  17. 14 CFR 27.351 - Yawing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Yawing conditions. 27.351 Section 27.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.351 Yawing conditions....

  18. 14 CFR 27.351 - Yawing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Yawing conditions. 27.351 Section 27.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.351 Yawing conditions. (a) Each rotorcraft must be designed for...

  19. 14 CFR 27.351 - Yawing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Yawing conditions. 27.351 Section 27.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.351 Yawing conditions. (a) Each rotorcraft must be designed for...

  20. 14 CFR 29.351 - Yawing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Yawing conditions. 29.351 Section 29.351 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.351 Yawing conditions. (a) Each rotorcraft must be designed...

  1. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    PubMed

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

  2. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions

    PubMed Central

    Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.

    2015-01-01

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

  3. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.

    PubMed

    Faruque, Imraan A; Humbert, J Sean

    2014-12-21

    Whether the remarkable flight performance of insects is because the animals leverage inherent physics at this scale or because they employ specialized neural feedback mechanisms is an active research question. In this study, an empirically derived aerodynamics model is used with a transformation involving a delay and a rotation to identify a class of kinematics that provide favorable roll-yaw coupling. The transformation is also used to transform both synthetic and experimentally measured wing motions onto the manifold representing proverse yaw and to quantify the degree to which freely flying insects make use of passive aerodynamic mechanisms to provide proverse roll-yaw turn coordination. The transformation indicates that recorded insect kinematics do act to provide proverse yaw for a variety of maneuvers. This finding suggests that passive aerodynamic mechanisms can act to reduce the neural feedback demands of an insect׳s flight control strategy. PMID:25128237

  4. Subsonic aerodynamic characteristics of a circular body earth-to-orbit transport

    NASA Technical Reports Server (NTRS)

    Lepsch, R. A., Jr.; Macconochie, I. O.

    1986-01-01

    To reduce the weight and improve the performance of future earth-to-orbit transports, the use of circular cross sections in the fuselage bodies of these vehicles is being considered at the Langley Research Center. Structurally, circular cross sections are stronger and lighter than other shapes. A study has been made applying the circular body concept to a vertical-takeoff, delta-winged, single-stage-to-orbit transport. A 52 in., 0.022-scale model of the circular body vehicle was tested at a Mach number of 0.3 in the 7 x 10 ft High Speed Wind Tunnel at the Langley Research Center to obtain aerodynamic forces and moments. Oil-flow photographs were taken at several angles of attack to aid in the aerodynamic analysis. Model control surfaces included elevons and ailerons for the evaluation of pitch and roll characteristics and either wing-tip fins, a nose mounted dorsal fin, or a conventional vertical tail for the evaluation of yaw characteristics. Other deflecting surfaces included speedbrakes and body flaps. Basic data on longitudinal flight characteristics are shown, including lift, drag, and pitching moments. Comparisons of the directional stability and control effectiveness of the three directional control devices are also shown.

  5. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  6. Yaws: towards the WHO eradication target

    PubMed Central

    Marks, Michael

    2016-01-01

    In 2012 WHO declared a target to eradicate yaws by 2020. The cornerstone of this strategy is community mass treatment with azithromycin. Initial studies suggest this is a very effective tool that may be capable of interrupting transmission. Alongside this there has been progress in the development and validation of diagnostic tests for yaws. Several new challenges have also emerged, in particular, evidence that Haemophilus ducreyi can cause phenotypically similar ulcers in yaws endemic communities, and evidence for a possible non-human primate reservoir. The 2020 eradication target remains ambitious and more challenges should be expected on the journey. PMID:27268712

  7. Free-Flight Evaluation of Forebody Blowing for Yaw Control at High Angels of Attack

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason

    1995-01-01

    Forebody blowing is a concept developed to provide yaw control for aircraft flying at high angles of attack where a conventional rudder becomes ineffective. The basic concept is fairly simple. A small jet of air is forced out of the nose of the aircraft. This jet causes a repositioning of the forebody vortices in an asymmetrical fashion. The asymmetric forebody vortex flows develop a side force on the forebody which results in substantial yawing moments at high angles of attack. The purpose of this project was to demonstrate the use of forebody blowing as a control device through free-flight evaluation. This unique type of testing was performed at the NASA-Langley 30- by 60-foot tunnel. From these tests, it could then be shown that forebody blowing is an effective method of maintaining yaw control at high angles of attack.

  8. Static and dynamic force/moment measurements in the Eidetics water tunnel

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  9. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  10. Experimental investigation of orthotropic panel flutter at arbitrary yaw angles, and comparison with theory

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1973-01-01

    Flutter characteristics for yaw angles between 15 deg and 90 deg were determined experimentally for two types of corrugation-stiffened panels: those with weak twisting stiffness and those with strong twisting stiffness. By mounting the panels on a remotely controlled turntable, good definition of the flutter boundaries was obtained by rotating the panels into and out of flutter. Flutter tests were conducted at M = 2 and M = 1.6. Before testing, vibration tests and analyses were also performed. The experimental flutter data is compared with flutter theory for orthotropic panels utilizing quasi-steady aerodynamics. Five different corrugated panels were tested consisting of one single skin panel having a length-to-width ratio of 5 on clamped supports and four different square double skin panels on discrete flexible supports. The investigation indicated that flutter speed for corrugated panels is highly dependent on yaw angle. Reasonable flutter correlation between analysis and test was obtained for moderate yaw angles, but extreme sensitivity to structural parameters made the correlation at large yaw angles uncertain.

  11. Low-speed wind-tunnel investigation of a porous forebody and nose strakes for yaw control of a multirole fighter aircraft

    NASA Technical Reports Server (NTRS)

    Fears, Scott P.

    1995-01-01

    Low-speed wind-tunnel tests were conducted in the Langley 12-Foot Low-Speed Tunnel on a model of the Boeing Multirole Fighter (BMRF) aircraft. This single-seat, single-engine configuration was intended to be an F-16 replacement that would incorporate many of the design goals and advanced technologies of the F-22. Its mission requirements included supersonic cruise without afterburner, reduced observability, and the ability to attack both air-to-air and air-to-ground targets. So that it would be effective in all phases of air combat, the ability to maneuver at angles of attack up to and beyond maximum lift was also desired. Traditional aerodynamic yaw controls, such as rudders, are typically ineffective at these higher angles of attack because they are usually located in the wake from the wings and fuselage. For this reason, this study focused on investigating forebody-mounted controls that produces yawing moments by modifying the strong vortex flowfield being shed from the forebody at high angles of attack. Two forebody strakes were tested that varied in planform and chordwise location. Various patterns of porosity in the forebody skin were also tested that differed in their radial coverage and chordwise location. The tests were performed at a dynamic pressure of 4 lb/ft(exp 2) over an angle-of-attack range of -4 deg to 72 deg and a sideslip range of -10 deg to 10 deg. Static force data, static pressures on the surface of the forebody, and videotapes of flow-visualization using laser-illuminated smoke were obtained.

  12. Some experiments on Yaw stability of wind turbines with various coning angles

    NASA Technical Reports Server (NTRS)

    Bundas, D.; Dugundji, J.

    1981-01-01

    A horizontal axis wind turbine was constructed to study the effect of coning angle on the yawing moments produced. Coning angles of 0 deg, +10 deg and -10 deg were studied in the upwind and downwind cases. Moment and rotational frequency of the blades at each yaw angle setting were taken. It was found that as the coning angle increased from -10 deg to +10 deg in either the upwind or downwind case the stability decreased. The downwind case was slightly more stable for all coning angles than was the upwind case. It is found that all the previous cases were stable for high rotation speeds, but at lower rotation speeds, they were all unstable and could not self start unless held in the wind.

  13. Aeroelastic response of metallic and composite propfan models in yawed flow

    NASA Technical Reports Server (NTRS)

    Kaza, Krishna Rao V.; Williams, Marc H.; Mehmed, Oral; Nerayanan, G. V.

    1988-01-01

    An analytical investigation of aeroelastic response of metallic and composite propfan models in yawed flow was performed. The analytical model is based on the normal modes of a rotating blade and the three dimensional unsteady lifting surface aerodynamic theory including blade mistuning. The calculated blade stresses or strains are compared with published wind tunnel data on two metallic and three composite propfan wind tunnel models. The comparison shows a good agreement between theory and experiment. Additional parametric results indicate that blade response is very sensitive to the blade stiffness and also to blade frequency and mode shape mistuning. From these findings, it is concluded that both frequency and mode shape mistuning should be included in aeroelastic response analysis. Furthermore, both calculated and measured strains show that combined blade frequency and mode shape mistuning has beneficial effects on response due to yawed flow.

  14. Extended moment arm anti-spin device

    NASA Technical Reports Server (NTRS)

    Whipple, R. D. (Inventor)

    1985-01-01

    A device which corrects aerodynamic spin is provided in which a collapsible boom extends an aircraft moment arm and an anti-spin parachute force is exerted upon the end of the moment arm to correct intentional or inadvertent aerodynamic spin. This configuration effects spin recovery by means of a parachute whose required diameter decreases as an inverse function of the increasing length of the moment arm. The collapsible boom enables the parachute to avoid the aircraft wake without mechanical assistance, retracts to permit steep takeoff, and permits a parachute to correct spin while minimizing associated aerodynamic, structural and in-flight complications.

  15. Forebody Aerodynamics of the F-18 High Alpha Research Vehicle with Actuated Forebody Strakes

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.

    2001-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 deg-angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 deg symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 deg and for 0 deg and 20 deg symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  16. Forebody Aerodynamics of the F-18 High Alpha Research Vehicle with Actuated Forebody Strakes

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.

    2003-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 -angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 and for 0 and 20 symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  17. Effect of Actuated Forebody Strakes on the Forebody Aerodynamics of the NASA F-18 HARV

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.; Lanser, Wendy R.

    1996-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At angles of attack greater than 40 deg., deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. At alpha = 40 deg. and 50 deg., deflecting the strakes differentially about a 20 deg. symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At alpha = 50 deg. and for 0 deg. and 20 deg. symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions), than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  18. 14 CFR 25.351 - Yaw maneuver conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder... in paragraph (a) of this section. (d) With the airplane yawed to the static equilibrium...

  19. 14 CFR 25.351 - Yaw maneuver conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder... in paragraph (a) of this section. (d) With the airplane yawed to the static equilibrium...

  20. 14 CFR 25.351 - Yaw maneuver conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder... in paragraph (a) of this section. (d) With the airplane yawed to the static equilibrium...

  1. 14 CFR 25.351 - Yaw maneuver conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder... in paragraph (a) of this section. (d) With the airplane yawed to the static equilibrium...

  2. 14 CFR 25.351 - Yaw maneuver conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) With the airplane yawed to the static equilibrium sideslip angle, it is assumed that the cockpit rudder... in paragraph (a) of this section. (d) With the airplane yawed to the static equilibrium...

  3. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  4. Effects of fluid behavior around low aspect ratio, low Reynolds number wings on aerodynamic stability

    NASA Astrophysics Data System (ADS)

    Shields, Matthew; Mohseni, Kamran

    2011-11-01

    The innovation of micro aerial vehicles (MAVs) has brought to attention the unique flow regime associated with low aspect ratio (LAR), low Reynolds number fliers. The dominant effects of developing tip vortices and leading edge vortices create a fundamentally different flow regime than that of conventional aircraft. An improved knowledge of low aspect ratio, low Reynolds number aerodynamics can be greatly beneficial for future MAV design. A little investigated but vital aspect of LAR aerodynamics is the behavior of the fluid as the wing yaws. Flow visualization experiments undertaken in the group for the canonical case of varying AR flat plates indicate that the propagation of the tip vortex keeps the flow attached over the upstream portion of the wing, while the downstream vortex is convected away from the wing. This induces asymmetric, destabilizing loading on the wing which has been observed to adversely affect MAV flight. In addition, experimental load measurements indicate significant nonlinearities in forces and moments which can be attributed to the development and propagation of these vortical structures. A non-dimensional analysis of the rigid body equations of motion indicates that these nonlinearities create dependencies which dramatically change the conventional linearization process. These flow phenomena are investigated with intent to apply to future MAV design.

  5. Orthotropic panel flutter at arbitrary yaw angles - Experiment and correlation with theory.

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.; Sawyer, J. W.

    1973-01-01

    Experimental flutter boundaries were obtained for yaw angles between 15 and 90 deg at Mach numbers 2 and 1.6 for panels mounted on a remotely controlled turntable. Good definition of the flutter boundaries was obtained by rotating the panels into and out of flutter. Two types of specimens were tested: a single-sheet corrugated panel having a length-to-width ratio of 5 on clamped supports, and several square doubly-corrugated panels on various flexible supports. Calculated flutter speeds based on quasi-steady aerodynamics are compared to experimental data.

  6. The structure of the wake generated by a submarine model in yaw

    NASA Astrophysics Data System (ADS)

    Ashok, A.; Van Buren, T.; Smits, A. J.

    2015-06-01

    The turbulent wake of a submarine model in yaw was investigated using stereoscopic particle image velocimetry at The model (DARPA SUBOFF idealized submarine geometry) is mounted in a low-speed wind tunnel using a support that mimics the sail, and it is yawed so that the body moves in the plane normal to the support. The measurements reveal the formation of a pair of streamwise vortices that are asymmetric in strength. The weaker vortex quickly diffuses, and in the absence of further diffusion, the stronger vortex maintains its strength even at the furthest downstream location. It is suggested that the flow fields obtained here using a semi-infinite sail as a support will be similar to those obtained using a finite length sail since its tip vortex would not interact significantly with the body vortices present in the wake, at least for a considerable distance downstream of the stern Hence, a submarine in yaw is expected to generate wakes which are inherently more persistent than one in pitch, and the strong asymmetries in yaw are expected to produce a net rolling moment on the body.

  7. Some important aspects of yaws eradication*

    PubMed Central

    Hackett, C. J.; Guthe, T.

    1956-01-01

    The purposes of a yaws mass campaign are to eradicate yaws and to improve the environmental sanitation and standard of living of the people so that its re-introduction will be impossible. In a mass treatment campaign the importance of latent cases and contacts in maintaining the disease must be taken into account. The treatment of this group of the population, in addition to all active cases, hastens the success of the campaign. Resurveys at regular intervals must be carried out until the prevalence of active yaws is low and there are adequate facilities to continue the consolidation phase of the campaign. All the population should be seen at each survey. Serological screening is used to guide public health activities. All campaigns and post-campaign activities should be planned and budgeted for before the activities start. Campaigns should expand as compact areas and should be co-ordinated with similar campaigns in adjacent countries. Adequate supervision of field staff, the intelligent co-operation of the people and their leaders and continuous project evaluation are essential for the eradication of yaws. PMID:13404465

  8. LDEF yaw and pitch angle estimates

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gebauer, Linda

    1992-01-01

    Quantification of the LDEF yaw and pitch misorientations is crucial to the knowledge of atomic oxygen exposure of samples placed on LDEF. Video camera documentation of the LDEF spacecraft prior to grapple attachment, atomic oxygen shadows on experiment trays and longerons, and a pinhole atomic oxygen camera placed on LDEF provided sources of documentation of the yaw and pitch misorientation. Based on uncertainty-weighted averaging of data, the LDEF yaw offset was found to be 8.1 plus or minus 0.6 degrees, allowing higher atomic oxygen exposure of row 12 than initially anticipated. The LDEF pitch angle offset was found to be 0.8 plus or minus 0.4 degrees, such that the space end was tipped forward toward the direction of travel. The resulting consequences of the yaw and pitch misorientation of LDEF on the atomic oxygen fluence is a factor of 2.16 increase for samples located on row 12, and a factor of 1.18 increase for samples located on the space end compared to that which would be expected for perfect orientation.

  9. Yaw Control At High Angles Of Attack

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Rao, Dhanvada M.

    1988-01-01

    Hinged, conformal forebody strakes provide control when rudders become ineffective. Device consists of symmetric pair of longitudinally hinged strakes designed to fold completely into forebody contour. Strakes rotate individually out into external flow. Asymmetric flow produced by deployed strake generates sideward force causing aircraft to yaw.

  10. More on the penetration of yawed rods

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Dekel, E.; Ashuach, Y.

    2006-08-01

    One of the most complex processes, in the field of terminal ballistics, is that of yawed impact of long rods. In spite of many experimental observations, and some analytical modeling, a clear picture of this issue is still lacking. In order to gain some insight into the operating mechanisms, we developed a simple engineering model which considers the yawed rod as a series of small disks. We then define the effective length and diameter of the rod by considering those disks which are going to hit the initial crater which is opened by the impact. We also performed a series of 3D numerical simulations with various L/D tungsten alloy rods impacting a steel target, at yaws in the full range of 0-90^circ. We analyzed the results of these simulations in terms of the normalized penetration (P/D), where D is the rod diameter, and looked for systematic trends in the results for the various rods. The agreement between our model predictions and both experimental data and simulation results is quite good. Based on this agreement we can highlight some new features of the penetration process of yawed rods.

  11. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  12. A summary of the forebody high-angle-of-attack aerodynamics research on the F-18 and the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Bjarke, Lisa J.; Delfrate, John H.; Fisher, David F.

    1992-01-01

    High-angle-of-attack aerodynamic studies have been conducted on both the F18 High Alpha Research Vehicle (HARV) and the X-29A aircraft. Data obtained include on- and off-surface flow visualization and static pressure measurements on the forebody. Comparisons of similar results are made between the two aircraft where possible. The forebody shapes of the two aircraft are different and the X-29A forebody flow is affected by the addition of nose strakes and a flight test noseboom. The forebody flow field of the F-18 HARV is fairly symmetric at zero sideslip and has distinct, well-defined vortices. The X-29A forebody vortices are more diffuse and are sometimes asymmetric at zero sideslip. These asymmetries correlate with observed zero-sideslip aircraft yawing moments.

  13. Theoretical span loading and moments of tapered wings produced by aileron deflection

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    The effect of tapered ailerons on linearly tapered wings is theoretically determined. Four different aileron spans are considered for each of three wing aspect ratios and each of four wing taper ratios. The change in lift on one half of the wing, the rolling moment, the additional induced drag, and the yawing moment, due to aileron deflection, are represented by non dimensional coefficients. Similar coefficients are given for the damping and yawing moments, the additional drag, and the change in lift, due to rolling. It was found possible to effect a fairly close agreement between the theoretical and experimental rolling moments by introducing into the theoretical expression for the rolling moment an effective change in angle of attack obtained from an analysis of flap data. The theoretical curves show that the highly tapered wing with long ailerons has a lower ratio of yawing to rolling moment and a lower additional induced drag than wings with less taper.

  14. Simulations of the Yawed MEXICO Rotor Using a Viscous-Inviscid Panel Method

    NASA Astrophysics Data System (ADS)

    Ramos-García, N.; Sørensen, J. N.; Shen, W. Z.

    2014-06-01

    In the present work the viscous-inviscid interactive model MIRAS is used to simulate flows past the MEXICO rotor in yawed conditions. The solver is based on an unsteady three-dimensional free wake panel method which uses a strong viscous-inviscid interaction technique to account for the viscous effects inside the boundary layer. Calculated wake velocities have been benchmarked against field PIV measurements, while computed blade aerodynamic characteristics are compared against the load calculated from pressure measurements at different locations along the blade span. Predicted and measured aerodynamic forces are in overall good agreement, however discrepancies appear in the root region which could be related to an underestimation of the rotational effects arising from Coriolis and centrifugal forces. The predicted wake velocities are generally in good agreement with measurements along the radial as well as the axial traverses performed during the experimental campaign.

  15. A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow

    SciTech Connect

    Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D.

    1997-12-31

    This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.

  16. Wind-tunnel investigation to determine the low speed yawing stability derivatives of a twin jet fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Newsom, W. A., Jr.

    1974-01-01

    An investigation was conducted to determine the low-speed yawing stability derivatives of a twin-jet fighter airplane model at high angles of attack. Tests were performed in a low-speed tunnel utilizing variable-curvature walls to simulate pure yawing motion. The results of the study showed that at angles of attack below the stall the yawing derivatives were essentially independent of the yawing velocity and sideslip angle. However, at angles of attack above the stall some nonlinear variations were present and the derivatives were strongly dependent upon sideslip angle. The results also showed that the rolling moment due to yawing was primarily due to the wing-fuselage combination, and that at angles of attack below the stall both the vertical and horizontal tails produced significant contributions to the damping in yaw. Additionally, the tests showed that the use of the forced-oscillation data to represent the yawing stability derivatives is questionable, at high angles of attack, due to large effects arising from the acceleration in sideslip derivatives.

  17. Dynamic stability characteristics in pitch, yaw, and roll of a supercritical-wing research airplane model. [langley 8-foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.

    1974-01-01

    The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.

  18. Theoretical Evaluation of the Pressures, Forces, and Moments at Hypersonic Speeds Acting on Arbitrary Bodies of Revolution Undergoing Separate and Combined Angle-of-attack and Pitching Motions

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth

    1961-01-01

    Equations based on Newtonian impact theory have been derived and a computational procedure developed with the aid of several design-type charts which enable the determination of the aerodynamic forces and moments acting on arbitrary bodies of revolution undergoing either separate or combined angle-of-attack and pitching motions. Bodies with axially increasing and decreasing cross-sectional area distributions are considered; nose shapes may be sharp, blunt, or flat faced. The analysis considers variations in angle of attack from -90 degrees to 90 degrees and allows for both positive and negative pitching rates of arbitrary magnitude. The results are also directly applicable to bodies in either separate or combined sideslip and yawing maneuvers.

  19. Helicopter low-speed yaw control

    NASA Technical Reports Server (NTRS)

    Wilson, John C. (Inventor); Kelley, Henry L. (Inventor); Crowell, Cynthia A. (Inventor)

    1993-01-01

    A system for improving yaw control at low speeds consists of one strake placed on the upper portion of the fuselage facing the retreating rotor blade and another strake placed on the lower portion of the fuselage facing the advancing rotor blade. These strakes spoil the airflow on the helicopter tail boom during hover, low speed flight, and right or left sidewards flight so that less side thrust is required from the tail rotor.

  20. Yaws Prevalence, Lessons from the Field and the Way Forward towards Yaws Eradication in Ghana

    PubMed Central

    Kaitoo, Ekow; Agongo, Emmanuel Erasmus Akurugu; Bonsu, George; Kyei-Faried, Sadik; Amponsa-Achiano, Kwame; Ahmed, Kofi; Appiah-Denkyira, Ebenezer; Asiedu, Kingsley; Amankwa, Joseph; Bonsu, Frank Adae

    2014-01-01

    Despite past WHO/UNICEF led global yaws eradication efforts, the disease seems to persist. The true burden is however not known for comprehensive action. Ghana's data showed significant increase in notified cases since the 1970s. Recognizing limitations in routine data, we carried out a yaws treatment survey in 2008 in three purposively selected districts to establish the prevalence and learn lessons for renewed action. Of 208,413 school children examined, 4,006 were suspected yaws cases (prevalence 1.92 (95% CI: 1.86–1.98) percent). Of 547 schools surveyed, 13% had prevalence between 5% and 10% while 3% had prevalence above 10%. The highest school prevalence was 19.5%. Half of the schools had cases. The large sample allowed aggregating the school results by administrative levels. The lowest aggregated prevalences of 0.23%, 0.40%, and 0.64% were in the urban sub-districts of Asamankese, Oda, and Achiase, respectively, while the highest of 8.61%, 3.69%, and 1.4% were in rural Akroso, Mepom, and Aperade, respectively. In conclusion, the prevalence of yaws is high in some schools in rural, hard-to-reach areas of Ghana. Considering past global eradication efforts, our findings suggest yaws may be resurging for which programmatic action is needed. PMID:27437507

  1. Yaw Motion Cues in Helicopter Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.

    1996-01-01

    A piloted simulation that examined the effects of yaw motion cues on pilot-vehicle performance, pilot workload, and pilot motion perception was conducted on the NASA Ames Vertical Motion Simulator. The vehicle model that was used represented an AH-64 helicopter. Three tasks were performed in which only combinations of vehicle yaw and vertical displacement were allowed. The commands issued to the motion platform were modified to present the following four motion configurations for a pilot located forward of the center of rotation: (1) only the linear translations, (2) only the angular rotation, (3) both the linear translations and the angular rotation, and (4) no motion. The objective data indicated that pilot-vehicle performance was reduced and the necessary control activity increased when linear motion was removed; however, the lack of angular rotation did not result in a measured degradation for almost all cases. Also, pilots provided subjective assessments of their compensation required, the motion fidelity, and their judgment of whether or not linear or rotational cockpit motion was present. Ratings of compensation and fidelity were affected only by linear acceleration, and the rotational motion had no significant impact. Also, when only linear motion was present, pilots typically reported the presence of rotation. Thus, linear acceleration cues, not yaw rotational cues, appear necessary to simulate hovering flight.

  2. Serological study of yaws in Java

    PubMed Central

    Li, Huan-Ying; Soebekti, R.

    1955-01-01

    This report presents the results of serological analyses made by the laboratory of the Treponematoses Control Project, Indonesia, from its establishment in April 1951 until April 1953. All sera were tested quantitatively with the VDRL and Kline slide-tests or the Kahn test, or with all three. A study of the mean reagin titre in untreated yaws cases showed that the percentage of seronegative reactors among clinically positive cases was low. Less seronegativity was observed among females than males. Examination of decrease in mean reagin titre after treatment by clinical group showed maximum to minimum decrease in the following sequence: early contagious, early contagious plus hyperkeratosis, ulcerative plus osteo-articular, ulcerative, hyperkeratosis, and osteo-articular lesions. The decrease tended to be greater in females than males and in patients with high than with low titre; it also varied with the age of the patient. No significant variation in decrease was noted when four different PAM treatment schedules were tested comparatively. The percentage of serological cure and improvement with all schedules was highest in the cases with early lesions, and in the younger age-groups. A study of patients requiring re-treatment at the time of resurvey showed no important difference in mean reagin titre between clinically cured and uncured patients suffering from palmar or plantar hyperkeratosis and ulcerative or osteo-articular lesions. Serological testing of sera from clinically negative household contacts and non-contacts, with or without previous history of yaws, gave the following results: Among the household contacts, the number of seronegative reactors, while not affected by age-distribution, was significantly higher in the history-positive than in the history-negative groups. The percentage of seropositive reactors was in direct proportion to the prevalence of yaws, the seropositivity-rate being high in villages with a yaws incidence of 11%-30%. The report also

  3. Some epidemiological aspects of the eradication of yaws

    PubMed Central

    Hackett, C. J.

    1960-01-01

    Much has been learnt of the epidemiology of yaws during eradication campaigns in populations in which the prevalence of active yaws was high, but not all has been published. The recognition of the importance of latent cases in the maintenance of yaws has contributed to the effectiveness of these campaigns. Yaws eradication activities are extending into populations where at present active yaws is often not high. Planning of effective and economical eradication measures, especially in such populations, needs as complete a picture of the disease as possible, from its transmission and the factors that favour this until the death of the infected person, before or after cure of the infection either after chemotherapy or spontaneously. By revealing the many gaps that still remain in our knowledge of yaws, this summary may encourage those who have gathered valuable material during field work to study and prepare it for publication. PMID:13710280

  4. Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

  5. Fuzzy Regulator Design for Wind Turbine Yaw Control

    PubMed Central

    Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  6. Tropical leg ulcers in children: more than yaws.

    PubMed

    Fegan, David; Glennon, Mary Jacqueline; Kool, Jacob; Taleo, Fasihah

    2016-04-01

    The management of yaws has changed in recent years. Mass treatment with oral azithromycin has replaced intramuscular benzathine benzylpenicillin. Treponemal and non-treponemal serology (equivalent to TPHA and RPR) point-of-care blood testing is now available. In addition, recent studies in yaws endemic regions have shown that a significant number of leg ulcers in children which are clinically suggestive of yaws are caused by Haemophilus ducreyi. It is noteworthy that the World Health Organization has also set the ambitious goal to eliminate yaws by 2020. PMID:26289420

  7. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  8. Aerodynamic Parameter Identification of a Venus Lander

    NASA Astrophysics Data System (ADS)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  9. Supersonic Experiments on Dynamic Cross-Derivatives Due to Pitching and Yawing of Aircraft-Like Vehicles

    NASA Technical Reports Server (NTRS)

    Orlik-Ruckemann, K. J.; Laberge, J. G.; Hanff, E. S.

    1973-01-01

    A wind tunnel apparatus has been developed and constructed for the determination of moment cross-derivatives due to pitching and yawing on models at moderate angles of attack and sideslip. The apparatus can also be used to determine the direct moment derivatives in pitch and yaw. Experimental results were obtained at Mach 2 on a cone-wing-fin configuration at angles of attack and sideslip up to 15. Although at small values of these angles the cross-derivatives were always negligibly small, measureable effects were sometimes observed, at all angles of attack included in this investigation (i.e. up to 15 deg), when the angle of sideslip was 10 deg or 15 deg.

  10. Wind tunnel investigations of forebody strakes for yaw control on F/A-18 model at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Murri, Daniel G.

    1993-01-01

    Wind tunnel investigations have been conducted of forebody strakes for yaw control on 0.06-scale models of the F/A-18 aircraft at free-stream Mach numbers of 0.20 to 0.90. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center and the Langley 7- by 10-Foot High-Speed Tunnel. The principal objectives of the testing were to determine the effects of the Mach number and the strake plan form on the strake yaw control effectiveness and the corresponding strake vortex induced flow field. The wind tunnel model configurations simulated an actuated conformal strake deployed for maximum yaw control at high angles of attack. The test data included six-component forces and moments on the complete model, surface static pressure distributions on the forebody and wing leading-edge extensions, and on-surface and off-surface flow visualizations. The results from these studies show that the strake produces large yaw control increments at high angles of attack that exceed the effect of conventional rudders at low angles of attack. The strake yaw control increments diminish with increasing Mach number but continue to exceed the effect of rudder deflection at angles of attack greater than 30 degrees. The character of the strake vortex induced flow field is similar at subsonic and transonic speeds. Cropping the strake planform to account for geometric and structural constraints on the F-18 aircraft has a small effect on the yaw control increments at subsonic speeds and no effect at transonic speeds.

  11. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  12. Time-accurate aeroelastic simulations of a wind turbine in yaw and shear using a coupled CFD-CSD method

    NASA Astrophysics Data System (ADS)

    Yu, D. O.; Kwon, O. J.

    2014-06-01

    In the present study, aeroelastic simulations of horizontal-axis wind turbine rotor blades were conducted using a coupled CFD-CSD method. The unsteady blade aerodynamic loads and the dynamic blade response due to yaw misalignment and non-uniform sheared wind were investigated. For this purpose, a CFD code solving the RANS equations on unstructured meshes and a FEM-based CSD beam solver were used. The coupling of the CFD and CSD solvers was made by exchanging the data between the two solvers in a loosely coupled manner. The present coupled CFD-CSD method was applied to the NREL 5MW reference wind turbine rotor, and the results were compared with those of CFD-alone rigid blade calculations. It was found that aeroelastic blade deformation leads to a significant reduction of blade aerodynamic loads, and alters the unsteady load behaviours, mainly due to the torsional deformation. The reduction of blade aerodynamic loads is particularly significant at the advancing rotor blade side for yawed flow conditions, and at the upper half of rotor disk where wind velocity is higher due to wind shear.

  13. Gyroless yaw control system for a three axis stabilized, zero-momentum spacecraft

    NASA Technical Reports Server (NTRS)

    Stetson, Jr., John B. (Inventor)

    1993-01-01

    A satellite attitude control system is usable in the absence of any inertial yaw attitude reference, such as a gyroscope, and in the absence of a pitch bias momentum. Both the roll-yaw rigid body dynamics and the roll-yaw orbit kinematics are modelled. Pitch and roll attitude control are conventional. The model receives inputs from a roll sensor, and roll and yaw torques from reaction wheel monitors. The model produces estimated yaw which controls the spacecraft yaw attitude.

  14. 14 CFR 25.497 - Tail-wheel yawing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail-wheel yawing. 25.497 Section 25.497 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A...

  15. Aerodynamics of a Cryogenic Semi-Tanker

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Salari, Kambiz

    2009-11-01

    The design of a modern cryogenic semi-tanker is based primarily upon functionality with little consideration given to aerodynamic drag. As a result, these tankers have maintained the appearance of a wheeled cylinder for several decades. To reduce the fuel usage of these vehicles, this study investigates their aerodynamics. A detailed understanding of the flow field about the vehicle and its influence on aerodynamic drag is obtained by performing Reynolds-Averaged Navier-Stokes simulations of a full-scale tractor and cryogenic tanker-trailer operating at highway speed within a crosswind. The tanker-trailer has a length to diameter ratio of 6.3. The Reynolds number, based upon the tanker diameter, is 4.0x10^6, while the effective vehicle yaw angle is 6.1 . The flow field about the vehicle is characterized by large flow separation regions at the tanker underbody and base. In addition, the relatively large gap between the tractor and the tanker-trailer allows the free-stream flow to be entrained into the tractor-tanker gap. By mitigating these drag-producing phenomena through the use of simple geometry modifications, it may be possible to reduce the aerodynamic drag of cryogenic semi-tankers and, thereby, improve their fuel economy. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. The transient roll moment response due to forebody tangential blowing at high angles of attack

    NASA Astrophysics Data System (ADS)

    Chow, Jonathan Kwokching

    The sustained ability for controlled flight at high angles of attack is desirable for future aircraft. For combat aircraft, enhancing maneuverability is important to increasing its survivability. For future supersonic commercial aircraft, an increase in lift at high angles of attack leads to improved performance during take-offs and landing, and a reduction in noise pollution. However, nonlinear and unsteady phenomena, such as flow separation and vortex shedding dominate the aerodynamics in the high angle of attack regime. These phenomena cause the onset of lateral loads and decrease the effectiveness of conventional control surfaces. For conventional aircraft, controlled flight at high angle of attack is difficult or unfeasible without augmented means of control and a good understanding of their impact on vehicle characteristics and dynamics. The injection of thin sheets of air tangentially to the forebody of the vehicle has been found to be an extremely promising method for augmenting the control of a flight vehicle at high angles of attack. Forebody Tangential Blowing (FTB) allows the flow structure to be altered in a rational manner and increase the controllability of the vehicle under these flight conditions. The feasibility of using FTB to control the roll-yaw motion of flight vehicles has been demonstrated. Existing knowledge of FTB's nonlinear impact on the aerodynamic moment responses is limited. Currently available dynamic models predict the general trends in the behavior but do not capture important transient effects that dominate the responses when small amounts of blowing is used. These transients can be large in comparison to the steady-state values. This thesis summarizes the experimental and theoretical results of an investigation into the transient effects of Forebody Tangential Blowing. The relationship between the aerodynamic roll moment, vortical flowfield, and blowing strength is examined to obtain a fundamental understanding of the physics of

  17. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Horizontal attitude concept

    NASA Technical Reports Server (NTRS)

    Brown, S. H.

    1978-01-01

    A horizontal attitude VSTOL (HAVSTOL) supersonic fighter attack aircraft powered by RALS turbofan propulsion system is analyzed. Reaction control for subaerodynamic flight is obtained in pitch and yaw from the RALS and roll from wingtip jets powered by bleed air from the RALS duct. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel program is shown to resolve some of the uncertainties. Aerodynamic data developed are static characteristics about all axes, control effectiveness, drag, propulsion induced effects and reaction control characteristics.

  18. Pressure moment on a liquid-filled projectile: Solid body rotation

    NASA Astrophysics Data System (ADS)

    Gerber, N.; Sedney, R.; Bartos, J. M.

    1982-10-01

    The liquid produced moment on a liquid filled spinning cylinder executing angular motion is determined, where the liquid originally is in solid body rotation. In an approximation to free flight spiraling motion of a projectile, the cylinder is nutating at constant frequency about a point on its axis and is undergoing timewise exponential yaw growth. The assumption of small yaw angle permits the formulation of a linearized viscous flow problem as a perturbation on solid body rotation. The pressure obtained from the resulting linearized flow is used to obtain the moment. Moment due to shear stresses is not considered. This moment is incorporated into the dynamical equations of gyroscopic motion to determine yaw growth rate and mutational frequency. This report provides a presentation of the equations and computational procedures. The approach is to apply a modal analysis in the flow solution which gives rise to ordinary differential equations, and then to make a correction required to compensate for neglect of the no slip conditions at the endwalls in the modal analysis. Results are compared with those of other theoretical work and with experimental data for endwall pressure, pressure moment, and yaw growth rate of projectiles and gyroscopes. In general, results agree well for high Reynolds number. Relative discrepancies are more prominent at low Reynolds numbers, particularly in yaw growth rate data. Qualitative agreement of present results with concurrent theoretical work of Murphy appears to be consistently good.

  19. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  20. ["Is a shot alone enough?": concepts of health, hygiene, and nutrition and the Program to Eradicate Yaws in Brazil, 1956-1961].

    PubMed

    Muniz, Erico Silva

    2012-03-01

    The article analyzes the Program to Eradicate Yaws, enforced in Brazil from 1956 through 1961. Following World War II, when antibiotics first came into use, it seemed there might be a method for eradicating treponematosis in a short time: a single-dose injection of penicillin. At a moment when priority was being placed on fighting rural endemic disease in Brazil, it became possible to organize a campaign against yaws. The article explores the initiatives undertaken by the National Department of Rural Endemic Diseases that revealed a malnourished, starving population, and called into question the very intentions behind the campaign and the day's concepts of health and development. PMID:22488382

  1. AIAA Applied Aerodynamics Conference, 9th, Baltimore, MD, Sept. 23-25, 1991, Technical Papers. Vols. 1 2

    SciTech Connect

    Not Available

    1991-01-01

    The present conference on aplied aerodynamics encompasses computational fluid dynamics, drag prediction/analysis, experimental aerodynamics, high angles of attack, rotor/propeller aerodynamics, super/hypersonic aerodynamics, unsteady aerodynamics, vortex physics, high-speed civil-transport aeroacoustics, and airfoil/wing aerodynamics. Specific issues addressed include high-speed civil-transport air-breathing propulsion, generic hypersonic inlet-module analysis, an investigation on spoiler effects, high-alpha vehicle dynamics, space-station resource node flow-field analysis, a numerical simulation of sabot discard aerodynamics, and vortex control using pneumatic blowing. Also addressed are Navier-Stokes solutions for the F/A-18 Wing-LEX fuselage, tail venting for enhanced yaw damping at spinning conditions, an investigation of rotor wake interactions with a body in low-speed forward flight, and multigrid calculations of 3D viscous cascade flows.

  2. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  3. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  4. An aerodynamic load criterion for airships

    NASA Technical Reports Server (NTRS)

    Woodward, D. E.

    1975-01-01

    A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

  5. Total-head Meter with Small Sensitivity to Yaw

    NASA Technical Reports Server (NTRS)

    Kiel, G

    1935-01-01

    The total-head meter is essentially a venturi, housing a pitot tube for obtaining the total head. In yaw the flow within the nozzle is deflected, depending upon the degree of yaw, to a greater or lesser extent into the axial direction of the nozzle. After experimenting with several nozzle forms as to their suitability, the best design was finally adopted. When, with the chosen nozzle form, the total head is 0.5 entrance section diameter downstream, the instrument supplies the genuine total head at low Reynolds Numbers up to 43 degrees yaw.

  6. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  7. Aerodynamic damping of blade flap motions at high angles of attack

    SciTech Connect

    Hansen, A.C.

    1995-09-01

    The YawDyn computer code is used to calculate the aerodynamic damping for a typical teetering rotor configuration. The code has been modified to calculate the net work done by aerodynamic forces in one complete rotor revolution. All cases were run for a teetering rotor similar to the ESI-80 with a specified teeter angle motion in order to isolate the aerodynamic effects from the inertial and gravitational loads. Effects of nonlinear static stall, dynamic stall, dynamic inflow, and delayed static stall due to rotation stability of flap motions in high winds. Contributions of the various steady and unsteady aerodynamic effects are presented for two airfoils: the LS(1) and the NREL Thin Airfoil Family (S805A, S806, S807). Teeter stability is compared for a blade with 10{degree} of linear twist and a blade with optimum aerodynamic twist.

  8. Aerodynamic derivatives of a cone with a semi-apex angle 20° at supersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.

    2014-12-01

    The paper deals with an experimental study of stationary and nonstationary aerodynamic characteristics of a circular cone in the range of Mach numbers 1.75-7. The experimental equipment and the method of determining the aerodynamic characteristics are briefly described. The integral aerodynamic characteristics of the model in tests with force measurements and the aerodynamic derivatives of the pitching moment in dynamic tests on a setup with free oscillations are obtained. The experimental data are compared with numerical predictions.

  9. 14 CFR 25.497 - Tail-wheel yawing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of...

  10. 14 CFR 25.497 - Tail-wheel yawing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of...

  11. 14 CFR 25.497 - Tail-wheel yawing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of...

  12. 14 CFR 25.497 - Tail-wheel yawing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.497 Tail-wheel yawing. (a) A vertical ground reaction equal to the static load on the tail wheel, in combination with a side component of...

  13. Challenges and key research questions for yaws eradication

    PubMed Central

    Marks, Michael; Mitjà, Oriol; Vestergaard, Lasse S; Pillay, Allan; Knauf, Sascha; Chen, Cheng-Yen; Bassat, Quique; Martin, Diana L.; Fegan, David; Taleo, Fasihah; Kool, Jacob; Lukehart, Sheila; Emerson, Paul M; Solomon, Anthony W; Ye, Tun; Ballard, Ronald C; Mabey, David CW; Asiedu, Kingsley B

    2015-01-01

    Yaws is endemic in West Africa, Southeast Asia and the Pacific. The WHO has launched a campaign based on mass treatment with azithromycin, to eradicate yaws by 2020. Progress has been made towards achieving this ambitious goal, including the validation of point-of-care and molecular diagnostic tests and piloting of the strategy in a number of countries including Ghana, Vanuatu and Papua New Guinea. There is a need to address gaps in knowledge to allow refinement of the eradication strategy. Studies exploring determinants of the spatial distribution of yaws are needed to facilitate completion of baseline mapping. The finding that Haemophilus ducreyi causes lesions similar to yaws is particularly important and further work is required to assess the impact of azithromycin on these lesions. The integration of diagnostic tests in to different stages of the eradication campaign requires evaluation. Finally studies to inform the optimum mass treatment strategy for sustainably interrupting transmission must be conducted. PMID:26362174

  14. Heat generation in Aircraft tires under yawed rolling conditions

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1987-01-01

    An analytical model was developed for approximating the internal temperature distribution in an aircraft tire operating under conditions of yawed rolling. The model employs an assembly of elements to represent the tire cross section and treats the heat generated within the tire as a function of the change in strain energy associated with predicted tire flexure. Special contact scrubbing terms are superimposed on the symmetrical free rolling model to account for the slip during yawed rolling. An extensive experimental program was conducted to verify temperatures predicted from the analytical model. Data from this program were compared with calculation over a range of operating conditions, namely, vertical deflection, inflation pressure, yaw angle, and direction of yaw. Generally the analytical model predicted overall trends well and correlated reasonably well with individual measurements at locations throughout the cross section.

  15. Sources of fatigue damage to passive yaw wind turbine blades

    SciTech Connect

    Laino, D.J.

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  16. Heat transfer to air from a yawed cylinder

    NASA Astrophysics Data System (ADS)

    Kraabel, J. S.; McKillop, A. A.; Baughn, J. W.

    1982-03-01

    An experimental study designed to investigate heat transfer to air from a yawed cylinder is described. Measurements were made at Reynolds numbers of 34,000 and 106,000, and yaws varied from cross flow (beta = 0 deg) to 60 deg. The independence principle is found to be valid for heat transfer at the stagnation line and in the laminar boundary layer. Although this principle would not be expected to extend to the wake, the local heat transfer to the wake is not greatly affected by yaw for beta not greater than 40 deg. The heat transfer results can be explained in terms of a secondary vortex located downstream of an initial separation point and followed by a primary eddy. For high yaws and high normal Reynolds numbers, the heat transfer is similar to that which occurs in cross flow approaching critical flow.

  17. Challenges and key research questions for yaws eradication.

    PubMed

    Marks, Michael; Mitjà, Oriol; Vestergaard, Lasse S; Pillay, Allan; Knauf, Sascha; Chen, Cheng-Yen; Bassat, Quique; Martin, Diana L; Fegan, David; Taleo, Fasihah; Kool, Jacob; Lukehart, Sheila; Emerson, Paul M; Solomon, Anthony W; Ye, Tun; Ballard, Ronald C; Mabey, David C W; Asiedu, Kingsley B

    2015-10-01

    Yaws is endemic in west Africa, southeast Asia, and the Pacific region. To eradicate yaws by 2020, WHO has launched a campaign of mass treatment with azithromycin. Progress has been made towards achievement of this ambitious goal, including the validation of point-of-care and molecular diagnostic tests and piloting of the strategy in several countries, including Ghana, Vanuatu, and Papua New Guinea. Gaps in knowledge need to be addressed to allow refinement of the eradication strategy. Studies exploring determinants of the spatial distribution of yaws are needed to help with the completion of baseline mapping. The finding that Haemophilus ducreyi causes lesions similar to yaws is particularly important and further work is needed to assess the effect of azithromycin on these lesions. The integration of diagnostic tests into different stages of the eradication campaign needs investigation. Finally, studies must be done to inform the optimum mass-treatment strategy for sustainable interruption of transmission. PMID:26362174

  18. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Chistopher L.

    2001-01-01

    Aircraft travel has become a major form of transportation. Several of our major airports are operating near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity without sacrificing public safety. One solution to the problem is to increase the number of airports and build new. runways; yet, this solution is becoming increasingly difficult due to limited space. A better solution is to increase the production per runway. This solution increases the possibility that one aircraft will encounter the trailing wake of another aircraft. Hazardous wake vortex encounters occur when an aircraft encounters the wake produced by a heavier aircraft. This heavy-load aircraft produces high-intensity wake turbulence that redistributes the aerodynamic loads of trailing smaller aircraft. This situation is particularly hazardous for smaller aircraft during takeoffs and landings. In order to gain a better understanding of the wake-vortex/aircraft encounter phenomena, NASA Langley Research Center conducted a series of flight tests from 1995 through 1997. These tests were designed to gather data for the development a wake encounter and wake-measurement data set with the accompanying atmospheric state information. This data set is being compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results. The purpose of this research is to derive and implement a procedure for calculating the wake-vortex/aircraft interaction portion of that database by using the data recorded during those flight tests. There were three objectives to this research. Initially, the wake-induced forces and moments from each flight were analyzed based on varying flap deflection angles. The flap setting alternated between 15

  19. Design fabrication and installation of a yaw measuring device

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of work performed in the development and testing of a yaw measuring device are summarized. A review of the yaw measurement method; and the techniques and hardware needed for its implementation are presented. A description and summary of the tests performed at the U.S. Bureau of Mines Bruceton facility are included. Conclusions are summarized and recommendations for a unit capable of operation in a mine environment are presented.

  20. Aerodynamics model for a generic ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.

    1995-01-01

    This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

  1. Calculation of the forces and moments on a slender fuselage and vertical fin penetrating lateral gusts

    NASA Technical Reports Server (NTRS)

    Eggleston, John M

    1956-01-01

    A theory is presented for calculating the variation with frequency of the lateral-force and yawing-moment coefficients due to sinusoidal side gusts passing over the profile of a simple fuselage-vertical-fin combination. The analysis is based on slender-body theory. The method considers the penetration effect of both fuselage and vertical tail in calculating side force and yawing moment due to side gusts, as opposed to a simple lag concept which considers the flow angle to be uniform over the configuration.

  2. Aerodynamic resistance reduction of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  3. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  4. Low speed aerodynamic characteristics of NACA 6716 and NACA 4416 airfoils with 35 percent-chord single-slotted flaps. [low turbulence pressure tunnel tests to determine two dimensional lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1974-01-01

    An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.

  5. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  6. Incremental Aerodynamic Coefficient Database for the USA2

    NASA Technical Reports Server (NTRS)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  7. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  8. The effect of yaw on horizontal axis wind turbine loading and performance

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Corrigan, R. D.; Miller, D. R.

    1980-01-01

    The Mod-0 100 kW experimental wind turbine was tested to determine the effects of yaw on rotor power, blade loads and teeter response. The wind turbine was operated for extended periods at yaw angles up to 49 deg to define average or mean response to yaw. It was determined that the effect of yaw on rotor power can be approximated by the cube of the velocity normal to the rotor disc as long as the yaw angle is less than 30 deg. Blade bending loads were relatively unaffected by yaw, but teeter angle increased with wind speed as the magnitude of the yaw angle exceeded 30 deg indicating a potential for teeter stop impacts at large yaw angles. No other adverse effects due to yaw were noted during the tests.

  9. Effect of configuration modification on the hypersonic aerodynamic characteristics of a blended delta wing-body entry vehicle

    NASA Technical Reports Server (NTRS)

    Arrington, J. P.; Ashby, G. C., Jr.

    1972-01-01

    The longitudinal, lateral, and directional aerodynamic characteristics of a delta-wing configuration were obtained experimentally at Mach 20 in helium with Reynolds numbers, based on model length, of 1.5 million and 2.9 million and at a Mach number of 6 in air with a Reynolds number, based on model length, of 4.8 million. The angles of attack varied from 0 deg to 55 deg for two sideslip angles. The effects of the addition of dorsal fins, the removal of wing tip fins, an increase in elevon span, and changes in elevon hinge-line sweep angle are discussed. The unmodified vehicle had a maximum lift-drag ratio of 2.1 at Mach 19 and of 2.4 at Mach 6 with about the same lateral and directional stability level at both Mach numbers. As the Mach number increased from 6 to 20, the longitudinal center of pressure moved forward and more positive elevon deflection was therefore required to maintain a given trim angle. The removal of wing tip fins increased the maximum lift-drag ratio and had a negligible effect on longitudinal stability, but caused directional instability that was not corrected by the dorsal fins examined. The shape of the wing and elevon hinge-line sweep had a large influence on the induced yawing moment due to roll control.

  10. Study of the single body yawed-wing aircraft concept

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.; Nisbet, J. W.; Neuman, F. D.; Hamilton, E. J.; Murakami, J. K.; Mcbarron, J. P.; Kumasaka, K.

    1974-01-01

    Areas relating to the development and improvement of the single-fuselage, yawed-wing transonic transport concept were investigated. These included: (1) developing an alternate configuration with a simplified engine installation;(2) determining a structural design speed placard that would allow the engine-airframe match for optimum airplane performance; and (3) conducting an aeroelastic stability and control analysis of the yawed-wing configuration with a flexible wing. A two-engine, single-fuselage, yawed-wing configuration was developed that achieved the Mach 1.2 design mission at 5560 km (3000 nmi) and payload of 18,140 kg (40,000 lb) with a gross weight of 217,700 kg (480,000 lb). This airplane was slightly heavier than the aft-integrated four-engine configuration that had been developed in a previous study. A modified structural design speed placard, which was determined, resulted in a 6% to 8% reduction in the gross weight of the yawed-wing configurations. The dynamic stability characteristics of the single-fuselage yawed-wing configuration were found to be very dependent on the magnitude of the pitch/roll coupling, the static longitudinal stability, and the dihedral effect.

  11. Static investigation of several yaw vectoring concepts on nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Berrier, B. L.

    1985-01-01

    A test has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the effects on nozzle internal performance of several yaw vectoring concepts. Nonaxisymmetric convergent-divergent nozzles with throat areas simulating dry and afterburning power settings and single expansion ramp nozzles with a throat area simulating a dry power setting were modified for yaw thrust vectoring. Forward-thrust and pitch-vectored nozzle configurations were tested with each yaw vectoring concept. Four basic yaw vectoring concepts were investigated on the nonaxisymmetric convergent-divergent nozzles: (1) translating sidewall; (2) downstream (of throat) flaps; (3) upstream (of throat) port/flap; and (4) powered rudder. Selected combinations of the rudder with downstream flaps or upstream port/flap were also tested. A single yaw vectoring concept, post-exit flaps, was investigated on the single expansion ramp nozzles. All testing was conducted at static (no external flow) conditions and nozzle pressure ratios varied from 2.0 up to 10.0.

  12. Visual-Motion Cueing in Altitude and Yaw Control

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Schroeder, Jeffery; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Research conducted using the Vertical Motion Simulator at the NASA Ames Research Center examined the contributions of platform motion and visual level-of-detail (LOD) cueing to tasks that required altitude and/or yaw control in a simulated AH-64 Apache helicopter. Within the altitude control tasks the LOD manipulation caused optical density to change across altitudes by a small, moderate, or large amount; while platform motion was either present or absent. The results from these tasks showed that both constant optical density and platform motion improved altitude awareness in an altitude repositioning task, while the presence of platform motion also led to improved performance in a vertical rate control task. The yaw control tasks had pilots'sit 4.5 ft in front of the center of rotation, thus subjecting them to both rotational and lateral motions during a yaw. The pilots were required to regulate their yaw, while the platform motion was manipulated in order to present all combinations of the resulting rotational and lateral motion components. Ratings of simulation fidelity and sensed platform motion showed that the pilots were relatively insensitive to the rotational component, but highly aware of the lateral component. Together these findings show that: 1) platform motion cues are important when speed regulation is required during altitude change; 2) platform motion contributes to the perception of movement amplitude; 3) lateral, but not rotational, motion cues are essential to the perception of vehicle yaw; and 4) LOD management yielding constant optical density across altitudes improves altitude awareness.

  13. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  14. Wind tunnel tests of a free yawing downwind wind turbine

    NASA Astrophysics Data System (ADS)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  15. Enhancing vehicle cornering limit through sideslip and yaw rate control

    NASA Astrophysics Data System (ADS)

    Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper

    2016-06-01

    Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.

  16. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGESBeta

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  17. Multiexperiment data processing in identifying model helicopter's yaw dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Haosheng; Chen, Darong

    2003-09-01

    The multi-experiment data is usually needed in identifying a model helicopter's yaw dynamics. In order to strengthen the information of the dynamics and reduce the effect of the noise, a new kind of least square method by using a weighted criterion is investigated to estimate the model parameters. To calculate the factors of the weighted criterion, a neural perceptron is trained to determine the factors automatically. The simulated outputs of the model derived by this kind of method fit the measured outputs well. It is suggested that this kind of data processing method is useful in identifying the yaw dynamics and processing the multi-experiment data for the system identification.

  18. Roll and Yaw of Paramecium swimming in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  19. [The prevalence of yaws among the Aka in the Congo].

    PubMed

    Coldiron, M; Obvala, D; Mouniaman-Nara, I; Pena, J; Blondel, C; Porten, K

    2013-05-01

    This study, conducted in 2012 in two districts of the Congo (Bétou and Enyellé), screened for yaws (endemic treponemiasis) that could be treated by a single dose of azithromycin. The screening involved a clinical history, followed by a clinical examination of the children reporting dermatological problems. A rapid diagnostic test for treponema was performed on the children with suspicious lesions. Of 6215 children screened, 485 (7.8%) had such lesions; 480 (99.0%) of them had a rapid diagnostic test, and it was positive for 183 (38.1%). This so-called Morges strategy is aimed at eradicating yaws in endemic areas. PMID:24001648

  20. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  1. Joint computational and experimental aerodynamics research on a hypersonic vehicle

    SciTech Connect

    Oberkampf, W.L.; Aeschliman, D.P.; Walker, M.M.

    1992-01-01

    A closely coupled computational and experimental aerodynamics research program was conducted on a hypersonic vehicle configuration at Mach 8. Aerodynamic force and moment measurements and flow visualization results were obtained in the Sandia National Laboratories hypersonic wind tunnel for laminar boundary layer conditions. Parabolized and iterative Navier-Stokes simulations were used to predict flow fields and forces and moments on the hypersonic configuration. The basic vehicle configuration is a spherically blunted 10{degrees} cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap can be attached so that deflection angles of 10{degrees}, 20{degrees}, and 30{degrees} can be obtained. Comparisons are made between experimental and computational results to evaluate quality of each and to identify areas where improvements are needed. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of computational aerodynamics codes. 22 refs.

  2. Unsteady Nonlinear Aerodynamic Response Modeling: A Data-Priven Perspective

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar; Dawson, Scott; Rowley, Clarence

    2014-11-01

    Current real-time-capable aerodynamic modeling strategies are greatly challenged in the face of aggressive flight maneuvers, such as rapid pitching motions that lead to pronounced leading-edge vortex shedding and aerodynamic stall. The inability to accurately and robustly predict, in a low-dimensional manner, the nonlinear aerodynamic force/moment response of an aircraft to sharp maneuvers puts practical approaches for aerodynamic optimization and control out of reach. Here, we propose a parameter-varying model to approximate the response of an airfoil to arbitrarily prescribed rapid pitching kinematics. An output-minimization procedure is invoked to identify the nonlinear model from input-output data gathered from direct numerical fluid dynamics simulations. The resulting nonlinear models have noteworthy predictive capabilities for arbitrary pitching maneuvers that span a broad range of operating regimes, thus making the models especially useful for aerodynamic optimization and real-time control and simulation.

  3. Evaluation of aerodynamic derivatives from a magnetic balance system

    NASA Technical Reports Server (NTRS)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  4. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  5. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  6. On simple aerodynamic sensitivity derivatives for use in interdisciplinary optimization

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.

    1991-01-01

    Low-aspect-ratio and piston aerodynamic theories are reviewed as to their use in developing aerodynamic sensitivity derivatives for use in multidisciplinary optimization applications. The basic equations relating surface pressure (or lift and moment) to normal wash are given and discussed briefly for each theory. The general means for determining selected sensitivity derivatives are pointed out. In addition, some suggestions in very general terms are included as to sample problems for use in studying the process of using aerodynamic sensitivity derivatives in optimization studies.

  7. Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

  8. Curved-flow, rolling-flow, and oscillatory pure-yawing wind-tunnel test methods for determination of dynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.; Lutze, F. H.

    1981-01-01

    The test capabilities of the Stability Wind Tunnel of the Virginia Polytechnic Institute and State University are described, and calibrations for curved and rolling flow techniques are given. Oscillatory snaking tests to determine pure yawing derivatives are considered. Representative aerodynamic data obtained for a current fighter configuration using the curved and rolling flow techniques are presented. The application of dynamic derivatives obtained in such tests to the analysis of airplane motions in general, and to high angle of attack flight conditions in particular, is discussed.

  9. Eradicating successfully yaws from India: The strategy & global lessons.

    PubMed

    Narain, Jai P; Jain, S K; Bora, D; Venkatesh, S

    2015-05-01

    Yaws, a non-venereal treponematosis, affecting primarily the tribal populations, has been considered historically as one of the most neglected tropical diseases in the world. In 1996, India piloted an initiative to eradicate yaws based on a strategy consisting of active case finding through house-to-house search and treatment of cases and their contacts with long acting penicillin. Thereafter, the campaign implemented in all 51 endemic districts in 10 states of the country led to the achievement of a yaws-free status in 2004. In the post-elimination phase, surveillance activities accompanied by serological surveys were continued in the erstwhile endemic districts. These surveys carried out among children between the age of 1-5 yr, further confirmed the absence of community transmission in the country. The experience of India demonstrates that yaws can be eradicated in all endemic countries of Africa and Asia, provided that political commitment can be mobilized and community level activities sustained until the goal is achieved. PMID:26139778

  10. Eradicating successfully yaws from India: The strategy & global lessons

    PubMed Central

    Narain, Jai P.; Jain, S.K.; Bora, D.; Venkatesh, S.

    2015-01-01

    Yaws, a non-venereal treponematosis, affecting primarily the tribal populations, has been considered historically as one of the most neglected tropical diseases in the world. In 1996, India piloted an initiative to eradicate yaws based on a strategy consisting of active case finding through house-to-house search and treatment of cases and their contacts with long acting penicillin. Thereafter, the campaign implemented in all 51 endemic districts in 10 States of the country led to the achievement of a yaws-free status in 2004. In the post-elimination phase, surveillance activities accompanied by serological surveys were continued in the erstwhile endemic districts. These surveys carried out among children between the age of 1-5 yr, further confirmed the absence of community transmission in the country. The experience of India demonstrates that yaws can be eradicated in all endemic countries of Africa and Asia, provided that political commitment can be mobilized and community level activities sustained until the goal is achieved. PMID:26139778

  11. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  12. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  13. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  14. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  15. Computation of dragonfly aerodynamics

    NASA Astrophysics Data System (ADS)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  16. Yaws in the Western pacific region: a review of the literature.

    PubMed

    Capuano, Corinne; Ozaki, Masayo

    2011-01-01

    Until the middle of the 20th century, yaws was highly endemic and considered a serious public health problem in the Western Pacific Region (WPR), leading to intensive control efforts in the 1950s-1960s. Since then, little attention has been paid to its reemergence. Its current burden is unknown. This paper presents the results of an extensive literature review, focusing on yaws in the South Pacific. Available records suggest that the region remains largely free of yaws except for Papua New Guinea, Solomon Islands, and Vanuatu. Many clinical cases reported recently were described as "attenuated"; advanced stages are rare. A single intramuscular injection of benzathine penicillin is still effective in curing yaws. In the Pacific, yaws may be amenable to elimination if adequate resources are provided and political commitment revived. A mapping of yaws prevalence in PNG, Solomon, and Vanuatu is needed before comprehensive country-tailored strategies towards yaws elimination can be developed. PMID:22235208

  17. Scene-Motion Thresholds During Head Yaw for Immersive Virtual Environments

    PubMed Central

    Jerald, Jason; Whitton, Mary; Brooks, Frederick P.

    2014-01-01

    In order to better understand how scene motion is perceived in immersive virtual environments, we measured scene-motion thresholds under different conditions across three experiments. Thresholds were measured during quasi-sinusoidal head yaw, single left-to-right or right-to-left head yaw, different phases of head yaw, slow to fast head yaw, scene motion relative to head yaw, and two scene illumination levels. We found that across various conditions 1) thresholds are greater when the scene moves with head yaw (corresponding to gain < 1:0) than when the scene moves against head yaw (corresponding to gain > 1:0), and 2) thresholds increase as head motion increases. PMID:25705137

  18. Yaws, a non-venereal treponemal infection. Still endemic in some parts of the world.

    PubMed

    2012-09-01

    Yaws is an infection that mainly affects the poorest populations living in humid tropical areas. We reviewed the literature on yaws, the most common non-venereal treponemal infection, using the standard Prescrire methodology. Yaws is often transmitted directly from person to person. It starts as a single lesion, later leading to multiple contagious lesions. Yaws mainly affects children. The infection remains asymptomatic for several years. In about 10% of cases, late reactivation leads to bone lesions, deformities and disability. Diagnosis of yaws is based on the clinical and epidemiological context. Serological tests cannot distinguish between yaws and syphilis or other non-venereal treponematoses. Curative treatment consists of a single injection of benzathine benzylpenicillin. The results of a randomised trial suggest that a single oral dose of azithromycin is as effective as penicillin. In India, yaws was successfully eradicated through a programme based on providing information to the population at risk, screening and treatment. PMID:23016260

  19. Yaws: 110 years after Castellani's discovery of Treponema pallidum subspecies pertenue.

    PubMed

    Stamm, Lola V

    2015-07-01

    Yaws is a neglected infectious disease that affects mostly children and adolescents living in poor, rural communities in humid, tropical areas of Africa, southeast Asia, and the Pacific Islands. The etiological agent of yaws, Treponema pallidum subspecies pertenue (T. pertenue), was discovered by Aldo Castellani in 1905 shortly after Schaudinn and Hoffmann discovered the etiological agent of syphilis, T. pallidum subspecies pallidum. The discovery of T. pertenue enabled the development of animal models and the identification of an effective antibiotic treatment (i.e., penicillin) for yaws. A World Health Organization (WHO) mass treatment campaign from 1952 to 1964 reduced the global burden of yaws by 95%, but failed to eradicate this disease. Today, 110 years after Castellani's discovery of T. pertenue, yaws is again targeted for eradication. Recent advances in the treatment and diagnosis of yaws improve the likelihood of success this time. However, several challenges must be overcome to make the goal of yaws eradication attainable. PMID:25870417

  20. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  1. Yaws eradication campaign in Nsukka Division, Eastern Nigeria

    PubMed Central

    Zahra, Albert

    1956-01-01

    Nsukka Division in Eastern Nigeria was chosen as the starting point for a yaws eradication campaign undertaken by the Government assisted by WHO and UNICEF. Yaws was found to be hyper-endemic, and a policy of total mass treatment was therefore adopted. The objectives of the campaign, the field organization and methods of operation, and the clinical findings and treatment schedules used are described. A total of 383 769 persons were examined and treated with penicillin; of these 12 221 were infectious cases, 42 553 were late cases, and 328 995 were latent cases and contacts. It is believed that over 95% of the population was seen. Resurveys at intervals of six months showed a dramatic fall in the reservoir of infectious cases. The campaign was also used to stimulate better rural health services, and a network of local health centres was built by the people themselves. PMID:13404467

  2. Developments in therapy and diagnosis of yaws and future prospects.

    PubMed

    Mitjà, Oriol; Bassat, Quique

    2013-10-01

    Yaws, a chronic and debilitating infectious disease caused by Treponema pallidum subsp. pertenue, and closely related to syphilis, although transmitted by skin-to-skin contact, remains an important public health challenge, causing a significant burden of morbidity in children in certain areas of the Pacific and Africa. Recent advances in its diagnosis and treatment have led to an enthusiastic upsurge of activities related to its control, and exciting perspectives of global eradication. Although possibly considered among the most neglected of all neglected diseases during decades, there seems to be now agreement that massive drug administration of the antibiotic azithromycin, coupled with adequate surveillance of foci of transmission could result in its eradication. In this review, we summarize current knowledge regarding the therapeutics of yaws and its diagnosis. PMID:24073783

  3. Effects of yaw and pitch motion on model attitude measurements

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Tripp, John S.; Finley, Tom D.

    1995-01-01

    This report presents a theoretical analysis of the dynamic effects of angular motion in yaw and pitch on model attitude measurements in which inertial sensors were used during wind tunnel tests. A technique is developed to reduce the error caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude measurement error caused by angular motion is possible with this technique.

  4. Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.

    2008-01-01

    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and

  5. Parachute Aerodynamics From Video Data

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

    2005-01-01

    A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

  6. Measurement of wind forces and moments on models of three representative high-speed marine craft

    NASA Astrophysics Data System (ADS)

    Walshe, D. E.

    1983-04-01

    Measurements of wind forces and moments were made on wind tunnel models of a corvette, a fast patrol craft, and a wide-beam planer to establish the correlation factor between model and full scale test results. The results are presented as values of full scale wind forces and moments per sqm/sec/sec. The variation of forces and moments with yaw angle is given. Results for the planer show that the effects of the spray strakes and vertical fenders are not strongly marked except on the longitudinal (X) lateral (Y) forces at angles of yaw between about 60 and 100 deg; the X forces increase and the Y forces decrease upon removal of the strakes.

  7. Analytical modeling of turbine wakes in yawed conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2016-04-01

    Increasing wind energy production has become a unanimous plan for virtually all the developed countries. In addition to constructing new wind farms, this goal can be achieved by making wind farms more efficient. Control strategies in wind farms, such as manipulating the yaw angle of the turbines, have the potential to make wind farms more efficient. Costly numerical simulations or measurements cannot be, however, employed to assess the viability of this strategy in the numerous different scenarios happening in real wind farms. In this study, we aim to develop an inexpensive and simple analytical model that is able for the first time to predict the whole wake of a yawed turbine with an acceptable accuracy. The proposed analytical model is built upon the simplified version of the Reynolds-averaged Navier-Stokes equations. Apart from the ability of the model to predict wake flows in yawed conditions, it can provide a better understanding of turbine wakes in this complex situation. For example, it can give valuable insights on how the wake deflection varies by changing turbine and incoming flow characteristics, such as the thrust coefficient of the turbine or the ambient turbulence.

  8. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward

    1990-01-01

    Due to the requirement of increased performance and maneuverability, the flight envelope of a modern fighter is frequently extended to the high angle-of-attack regime. Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The nonlinearities are due mainly to three-dimensional separated flow and concentrated vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear airloads is of great importance in the analysis of a vehicle's flight motion and in the design of its flight control system. A satisfactory evaluation of the performance envelope of the aircraft may require a large number of coupled computations, one for each change in initial conditions. To avoid the disadvantage of solving the coupled flow-field equations and aircraft's motion equations, an alternate approach is to use a mathematical modeling to describe the steady and unsteady aerodynamics for the aircraft equations of motion. Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in general, nonlinear functions of motion variables, their time rate of change, and the history of maneuvering. A numerical method was developed to analyze the nonlinear and time-dependent aerodynamic response to establish the generalized indicial function in terms of motion variables and their time rates of change.

  9. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  10. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  11. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  12. Two-dimensional Aerodynamic Characteristics of 34 Miscellaneous Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Loftin, Laurence K , Jr; Smith, Hamilton A

    1949-01-01

    The aerodynamic characteristics of 34 miscellaneous airfoils tested in the Langley two-dimensional low-turbulence tunnels are presented. The data include lift, drag, and in some cases, pitching-moment characteristics, for Reynolds numbers between 3.0 x 10 (exp 6) and 9.0 x 10 (exp 6).

  13. The Aerodynamics of Axisymmetric Blunt Bodies Flying at Angle of Attack

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Kutty, Prasad; Queen, Eric; Karlgaard, Chris

    2014-01-01

    The Mars Science Laboratory entry capsule is used as an example to demonstrate how a blunt body of revolution must be treated as asymmetric in some respects when flying at a non-zero trim angle of attack. A brief description of the axisymmetric moment equations are provided before solving a system of equations describing the lateral-directional moment equations for a blunt body trimming at an angle of attack. Simplifying assumptions are made which allow the solution to the equations to be rearranged to relate the roll and yaw stability with sideslip angle to the frequency of oscillation of the vehicle body rates. The equations show that for a blunt body the roll and yaw rates are in phase and proportional to each other. The ratio of the rates is determined by the static stability coefficients and mass properties about those axes. A trajectory simulation is used to validate the static yaw stability parameter identification equation and a simple method of identifying the oscillation frequency from the body rates. The approach is shown to successfully extract the modeled yaw stability coefficient along a simulated Mars entry in agreement with data earlier analysis of MSL flight data.

  14. A Feasibility Study on the Control of a Generic Air Vehicle Using Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.

    2006-01-01

    This paper examines feasibility and performance issues in using Control Moment Gyroscopes (CMGs) to control the attitude of a fixed-wing aircraft. The paper describes a control system structure that permits allocating control authority and bandwidth between a CMG system and conventional aerodynamic control surfaces to stabilize a vehicle with neutral aerodynamic stability. A simulation study explores the interplay between aerodynamic and CMG effects, and indicates desirable physical characteristics for a CMG system to be used for aircraft attitude control.

  15. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  16. Improvement of Aerodynamic Performance of the Aero-Train by Controlling Wing-Wing Interaction Using Single-Slotted Flap

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Hee; Kohama, Yasuaki; Kikuchi, Satoshi; Kato, Takuma

    Aero-train is a new driving concept using aerodynamic technology under development by the Kohama Laboratory, Institute of Fluid Science, Tohoku University. It employs the wing-in-ground effect to enable travel at high speeds over land. Aero-train makes use of the ground effects of lift and side force between the wings and a U-shaped guideway for stability. The main wings have vertical wings at the tips, which are arranged in tandem to regulate the roll and yaw stability in the U-shaped guideway. However, the vertical wings deteriorate the lift-to-drag ratio of the Aero-train by aerodynamic interaction with the main wings. The present study was performed to improve the aerodynamic performance of the Aero-train by controlling wing-wing interaction. Installation of a single-slotted flap on the wings considerably improved the aerodynamic performance of the wings.

  17. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  18. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  19. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  20. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  1. Gravitational moment exerted on a small body by an oblate body

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1989-01-01

    The present demonstration of a method for obtaining vector-dyadic expressions of the gravitational moment about a body's center-of-mass proceeds through the derivation of an expression for the gravitational moment exerted by an oblate spheroid. The contribution of the earth's oblateness to the gravitational moment exerted on a body has been numerically evaluated for a greatly simplified illustrative case; this contribution is noted to be significant by comparison with such other external moments as those exerted by aerodynamic forces.

  2. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  3. Experimental aerodynamics research on a hypersonic vehicle

    SciTech Connect

    Oberkampf, W.L.; Aeschliman, D.P.; Tate, R.E.; Henfling, J.F.

    1993-04-01

    Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10[degree] half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10[degree], 20[degree] and 30[degree] could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.

  4. Experimental aerodynamics research on a hypersonic vehicle

    SciTech Connect

    Oberkampf, W.L.; Aeschliman, D.P.; Tate, R.E.; Henfling, J.F.

    1993-04-01

    Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10{degree} half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10{degree}, 20{degree} and 30{degree} could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.

  5. Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Fox, Charles H., Jr.; Cundiff, Jeffrey S.

    1989-01-01

    Aerodynamic forces and moments for a slender wing-body configuration are summarized from an investigation in the Langley National Transonic Facility (NTF). The results include both longitudinal and lateral-directional aerodynamic properties as well as slideslip derivatives. Results were selected to emphasize Reynolds number effects at a transonic speed although some lower speed results are also presented for context. The data indicate nominal Reynolds number effects on the longitudinal aerodynamic coefficients and more pronounced effects for the lateral-directional aerodynamic coefficients. The Reynolds number sensitivities for the lateral-directional coefficients were limited to high angles of attack.

  6. Nonlinear flutter of curved panels under yawed supersonic flow using finite elements

    NASA Astrophysics Data System (ADS)

    Azzouz, Mohamed Salim

    2005-11-01

    In the extensive published literature on panel flutter, a large number of papers are dedicated to investigation of flat plates in the supersonic flow regime. Very few authors have extended their work to flutter of curved panels. The curved geometry generates a pre-flutter behavior, triggering a static deflection due to a static aerodynamic load (SAL) over the panel as well as dynamic characteristics unique to this geometry. The purpose of this dissertation is to provide new insights in the subject of flutter of curved panels. Finite element frequency and time domain methods are developed to predict the pre/post flutter responses and the flutter onset of curved panels under a yaw flow angle. The first-order shear deformation theory, the Marguerre plate theory, the von Karman large deflection theory, and the quasi-steady first-order piston theory appended with SAL are used in the formulation. The principle of virtual work is applied to develop the equations of motion of the fluttering system in structural node degrees of freedom. In the frequency domain method, the Newton-Raphson method is used to determine the panel static deflection under the SAL, and an eigen-value solution is employed for the determination of the stability boundary margins at different panel height-rises and yaw flow angles. Pre-flutter static deflection shape, flutter coalescence frequency, and damping rate of various cylindrical panels are thoroughly investigated. The main results revealed that the pre-flutter static response of cylindrical panels is fundamentally different from the one associated with flat plates. It is shown that curvature has a detrimental effect for 2-dimensional (2-D) curved panels, and is beneficial for 3-D components at an optimum height-rise. In the time domain method, the system equations of motion are transformed into modal coordinates, and solved by a fourth-order Runge-Kutta numerical scheme. Time history responses, phase plots, power spectrum density plots, and

  7. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  8. Dynamic stability of an aerodynamically efficient motorcycle

    NASA Astrophysics Data System (ADS)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  9. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  10. Dynamic Stability of Lateral and Yawing Motions in the Double Null-Flux EDS System

    NASA Astrophysics Data System (ADS)

    Murai, Toshiaki; Yoshioka, Hiroshi; Sugino, Motohiko

    The double null-flux electro-dynamic suspension (EDS) in the superconducting maglev has the coupling lateral and yawing stiffness, which does not coincide with each other, so special attention should be paid to the dynamic stability of lateral and yawing motions. This paper describes their intrinsic dynamic stability by analyzing the lateral and yawing motions of bogie levitated by the double null-flux EDS.

  11. The response of a 38m horizontal axis teetered rotor to yaw

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Pfanner, H. G.; Westerkamp, E. J.

    1982-01-01

    Recent tests on the 38m Mod-0 100 kW horizontal axis experimental wind turbine yielded quantative data on the teeter response of a rotor to yaw. The test results indicate that yaw rates as high as 5 deg/s could be used in emergency situations to unload and slow a rotor for intermediate sized (500 kW) wind turbines. The results also show that teeter response is sensitive to the direction of yaw, and that teeter response to yaw is reduced as either the rotor speed or the blade lock number is increased.

  12. Sensor Systems Collect Critical Aerodynamics Data

    NASA Technical Reports Server (NTRS)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  13. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  14. Yaw and pitch visual-vestibular interaction in weightlessness

    NASA Technical Reports Server (NTRS)

    Clement, G.; Wood, S. J.; Reschke, M. F.; Berthoz, A.; Igarashi, M.

    1999-01-01

    Both yaw and pitch visual-vestibular interactions at two separate frequencies of chair rotation (0.2 and 0.8 Hz) in combination with a single velocity of optokinetic stimulus (36 degrees/s) were used to investigate the effects of sustained weightlessness on neural strategies adopted by astronaut subjects to cope with the stimulus rearrangement of spaceflight. Pitch and yaw oscillation in darkness at 0.2 and 0.8 Hz without optokinetic stimulation, and constant velocity linear optokinetic stimulation at 18, 36, and 54 degrees/s presented relative to the head with the subject stationary, were used as controls for the visual-vestibular interactions. The results following 8 days of space flight showed no significant changes in: (1) either the horizontal and vertical vestibulo-ocular reflex (VOR) gain, phase, or bias; (2) the yaw visual-vestibular response (VVR); or (3) the horizontal or vertical optokinetic (OKN) slow phase velocity (SPV). However, significant changes were observed: (1) when during pitch VVR at 0.2 Hz late inflight, the contribution of the optokinetic input to the combined oculomotor response was smaller than during the stationary OKN SPV measurements, followed by an increased contribution during the immediate postflight testing; and (2) when during pitch VVR at 0.8 Hz, the component of the combined oculomotor response due to the underlying vertical VOR was more efficiently suppressed early inflight and less suppressed immediately postflight compared with preflight observations. The larger OKN response during pitch VVR at 0.2 Hz and the better suppression of VOR during pitch VVR at 0.8 Hz postflight are presumably due to the increased role of vision early inflight and immediately after spaceflight, as previously observed in various studies. These results suggest that the subjects adopted a neural strategy to structure their spatial orientation in weightlessness by reweighting visual, otolith, and perhaps tactile/somatic signals.

  15. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  16. Enhancing Control Of Helicopter Yaw At Low Speed

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Wilson, John C.

    1992-01-01

    Spoilers on tail boom significantly improve yaw control in both right and left sidewinds. Spoilers are two thin plates extending outward, perpendicular to curvature of boom, distance of about 6 percent of total depth of tail boom. Along-the-boom dimensions of spoilers are as long as possible without interfering with such existing critical parts as tail rotor. Further enhancement, spoilers made retractable and automatically deployable as required. Concept applicable to all single-rotor helicopters. Applied as simple economical addition to existing helicopters or incorporated into new helicopter designs.

  17. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  18. Aerodynamic control of NASP-type vehicles through Vortex manipulation. Volume 1: Static water tunnel tests

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Water tunnel tests were conducted on a NASP-type configuration to evaluate different pneumatic Forebody Vortex Control (FVC) methods. Flow visualization and yawing moment measurements were performed at angles of attack from 0 deg to 30 deg. The pneumatic techniques tested included jet and slot blowing. In general, blowing can be used efficiently to manipulate the forebody vortices at angles of attack greater than 20 deg. These vortices are naturally symmetric up to alpha = 25 deg and asymmetric between 25 deg and 30 deg angle of attack. Results indicate that tangential aft jet blowing is the most promising method for this configuration. Aft jet blowing produces a yawing moment towards the blowing side and the trends with blowing rate are well behaved. The size of the nozzle is not the dominant factor in the blowing process; the change in the blowing 'momentum,' i.e., the product of the mass flow rate and the velocity of the jet, appears to be the important parameter in the water tunnel (incompressible and unchoked flow at the nozzle exit). Forward jet blowing is very unpredictable and sensitive to mass flow rate changes. Slot blowing (with the exception of very low blowing rates) acts as a flow 'separator'; it promotes early separation on the blow side, producing a yawing moment toward the non-blowing side for the C(sub mu) range investigated.

  19. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  20. Aerodynamic control of fluctuating loads on teetered HAWT rotors

    SciTech Connect

    Eggers, A.J. Jr.; Ashley, H.; Rock, S.M.; Chaney, K.

    1995-09-01

    This paper addresses the possibility of using an aerodynamic control to simultaneously reduce fluctuations in blade root flatwise bending moments, thrust and torque generated by a teetered HAWT rotor operating in turbulent winds. This possibility is suggested by both theory and field test data which indicate that the timing and direction of these fluctuations correlate, although they are of different magnitudes. Thus if an aerodynamic control system is designed to reduce one type of fluctuation, it may also serve to reduce the others. The end result would be a reduction in fatigue damage accumulation and power fluctuations experienced by HAWTs operating in turbulent winds.

  1. Pitched and Yawed Circular Jets in Cross-Flow

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.; Zaman, K. B. M. Q.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    Results from an experimental investigation of flow field generated by pitched and yawed jets discharging from a flat plate into a cross-flow are presented. The circular jet was pitched at alpha = 20 degrees and 45 degrees and yawed between beta = 0 degrees and 90 degrees in increments of 15 degrees. The measurements were performed with two X-wires providing all three components of velocity and turbulence intensity. These data were obtained at downstream locations of x = 3, 5, 10 and 20, where the distance x normalized by the jet diameter, is measured from the center of the orifice. Data for all configurations were acquired at a momentum-flux ratio J = 8. Additionally, for selected angles and locations, surveys were conducted for J = 1.5, 4, and 20. As expected, the jet penetration is found to be higher at larger alpha. With increasing beta the jet spreads more. The rate of reduction of peak streamwise vorticity, with the downstream distance is significantly lessened at higher alpha but is found to be practically independent of alpha. Thus, at the farthest measurement station x = 20, omega(sub xmax) is about five times larger for beta = 0 degrees compared to the levels at beta = 0 degrees. Streamwise velocity within the jet-vortex structure is found to depend on the parameter J. At J = 1.5 and 4, 'wake-like' velocity profiles are observed. In comparison, a 'jet-like' overshoot is present at higher J.

  2. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses

    NASA Technical Reports Server (NTRS)

    Petropoulos, A. E.; Wall, C. 3rd; Oman, C. M.

    1997-01-01

    Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.

  3. F-15B ACTIVE - First supersonic yaw vectoring flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On Wednesday, April 24, 1996, the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft achieved its first supersonic yaw vectoring flight at Dryden Flight Research Center, Edwards, California. ACTIVE is a joint NASA, U.S. Air Force, McDonnell Douglas Aerospace (MDA) and Pratt & Whitney (P&W) program. The team will assess performance and technology benefits during flight test operations. Current plans call for approximately 60 flights totaling 100 hours. 'Reaching this milestone is very rewarding. We hope to set some more records before we're through,' stated Roger W. Bursey, P&W's pitch-yaw balance beam nozzle (PYBBN) program manager. A pair of P&W PYBBNs vectored (horizontally side-to-side, pitch is up and down) the thrust for the MDA manufactured F-15 research aircraft. Power to reach supersonic speeds was provided by two high-performance F100-PW-229 engines that were modified with the multi-directional thrust vectoring nozzles. The new concept should lead to significant increases in performance of both civil and military aircraft flying at subsonic and supersonic speeds.

  4. Unsteady aerodynamic analysis of space shuttle vehicles. Part 4: Effect of control deflections on orbiter unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1973-01-01

    The unsteady aerodynamics of the 040A orbiter have been explored experimentally. The results substantiate earlier predictions of the unsteady flow boundaries for a 60 deg swept delta wing at zero yaw and with no controls deflected. The test revealed a previously unknown region of discontinuous yaw characteristics at transonic speeds. Oilflow results indicate that this is the result of a coupling between wing and fuselage flows via the separated region forward of the deflected elevon. In fact, the large leeward elevon deflections are shown to produce a multitude of nonlinear stability effects which sometimes involve hysteresis. Predictions of the unsteady flow boundaries are made for the current orbiter. They should carry a good degree of confidence due to the present substantiation of previous predictions for the 040A. It is proposed that the present experiments be extended to the current configuration to define control-induced effects. Every effort should be made to account for Reynolds number, roughness, and possible hot-wall effects on any future experiments.

  5. Moment-to-Moment Emotions during Reading

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; D'Mello, Sidney

    2012-01-01

    Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…

  6. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  7. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  8. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  9. Aerodynamics for the Mars Phoenix Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Desai, Prasun N.; Schoenenberger, Mark

    2008-01-01

    Pre-flight aerodynamics data for the Mars Phoenix entry capsule are presented. The aerodynamic coefficients were generated as a function of total angle-of-attack and either Knudsen number, velocity, or Mach number, depending on the flight regime. The database was constructed using continuum flowfield computations and data from the Mars Exploration Rover and Viking programs. Hypersonic and supersonic static coefficients were derived from Navier-Stokes solutions on a pre-flight design trajectory. High-altitude data (free-molecular and transitional regimes) and dynamic pitch damping characteristics were taken from Mars Exploration Rover analysis and testing. Transonic static coefficients from Viking wind tunnel tests were used for capsule aerodynamics under the parachute. Static instabilities were predicted at two points along the reference trajectory and were verified by reconstructed flight data. During the hypersonic instability, the capsule was predicted to trim at angles as high as 2.5 deg with an on-axis center-of-gravity. Trim angles were predicted for off-nominal pitching moment (4.2 deg peak) and a 5 mm off-axis center-ofgravity (4.8 deg peak). Finally, hypersonic static coefficient sensitivities to atmospheric density were predicted to be within uncertainty bounds.

  10. The aerodynamics of smoke particle sampling

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Rapp, M.

    2005-08-01

    There is a great interest in nanometer-sized particles in the mesosphere at the moment with the recent launches of the MAGIC and ECOMA payloads. However, rocket-borne measurements of these particles are far from trivial. Since rocket payloads move through the measurement volume with supersonic speeds they can introduce aerodynamic perturbations that complicate the collection of e.g. smoke particle measurements in this region. Nanometer-sized particles tend to follow the gas flow around the payload and do not reach the detector if the aerodynamic design of the instrument has not been considered carefully. The analysis is further complicated by the fact that the payload moves from continuum flow conditions to free molecular flow conditions via the transition regime. Therefore, aerodynamics simulations are of critical importance for the success of these projects. To simulate the gas flow around the rocket payload a Direct Simulation Monte Carlo program is used. A simple model has been developed to introduce smoke particles in the gas flow and determine their trajectories. The result from this is a specific lower limit to the size of smoke particles detectable by various detector designs.

  11. Mapping the Epidemiology of Yaws in the Solomon Islands: A Cluster Randomized Survey

    PubMed Central

    Marks, Michael; Vahi, Ventis; Sokana, Oliver; Puiahi, Elliot; Pavluck, Alex; Zhang, Zaixing; Dalipanda, Tenneth; Bottomley, Christian; Mabey, David C.; Solomon, Anthony W.

    2015-01-01

    Yaws, a non-venereal treponemal disease, is targeted for eradication by 2020 but accurate epidemiological data to guide control programs remain sparse. The Solomon Islands reports the second highest number of cases of yaws worldwide. We conducted a cluster randomized survey of yaws in two provinces of the Solomon Islands. One thousand four hundred and ninety-seven (1,497) children 5–14 years of age were examined. Clinical signs of active yaws were found in 79 children (5.5%), whereas 140 children (9.4%) had evidence of healed yaws lesions. Four hundred and seventy (470) (31.4%) children had a positive Treponema pallidum particle agglutination assay (TPPA). Two hundred and eighty-five (285) children (19%) had a positive TPPA and rapid plasma regain assay. Risk of yaws increased with age and was more common in males. The prevalence of yaws at village level was the major risk factor for infection. Our findings suggest the village, not the household, should be the unit of treatment in the World Health Organization (WHO) yaws eradication strategy. PMID:25422395

  12. Mapping the epidemiology of yaws in the Solomon Islands: a cluster randomized survey.

    PubMed

    Marks, Michael; Vahi, Ventis; Sokana, Oliver; Puiahi, Elliot; Pavluck, Alex; Zhang, Zaixing; Dalipanda, Tenneth; Bottomley, Christian; Mabey, David C; Solomon, Anthony W

    2015-01-01

    Yaws, a non-venereal treponemal disease, is targeted for eradication by 2020 but accurate epidemiological data to guide control programs remain sparse. The Solomon Islands reports the second highest number of cases of yaws worldwide. We conducted a cluster randomized survey of yaws in two provinces of the Solomon Islands. One thousand four hundred and ninety-seven (1,497) children 5-14 years of age were examined. Clinical signs of active yaws were found in 79 children (5.5%), whereas 140 children (9.4%) had evidence of healed yaws lesions. Four hundred and seventy (470) (31.4%) children had a positive Treponema pallidum particle agglutination assay (TPPA). Two hundred and eighty-five (285) children (19%) had a positive TPPA and rapid plasma regain assay. Risk of yaws increased with age and was more common in males. The prevalence of yaws at village level was the major risk factor for infection. Our findings suggest the village, not the household, should be the unit of treatment in the World Health Organization (WHO) yaws eradication strategy. PMID:25422395

  13. 14 CFR 25.499 - Nose-wheel yaw and steering.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nose-wheel yaw and steering. 25.499 Section 25.499 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.499 Nose-wheel yaw and steering. (a) A vertical load factor of...

  14. Drag reduction on a bluff body at yaw angles to 30 degrees

    NASA Technical Reports Server (NTRS)

    Howard, Floyd G.; Goodman, Wesley L.

    1987-01-01

    The base separation alleviation and drag reduction effectiveness of transverse rectangular grooves and longitudinal v-grooves in the afterbody shoulder region of a bluff body is investigated for body yaw angles of 0-30 deg. The grooves are found to be beneficial in reducing both freestream and axial drag coefficients at yaw angles of up to 25 deg.

  15. Aerodynamic Flow Control of a Moving Axisymmetric Platform

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas J.; Vukasinovic, Bojan; Glezer, Ari

    2013-11-01

    Active fluidic control of induced aerodynamic forces and moments on a moving axisymmetric platform is investigated in wind tunnel experiments. Actuation is effected by controlled interactions between an azimuthal array of integrated synthetic jets with the cross flow to induce localized flow attachment domains over the aft end of the model and thereby alter the global aerodynamic forces and moments. The axisymmetric platform is wire-mounted on a 6 DOF traverse such that each of the eight mounting wires is connected to a servo motor with an in-line load cell for monitoring the wire tension. The desired platform motion is controlled in closed-loop by a laboratory computer. The effects of continuous and transitory actuation on the induced aerodynamic forces of the moving platform are investigated in detail using high-speed PIV. The time-dependent changes in the forces are explored for model maneuvering and stabilization. It is found that the actuation induces forces and moments that are on the order of the forces and moments of the baseline flow. These measurements agree with preliminary results on the stabilization of a model moving in a single DOF demonstrating the effectiveness of the actuation for trajectory stabilization. Supported by the ARO.

  16. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  17. Aerodynamics Improve Wind Wheel

    NASA Technical Reports Server (NTRS)

    Ramsey, V. W.

    1982-01-01

    Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.

  18. Comparison of selected lift and sideslip characteristics of the Ayres Thrush S2R-800, winglets off and winglets on, to full-scale wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Williams, M.

    1981-01-01

    All calculations were done in the stability axes system. The winglets used were constructed of modified GA(w)-2 airfoils. Aerodynamic characteristics discussed include: angle of attack; lift-curve slope; side force; yawing moments; rolling moments.

  19. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  20. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    NASA Astrophysics Data System (ADS)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  1. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  2. Wind tunnel investigation of aerodynamic characteristics of a scale model of a D5 bulldozer and an M109 self-propelled 155 mm Howitzer

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1974-01-01

    Wind tunnel tests were conducted on a scale model of a D5 bulldozer and an M109 self-propelled 155 MM howitzer to determine the aerodynamic characteristics of these typical externally-suspended heavy lift helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.5 x 10 to the 6th power.

  3. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  4. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  5. Aerodynamic characteristics of cruciform missiles at high angles of attack

    NASA Technical Reports Server (NTRS)

    Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.

    1987-01-01

    An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.

  6. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  7. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  8. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  9. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  10. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Viterna, L. A.

    1982-01-01

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  11. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Astrophysics Data System (ADS)

    Corrigan, R. D.; Viterna, L. A.

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  12. Space Shuttle entry aerodynamic comparisons of flight 1 with preflight predictions

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Perez, L. F.; Romere, P. O.; Kanipe, D. B.

    1981-01-01

    Results of comparisons of predictions of aerodynamic performance, longitudinal trim, and reaction control jet interaction with data from the initial Shuttle flight are presented. The Shuttle's control surfaces are described, and it is noted that the flight plan contained no provisions for maneuvering capability tests. Wind tunnel testing totaling 35,000 hr were used to replace graduated flight testing, and calculations were made to allow for nonsimulated structural deformation, flowfield parameters, and profile drag. The goal was to desensitize the flight control system with respect to the aerodynamics by adding variations to the predictions. Lift/drag agreed well above Mach 1, while lower drag was encountered below Mach 1. Trim characteristics were predicted accurately between Mach 2-10, and less than satisfactorily outside that range. Discrepancies were also observed for jet interaction effects for the aft yaw jets at Mach numbers greater than 10.

  13. The aerodynamic wind vane and the inherent stability of airplanes

    NASA Technical Reports Server (NTRS)

    Lapresle, A

    1931-01-01

    The design of the wind vane described rests on the following line of reasoning: An airplane, originally in equilibrium about its C.G. is assumed to be deflected from this position through an angle (delta)i, the variation (delta)i being so sudden that the path of the C.G. and the airplane speed do not change while it is taking place. The aerodynamic forces acting on the wings, tail surfaces, fuselage, etc., which, as a whole, exerted a zero moment (M(sub G) = 0) about the center of gravity at the instant of equilibrium, now exert a moment M(sub G) not equal to 0.

  14. Solvents level dipole moments.

    PubMed

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-01

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185

  15. Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform

    NASA Astrophysics Data System (ADS)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2011-11-01

    The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.

  16. Asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo; Scalzi, Stefano

    2010-09-01

    This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.

  17. Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2003-01-01

    The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head

  18. Failure of PCR to Detect Treponema pallidum ssp. pertenue DNA in Blood in Latent Yaws.

    PubMed

    Marks, Michael; Katz, Samantha; Chi, Kai-Hua; Vahi, Ventis; Sun, Yongcheng; Mabey, David C; Solomon, Anthony W; Chen, Cheng Y; Pillay, Allan

    2015-01-01

    Yaws, caused by Treponema pallidum ssp. pertenue, is a neglected tropical disease closely related to venereal syphilis and is targeted for eradication by 2020. Latent yaws represents a diagnostic challenge, and current tools cannot adequately distinguish between individuals with true latent infection and individuals who are serofast following successful treatment. PCR on blood has previously been shown to detect T. pallidum DNA in patients with syphilis, suggesting that this approach may be of value in yaws. We performed real-time PCR for Treponema pallidum ssp. pertenue on blood samples from 140 children with positive T. pallidum Particle Agglutination (TPPA) and Rapid Plasma Reagin (RPR) tests and 7 controls (negative serology), all collected as part of a prospective study of yaws in the Solomon Islands. All samples were also tested by a nested PCR for T. pallidum. 12 patients had clinical evidence of active yaws whilst 128 were considered to have latent yaws. 43 children had high titre rapid plasma reagins (RPRs) of ≥1:32. PCR testing with both assays gave negative results in all cases. It is possible that the failure to detect T. pallidum ssp. pertenue in blood reflects lower loads of organism in latent yaws compared to those in latent infection with T. pallidum ssp. pertenue, and/or a lower propensity for haematogenous dissemination in yaws than in syphilis. As the goal of the yaws control programme is eradication, a tool that can differentiate true latent infection from individuals who are serofast would be of value; however, PCR of blood is not that tool. PMID:26125585

  19. Failure of PCR to Detect Treponema pallidum ssp. pertenue DNA in Blood in Latent Yaws

    PubMed Central

    Chi, Kai-Hua; Vahi, Ventis; Sun, Yongcheng; Mabey, David C.; Solomon, Anthony W.; Chen, Cheng Y.; Pillay, Allan

    2015-01-01

    Yaws, caused by Treponema pallidum ssp. pertenue, is a neglected tropical disease closely related to venereal syphilis and is targeted for eradication by 2020. Latent yaws represents a diagnostic challenge, and current tools cannot adequately distinguish between individuals with true latent infection and individuals who are serofast following successful treatment. PCR on blood has previously been shown to detect T. pallidum DNA in patients with syphilis, suggesting that this approach may be of value in yaws. We performed real-time PCR for Treponema pallidum ssp. pertenue on blood samples from 140 children with positive T. pallidum Particle Agglutination (TPPA) and Rapid Plasma Reagin (RPR) tests and 7 controls (negative serology), all collected as part of a prospective study of yaws in the Solomon Islands. All samples were also tested by a nested PCR for T. pallidum. 12 patients had clinical evidence of active yaws whilst 128 were considered to have latent yaws. 43 children had high titre rapid plasma reagins (RPRs) of ≥1:32. PCR testing with both assays gave negative results in all cases. It is possible that the failure to detect T. pallidum ssp. pertenue in blood reflects lower loads of organism in latent yaws compared to those in latent infection with T. pallidum ssp. pertenue, and/or a lower propensity for haematogenous dissemination in yaws than in syphilis. As the goal of the yaws control programme is eradication, a tool that can differentiate true latent infection from individuals who are serofast would be of value; however, PCR of blood is not that tool. PMID:26125585

  20. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  1. Determining Aerodynamic Loads Based on Optical Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Barrows, D. A.; Burner, A. W.; Rhew, R. D.

    2001-01-01

    This paper describes a videogram metric technique for determining aerodynamic loads based on optical elastic deformation measurements. The data reduction methods are developed to extract the normal force and pitching moment from beam deformation data. The axial force is obtained by measuring the axial translational motion of a movable shaft in a spring/bearing device. Proof-of-concept calibration experiments are conducted to assess the accuracy of this optical technique.

  2. Nonlinear applications of slender-body theory to missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.

    1985-01-01

    An evaluation is made of six diverse examples of nonlinear treatments of slender body theory for the prediction of missile aerodynamic behavior. The cases in question are the application of area rule to store carriage design in the drag rise region, the estimation of destabilizing pitching moments associated with transonic projectiles, the pressure loadings on elliptical missile airframes, nonlinear control characteristics, roll control effectiveness in canard missile configurations, and novel approaches for vortex flow modeling.

  3. Aerodynamic characteristics of the Scout 133R vehicle determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Abramson, F. B.; Muir, T. G., Jr.; Simmons, H. L.

    1972-01-01

    Bending moments and other associated parameters were measured on a Scout vehicle during a launch through high velocity horizontal winds. Comparison of the measured data with predictions revealed some unexplained discrepancies. Possible sources of error in the experimental data and predictions were considered; one of which is the predicted aerodynamic characteristics. A wind tunnel investigation was initiated, including supersonic force and pressure tests, to better define the aerodynamics. In addition to basic aerodynamic coefficients from the force test, detailed pressure and load distributions along the body were established from the pressure test. Pressure coefficients were integrated to determine normal load distributions, total normal force, and total pitching moment of the body. Comparison of the normal forces from pressure and force tests resulted in agreement within 15%. Comparison of pitching moment data from the two tests resulted in larger differences.

  4. Aerodynamic forces induced by controlled transitory flow on a body of revolution

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher S.

    The aerodynamic forces and moments on an axisymmetric body of revolution are controlled in a low-speed wind tunnel by induced local flow attachment. Control is effected by an array of aft-facing synthetic jets emanating from narrow, azimuthally segmented slots embedded within an axisymmetric backward facing step. The actuation results in a localized, segmented vectoring of the separated base flow along a rear Coanda surface and induced asymmetric aerodynamic forces and moments. The observed effects are investigated in both quasi-steady and transient states, with emphasis on parametric dependence. It is shown that the magnitude of the effected forces can be substantially increased by slight variations of the Coanda surface geometry. Force and velocity measurements are used to elucidate the mechanisms by which the synthetic jets produce asymmetric aerodynamic forces and moments, demonstrating a novel method to steer axisymmetric bodies during flight.

  5. Impact of fuselage incidence on the supersonic aerodynamics of two fighter configurations

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    The results of experimental and theoretical investigations into the effect of fuselage upwash on fighter aircraft wing performance are reported. Wind tunnel trials were performed on 4 percent scale models of two supersonic fighters. The trials were run at Mach 1.6-2.0, an Re of 2,000,000 and at angles of attack (AOA) of -4 to 20 deg. Measurements were made of lift, drag and pitching moments. Two linearized theory supersonic aerodynamic prediction codes, PAN AIR and the SDAS lift analysis, were used to predict the same aerodynamic coefficients. The fuselage AOA augmented the lift and pitching moment at 0, 2 and 5 deg. The contribution mainly arose from the fuselage-induced upwash. The PAN AIR code gave superior data for the fuselage aerodynamics and effects, although both codes accurately predicted the overall lift and moment increments due to the fuselage AOA.

  6. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor. PMID:22617112

  7. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H. Lee; Williams, Daniel M.; Holt, W. Eugene

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  8. A new model for yaw attitude of Global Positioning System satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y. E.

    1995-01-01

    Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.

  9. Numerical quantification of aerodynamic damping on pitching of vehicle-inspired bluff body

    NASA Astrophysics Data System (ADS)

    Cheng, S. Y.; Tsubokura, M.; Nakashima, T.; Okada, Y.; Nouzawa, T.

    2012-04-01

    The influence of transient flows on vehicle stability was investigated by large eddy simulation. To consider the dynamic response of a vehicle to real-life transient aerodynamics, a dimensionless parameter that quantifies the amount of aerodynamic damping for vehicle subjects to pitching oscillation is proposed. Two vehicle models with different stability characteristics were created to verify the parameter. For idealized notchback models, underbody has the highest contribution to the total aerodynamic damping, which was up to 69%. However, the difference between the aerodynamic damping of models with distinct A- and C-pillar configurations mainly depends on the trunk-deck contribution. Comparison between dynamically obtained phase-averaged pitching moment with quasi-steady values shows totally different aerodynamic behaviors.

  10. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  11. Aerodynamic Limitations of the UH-60A Rotor

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.; Bousman, William G.

    1996-01-01

    High quality airloads data have been obtained on an instrumented UH-60A in flight and these data provide insight into the aerodynamic limiting behavior of the rotor. At moderate weight coefficients and high advance ratio limiting performance is largely caused by high drag near the blade tip on the advancing side of the rotor as supercritical flow develops on the rotor with moderate to strong, shocks on both surfaces of the blade. Drag divergence data from two-dimensional airfoil tests show good agreement with the development of the supercritical flow regions. Large aerodynamic pitching moments are observed at high advance ratio, as well, and these pitching moments are the source of high torsional moments on the blade and control system loads. These loads occur on the advancing side of the disk and are not related to blade stall which does not occur for these weight coefficients. At high weight coefficients aerodynamic and structural limits are related to dynamic stall cycles that begin on the retreating side of the blade and, for the most severe conditions, carry around to the advancing side of the blade at the presumed first frequency of the blade/control system.

  12. AEROX: Computer program for transonic aircraft aerodynamics to high angles of attack. Volume 1: Aerodynamic methods and program users' guide

    NASA Technical Reports Server (NTRS)

    Axelson, J. A.

    1977-01-01

    The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.

  13. Impact of high-alpha aerodynamics on dynamic stability parameters of aircraft and missiles

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    The aerodynamic phenomena associated with high angles of attack and their effects on the dynamic stability characteristics of airplane and missile configurations are examined. Information on dynamic effects is limited. Steady flow phenomena and their effects on the forces and moments are reviewed. The effects of asymmetric vortices and of vortex bursting on the dynamic response of flight vehicles are reviewed with respect to their influence on: (1) nonlinearity of aerodynamic coefficients with attitude, rates, and accelerations; (2) cross coupling between longitudinal and lateral directional models of motion; (3) time dependence and hysteresis effects; (4) configuration dependencey; and (5) mathematical modeling of the aerodynamics.

  14. Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.

  15. Measured Aerodynamic Interaction of Two Tiltrotors

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  16. Tip aerodynamics from wind tunnel test of semi-span wing

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.; Stroub, Robert H.

    1986-01-01

    Presented are the results of a low-speed wind tunnel test on a 5.33-aspect-ratio, semi-span wing with 30- and 35 deg swept tapered tips. The test results include aerodynamic data for the tip itself and for the entire wing including the tip. The metric tip extended inboard 1.58 wing chord lengths. The aerodynamic drag data show the strong influence of tip incidence angle on tip drag for various lift levels. Pitching-moment characteristics show the effect of a moment center at 0.13 c and 0.25 c.

  17. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  18. Subsonic aerodynamic characteristics of a proposed advanced manned launch system orbiter configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Fox, Charles H., Jr.

    1993-01-01

    The Advanced Manned Launch System is a proposed near-term technology, two-stage, fully reusable launch system that consists of an unmanned glide-back booster and a manned orbiter. An orbiter model that featured a large fuselage and an aft delta wing with tip fins was tested in the Langley 7- by 10-Foot High-Speed Tunnel. A crew cabin, large payload fairing, and crew access tunnel were mounted on the upper body. The results of the investigation indicated that the configuration was longitudinally stable to an angle of attack of about 6 deg about a center-of-gravity position of 0.7 body length. The model had an untrimmed lift-drag ratio of 6.6, but could not be trimmed at positive lift. The orbiter model was also directionally unstable. The payload fairing was responsible for about half the instability. The tip-fin controllers, which are designed as active controls to produce artificial directional stability, were effective in producing yawing moment, but sizable adverse rolling moment occurred at angles of attack above 6 deg. Differential deflection of the elevon surfaces was effective in producing rolling moment with only small values of adverse yawing moment.

  19. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  20. Compressible Laminar Boundary Layer over a Yawed Infinite Cylinder with Heat Transfer and Arbitrary Prandtl Number

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli; Beckwith, Ivan E

    1958-01-01

    The equations are presented for the development of the compressible laminar boundary layer over a yawed infinite cylinder. For compressible flow with a pressure gradient the chordwise and spanwise flows are not independent. Using the Stewartson transformation and a linear viscosity-temperature relation yields a set of three simultaneous ordinary differential equations in a form yielding similar solutions. These equations are solved for stagnation-line flow for surface temperatures from zero to twice the free-stream stagnation temperature and for a wide range of yaw angle and free-stream Mach number. The results indicate that the effect of yaw on the heat-transfer coefficient at the stagnation line depends markedly on the free-stream Mach number. An unusual result of the solutions is that for large yaw angles and stream Mach numbers the chordwise velocity within the boundary layer exceeds the local external chordwise velocity, even for a highly cooled wall.

  1. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  2. Vestibular-visual conflict in pitch and yaw planes in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto; Kulecz, Walter B.; Kobayashi, Kazutoyo; Isago, Hidemitsu

    1986-01-01

    Direction conflicting vestibular and visual (optokinetic) stimuli either in the pitch or yaw plane were given to squirrel monkey subjects. The conflict sickness symptom score in the pitch plane was significantly higher than that in the yaw plane for the initial exposure session (p less than 0.01). A significant score difference was also encountered when the exposure sessions were repeated (p less than 0.05).

  3. Investigation of passive blade cyclic pitch variation using an automatic yaw control system. Final report

    SciTech Connect

    Hohenemser, K.H.; Swift, A.H.P.

    1982-08-01

    The investigation of passive cyclic pitch variation using an automatic yaw control system made use of the test equipment and of the results of an earlier study. The atmospheric test equipment consisted of a horizontal axis wind turbine with vane controlled upwind two-bladed rotor of 7.6 m (25 ft) diameter having passive cyclic pitch variation. An automatically triggered electric furl actuator prevented over-speeds and over-torques by furling the rotor which means yawing the rotor out of the winds. The atmospheric test equipment was modified to accept two alternative fully automatic yaw or furl control systems. The first system was of the active type and included a hydraulic single acting constant speed governor as it is used for aircraft propeller controls. Upon reaching the rotor speed limit, the governor delivered pressurized oil to a hydraulic furl actuator which then overcame the unfurling spring force and furled the rotor. When the rotor speed fell below the set value, the governor admitted oil flow from the hydraulic actuator into the oil reservoir and the rotor was unfurled by the spring. The second automatic control system was of a purely mechanical passive type. The rotor thrust, which was laterally off-set from the yaw axis, in combination with a yawing component of the rotor torque due to uptilt of the rotor axis overcame at rated power the unfurling spring and furled the rotor. The analytically predicted and experimentally substantiated negative rotor yaw damping would cause excessive furling rates unless alleviated by a furl damper. The tests were supported by a specially developed dynamic yawing analysis. Both analysis and tests indicated that the two-bladed passive cyclic pitch wind rotor can be effectively torque or speed limited by rotor yaw control systems which are less costly and more reliable than the conventional blade feathering control systems.

  4. Impact of Community Mass Treatment with Azithromycin for Trachoma Elimination on the Prevalence of Yaws

    PubMed Central

    Marks, Michael; Vahi, Ventis; Sokana, Oliver; Chi, Kai-Hua; Puiahi, Elliot; Kilua, Georgina; Pillay, Allan; Dalipanda, Tenneth; Bottomley, Christian; Solomon, Anthony W.; Mabey, David C.

    2015-01-01

    Background Community mass treatment with 30mg/kg azithromycin is central to the new WHO strategy for eradicating yaws. Both yaws and trachoma— which is earmarked for elimination by 2020 using a strategy that includes mass treatment with 20mg/kg azithromycin—are endemic in the Pacific, raising the possibility of an integrated approach to disease control. Community mass treatment with azithromycin for trachoma elimination was conducted in the Solomon Islands in 2014. Methods We conducted a study to assess the impact of mass treatment with 20mg/kg azithromycin on yaws. We examined children aged 5-14 years and took blood and lesion samples for yaws diagnosis. Results We recruited 897 children, 6 months after mass treatment. There were no cases of active yaws. Serological evidence of current infection was found in 3.6% (95% CI= 2.5-5.0%). This differed significantly between individuals who had and had not received azithromycin (2.8% vs 6.5%, p=0.015); the prevalence of positive serology in 5-14 year-olds had been 21.7% (95% CI=14.6%-30.9%) 6 months prior to mass treatment. Not receiving azithromycin was associated with an odds of 3.9 for infection (p=0.001). National figures showed a 57% reduction in reported cases of yaws following mass treatment. Discussion Following a single round of treatment we did not identify any cases of active yaws in a previously endemic population. We found a significant reduction in latent infection. Our data support expansion of the WHO eradication strategy and suggest an integrated approach to the control of yaws and trachoma in the Pacific may be viable. PMID:26241484

  5. Results of free yaw tests of the Mod-O 100 kilowatt wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Corrigan, R. D.

    1983-01-01

    Tests were conducted on the Mod-O 100 kW experimental wind turbine to provide data on yaw alignment characteristics of a large horizontal axis wind turbine with its yaw restraint removed (i.e., in free yaw). The wind turbine consisted of a downwind horizontal axis rotor mounted on a tubular tower. Three rotor configurations were tested. Each rotor was teetered, coned 3 deg and tip-controlled. Two of the rotors had pitch-flap coupling or Delta-3, and one rotor had none. The two rotors with Delta-3 differed in the airfoil used in the tip sections. Test results indicate the rotor without pitch-flap coupling did not align closer than 25 deg with the wind, and pitch-flap coupling improved the wind turbine's alignment with the wind. Yaw damping was shown to have a favorable effect on free yaw characteristics. The change in the tip airfoil section was shown to affect the free yaw alignment also. The rotors with Delta-3 were shown to be capable of responding to wind shifts and exhibited stable operating properties.

  6. Static performance of nonaxisymmetric nozzles with yaw thrust-vectoring vanes

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Berrier, Bobby L.

    1988-01-01

    A static test was conducted in the static test facility of the Langley 16 ft Transonic Tunnel to evaluate the effects of post exit vane vectoring on nonaxisymmetric nozzles. Three baseline nozzles were tested: an unvectored two dimensional convergent nozzle, an unvectored two dimensional convergent-divergent nozzle, and a pitch vectored two dimensional convergent-divergent nozzle. Each nozzle geometry was tested with 3 exit aspect ratios (exit width divided by exit height) of 1.5, 2.5 and 4.0. Two post exit yaw vanes were externally mounted on the nozzle sidewalls at the nozzle exit to generate yaw thrust vectoring. Vane deflection angle (0, -20 and -30 deg), vane planform and vane curvature were varied during the test. Results indicate that the post exit vane concept produced resultant yaw vector angles which were always smaller than the geometric yaw vector angle. Losses in resultant thrust ratio increased with the magnitude of resultant yaw vector angle. The widest post exit vane produced the largest degree of flow turning, but vane curvature had little effect on thrust vectoring. Pitch vectoring was independent of yaw vectoring, indicating that multiaxis thrust vectoring is feasible for the nozzle concepts tested.

  7. Evaluation of a rapid diagnostic test for yaws infection in a community surveillance setting.

    PubMed

    Marks, Michael; Goncalves, Adriana; Vahi, Ventis; Sokana, Oliver; Puiahi, Elliot; Zhang, Zaixing; Dalipanda, Tenneth; Bottomley, Christian; Mabey, David; Solomon, Anthony W

    2014-09-01

    Yaws is a non-venereal treponemal infection caused by Treponema pallidum ssp. pertenue. The WHO has launched a worldwide control programme, which aims to eradicate yaws by 2020. The development of a rapid diagnostic test (RDT) for serological diagnosis in the isolated communities affected by yaws is a key requirement for the successful implementation of the WHO strategy. We conducted a study to evaluate the utility of the DPP test in screening for yaws, utilizing samples collected as part of a community prevalence survey conducted in the Solomon Islands. 415 serum samples were tested using both traditional syphilis serology (TPPA and quantitative RPR) and the Chembio DPP Syphilis Screen and Confirm RDT. We calculated the sensitivity and specificity of the RDT as compared to gold standard serology. The sensitivity of the RDT against TPPA was 58.5% and the specificity was 97.6%. The sensitivity of the RDT against RPR was 41.7% and the specificity was 95.2%. The sensitivity of the DPP was strongly related to the RPR titre with a sensitivity of 92.0% for an RPR titre of >1/16. Wider access to DPP testing would improve our understanding of worldwide yaws case reporting and the test may play a key role in assessing patients presenting with yaws like lesions in a post-mass drug administration (MDA) setting. PMID:25211018

  8. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  9. Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.

    2000-01-01

    Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.

  10. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  11. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  12. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  13. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  14. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  15. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  16. Aerodynamic Control using Distributed Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2015-11-01

    The global aerodynamic loads on a stationary and pitching airfoil at angles of attack beyond the static and dynamic stall margins, respectively are controlled in wind tunnel experiments using regulated distributed bleed driven by surface pressure differences. High-speed PIV and proper orthogonal decomposition of the vorticity flux on the static airfoil show that the bleed engenders trains of discrete vortices that advect along the surface and are associated with a local instability that is manifested by a time-averaged bifurcation of the vorticity layer near the bleed outlets and alters the vorticity flux over the airfoil and thereby the aerodynamic loads. Active bleed is used on a dynamically pitching airfoil (at reduced frequencies up to k = 0.42) to modulate the evolution of vorticity concentrations during dynamic stall. Time-periodic bleed improved the pitch stability by reducing adverse pitching moment (``negative damping'') that can precipitate structural instabilities. At the same time, the maintains the cycle-average loads to within 5% of the base flow levels by segmenting the vorticity layer during upstroke and promoting early flow attachment during downstroke segments of the pitch cycle. Supported by Georgia Tech VLRCOE.

  17. Nuclear Anapole Moments

    SciTech Connect

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  18. The Decisive Moment Revealed.

    ERIC Educational Resources Information Center

    Zichittella, Jack

    1998-01-01

    Discusses Henri Cartier-Bresson's notion of the "aesthetic of the decisive moment" and its role in photographic composition. Argues that recording spontaneous moments from real life can produce significant and complex photographs. Suggests that instilling this technique in photography students frees them to experiment without fear of failure. (DSK)

  19. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  20. The "moment of death".

    PubMed

    Valentine, Christine

    2007-01-01

    The "moment of death," once a dominant concept in preparing for a "good death", has been eclipsed by a focus on the wider concept of the "dying trajectory". However, findings from interviews with 25 bereaved individuals suggest that dying loved ones' final moments may still be experienced as highly significant in their own right. In some accounts the dying individual's final moments did not feature or made little impression, either because the survivor was not present, or there was no obviously definable moment, or because other, usually medical factors, such as whether to resuscitate the person, took precedence. However, in six cases such moments were constructed as profound, special, and memorable occasions. These constructions are explored in relation to achieving a good death, the dying trajectory as a whole, and making sense of the bereavement experience. Their implications for sociological theories of identity and embodiment are also considered. PMID:18214069

  1. A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers

    NASA Technical Reports Server (NTRS)

    Hopkins, Edward J

    1951-01-01

    A semiempirical method, in which potential theory is arbitrarily combined with an approximate viscous theory, for calculating the aerodynamic pitching moments for bodies of revolution is presented. The method can also be used for calculating the lift and drag forces. The calculated and experimental force and moment characteristics of 15 bodies of revolution are compared.

  2. Application Program Interface for the Orion Aerodynamics Database

    NASA Technical Reports Server (NTRS)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The

  3. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  4. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  5. 14 CFR 23.371 - Gyroscopic and aerodynamic loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... prescribed in § 23.351 and § 23.423; or (2) All possible combinations of the following— (i) A yaw velocity of... be designed to withstand the load factors expected during combined maximum yaw and pitch...

  6. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  7. One and two degrees-of-freedom Vortex-Induced Vibration experiments with yawed cylinders

    NASA Astrophysics Data System (ADS)

    Franzini, G. R.; Gonçalves, R. T.; Meneghini, J. R.; Fujarra, A. L. C.

    2013-10-01

    Vortex-Induced Vibration (VIV) experiments were carried out with yawed cylinders. The purpose was to investigate the validity of the Independence Principle (IP) for properly describing the flow characteristics and the dynamics of structures subjected to oblique flow. Five yaw angles in relation to the direction perpendicular to the free stream velocity were tested, namely θ=0°,10°,20°,30° and 45°. Both the upstream and downstream orientations were tested. The models were mounted on a leaf spring apparatus that allows experiments with one or two degrees of freedom. The Reynolds numbers based on the component normal to the cylinder axis fell in the interval 3×103yawed ones for yaw angles up to 20° for both one and two degrees-of-freedom experiments. This indicates the validity of the IP for this yaw angle range. For yaw angles larger than 20°, a decrease in the maximum amplitude was observed. The decrease in the oscillation amplitudes was related to a larger modulation in the phase shift between force and displacement. Differences in the results for upstream and downstream were observed and were more evident for the larger yaw angle. These differences can be associated to the asymmetric cylinder end conditions.

  8. Interdisciplinary optimization combining electromagnetic and aerodynamic methods

    NASA Astrophysics Data System (ADS)

    Sullivan, Anders James

    The design of missile body shapes often requires a compromise between aero-dynamic and electromagnetic performance goals. In general, the missile shape producing the lowest radar signature will be different from the preferred aero-dynamic shape. Interdisciplinary shape optimization is utilized to combine multiple disciplines to determine the best possible shape for a hybrid aerodynamic-electromagnetic problem. A composite missile body consisting of an axisymmetric body of revolution (BOR) and two thin flat plate attachments is considered. The goal is to minimize the drag and backscatter associated with this composite shape. The body is assumed to be perfectly conducting, and flying at zero degrees angle of attack. The variable nose shape serves as the optimization design parameter. To characterize the system performance, a cost function is defined which is comprised of weighted values of the drag and backscatter. To solve the electromagnetic problem, methods to treat electrically large complex bodies are investigated. Hybrid methods which combine the method of moments (MoM) with physical optics (PO) are developed to calculate the scattering from simple two-dimensional bodies. A surface-wave hybrid approach is shown to effectively approximate the traveling wave currents on the smooth interior portions of a BOR. Asymptotic methods are used to solve the resulting integral equations more efficiently. The hybrid methods are shown to produce MoM-quality results, while requiring less computational resources. To solve the composite body problem, an iterative technique is developed that preserves the simplicity of the original BOR scheme. In this formulation, the current over each part of the composite body is solved independently. The results from one part of the body are used to update the fields incident on the other part of the body. This procedure is repeated until the solution converges. To solve the aerodynamic problem, slender body theory is used to calculate the

  9. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  10. Computational fluid dynamics framework for aerodynamic model assessment

    NASA Astrophysics Data System (ADS)

    Vallespin, D.; Badcock, K. J.; Da Ronch, A.; White, M. D.; Perfect, P.; Ghoreyshi, M.

    2012-07-01

    This paper reviews the work carried out at the University of Liverpool to assess the use of CFD methods for aircraft flight dynamics applications. Three test cases are discussed in the paper, namely, the Standard Dynamic Model, the Ranger 2000 jet trainer and the Stability and Control Unmanned Combat Air Vehicle. For each of these, a tabular aerodynamic model based on CFD predictions is generated along with validation against wind tunnel experiments and flight test measurements. The main purpose of the paper is to assess the validity of the tables of aerodynamic data for the force and moment prediction of realistic aircraft manoeuvres. This is done by generating a manoeuvre based on the tables of aerodynamic data, and then replaying the motion through a time-accurate computational fluid dynamics calculation. The resulting forces and moments from these simulations were compared with predictions from the tables. As the latter are based on a set of steady-state predictions, the comparisons showed perfect agreement for slow manoeuvres. As manoeuvres became more aggressive some disagreement was seen, particularly during periods of large rates of change in attitudes. Finally, the Ranger 2000 model was used on a flight simulator.

  11. Supersonic aerodynamic characteristics of a circular body Earth-to-Orbit vehicle

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Engelund, Walter C.; Macconochie, Ian O.

    1994-01-01

    The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center fin, wingtip fins, and a nose-mounted fin. The tests were conducted in the Langley Unitary Plan Wind Tunnel. The configuration is longitudinally stable about the estimated center of gravity of 0.72 body length up to a Mach number of about 3.0. Above Mach 3.0, the model is longitudinally unstable at low angles of attack but has a stable secondary trim point at angles of attack above 30 deg. The model has sufficient pitch control authority with elevator and body flap to produce stable trim over the test range. The model with the center fin is directionally stable at low angles of attack up to a Mach number of 3.90. The rudder-like surfaces on the tip fins and the all-movable nose fin are designed as active controls to produce artificial directional stability and are effective in producing yawing moment. The wing trailing-edge aileron surfaces are effective in producing rolling moment, but they also produce large adverse yawing moment.

  12. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  13. Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Greene, Francis A.; Boyles, Katie A.

    2006-01-01

    Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).

  14. Airscrew Gyroscopic Moments

    NASA Technical Reports Server (NTRS)

    Bock, G.

    1946-01-01

    When flying in a turn or pulling out of a dive, the airscrew exerts a gyroscopic moment on the aircraft, In the case of airscrews with three or more blades, arranged symmetrically, the value of the gyroscopic moment is J(sub x) omega(sub x) omega(sub y), where J(sub x) denotes the axial moment of inertia about the axis of rotation of the airscrew, omega(sub x) the angular upeed of the airscrew about its axis, and omega (sub Y) the rotary speed of the whole aircraft about an axis parallel to the plane of the airscrew (e.g., when pulling up, the transverse axis of the aircraft). The gyroscopic moment then tends to rotate the aircraft about an axis perpendicular to those of the two angular speeds and, in the came of airscrews with three or more blades, is constant during a revolution of the airscrew. With two-bladed airscrews, on the contrary, although the calculate gyroscopic moment represents the mean value in time, it fluctuates about this value with a frequency equal to twice the revolutions per minute. In addition, pulsating moments likewise occur about the other two axes. This fact is known from the theory of the asymmetrical gyro; the calculations that have been carried out for the determination of the various gyroscopic moments, however, mostly require an exact knowledge of the gyro theory. The problem will therefore be approached in another manner based on quite elementary considerations. The considerations are of importance, not only in connection with the gyroscopic moments exerted by the two-bladed airscrew on the aircraft, but also with the stressing of the blades of airscrews with an arbitrary number of blades.

  15. Experimental investigation of aerodynamic devices for wind turbine rotational speed control: Phase II

    SciTech Connect

    Miller, S L

    1996-02-01

    An experimental investigation was undertaken to further evaluate and enhance the performance of an aerodynamic device for wind turbine overspeed protection and power modulation applications. The trailing-edge device, known as the Spoiler-Flap, was examined in detail during wind tunnel tests. The impact of hp length, vent angle, pivot point and chord variations on aerodynamic and hinge moment characteristics were evaluated and a best overall configuration was identified. Based on this effort, a 40% chord device with a 1% hp length and 40 degree vent angle offers improved performance potential for wind turbine applications. This specific configuration appears to offer good suction coefficient performance for both turbine power modulation and overspeed (i.e., aerodynamic braking) applications. Device hinge moment loads improved (compared to other devices investigated) in magnitude and the impact of surface roughness was found to be minimal.

  16. Transitory Aerodynamic Forces on a Body of Revolution using Synthetic Jet Actuation

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher; McMichael, James; Glezer, Ari

    2002-11-01

    The aerodynamic forces and moments on axisymmetric bodies at subsonic speeds are controlled by exploiting local flow attachment using fluidic (synthetic jet) actuation and thereby altering the apparent aerodynamic shape of the surface. Control is effected upstream of the base of the body by an azimuthal array of individually-controlled, aft-facing synthetic jets emanating along an azimuthal Coanda surface. Actuation produces asymmetric aerodynamic forces and moments, with ratios of lift to average jet momentum approaching values typical of conventional jet-based circulation control on two-dimensional airfoils. Momentary forces are achieved using transient (pulsed) actuation and are accompanied by the formation and shedding of vorticity concentrations as a precursor to the turning of the outer flow into the wake region.

  17. Longitudinal aerodynamic parameters of the Kestrel aircraft (XV-6A) extracted from flight data

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Williams, J. L.

    1973-01-01

    Flight-test data have been used to extract the longitudinal aerodynamic parameters of a vectored-thrust aircraft. The results show that deflecting the thrust past 15 has an effect on the pitching-moment derivatives and tends to reduce the static stability. The trend toward reduction in the longitudinal stability also been noted by the pilots conducting the flight tests.

  18. Wind turbine with automatic pitch and yaw control

    DOEpatents

    Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  19. The yaw, pitch, and roll of the head in a straight ahead orientation

    NASA Astrophysics Data System (ADS)

    Temme, Leonard A.; Still, David L.; Houtsma, Adrianus J. M.

    2008-04-01

    Head mounted displays (HMD) are finding increasing use in a great many applications. These HMDs provide information ranging from a simple alphanumeric to complex graphical renderings of real or synthetic worlds. Some of these HMDs are opaque so that the user's vision is completely confined to what the HMD provides; others are see-through so that elements of the HMD may be superimposed simultaneously with the external world. Some see-through HMD applications incorporate graphical elements intended to be in some calibrated registration with elements of the external world such that the relation between the graphic and the world embodies the relevant information. For such displays to function as intended the head yaw, pitch, and roll are important. The present paper reports measures of head yaw, pitch, and roll when the head is in a straight ahead orientation. Volunteers oriented to either a visual or auditory target stimulus presented under a variety of conditions. For some conditions with the visual target, the visual field was restricted to less than 5 degrees (°) for other conditions vision was unrestricted. The auditory targets were presented in complete darkness. At the start of each trial, an acoustic warning signaled the volunteer to turn the head from an initial off-axis yaw and pitch to a target stimulus that defined the straight ahead yaw and pitch. Note that the stimulus left head roll completely undefined. Within- and between-subject head yaw, pitch, and roll statistics are reported and compared for the various stimuli.

  20. Effects of yaw on low angle injection into a supersonic flow

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Schetz, J. A.; Fuller, E. J.

    1991-01-01

    This paper presents the results of a study of transverse gas injection into supersonic/hypersonic streams with low downstream transverse angles in addition to yaw angles varying from zero to approximately 30 deg. The primary data are concentration measurements, with nanoshadowgraphs and oil flow visualization pictures also included. Two sets of experiments were performed. The first set studied the effects of yaw angle, specifically beta = 15 and 28 deg, on a helium injector with a 30-deg transverse angle in a Mach 3 freestream. Axial measurement stations were x/d = 30, 50, and 100. It was found that, as beta was increased, the maximum concentration mixing rate did not vary, but the jet core penetration decreased more at beta = 15 deg than at beta = 28 deg. A shearing effect between the portion of the jet in the boundary layer and the portion in the freestream increased the area of a typical constant concentration contour. The second set of experiments, conducted at NASA Langley, studied the effect of yawed injection at a transverse angle of 15 deg in a Mach 6 flow. Axial stations of x/d = 20, 40, 60, and 80 were used. A yaw angle of beta = 15 deg was found to decrease both the jet core mixing rate and penetration. The primary benefit of yaw was to increase lateral spreading. For similar injection conditions, the results show less near-field mixing at Mach 6 than Mach 3, but a faster mixing rate in the far-field at Mach 6.

  1. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  2. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  3. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Astrophysics Data System (ADS)

    Romere, P. O.

    1982-03-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  4. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  5. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  6. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  7. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  8. Aerodynamic characteristics of missile configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.

  9. DSMC Simulations of Apollo Capsule Aerodynamics for Hypersonic Rarefied Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Direct simulation Monte Carlo DSMC simulations are performed for the Apollo capsule in the hypersonic low density transitional flow regime. The focus is on ow conditions similar to that experienced by the Apollo Command Module during the high altitude portion of its reentry Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction that is for free molecular to continuum conditions. Also aerodynamic data are presented that shows their sensitivity to a range of reentry velocity encompasing conditions that include reentry from low Earth orbit lunar return and Mars return velocities to km/s. The rarefied results are anchored in the continuum regime with data from Navier Stokes simulations

  10. Aerodynamics of slender finned bodies at large angles of attack

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.; Zakkay, V.; Tory, E.; Stallings, R.

    1977-01-01

    In certain missions finned missiles perform slewing maneuvers. Here, large angles of attack are attained. Experimental data needed to understand the aerodynamics of such vehicles are presented. The purpose of this investigation was to study the interaction of the body flow field with that produced by the fins and the resulting effects on the aerodynamic forces and moments. The experiments were conducted at a nominal Mach number of 2.7 and angles of attack from 0 to 50 deg, with two different models. The tests were performed in a range of Reynolds number from 1.5 x 10 to the 6th to 4 x 10 to the 7th per foot (to cover both the laminar and fully turbulent regimes.) Several fin roll angles were investigated. Static pressures on both body and fin surfaces are reported.

  11. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  12. Transonic unsteady aerodynamics in the vicinity of shock-buffet instability

    NASA Astrophysics Data System (ADS)

    Iovnovich, M.; Raveh, D. E.

    2012-02-01

    A study of transonic unsteady aerodynamic responses in the vicinity of shock-buffet is presented. Navier-Stokes simulations of a NACA 0012 airfoil with a fitted 20% trailing edge flap are performed to compute the aerodynamic responses to prescribed pitch and flap motions, about mean flow conditions at shock-buffet onset, and while exhibiting shock buffet. The unsteady aerodynamic response is found to be fundamentally different from the response predicted by the linear aerodynamic theory. At mean angles of attack close to buffet onset noticeable damped resonance responses are observed at frequencies close to the buffet frequency. The responses grow as the mean angle of attack is increased towards buffet onset. Also, a phase lead is observed for the aerodynamic coefficients, for some range of frequencies. The large aerodynamic responses and phase lead appear in frequencies that are typical of structural elastic frequencies, suggesting that they may be responsible for transonic aeroelastic instabilities. At shock buffet conditions, prescribing sufficiently large pitch or flap harmonic motions results in synchronization of the buffet frequency with the excitation frequencies. At these conditions, the lift and pitching moment responses to prescribed pitch motion also result in resonance and phase lead, as in the pre-buffet case. Large prescribed flap motions eliminate the lift resonance response, and significantly reduce the lift coefficient amplitudes, indicating that the aerodynamic coefficients at these conditions can be controlled by prescribed structural motions.

  13. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  14. Aerodynamics of Wiffle Balls

    NASA Astrophysics Data System (ADS)

    Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.

  15. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  16. The aerodynamics of propellers

    NASA Astrophysics Data System (ADS)

    Wald, Quentin R.

    2006-02-01

    The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.

  17. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  18. Vehicle yaw stability control using active limited-slip differential via model predictive control methods

    NASA Astrophysics Data System (ADS)

    Rubin, Daniel; Arogeti, Shai A.

    2015-09-01

    In this paper, the problem of vehicle yaw control using an active limited-slip differential (ALSD) applied on the rear axle is addressed. The controller objective is to minimise yaw-rate and body slip-angle errors, with respect to target values. A novel model predictive controller is designed, using a linear parameter-varying (LPV) vehicle model, which takes into account the ALSD dynamics and its constraints. The controller is simulated using a 10DOF Matlab/Simulink simulation model and a CarSim model. These simulations exemplify the controller yaw-rate and slip-angle tracking performances, under challenging manoeuvres and road conditions. The model predictive controller performances surpass those of a reference sliding mode controller, and can narrow the loss of performances due to the ALSD's inability to transfer torque regardless of driving conditions.

  19. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H.L.; Williams, D.M.; Holt, W.E.

    1987-04-21

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive means and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive means. 12 figs.

  20. Rotor Speed Dependent Yaw Control of Wind Turbines Based on Empirical Data

    SciTech Connect

    Kragh, K. A.; Fleming, P. A.

    2012-01-01

    When extracting energy from the wind using horizontal-axis upwind wind turbines, a primary condition for maximum power yield is the ability to align the rotor axis with the dominating wind direction. Attempts have been made to improve yaw alignment by applying advanced measurement techniques such as LIDARs. This study is focused at assessing the current performance of an operating turbine and exploring how the yaw alignment can be improved using existing measurements. By analyzing available turbine and met mast data a correction scheme for the original yaw alignment system is synthesized. The correction scheme is applied and it is seen that with the correction scheme in place, the power yield below rated is raised 1-5 percent. Furthermore, results indicate that blade load variations are decreased when the correction scheme is applied. The results are associated with uncertainties due to the amount of available data and the wind site climate. Further work should be focused at gathering more experimental data.

  1. Yaw attitude estimation for the Tracking and Data Relay Satellite System

    NASA Technical Reports Server (NTRS)

    Staich, S.; Cohen, A. L.; Berkery, E. A.

    1984-01-01

    The Tracking and Data Relay Satellite System (TDRSS) uses a groundbased attitude determination algorithm to open loop point the satellite's high data rate antennas. The spacecraft is able to measure its pitch and roll attitude, but its yaw attitude is periodically unobservable. The ground software uses a state-space estimator, an adaptation of a Luenberger observer, to predict the spacecraft yaw angle during these unobservable periods. It contains states associated with the roll/yaw dynamics and the on-board control law. The accuracy is limited by the modeling fidelity of the disturbance torques acting on the spacecraft. After initial operating problems were cleared up, the operation of the estimator has converged to predicted performance.

  2. Implicit and explicit computations of flows past cavities with and without yaw

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Yen, Guan-Wei

    1990-01-01

    Implicit and explicit computations are presented to study the supersonic, turbulent flows past three-dimensional, rectangular cavities at 0 and 45 deg yaw angle. The Reynolds-averaged, unsteady, compressible, complete Navier-Stokes equations are solved time-accurately, including the Reynolds stresses. The number of major vortices inside and the separation characteristics on the cavity floor are different for cavities with length-to-depth ratios of 3.0 and 6.7. Due to the oscillations of the shear layer, which randomly exposes the cavity flow to the external flow, vortices are shed into the mainstream. When the upstream flow approaches a cavity at yaw, the width-to-depth ratio also becomes an important parameter. The dominant rotational planes of the major vortices incline at an angle to the vertical plane due to yaw. The execution of the implicit scheme is about three times faster, but it requires about four times more computer memory.

  3. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body

  4. Human comfort response to random motions with combined yawing and rolling motions

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1979-01-01

    The effects of random yawing and rolling velocities on passenger ride comfort responses were examined on a visual motion simulator. The effects of power spectral density shape and frequency ranges of peak power from 0 to 2 Hz were studied. The subjective rating data and the physical motion data obtained are presented. No attempt at interpretation or detailed analysis of the data is made. There existed during this study motions in all other degrees of freedom as well as the yawing and rolling motions, because of the characteristics of the simulator. These unwanted motions may have introduced some interactive effects on passenger responses which should be considered in any analysis of the data.

  5. Effect of yaw angle on steering forces for the lunar roving vehicle wheel

    NASA Technical Reports Server (NTRS)

    Green, A. J.

    1974-01-01

    A series of tests was conducted with a Lunar Roving Vehicle (LRV) wheel operating at yaw angles ranging from -5 to +90 deg. The load was varied from 42 to 82 lb (187 to 365 N), and the speed was varied from 3.5 to 10.0 ft/sec (1.07 to 3.05 m/sec). It was noted that speed had an effect on side thrust and rut depth. Side thrust, rut depth, and skid generally increased as the yaw angle increased. For the range of loads used, the effect of load on performance was not significant.

  6. Where the Road Ends, Yaws Begins? The Cost-effectiveness of Eradication versus More Roads

    PubMed Central

    Fitzpatrick, Christopher; Asiedu, Kingsley; Jannin, Jean

    2014-01-01

    Introduction A disabling and disfiguring disease that “begins where the road ends”, yaws is targeted by WHO for eradication by the year 2020. The global campaign is not yet financed. To evaluate yaws eradication within the context of the post-2015 development agenda, we perform a somewhat allegorical cost-effectiveness analysis of eradication, comparing it to a counterfactual in which we simply wait for more roads (the end of poverty). Methods We use evidence from four yaws eradication pilot sites and other mass treatment campaigns to set benchmarks for the cost of eradication in 12 known endemic countries. We construct a compartmental model of long-term health effects to 2050. Conservatively, we attribute zero cost to the counterfactual and allow for gradual exit of the susceptible (at risk) population by road (poverty reduction). We report mean, 5th and 95th centile estimates to reflect uncertainty about costs and effects. Results Our benchmark for the economic cost of yaws eradication is uncertain but not high –US$ 362 (75–1073) million in 12 countries. Eradication would cost US$ 26 (4.2–78) for each year of life lived without disability or disfigurement due to yaws, or US$ 324 (47–936) per disability-adjusted life year (DALY). Excluding drugs, existing staff and assets, the financial cost benchmark is US$ 213 (74–522) million. The real cost of waiting for more roads (poverty reduction) would be 13 (7.3–20) million years of life affected by early-stage yaws and 2.3 (1.1–4.2) million years of life affected by late-stage yaws. Discussion Endemic countries need financing to begin implementing and adapting global strategy to local conditions. Donations of drugs and diagnostics could reduce cost to the public sector and catalyze financing. Resources may be harnessed from the extractive industries. Yaws eradication should be seen as complementary to universal health coverage and shared prosperity on the post-2015 development agenda. PMID:25255131

  7. Numerical calculation of the three dimensional transonic flow over a yawed wing.

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1973-01-01

    Results are presented of calculations of the three dimensional steady transonic flow over a finite yawed wing. The full potential flow equation is solved in a transformed coordinate system which permits the boundary conditions to be satisfied exactly. The correct differential properties are enforced by rotating the difference scheme to conform with the flow direction, and fast convergence is assured by simulating a time dependent equation designed to settle quickly to a steady state. Computed lift drag ratios are consistent with the results of wind tunnel tests of a yawed wing conducted by R. T. Jones (1972).-

  8. Experimental pitch-, yaw-, and roll-damping characteristics of a shuttle orbiter at Mach number 8

    NASA Technical Reports Server (NTRS)

    Uselton, B. L.; Freeman, D. C., Jr.; Boyden, R. P.

    1975-01-01

    Wind tunnel tests were conducted to measure the pitch-, yaw-, and roll-damping characteristics of a modified 089B shuttle orbiter. These tests were conducted for NASA-Langley at the von Karman Gas Dynamics Facility of the Arnold Engineering Development Center. Data were obtained utilizing the small amplitude forced-oscillation technique at angles of attack of -4.9 to 26.5 deg at Reynolds numbers, based on model length, of 1,180,000 to 4,820,000. The orbiter was dynamically stable in pitch, yaw, and roll, and the pitch derivatives were dependent on Reynolds number, while the roll derivatives were independent of Reynolds number.

  9. Temporal Moments in Hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Pollock, D.; Cirpka, O. A.

    2007-12-01

    Electrical Resistivity Tomography (ERT) has been tested as monitoring tool for salt-tracer experiments by various authors. So far, the analysis of such experiments has been done by a two-step procedure [Kemna et al., 2002; Vanderborght et al., 2005; Singha and Gorelick, 2005]. In the first step, classical geophysical inversion methods have been used to infer the distribution of electrical conductivity, which is transferred to an estimated concentration distribution of the tracer. Subsequently, the inferred concentration images were analyzed to estimate hydraulic quantities such as the velocity distribution. This approach has two disadvantages: The concentration distribution is reconstructed with a high spatial resolution, but the estimate is uncertain, and the estimation uncertainty is spatially correlated. These correlated uncertainties should be accounted for in the estimation of hydraulic conductivity from concentration values. The latter, unfortunately, is not practical because the reconstructed data sets are very large. The geophysical inversion is not enforced to be in agreement with basic hydromechanical constraints. E.g., Singha and Gorelick [2005] observed an apparent loss of solute mass when using ERT as monitoring tool. We propose considering the temporal moments of potential-difference time series. These temporal moments depend on temporal moments of concentration, which have already been used in the inference of hydraulic- conductivity distributions (Cirpka and Kitanidis, 2000). In our contribution, we present the complete set of equations leading from hydraulic conductivity via hydraulic heads, velocities, temporal moments of concentrations to temporal moments of potential differences for given flow and transport boundary conditions and electrode configurations. We also present how the sensitivity of temporal moments of potential differences on the hydraulic conductivity field can be computed without the need of storing intermediate sensitivities

  10. Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer

    NASA Astrophysics Data System (ADS)

    Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.

    1991-09-01

    The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.

  11. Low-Speed Yawed-Rolling Characteristics of a Pair of 56-Inch-Diameter, 32-Ply-Rating, Type 7 Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Thompson, Wilbur E.; Horne, Walter B.

    1959-01-01

    The low-speed (up to 4 miles per hour) yawed-rolling characteristics of two 56 x 16 32-ply-rating, type 7 aircraft tires under straight-yawed rolling were determined over a range of inflation pressures and yaw angles for a vertical load approximately equal to 75 percent of the rated vertical load. The quantities measured or determined included cornering force, drag force self-alining torque, pneumatic caster vertical tire deflection, yaw angle, and relaxation length. During straight-yawed rolling the normal force generally increased with increasing yaw angle within the test range. The self-alining torque increased to a maximum value and then decreased with increasing angle of yaw. The pneumatic caster tended to decrease with increasing yaw angle.

  12. Aerodynamics and vortical structures in hovering fruitflies

    NASA Astrophysics Data System (ADS)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  13. Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  14. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  15. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  16. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  17. Moments in Psychotherapy

    ERIC Educational Resources Information Center

    Terr, Lenore C.; McDermott, John F.; Benson, Ronald M.; Blos, Peter, Jr.; Deeney, John M.; Rogers, Rita R.; Zrull, Joel P.

    2005-01-01

    In the summer of 2004, a number of psychotherapists with old ties to the University of Michigan or UCLA decided to write 500-word vignettes that attempted to capture a turning point in one of their child patient's psychotherapies. What did the child and adolescent psychiatrist do to elicit such a moment? Upon receiving seven vignettes, one of us…

  18. Moments with Youth

    ERIC Educational Resources Information Center

    Child & Youth Services, 2004

    2004-01-01

    This chapter presents additional stories and interpretations by John Korsmo, Molly Weingrod, Joseph Stanley, Quinn Wilder, Amy Evans, Rick Flowers, Arcelia Martinez, and Pam Ramsey. The stories and interpretations are presented as teachable moments that are examples of how people are learning to understand youthwork and, as such, are open to…

  19. The Humanist Moment

    ERIC Educational Resources Information Center

    Higgins, Chris

    2014-01-01

    In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…

  20. The Teachable Moment.

    ERIC Educational Resources Information Center

    Goodrow, Mary Ellen

    2000-01-01

    Details how an unplanned activity involving spinning wool presented a teachable moment for children in a family child care setting. Notes how activities related to farming, spinning wool, and using wool cloth resulted from following the children's lead. Concludes that everyday activities provide opportunities to listen to children, learn about…

  1. PN/S calculations for a fighter W/F at high-lift yaw conditions. [parabolized Navier-Stokes computer code

    NASA Technical Reports Server (NTRS)

    Wai, J. C.; Blom, G.; Yoshihara, H.; Chaussee, D.

    1986-01-01

    The NASA/Ames parabolized Navier/Stokes computer code was used to calculate the turbulent flow over the wing/fuselage for a generic fighter at M = 2.2. 18 deg angle-of-attack, and 0 and 5 deg yaw. Good test/theory agreement was achieved in the zero yaw case. No test data were available for the yaw case.

  2. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  3. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  4. Some Effects of Yaw Damping on Airplane Motions and Vertical-Tail Loads in Turbulent Air

    NASA Technical Reports Server (NTRS)

    Funk, Jack; Cooney, T. V.

    1959-01-01

    Results of analytical and flight studies are presented to indicate the effect of yaw damping on the airplane motions and the vertical-tail loads in rough air. The analytical studied indicate a rapid reduction in loads on the vertical tail as the damping is increased up to the point of damping the lateral motions to 1/2 amplitude in one cycle. Little reduction in load is obtained by increasing the lateral damping beyond that point. Flight measurements made in rough air at 5,000 and 35,000 feet on a large swept-wing bomber equipped with a yaw damper show that the yaw damper decreased the loads on the vertical tail by about 50 percent at 35,000 feet. The reduction in load at 5,000 feet was not nearly as great. Measurements of the pilot's ability to damp the lateral motions showed that the pilot could provide a significant amount of damping but that manual control was not as effective as a yaw damper in reducing the loads.

  5. A new formulation of the understeer coefficient to relate yaw torque and vehicle handling

    NASA Astrophysics Data System (ADS)

    Bucchi, F.; Frendo, F.

    2016-06-01

    The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.

  6. A new attempt to distinguish serologically the subspecies of Treponema pallidum causing syphilis and yaws.

    PubMed Central

    Noordhoek, G T; Cockayne, A; Schouls, L M; Meloen, R H; Stolz, E; van Embden, J D

    1990-01-01

    In an effort to serologically differentiate syphilis from yaws, 69 monoclonal antibody species raised against Treponema pallidum subsp. pallidum were tested by immunoblotting for their reactivity with Treponema pallidum subsp. pertenue. All monoclonal antibodies reacted with antigens with the same molecular weight of both subspecies. Furthermore, no differences in reactivity between sera from yaws patients and from syphilis patients were found by Western blot (immunoblot) analysis of cell lysates of T. pallidum subsp. pallidum and T. pallidum subsp. pertenue. We tried to exploit the only known molecular difference between the subspecies. The subunits of the 190-kilodalton multimeric proteins TpF1 and TyF1 of T. pallidum subsp. pallidum and T. pallidum subsp. pertenue, respectively, have previously been shown to differ in one amino acid residue at position 40. In this study, no difference was found in immunoreactivity of TpF1 or TyF1 with either syphilis sera or yaws sera. Synthetic peptides based on the sequence of TpF1 and of TyF1 were used in an enzyme-linked immunosorbent assay with syphilis sera and yaws sera. Again, no difference in reactivity between the T. pallidum subsp. pallidum- and T. pallidum subsp. pertenue-derived peptides was observed. Images PMID:2199521

  7. Numerical simulation of flows around two unyawed and yawed wavy cylinders in tandem arrangement

    NASA Astrophysics Data System (ADS)

    Lam, K.; Lin, Y. F.; Zou, L.; Liu, Y.

    2012-01-01

    The turbulent flows around two fixed unyawed and yawed wavy cylinders in tandem arrangement at a subcritical Reynolds number of 3900 were studied using three-dimensional large eddy simulation. A range of spacing (L) between the cylinders from 1.5Dm to 5.5Dm with yaw angles of α=0°, 30° were investigated so as to identify the effects of cylinder spacing ratio and yaw angle as well as the coupling effects of the two wavy cylinders in tandem. The instantaneous near wake flow patterns around the cylinders were captured. Flows around circular cylinders with the same configurations were also obtained for comparison. The effects of the vortex shedding from the upstream cylinder on the fluid-dynamic forces acting on the downstream one were examined. Results show that vortex shedding behind the upstream wavy cylinder occurs at a further downstream position compared with that of the circular upstream cylinder. This leads to the weakening of the effect of bodies' vibration of the cylinders as well as an evident reduction of drag. With a yaw angle of 30°, the vortex formation lengths behind both the upstream and downstream cylinders decrease, typically for the wavy cylinders configuration. However, the effects of drag reduction and the control of bodies' vibration still exist except for the spacing ratio of L/Dm=3.5, which is in the critical spacing ratio regime for two wavy cylinders in tandem.

  8. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    NASA Astrophysics Data System (ADS)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  9. Yaw feedback control of a bio-inspired flapping wing vehicle

    NASA Astrophysics Data System (ADS)

    Gremillion, Gregory; Samuel, Paul; Humbert, J. Sean

    2012-06-01

    A 12 gram fly-inspired flapping wing micro air vehicle was stabilized in the yaw degree of freedom using insectbased wing kinematic for lift generation and control actuation. The characteristic parameters of biological insect flapping flight are described. The integration of this parametric understanding of biological flight into the design of the vehicle is also discussed.

  10. Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle

    NASA Technical Reports Server (NTRS)

    Schirmer, Alberto W.; Capone, Francis J.

    1989-01-01

    In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

  11. Hypersonic aerodynamics and entry-maneuver: Aerothermodynamic interactions for two lifting entry vehicles

    NASA Technical Reports Server (NTRS)

    Arrington, J. P.; Woods, W. C.

    1972-01-01

    The longitudinal, directional, and lateral static stability and control characteristics of a delta lifting body and a delta-wing body were obtained at a Mach number of 20 in helium for operational Reynolds numbers over an angle-of-attack range of -4 deg to 55 deg. The aerodynamic characteristics of the wing body were then evaluated in an entry study to examine the effects of vehicle performance on the aerothermodynamic parameters associated with constant and variable angle-of-attack modes for a 1500-n. mi. cross range. The experimental results indicated that the vehicles were stable, except for neutral directional stability for the wing-body shape, and could be trimmed over the operational angle-of-attack range; however, the wing-body vehicle had adverse yaw due to roll control. This roll-yaw coupling was not examined for the lifting body. The trajectory analysis indicated that a 17-percent decrease in performance required little change in the constant angle-of-attack entry mode and, in turn, resulted in a small decrease in the total heat load. For the pitch-modulated entry, the performance decrease required the pitch maneuver to begin earlier during entry and to last longer in order to meet the 1500-n. mi. cross range without a major heating penalty. The performance reduction also had little effect on the maximum laminar radiation equilibrium temperature over a major portion of the lower surface of the wing-body vehicle regardless of the entry mode.

  12. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  13. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  14. Recent Dynamic Measurements and Considerations for Aerodynamic Modeling of Fighter Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Foster, John V.

    1998-01-01

    As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.

  15. Aerodynamics Of Missiles: Present And Future

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1991-01-01

    Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.

  16. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  17. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    NASA Technical Reports Server (NTRS)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  18. Baseball Aerodynamics: What do we know and how do we know it?

    NASA Astrophysics Data System (ADS)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  19. Transition Flight Simulation of Flapping-Wing Micro-Aerial Vehicle Using Aerodynamic Database

    NASA Astrophysics Data System (ADS)

    Isogai, Koji; Kawabe, Hiroyasu

    The paper describes how to simulate the flight of a flapping-wing micro-aerial vehicle (MAV). It uses an aerodynamic database generated using three-dimensional Navier-Stokes code. The database is composed of the time mean aerodynamic forces and moments generated at various flapping wing motions in various flight modes. Flight is simulated utilizing the database by interpolation. The procedure is applied to transition flight of a dragonfly-type MAV with two-pairs of resonance-type flapping wings. The present MAV attains the mission of hovering, transition and cruising flights successfully with stable attitude.

  20. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Alcorn, C. W.

    1988-01-01

    This paper reports on an experimental investigation of aerodynamic characteristics of slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. In this investigation, magnetically suspending the wind tunnel models eliminates flow disturbances associated with mechanical supports. This paper reports on the drastic changes in lift, pitching moment, and drag for a slight change in base slant angle. Flow visualization with liquid crystals and oil is used to observe base flow patterns responsible for the sudden changes in aerodynamic characteristics. This paper also reports on hysteretic effects that are present and discusses computational results using VSAERO and SANDRAG.

  1. Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

    2002-01-01

    Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

  2. Effect of tip shape and dihedral on lateral-stability characteristics

    NASA Technical Reports Server (NTRS)

    Shortal, Joseph A

    1937-01-01

    This report presents the results of wind tunnel tests to determine the effect of wing-tip shape and dihedral on some of the aerodynamic characteristics of Clark Y wings that affect the performance and lateral stability of airplanes. Force tests at several angles of yaw and rotation tests at zero yaw were made. From these tests the rates of change of rolling moment, yawing moment, and cross-wind force coefficients with angle of yaw and the rate of change of rolling moment coefficient with rolling were determined.

  3. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  4. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Tobak, M.; Malcolm, G. N.

    1980-01-01

    This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.

  5. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  6. In-Flight Aerodynamic Measurements of an Iced Horizontal Tailplane

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss

    1999-01-01

    The effects of tailplane icing on aircraft dynamics and tailplane aerodynamics were investigated using, NASA's modified DHC-6 Twin Otter icing research aircraft. This flight program was a major element of the four-year NASA/FAA research program that also included icing wind tunnel testing, dry-air aerodynamic wind tunnel testing, and analytical code development. Flight tests were conducted to obtain aircraft dynamics and tailplane aerodynamics of the DHC-6 with four tailplane leading-edge configurations. These configurations included a clean (baseline) and three different artificial ice shapes. Quasi-steady and various dynamic flight maneuvers were performed over the full range of angles of attack and wing flap settings with each iced tailplane configuration. This paper presents results from the quasi-steady state flight conditions and describes the range of flow fields at the horizontal tailplane, the aeroperformance effect of various ice shapes on tailplane lift and elevator hinge moment, and suggests three paths that can lead toward ice-contaminated tailplane stall. It was found that wing, flap deflection was the most significant factor in driving the tailplane angle of attack toward alpha(tail stall). However, within a given flap setting, an increase in airspeed also drove the tailplane angle of attack toward alpha(tail stall). Moreover, increasing engine thrust setting also pushed the tailplane to critical performance limits, which resulted in premature tailplane stall.

  7. Blunt Body Aerodynamics for Hypersonic Low Density Flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Glass, Christopher E.; Greene, Francis A.

    2006-01-01

    Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations.

  8. Atmospheric tests of trailing-edge aerodynamic devices

    SciTech Connect

    Miller, L S; Huang, S; Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  9. An experimental study on the aerodynamic feasibility of a roll-controllable sounding rocket

    NASA Astrophysics Data System (ADS)

    Shirouzu, M.; Soga, K.; Shibato, Y.

    1986-02-01

    The aerodynamic feasibility of a roll-controllable two-stage sounding rocket is investigated experimentally. The rocket has ailerons on front-fins to generate the rolling moment for the control and free-rolling tail-fins to prevent the induced rolling moment on the tail-fins from transmitting to the fuselage. Wind tunnel tests were made at free-stream Mach numbers ranging from 0.5 to 2.5 and alpha = 0 deg, 4 deg, and 8 deg varying the deflection angle of the ailerons for the models with fixed tail-fins, with free-rolling tail-fins and without tail-fins. Aerodynamic characteristics were measured by using a six-component balance. The effectiveness of the free-rolling tail-fins for the elimination of the influence of the induced rolling moment is confirmed. It is concluded that the characteristics of the rolling moment generated by the ailerons are desirable for the control, and the rotation of the tail-fins would not raise mechanical and other aerodynamic problems.

  10. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  11. Sensitivity analysis in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1984-01-01

    Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.

  12. Semianalytic modeling of aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Adams, M. S.

    1985-01-01

    Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation.

  13. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  14. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  15. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  16. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  17. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  18. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  19. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  20. Nostril Aerodynamics of Scenting Animals

    NASA Astrophysics Data System (ADS)

    Settles, G. S.

    1997-11-01

    Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)

  1. Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)

    2001-01-01

    Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.

  2. Yaw and spin effects on high intensity sound generation and on drag of training projectiles with ring cavities

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Kwack, E. Y.; Back, L. H.

    1986-01-01

    Projectiles containing axisymmetric ring cavities constitute aeroacoustic sources. These produce high intensity tones which are used for coding in the SAWE (Simulation of Area Weapons Effects) system. Experimental data obtained in a free jet facility are presented describing the effects of yaw, spin and geometric projectile parameters on sound pressure and drag. In general, the sound pressure decreases with increasing yaw angle whereas the drag increases. Spin tends to increase sound pressure levels because of a reduction in asymmetry of flow. Drag increases at zero yaw approximately as the 1.5 power of sound wavelength. A significant part of the drag increase appears to be due to energy loss by sound radiation.

  3. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.

    PubMed

    Han, Jong-Seob; Kim, Joong-Kwan; Chang, Jo Won; Han, Jae-Hung

    2015-08-01

    A quasi-steady aerodynamic model in consideration of the center of pressure (C.P.) was developed for insect flight. A dynamically scaled-up robotic hawkmoth wing was used to obtain the translational lift, drag, moment and rotational force coefficients. The translational force coefficients were curve-fitted with respect to the angles of attack such that two coefficients in the Polhamus leading-edge suction analogy model were obtained. The rotational force coefficient was also compared to that derived by the standard Kutta-Joukowski theory. In order to build the accurate pitching moment model, the locations of the C.Ps. and its movements depending on the pitching velocity were investigated in detail. We found that the aerodynamic moment model became suitable when the rotational force component was assumed to act on the half-chord. This implies that the approximation borrowed from the conventional airfoil concept, i.e., the 'C.P. at the quarter-chord' may lead to an incorrect moment prediction. In the validation process, the model showed excellent time-course force and moment estimations in comparison with the robotic wing measurement results. A fully nonlinear multibody flight dynamic simulation was conducted to check the effect of the traveling C.P. on the overall flight dynamics. This clearly showed the importance of an accurate aerodynamic moment model. PMID:26226478

  4. Ground-based phase wind-up and its application in yaw angle determination

    NASA Astrophysics Data System (ADS)

    Cai, M.; Chen, W.; Dong, D.; Yu, C.; Zheng, Z.; Zhou, F.; Wang, M.; Yue, W.

    2016-05-01

    Ground-based phase wind-up effect (GPWU) is caused by the rotation of receiving antenna. It had been studied and applied in rapidly rotation platforms, such as sounding rocket, guided missile and deep space exploration. In Global Navigation Satellite System high accuracy positioning applications, however, most studies treated it as an error source and focused on eliminating this effect in Precision Point Positioning and Real Time Kinematic (RTK) positioning. The GPWU effect is also sensitive to the rotational status of the antenna, in particular the yaw angle variations. In this paper we explore the feasibility of yaw angle determination of relatively slow rotation platforms based on the GPWU effect. We use the geometry-free carrier phase observations from a RTK base and a moving station receivers to estimate the cumulative yaw angle of the moving platform. Several experiments, including rotating platform tests, vehicle and shipborne tests were carried out. The cumulative errors of rotating platform tests are under 0.38°, indicating good long-term accuracy of the GPWU determined yaw angle. But the RMS are in a range of 11.98° and 17.39°, indicating the errors, such as multipath effect, are not negligible and should be further investigated. The RMS of vehicle and shipborne tests using a base station of 9-11 km are 24.77° and 23.66°. In order to evaluate the influence of the differential ionospheric delay, another vehicle test was carried out using a base station located less than 1 km to the vehicle. The RMS reduces to 15.11°, which gains 39.00 % improvement than before, and demonstrates that the differential ionospheric delay even from a few kilometers long baseline still cannot be neglected. These tests validate the feasibility of GPWU for real-time yaw angle determination. Since this method is able to determine the yaw angle with a minimum one satellite, such a unique feature provides potential applications for attitude determination in the environment with

  5. Ground-based phase wind-up and its application in yaw angle determination

    NASA Astrophysics Data System (ADS)

    Cai, M.; Chen, W.; Dong, D.; Yu, C.; Zheng, Z.; Zhou, F.; Wang, M.; Yue, W.

    2016-08-01

    Ground-based phase wind-up effect (GPWU) is caused by the rotation of receiving antenna. It had been studied and applied in rapidly rotation platforms, such as sounding rocket, guided missile and deep space exploration. In Global Navigation Satellite System high accuracy positioning applications, however, most studies treated it as an error source and focused on eliminating this effect in Precision Point Positioning and Real Time Kinematic (RTK) positioning. The GPWU effect is also sensitive to the rotational status of the antenna, in particular the yaw angle variations. In this paper we explore the feasibility of yaw angle determination of relatively slow rotation platforms based on the GPWU effect. We use the geometry-free carrier phase observations from a RTK base and a moving station receivers to estimate the cumulative yaw angle of the moving platform. Several experiments, including rotating platform tests, vehicle and shipborne tests were carried out. The cumulative errors of rotating platform tests are under 0.38°, indicating good long-term accuracy of the GPWU determined yaw angle. But the RMS are in a range of 11.98° and 17.39°, indicating the errors, such as multipath effect, are not negligible and should be further investigated. The RMS of vehicle and shipborne tests using a base station of 9-11 km are 24.77° and 23.66°. In order to evaluate the influence of the differential ionospheric delay, another vehicle test was carried out using a base station located less than 1 km to the vehicle. The RMS reduces to 15.11°, which gains 39.00 % improvement than before, and demonstrates that the differential ionospheric delay even from a few kilometers long baseline still cannot be neglected. These tests validate the feasibility of GPWU for real-time yaw angle determination. Since this method is able to determine the yaw angle with a minimum one satellite, such a unique feature provides potential applications for attitude determination in the environment with

  6. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  7. Static measurements of slender delta wing rolling moment hysteresis

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  8. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  9. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  10. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  11. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  12. Exploratory investigation of deflectable forebody strakes for high angle of attack yaw control

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Murri, D. G.

    1986-01-01

    A deflectable strake concept was investigated on a conical forebody to evaluate its yaw control potential at high angles of attack. In exploratory low-speed tunnel tests using a generic delta wing fighter configuration, antisymmetrically deflected strakes provided useful levels of yaw power at angles of attack when the conventional rudder became totally degraded. Symmetrical strakes prevented side force development at high angles of attack, and provided pitch control through symmetrical deflection. The strake performance was sensitive to its circumferential position on the forebody due to varying interaction of strake vortices with the wing and vertical tail. The low Reynolds number results of this study provided a favorable initial validation of the concept, subject to verification in regard to scale effects.

  13. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  14. Control of helicopter rotorblade aerodynamics

    NASA Technical Reports Server (NTRS)

    Fabunmi, James A.

    1991-01-01

    The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.

  15. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  16. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  17. Forced and Moment Measurements with Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    1999-01-01

    The potential of pressure-sensitive paint (PSP) to provide aerodynamic loads measurements has been a driving force behind the development of this measurement technique. To demonstrate the suitability of PSP for this purpose, it is necessary to show that PSP-derived pressures can be accurately integrated over the model surface. This cannot be done simply by demonstrating the accuracy of PSP as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where they will have a strong effect on moment measurements, but where pressure taps are rarely installed. A more suitable technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper presents results from three experiments in which integrated PSP data is compared with balance and/or CFD data. This allows the usefulness of PSP for force and moment measurements, and by implication for loads measurements, to be assessed.

  18. Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life

    SciTech Connect

    Harris, T.; Rumbarger, J. H.; Butterfield, C. P.

    2009-12-01

    This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.

  19. Direct measurements of controlled aerodynamic forces on a wire-suspended axisymmetric body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2011-06-01

    A novel in-line miniature force transducer is developed for direct measurements of the net aerodynamic forces and moments on a bluff body. The force transducers are integrated into each of the eight mounting wires that are utilized for suspension of an axisymmetric model in a wind tunnel having minimal wake interference. The aerodynamic forces and moments on the model are altered by induced active local attachment of the separated base flow. Fluidic control is effected by an array of four integrated aft-facing synthetic jet actuators that emanate from narrow, azimuthally segmented slots, equally distributed around the perimeter of the circular tail end. The jet orifices are embedded within a small backward-facing step that extends into a Coanda surface. The altered flow dynamics associated with both quasi-steady and transitory asymmetric activation of the flow control effect is characterized by direct force and PIV measurements.

  20. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  1. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  2. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  3. Characterization of MODIS SD screen vignetting function using observations from spacecraft yaw maneuvers

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2009-08-01

    The MODIS reflective solar bands (RSB) include both the low-gain and high-gain spectral bands depending on their specific applications. MODIS RSBs are calibrated on-orbit by an on-board solar diffuser. In order to avoid detector response saturation when calibrating the high-gain bands, an optional attenuation screen, made of a metal plate with pinhole arrays, is placed in front of the SD panel. Since no pre-launch system-level characterization was made for the SD screen (SDS) vignetting function (VF), a series of spacecraft (Terra and Aqua) yaw maneuvers were carried out to perform on-orbit characterization of the VF. Assuming that the low-gain bands and the high-gain bands have the same VF, the current VF was derived from yaw observations using the MODIS low-gain bands through taking the ratio of their SD responses with and without the SDS in place. In this study, we attempt to characterize the SDS VF directly using detector responses of individual high-gain bands with the SDS in place only. The corresponding SD responses without the SDS, not available from measurements due to saturation, are calculated using detector gains, the SD bi-directional reflectance factor (BRF), and the view geometry that matches the yaw observations with the SDS in place. Results and discussions are focused on the band dependent and detector dependent features of the SDS VF, and their potential impact on the RSB calibration.

  4. Estimating the yaw-attitude of BDS IGSO and MEO satellites

    NASA Astrophysics Data System (ADS)

    Dai, Xiaolei; Ge, Maorong; Lou, Yidong; Shi, Chuang; Wickert, Jens; Schuh, Harald

    2015-10-01

    Precise knowledge and consistent modeling of the yaw-attitude of GNSS satellites are essential for high-precision data processing and applications. As the exact attitude control mechanism for the satellites of the BeiDou Satellite Navigation System (BDS) is not yet released, the reverse kinematic precise point positioning (PPP) method was applied in our study. However, we confirm that the recent precise orbit determination (POD) processing for GPS satellites could not provide suitable products for estimating BDS attitude using the reverse PPP because of the special attitude control switching between the nominal and the orbit-normal mode. In our study, we propose a modified processing schema for studying the attitude behavior of the BDS satellites. In this approach, the observations of the satellites during and after attitude switch are excluded in the POD processing, so that the estimates, which are needed in the reverse PPP, are not contaminated by the inaccurate initial attitude mode. The modified process is validated by experimental data sets and the attitude yaw-angles of the BDS IGSO and MEO satellites are estimated with an accuracy of better than . Furthermore, the results confirm that the switch is executed when the Sun elevation is about and the actual orientation is very close to its target one. Based on the estimated yaw-angles, a preliminary attitude switch model was established and reintroduced into the POD, yielding to a substantial improvement in the orbit overlap RMS.

  5. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  6. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  7. Dynamic control of aerodynamic forces on a moving platform using active flow control

    NASA Astrophysics Data System (ADS)

    Brzozowski, Daniel P.

    The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2--3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.

  8. CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.

    2001-01-01

    Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.

  9. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  10. Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Murri, D. G.

    1981-01-01

    Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg.

  11. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:31.

  12. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:43.

  13. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:29.

  14. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  15. Aerodynamic Loads on Tails at High Angles of Attack and Sideslip

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Spahr, J. R.

    1957-01-01

    Results are presented for the loads and moments acting on the individual tail surfaces of a body-tail combination over a wide range of angles of attack and sideslip. The effects of forebody length and panel-panel interference on the characteristics are included. It is shown that large nonlinear variations in these loads and moments, which occur at some combinations of angle of attack and sideslip, cannot be predicted by low-angle theory. A relatively simple, but general, theoretical method for calculating these load and moment characteristics is described, and the results from this method are found to be in good agreement with experiment provided the initial positions of the forebody vortices are known. It is shown that a simple application of slender-body theory can be used to predict the side loads due to sideslip that are contributed by a vertical tail on a wide variety of wing-body-tail combinations at low angles of attack. For several configurations, changes are indicated which reduced the vertical-tail loads per unit yawing moment of each complete configuration at large angles of attack. Some results are presented on the effect of high angle of attack on the induced-flow field and tail loads due to a wing at supersonic speed.

  16. Wingbeat kinematics and motor control of yaw turns in Anna's hummingbirds (Calypte anna).

    PubMed

    Altshuler, Douglas L; Quicazán-Rubio, Elsa M; Segre, Paolo S; Middleton, Kevin M

    2012-12-01

    The biomechanical and neuromuscular mechanisms used by different animals to generate turns in flight are highly variable. Body size and body plan exert some influence, e.g. birds typically roll their body to orient forces generated by the wings whereas insects are capable of turning via left-right wingbeat asymmetries. Turns are also relatively brief and have low repeatability, with almost every wingbeat serving a different function throughout the change in heading. Here we present an analysis of Anna's hummingbirds (Calypte anna) as they fed continuously from an artificial feeder revolving around the outside of the animal. This setup allowed for examination of sustained changes in yaw without requiring any corresponding changes in pitch, roll or body position. Hummingbirds sustained yaw turns by expanding the wing stroke amplitude of the outer wing during the downstroke and by altering the deviation of the wingtip path during both downstroke and upstroke. The latter led to a shift in the inner-outer stroke plane angle during the upstroke and shifts in the elevation of the stroke plane and in the deviation of the wingtip path during both strokes. These features are generally more similar to how insects, as opposed to birds, turn. However, time series analysis also revealed considerable stroke-to-stroke variation. Changes in the stroke amplitude and the wingtip velocity were highly cross-correlated, as were changes in the stroke deviation and the elevation of the stroke plane. As was the case for wingbeat kinematics, electromyogram recordings from pectoral and wing muscles were highly variable, but no correlations were found between these two features of motor control. The high variability of both kinematic and muscle activation features indicates a high level of wingbeat-to-wingbeat adjustments during sustained yaw. The activation timing of the muscles was more repeatable than the activation intensity, which suggests that the former may be constrained by harmonic

  17. Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Van Norman, John W.; Dyakonov, Artem A.; Karlgaard, Christopher D.; Way, David W.; Kutty, Prasad

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes.

  18. Unstructured CFD Aerodynamic Analysis of a Generic UCAV Configuration

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Tormalm, Magnus; Schmidt, Stefan

    2011-01-01

    Three independent studies from the United States (NASA), Sweden (FOI), and Australia (DSTO) are analyzed to assess the state of current unstructured-grid computational fluid dynamic tools and practices for predicting the complex static and dynamic aerodynamic and stability characteristics of a generic 53-degree swept, round-leading-edge uninhabited combat air vehicle configuration, called SACCON. NASA exercised the USM3D tetrahedral cell-centered flow solver, while FOI and DSTO applied the FOI/EDGE general-cell vertex-based solver. The authors primarily employ the Reynolds Averaged Navier-Stokes (RANS) assumption, with a limited assessment of the EDGE Detached Eddy Simulation (DES) extension, to explore sensitivities to grids and turbulence models. Correlations with experimental data are provided for force and moments, surface pressure, and off-body flow measurements. The vortical flow field over SACCON proved extremely difficult to model adequately. As a general rule, the prospect of obtaining reasonable correlations of SACCON pitching moment characteristics with the RANS formulation is not promising, even for static cases. Yet, dynamic pitch oscillation results seem to produce a promising characterization of shapes for the lift and pitching moment hysteresis curves. Future studies of this configuration should include more investigation with higher-fidelity turbulence models, such as DES.

  19. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  20. The role of unsteady aerodynamics in aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    1988-01-01

    The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.