Sample records for aerodynamically generated sound

  1. Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Goldstein, M., E.

    1974-01-01

    An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

  2. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  3. Modelling Aerodynamically Generated Sound: Recent Advances in Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    2000-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound for rotors over the past decade. The Ffowcs Williams-Hawkings (FW-H ) equation has been the foundation for much of the development. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H has also been utilized on permeable surfaces surrounding all physical noise sources. Comparison of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems.

  4. Predictions of wing and pylon forces caused by propeller installation

    NASA Technical Reports Server (NTRS)

    Martinez, Rudolph

    1987-01-01

    Replacement of current turbojets by high-efficiency unducted propfans could have the unfortunate side effect of increasing cabin noise, essentially because unsteady-aerodynamic mechanisms are likely to be introduced whereby some of the energy saved may be lost again, to the production of propeller noise and to wing/pylon vibrations coupling to the cabin as a sounding board. The present study estimates theoretically associated harmonic aerodynamic forces for two candidate configurations: a pusher propeller which chops through the mean wake of the pylon supporting it, and in the process generates a blade-rate force driving the structure, and a tractor wing-mounted propeller, whose trailing rotating wake induces an unsteady downwash field generating unsteady wing airloads. Reported predictions of such propfan aerodynamic sources of structure-borne sound, or vibration, could be the basis for devising means for their mechanical isolation, and thus for the effective interruption of the structural noise path into the cabin. Both mechanisms are analyzed taking advantage of the high subsonic Mach number and high reduced frequency of the interaction between the impinging flow and the affected aerodynamic element.

  5. Sound Generation in the Presence of Moving Surfaces with Application to Internally Generated Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Envia, E.

    2002-01-01

    In many cases of technological interest solid boundaries play a direct role in the aerodynamic sound generation process and their presence often results in a large increase in the acoustic radiation. A generalized treatment of the emission of sound from moving boundaries is presented. The approach is similar to that of Ffowcs Williams and Hawkings (1969) but the effect of the surrounding mean flow is explicitly accounted for. The results are used to develop a rational framework for the prediction of internally generated aero-engine noise. The final formulas suggest some new noise sources that may be of practical significance.

  6. Computing aerodynamic sound using advanced statistical turbulence theories

    NASA Technical Reports Server (NTRS)

    Hecht, A. M.; Teske, M. E.; Bilanin, A. J.

    1981-01-01

    It is noted that the calculation of turbulence-generated aerodynamic sound requires knowledge of the spatial and temporal variation of Q sub ij (xi sub k, tau), the two-point, two-time turbulent velocity correlations. A technique is presented to obtain an approximate form of these correlations based on closure of the Reynolds stress equations by modeling of higher order terms. The governing equations for Q sub ij are first developed for a general flow. The case of homogeneous, stationary turbulence in a unidirectional constant shear mean flow is then assumed. The required closure form for Q sub ij is selected which is capable of qualitatively reproducing experimentally observed behavior. This form contains separation time dependent scale factors as parameters and depends explicitly on spatial separation. The approximate forms of Q sub ij are used in the differential equations and integral moments are taken over the spatial domain. The velocity correlations are used in the Lighthill theory of aerodynamic sound by assuming normal joint probability.

  7. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    DTIC Science & Technology

    2010-05-01

    modeling and grid constraints. NOTATION α Shaft tilt (corrected) or tip-path-plane angle BPF Blade passing frequency CT/σ Thrust coefficient to rotor...cyclic pitch angle, deg. LFSPL Low frequency sound metric (1st-6th BPF ), dB MFSPL Mid frequency sound metric (> 6th BPF ), dB OASPL Overall sound metric...Tunnel of the National Full- Scale Aerodynamic Complex (NFAC) at NASA Ames Research Center in 2008 (Fig. 2a), as a guide for prediction validation. The

  8. Sources of sound in fluid flows

    NASA Technical Reports Server (NTRS)

    Williams, J. E. F.

    1974-01-01

    Some features of a flow that produce acoustic radiation, particularly when the flow is turbulent and interacting with solid surfaces such as turbine or compressor blades are discussed. Early theoretical ideas on the subject are reviewed and are shown to be inadequate at high Mach number. Some recent theoretical developments that form the basis of a description of sound generation by supersonic flows interacting with surfaces are described. At high frequencies the problem is treated as one of describing the surface-induced diffraction field of adjacent aerodynamic quadrupole sources. This approach has given rise to distinctly new features of the problem that seem to have bearing on the radiating properties of relatively large aerodynamic surfaces.

  9. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  10. A study of sound generation in subsonic rotors, volume 1

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    A model for the prediction of wake related sound generation by a single airfoil is presented. It is assumed that the net force fluctuation on an airfoil may be expressed in terms of the net momentum fluctuation in the near wake of the airfoil. The forcing function for sound generation depends on the spectra of the two point velocity correlations in the turbulent region near the airfoil trailing edge. The spectra of the two point velocity correlations were measured for the longitudinal and transverse components of turbulence in the wake of a 91.4 cm chord airfoil. A scaling procedure was developed using the turbulent boundary layer thickness. The model was then used to predict the radiated sound from a 5.1 cm chord airfoil. Agreement between the predicted and measured sound radiation spectra was good. The single airfoil results were extended to a rotor geometry, and various aerodynamic parameters were studied.

  11. Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1977-01-01

    Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included.

  12. Aerodynamics of Sounding-Rocket Geometries

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1982-01-01

    Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

  13. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  14. Aerodynamic sound generation of flapping wing.

    PubMed

    Bae, Youngmin; Moon, Young J

    2008-07-01

    The unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for a two-dimensional model of Bombus terrestris bumblebee at hovering and forward flight conditions. The Reynolds number Re, based on the maximum translational velocity of the wing and the chord length, is 8800 and the Mach number M is 0.0485. The computational results show that the flapping wing sound is generated by two different sound generation mechanisms. A primary dipole tone is generated at wing beat frequency by the transverse motion of the wing, while other higher frequency dipole tones are produced via vortex edge scattering during a tangential motion. It is also found that the primary tone is directional because of the torsional angle in wing motion. These features are only distinct for hovering, while in forward flight condition, the wing-vortex interaction becomes more prominent due to the free stream effect. Thereby, the sound pressure level spectrum is more broadband at higher frequencies and the frequency compositions become similar in all directions.

  15. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Jan-Niklas, E-mail: hau@fdy.tu-darmstadt.de; Oberlack, Martin; GSC CE, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt

    2015-12-15

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys.more » Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber plane, which results in highly directional linear sound radiation, whereas the nonlinearly generated waves are almost omni-directional. As part of this analysis, we compare the effectiveness of the linear and nonlinear mechanisms of wave generation within the range of validity of the rapid distortion theory and show the dominance of the linear aerodynamic sound generation. Finally, topological differences between the linear source term of the acoustic analogy equation and of the anisotropic non-normality induced linear mechanism of wave generation are found.« less

  16. A numerical study of the effects of design parameters on the acoustics noise of a high efficiency propeller

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Huang, Jun; Yi, Mingxu; Zhang, Chaopu; Xiao, Qian

    2017-11-01

    A numerical study of a high efficiency propeller in the aerodynamic noise generation is carried out. Based on RANS, three-dimensional numerical simulation is performed to obtain the aerodynamic performance of the propeller. The result of the aerodynamic analysis is given as input of the acoustic calculation. The sound is calculated using the Farassat 1A, which is derived from Ffowcs Williams-Hawkings equation, and compared with the data of wind tunnel. The propeller is modified for noise reduction by changing its geometrical parameters such as diameter, chord width and pitch angle. The trend of variation between aerodynamic analysis data and acoustic calculation result are compared and discussed for different modification tasks. Meaningful conclusions are drawn on the noise reduction of propeller.

  17. Numerical flow simulation of a reusable sounding rocket during nose-up rotation

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Kitamura, Keiichi; Fujimoto, Keiichiro; Shima, Eiji

    2010-11-01

    Flow around a reusable sounding rocket during nose-up rotation is simulated using unstructured compressible CFD code. While a reusable sounding rocket is expected to reduce the cost of the flight management, it is demanded that this rocket has good performance for wide range of flight conditions from vertical take-off to vertical landing. A rotating body, which corresponds to a vehicle's motion just before vertical landing, is one of flight environments that largely affect its aerodynamic design. Unlike landing of the space shuttle, this vehicle must rotate from gliding position to vertical landing position in nose-up direction. During this rotation, the vehicle generates massive separations in the wake. As a result, induced flow becomes unsteady and could have influence on aerodynamic characteristics of the vehicle. In this study, we focus on the analysis of such dynamic characteristics of the rotating vehicle. An employed numerical code is based on a cell-centered finite volume compressible flow solver applied to a moving grid system. The moving grid is introduced for the analysis of rotating motion. Furthermore, in order to estimate an unsteady turbulence, we employed DDES method as a turbulence model. In this simulation, flight velocity is subsonic. Through this simulation, we discuss the effect on aerodynamic characteristics of a vehicle's shape and motion.

  18. Diagnostic techniques for measurement of aerodynamic noise in free field and reverberant environment of wind tunnels

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.; Mawardi, O. K.

    1973-01-01

    Techniques for studying aerodynamic noise generating mechanisms without disturbing the flow in a free field, and in the reverberation environment of the ARC wind tunnel were investigated along with the design and testing of an acoustic antenna with an electronic steering control. The acoustic characteristics of turbojet as a noise source, detection of direct sound from a source in a reverberant background, optical diagnostic methods, and the design characteristics of a high directivity acoustic antenna. Recommendations for further studies are included.

  19. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  20. The silent base flow and the sound sources in a laminar jet.

    PubMed

    Sinayoko, Samuel; Agarwal, Anurag

    2012-03-01

    An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism. © 2012 Acoustical Society of America

  1. Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions

    NASA Technical Reports Server (NTRS)

    Pilon, Anthony R.; Lyrintzis, Anastasios S.

    1997-01-01

    The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that they may be used in any aeroacoustics problem.

  2. Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach

    NASA Astrophysics Data System (ADS)

    Lodermeyer, Alexander; Tautz, Matthias; Becker, Stefan; Döllinger, Michael; Birk, Veronika; Kniesburges, Stefan

    2018-01-01

    The detailed analysis of sound generation in human phonation is severely limited as the accessibility to the laryngeal flow region is highly restricted. Consequently, the physical basis of the underlying fluid-structure-acoustic interaction that describes the primary mechanism of sound production is not yet fully understood. Therefore, we propose the implementation of a hybrid acoustic PIV procedure to evaluate aeroacoustic sound generation during voice production within a synthetic larynx model. Focusing on the flow field downstream of synthetic, aerodynamically driven vocal folds, we calculated acoustic source terms based on the velocity fields obtained by time-resolved high-speed PIV applied to the mid-coronal plane. The radiation of these sources into the acoustic far field was numerically simulated and the resulting acoustic pressure was finally compared with experimental microphone measurements. We identified the tonal sound to be generated downstream in a small region close to the vocal folds. The simulation of the sound propagation underestimated the tonal components, whereas the broadband sound was well reproduced. Our results demonstrate the feasibility to locate aeroacoustic sound sources inside a synthetic larynx using a hybrid acoustic PIV approach. Although the technique employs a 2D-limited flow field, it accurately reproduces the basic characteristics of the aeroacoustic field in our larynx model. In future studies, not only the aeroacoustic mechanisms of normal phonation will be assessable, but also the sound generation of voice disorders can be investigated more profoundly.

  3. ADEPT SR-1 Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.

    2017-01-01

    The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.

  4. Some lessons from NACA/NASA aerodynamic studies following World War II

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.

  5. New insights into insect's silent flight. Part II: sound source and noise control

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Geng, Biao; Zheng, Xudong; Liu, Geng; Dong, Haibo

    2016-11-01

    The flapping flight of aerial animals has excellent aerodynamic performance but meanwhile generates low noise. In this study, the unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for three-dimensional (3D) models of Tibicen linnei cicada at free forward flight conditions. Single cicada wing is modelled as a membrane with prescribed motion reconstructed by Wan et al. (2015). The flow field and acoustic field around the flapping wing are solved with immersed-boundary-method based incompressible flow solver and linearized-perturbed-compressible-equations based acoustic solver. The 3D simulation allows examination of both directivity and frequency composition of the produced sound in a full space. The mechanism of sound generation of flapping wing is analyzed through correlations between acoustic signals and flow features. Along with a flexible wing model, a rigid wing model is also simulated. The results from these two cases will be compared to investigate the effects of wing flexibility on sound generation. This study is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  6. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2011-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  7. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  8. A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1995-01-01

    The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.

  9. Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2013-01-01

    Generation of sound due to scrubbing of a jet flow past a nearby solid surface is investigated within the framework of the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far-field sound as governed by the variable density Pridmore- Brown equation. The propagation Green's function should be solved numerically starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. The equivalent sources of aerodynamic sound are associated with non-linear momentum flux and enthalpy flux terms that appear in the linearized Navier-Stokes equations. These multi-pole sources should be modeled and evaluated with input from a Reynolds-Averaged Navier-Stokes (RANS) solver with an appropriate turbulence model.

  10. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    NASA Astrophysics Data System (ADS)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  11. Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing.

    PubMed

    Riede, Tobias; Goller, Franz

    2010-10-01

    Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems. Copyright © 2009 Elsevier Inc. All rights reserved.

  12. Modeling Aerodynamically Generated Sound of Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    2002-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.

  13. Simulation on a car interior aerodynamic noise control based on statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Dengfeng; Ma, Zhengdong

    2012-09-01

    How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.

  14. The generation of sound by vorticity waves in swirling duct flows

    NASA Technical Reports Server (NTRS)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  15. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  16. An Improved Theoretical Aerodynamic Derivatives Computer Program for Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Barrowman, J. S.; Fan, D. N.; Obosu, C. B.; Vira, N. R.; Yang, R. J.

    1979-01-01

    The paper outlines a Theoretical Aerodynamic Derivatives (TAD) computer program for computing the aerodynamics of sounding rockets. TAD outputs include normal force, pitching moment and rolling moment coefficient derivatives as well as center-of-pressure locations as a function of the flight Mach number. TAD is applicable to slender finned axisymmetric vehicles at small angles of attack in subsonic and supersonic flows. TAD improvement efforts include extending Mach number regions of applicability, improving accuracy, and replacement of some numerical integration algorithms with closed-form integrations. Key equations used in TAD are summarized and typical TAD outputs are illustrated for a second-stage Tomahawk configuration.

  17. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2011-01-01

    An analysis is made of the sound generated by the time-dependent throttling of a nominally steady stream of air through a small orifice into a flow-through resonant cavity. This is exemplified by the production of voiced speech, where air from the lungs enters the vocal tract through the glottis at a time variable volume flow rate Q(t) controlled by oscillations of the glottis cross-section. Voicing theory has hitherto determined Q from a heuristic, reduced complexity ‘Fant’ differential equation (G. Fant, Acoustic Theory of Speech Production, 1960). A new self-consistent, integro-differential form of this equation is derived in this paper using the theory of aerodynamic sound, with full account taken of the back-reaction of the resonant tract on the glottal flux Q. The theory involves an aeroacoustic Green’s function (G) for flow-surface interactions in a time-dependent glottis, so making the problem non-self-adjoint. In complex problems of this type it is not usually possible to obtain G in an explicit analytic form. The principal objective of the paper is to show how the Fant equation can still be derived in such cases from a consideration of the equation of aerodynamic sound and from the adjoint of the equation governing G in the neighbourhood of the ‘throttle’. The theory is illustrated by application to the canonical problem of throttled flow into a Helmholtz resonator. PMID:21666824

  18. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    PubMed

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°  <  AoA  <  20°), and hence play a crucial role in aerodynamic force and sound production. We find that there exists a tradeoff between force production and sound suppression: serrated leading-edges reduce aerodynamic performance at lower AoAs  <  15° compared to clean leading-edges but are capable of achieving both noise reduction and aerodynamic performance at higher AoAs  >  15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  19. Spectral analysis of /s/ sound with changing angulation of the maxillary central incisors.

    PubMed

    Runte, Christoph; Tawana, Djafar; Dirksen, Dieter; Runte, Bettina; Lamprecht-Dinnesen, Antoinette; Bollmann, Friedhelm; Seifert, Eberhard; Danesh, Gholamreza

    2002-01-01

    The aim of the study was to measure the influence of the maxillary central incisors free from adaptation phenomena using spectral analysis. The maxillary dentures of 18 subjects were duplicated. The central incisors were fixed in a pivoting appliance so that their position could be changed from labial to palatal direction. A mechanical push/pull cable enabled the incisor section to be handled extraorally. Connected to the control was a sound generator producing a sinus wave whose frequency was related to the central incisor angulation. This acoustic signal was recorded on one channel of a digital tape recorder. After calibration of the unit, the denture duplicate was inserted into the subject's mouth, and the signal of the /s/ sounds subsequently produced by the subject was recorded on the second channel during alteration of the inclination angle simultaneously with the generator signal. Spectral analysis was performed using a Kay Speech-Lab 4300B. Labial displacement in particular produced significant changes in spectral characteristics, with the lower boundary frequency of the /s/ sound being raised and the upper boundary frequency being reduced. Maxillary incisor position influences /s/ sound production. Displacement of the maxillary incisors must be considered a cause of immediate changes in /s/ sound distortion. Therefore, denture teeth should be placed in the original tooth position as accurately as possible. Our results also indicate that neuromuscular reactions are more important for initial speech sound distortions than are aerodynamic changes in the anterior speech sound-producing areas.

  20. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    PubMed

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  1. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  2. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2013-12-01

    An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

  3. Prediction of aerodynamic noise in a ring fan based on wake characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro

    2011-06-01

    A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.

  4. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  5. Noise measurements for single and multiple operation of 50 kw wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.

    1982-01-01

    The noise characteristics of the U.S. Windpower Inc., 50 kw wind turbine generator were measured at various distances from 30 m to 1100 m and for a range of output power. The generated noise is affected by the aerodynamic wakes of the tower legs at frequencies below about 120 Hz and the blade trailing edge thickness at frequencies of about 2 kHz. Rope strakes and airfoil fairings on the legs did not result in substantial noise reductions. Sharpening the blade trailing edges near the tip was effective in reducing broad band noise near 2 kHz. For multiple machines the sound fields are superposed. A three-fold increase in number of machines (from 1 to 3) results in a predicted increase in he sound pressure level of about 5 dB. The detection threshold for 14 machines operating in a 13 - 20 mph wind is observed to be at approximately 1160 m in the downwind direction.

  6. Supersonic jet noise generated by large scale instabilities

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.

    1982-01-01

    The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.

  7. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  8. Inlet noise on 0.5-meter-diameter NASA QF-1 fan as measured in an unmodified compressor aerodynamic test facility and in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Soltis, R. F.

    1975-01-01

    Narrowband analysis revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. From one-third octave bandwidth sound power analyses the BPF noise (harmonics combined), and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 db or less over the range of speeds and flows tested. Detailed noise and aerodynamic performance is also presented.

  9. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  10. Category 3: Sound Generation by Interacting with a Gust

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2004-01-01

    The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.

  11. Sound source localization method in an environment with flow based on Amiet-IMACS

    NASA Astrophysics Data System (ADS)

    Wei, Long; Li, Min; Qin, Sheng; Fu, Qiang; Yang, Debin

    2017-05-01

    A sound source localization method is proposed to localize and analyze the sound source in an environment with airflow. It combines the improved mapping of acoustic correlated sources (IMACS) method and Amiet's method, and is called Amiet-IMACS. It can localize uncorrelated and correlated sound sources with airflow. To implement this approach, Amiet's method is used to correct the sound propagation path in 3D, which improves the accuracy of the array manifold matrix and decreases the position error of the localized source. Then, the mapping of acoustic correlated sources (MACS) method, which is as a high-resolution sound source localization algorithm, is improved by self-adjusting the constraint parameter at each irritation process to increase convergence speed. A sound source localization experiment using a pair of loud speakers in an anechoic wind tunnel under different flow speeds is conducted. The experiment exhibits the advantage of Amiet-IMACS in localizing a more accurate sound source position compared with implementing IMACS alone in an environment with flow. Moreover, the aerodynamic noise produced by a NASA EPPLER 862 STRUT airfoil model in airflow with a velocity of 80 m/s is localized using the proposed method, which further proves its effectiveness in a flow environment. Finally, the relationship between the source position of this airfoil model and its frequency, along with its generation mechanism, is determined and interpreted.

  12. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    NASA Astrophysics Data System (ADS)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  13. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: the example of the accordion reed.

    PubMed

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps.

  14. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    NASA Astrophysics Data System (ADS)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  15. Radiation mechanism for the aerodynamic sound of gears - An explanation for the radiation process by air flow observation

    NASA Astrophysics Data System (ADS)

    Houjoh, Haruo

    1992-12-01

    One specific feature of the aerodynamic sound produced at the face end region is that the radiation becomes equally weak by filling root spaces as by shortening the center distance. However, one can easily expect that such actions make the air flow faster, and consequently make the sound louder. This paper attempts to reveal the reason for such a feature. First, air flow induced by the pumping action of the gear pair was analyzed regarding a series of root spaces as volume varying cavities which have channels to adjacent cavities as well as the exit/inlet at the face ends. The numerical analysis was verified by the hot wire anemometer measurement. Next, from the obtained flow response, the sound source was estimated to be a combination of symmetrically distributed simple sources. Taking the effect of either the center distance or root filling into consideration, it is shown that the simplified model can explain such a feature rationally.

  16. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.

  17. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  18. Effects of friction and heat conduction on sound propagation in ducts. [analyzing complex aerodynamic noise problems

    NASA Technical Reports Server (NTRS)

    Huerre, P.; Karamcheti, K.

    1976-01-01

    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.

  19. Optimum acoustic design of free-running low speed propellers

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    A theoretical analysis is conducted concerning the effect of blade loading on the noise output of a free-running propeller in axial motion. The minimization of the mean square sound pressure at a point in space is considered, taking into account constraints on propeller thrust and torque. Attention is given to aerodynamic equations, acoustic equations, the expansion of the aerodynamic variables, and the nonlinear programming formulation.

  20. Specialized primary feathers produce tonal sounds during flight in rock pigeons (Columba livia).

    PubMed

    Niese, Robert L; Tobalske, Bret W

    2016-07-15

    For centuries, naturalists have suggested that the tonal elements of pigeon wing sounds may be sonations (non-vocal acoustic signals) of alarm. However, spurious tonal sounds may be produced passively as a result of aeroelastic flutter in the flight feathers of almost all birds. Using mechanistic criteria emerging from recent work on sonations, we sought to: (1) identify characteristics of rock pigeon flight feathers that might be adapted for sound production rather than flight, and (2) provide evidence that this morphology is necessary for in vivo sound production and is sufficient to replicate in vivo sounds. Pigeons produce tonal sounds (700±50 Hz) during the latter two-thirds of each downstroke during take-off. These tones are produced when a small region of long, curved barbs on the inner vane of the outermost primary feather (P10) aeroelastically flutters. Tones were silenced in live birds when we experimentally increased the stiffness of this region to prevent flutter. Isolated P10 feathers were sufficient to reproduce in vivo sounds when spun at the peak angular velocity of downstroke (53.9-60.3 rad s(-1)), but did not produce tones at average downstroke velocity (31.8 rad s(-1)), whereas P9 and P1 feathers never produced tones. P10 feathers had significantly lower coefficients of resultant aerodynamic force (CR) when spun at peak angular velocity than at average angular velocity, revealing that production of tonal sounds incurs an aerodynamic cost. P9 and P1 feathers did not show this difference in CR These mechanistic results suggest that the tonal sounds produced by P10 feathers are not incidental and may function in communication. © 2016. Published by The Company of Biologists Ltd.

  1. Quasi-Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7790 ● SEP 2016 US Army Research Laboratory Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic... Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at Subsonic Velocity by Sidra I Silton Weapons and...To) December 2014–April 2015 4. TITLE AND SUBTITLE Quasi -Steady Simulations for the Efficient Generation of Static Aerodynamic Coefficients at

  2. Emission of sound from turbulence convected by a parallel flow in the presence of solid boundaries

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1973-01-01

    A theoretical description is given of the sound emitted from an arbitrary point in a parallel or nearly parallel turbulent shear flow confined to a region near solid boundaries. The analysis begins with Lighthill's formulation of aerodynamic noise and assumes that the turbulence is axisymmetric. Specific results are obtained for the sound emitted from an arbitrary point in a turbulent flow within a semi-infinite, open-ended duct.

  3. Simplified aerodynamic analysis of the cyclogiro rotating wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1930-01-01

    A simplified aerodynamic theory of the cyclogiro rotating wing is presented herein. In addition, examples have been calculated showing the effect on the rotor characteristics of varying the design parameters of the rotor. A performance prediction, on the basis of the theory here developed, is appended, showing the performance to be expected of a machine employing this system of sustentation. The aerodynamic principles of the cyclogiro are sound; hovering flight, vertical climb, and a reasonable forward speed may be obtained with a normal expenditure of power. Auto rotation in a gliding descent is available in the event of a power-plant failure.

  4. Effect of aerodynamic detuning on supersonic rotor discrete frequency noise generation

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, Sanford

    1988-01-01

    A mathematical model was developed to predict the effect of alternate blade circumferential aerodynamic detuning on the discrete frequency noise generation of a supersonic rotor. Aerodynamic detuning was shown to have a small beneficial effect on the noise generation for reduced frequencies less than 3. For reduced frequencies greater than 3, however, the aerodynamic detuning either increased or decreased the noise generated, depending on the value of the reduced frequency.

  5. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  6. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  7. On sound generation by turbulent convection: A new look at old results

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.; Stein, R. F.; Ulmschneider, P.

    1994-01-01

    We have revisited the problem of acoustic wave generation by turbulent convection in stellar atmospheres. The theory of aerodynamically generated sound, originally developed by Lighthill and later modified by Stein to include the effects of stratification, has been used to estimate the acoustic wave energy flux generated in solar and stellar convection zones. We correct the earlier computations by incorporating an improved description of the spatial and temporal spectrum of the turbulent convection. We show the dependence of the resulting wave fluxes on the nature of the turbulence, and compute the wave energy spectra and wave energy fluxes generated in the Sun on the basis of a mixing-length model of the solar convection zone. In contrast to the previous results, we show that the acoustic energy generation does not depend very sensitively on the turbulent energy spectrum. However, typical total acoustic fluxes of order F(sub A) = 5 x 10(exp 7) ergs/sq cm/s with a peak of the acoustic frequency spectrum near omega = 100 mHz are found to be comparable to those previously calculated. The acoustic flux turns out to be strongly dependent on the solar model, scaling with the mixing-length parameter alpha as alpha(exp 3.8). The computed fluxes most likely constitute a lower limit on the acoustic energy produced in the solar convection zone if recent convection simulations suggesting the presence of shocks near the upper layers of the convection zone apply to the Sun.

  8. Aerodynamic effects of flexibility in flapping wings.

    PubMed

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings.

  9. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings. PMID:19692394

  10. Experimental validation of tonal noise control from subsonic axial fans using flow control obstructions

    NASA Astrophysics Data System (ADS)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.

  11. Noise, anti-noise and fluid flow control.

    PubMed

    Williams, J E Ffowcs

    2002-05-15

    This paper celebrates Thomas Young's discovery that wave interference was responsible for much that is known about light and colour. A substantial programme of work has been aimed at controlling the noise of aerodynamic flows. Much of that field can be explained in terms of interference and it is argued in this paper that the theoretical techniques for analysing noise can also be seen to rest on interference effects. Interference can change the character of wave fields to produce, out of well-ordered fields, wave systems quite different from the interfering wave elements. Lighthill's acoustic analogy is described as an example of this effect, an example in which the exact model of turbulence-generated noise is seen to consist of elementary interfering sound waves; waves that are sometimes heard in advance of their sources. The paper goes on to describe an emerging field of technology where sound is suppressed by superimposing on it a destructively interfering secondary sound; one designed and manufactured specifically for interference. That sound is known as anti-sound, or anti-noise when the sound is chaotic enough. Examples are then referred to where the noisy effect to be controlled is actually a disturbance of a linearly unstable system; a disturbance that is destroyed by destructive interference with a deliberately constructed antidote. The practical benefits of this kind of instability control are much greater and can even change the whole character of flows. It is argued that completely unnatural unstable conditions can be held with active controllers generating destructively interfering elements. Examples are given in which gravitational instability of stratified fluids can be prevented. The Kelvin-Helmholtz instability of shear flows can also be avoided by simple controls. Those are speculative examples of what might be possible in future developments of an interference effect, which has made anti-noise a useful technology.

  12. A Hearing-Based, Frequency Domain Sound Quality Model for Combined Aerodynamic and Power Transmission Response with Application to Rotorcraft Interior Noise

    NASA Astrophysics Data System (ADS)

    Sondkar, Pravin B.

    The severity of combined aerodynamics and power transmission response in high-speed, high power density systems such as a rotorcraft is still a major cause of annoyance in spite of recent advancement in passive, semi-active and active control. With further increase in the capacity and power of this class of machinery systems, the acoustic noise levels are expected to increase even more. To achieve further improvements in sound quality, a more refined understanding of the factors and attributes controlling human perception is needed. In the case of rotorcraft systems, the perceived quality of the interior sound field is a major determining factor of passenger comfort. Traditionally, this sound quality factor is determined by measuring the response of a chosen set of juries who are asked to compare their qualitative reactions to two or more sounds based on their subjective impressions. This type of testing is very time-consuming, costly, often inconsistent, and not useful for practical design purposes. Furthermore, there is no known universal model for sound quality. The primary aim of this research is to achieve significant improvements in quantifying the sound quality of combined aerodynamic and power transmission response in high-speed, high power density machinery systems such as a rotorcraft by applying relevant objective measures related to the spectral characteristics of the sound field. Two models have been proposed in this dissertation research. First, a classical multivariate regression analysis model based on currently known sound quality metrics as well some new metrics derived in this study is presented. Even though the analysis resulted in the best possible multivariate model as a measure of the acoustic noise quality, it lacks incorporation of human judgment mechanism. The regression model can change depending on specific application, nature of the sounds and types of juries used in the study. Also, it predicts only the averaged preference scores and does not explain why two jury members differ in their judgment. To address the above shortcoming of applying regression analysis, a new human judgment model is proposed to further improve the ability to predict the degree of subjective annoyance. The human judgment model involves extraction of subjective attributes and their values using a proposed artificial jury processor. In this approach, a set of ear transfer functions are employed to compute the characteristics of sound pressure waves as perceived subjectively by human. The resulting basilar membrane displacement data from this proposed model is then applied to analyze the attribute values. Using this proposed human judgment model, the human judgment mechanism, which is highly sophisticated, will be examined. Since the human judgment model is essentially based on jury attributes that are not expected to change significantly with application or nature of the sound field, it gives a more common basis to evaluate sound quality. This model also attempts to explain the inter-juror differences in opinion, which is critical in understanding the variability in human response.

  13. Numerical Simulations for Landing Gear Noise Generation and Radiation

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Long, Lyle N.

    2002-01-01

    Aerodynamic noise from a landing gear in a uniform flow is computed using the Ffowcs Williams -Hawkings (FW-H) equation. The time accurate flow data on the surface is obtained using a finite volume flow solver on an unstructured and. The Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing gear surface and over a permeable surface away from the landing gear. Two geometric configurations are tested in order to assess the impact of two lateral struts on the sound level and directivity in the far-field. Predictions from the Ffowcs Williams-Hawkings code are compared with direct calculations by the flow solver at several observer locations inside the computational domain. The permeable Ffowcs Williams-Hawkings surface predictions match those of the flow solver in the near-field. Far-field noise calculations coincide for both integration surfaces. The increase in drag observed between the two landing gear configurations is reflected in the sound pressure level and directivity mainly in the streamwise direction.

  14. An investigation of rotor noise generation by aerodynamic disturbance. [aeroacoustic transfer functions

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.

    1977-01-01

    An open rotor was considered as a process for converting an unsteady velocity inflow into sound radiation. With the aid of crude assumptions, aero-acoustic transfer functions were defined theoretically for both discrete frequency and broad band noise. A study of the validity of these transfer functions yielded results which show good agreement at discrete frequencies though slightly less good for broad band noise. Agreement in both cases holds over three or more decades of the relevant parameters. A rotating hot wire anemometry system consisting of a single hot wire probe mounted in the nose cone of the rotor was used to quantify fluctuations in the airflow onto a single rotor blade for the transfer function results. Further theoretical analysis revealed that the sound field can be expressed in terms of blade-to-blade correlations in the airflow, and results from two probes rotating simultaneously were modelled mathematically and inserted in the theory. Preliminary results snow encouraging agreement with experimental data.

  15. The Nature of Nasal Fricatives: Articulatory-Perceptual Characteristics and Etiologic Considerations.

    PubMed

    Zajac, David J

    2015-07-01

    Nasal fricatives (NFs) are unusual, maladaptive articulations used by children both with and without palatal anomalies to replace oral fricatives. Nasal fricatives vary in articulatory, aerodynamic, and acoustic-perceptual characteristics with two generally distinct types recognized. One type is produced with velopharyngeal (VP) constriction that results in turbulent nasal airflow and, frequently, tissue vibration (flutter) at the VP port. Trost (1981) described these as posterior NFs that have a distinctive snorting quality. A second type of NF is produced without significant VP constriction resulting in turbulent airflow generated at the anterior liminal valve of the nose. Of importance, both types are "active" alternative articulations in that the speaker occludes the oral cavity to direct all airflow through the nose (Harding & Grunwell, 1998). It is this oral gesture that differentiates NFs from obligatory (or passive) nasal air escape that may sound similar due to incomplete VP closure. The purpose of this article is to (1) describe the articulatory, aerodynamic, and acoustic-perceptual nature of NFs, and (2) propose a theoretical framework for the acquisition of NFs by children both with and without cleft palate.

  16. The Nature of Nasal Fricatives: Articulatory-Perceptual Characteristics and Etiologic Considerations

    PubMed Central

    Zajac, David J.

    2015-01-01

    Nasal fricatives (NFs) are unusual, maladaptive articulations used by children both with and without palatal anomalies to replace oral fricatives. Nasal fricatives vary in articulatory, aerodynamic, and acoustic-perceptual characteristics with two generally distinct types recognized. One type is produced with velopharyngeal (VP) constriction that results in turbulent nasal airflow and, frequently, tissue vibration (flutter) at the VP port. Trost (1981) described these as posterior NFs that have a distinctive snorting quality. A second type of NF is produced without significant VP constriction resulting in turbulent airflow generated at the anterior liminal valve of the nose. Of importance, both types are “active” alternative articulations in that the speaker occludes the oral cavity to direct all airflow through the nose (Harding & Grunwell, 1998). It is this oral gesture that differentiates NFs from obligatory (or passive) nasal air escape that may sound similar due to incomplete VP closure. The purpose of this article is to (1) describe the articulatory, aerodynamic, and acoustic-perceptual nature of NFs, and (2) propose a theoretical framework for the acquisition of NFs by children both with and without cleft palate. PMID:27057267

  17. Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air Vehicles

    DTIC Science & Technology

    2015-05-18

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and... reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...five times the speed of sound. For reference, the SR-71 Blackbird , the fastest manned airbreathing typically flew at three times the speed of sound

  18. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.

    PubMed

    Lien, Yu-An S; Michener, Carolyn M; Eadie, Tanya L; Stepp, Cara E

    2015-06-01

    The acoustic measure relative fundamental frequency (RFF) was investigated as a potential objective measure to track variations in vocal effort within and across individuals. Twelve speakers with healthy voices created purposeful modulations in their vocal effort during speech tasks. RFF and an aerodynamic measure of vocal effort, the ratio of sound pressure level to subglottal pressure level, were estimated from the aerodynamic and acoustic signals. Twelve listeners also judged the speech samples for vocal effort using the visual sort and rate method. Relationships between RFF and both the aerodynamic and perceptual measures of vocal effort were weak across speakers (R2 = .06-.26). Within speakers, relationships were variable but much stronger on average (R2 = .45-.56). RFF showed stronger relationships between both the aerodynamic and perceptual measures of vocal effort when examined within individuals versus across individuals. Future work is necessary to establish these relationships in individuals with voice disorders across the therapeutic process.

  19. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception

    PubMed Central

    Michener, Carolyn M.; Eadie, Tanya L.; Stepp, Cara E.

    2015-01-01

    Purpose The acoustic measure relative fundamental frequency (RFF) was investigated as a potential objective measure to track variations in vocal effort within and across individuals. Method Twelve speakers with healthy voices created purposeful modulations in their vocal effort during speech tasks. RFF and an aerodynamic measure of vocal effort, the ratio of sound pressure level to subglottal pressure level, were estimated from the aerodynamic and acoustic signals. Twelve listeners also judged the speech samples for vocal effort using the visual sort and rate method. Results Relationships between RFF and both the aerodynamic and perceptual measures of vocal effort were weak across speakers (R2 = .06–.26). Within speakers, relationships were variable but much stronger on average (R2 = .45–.56). Conclusions RFF showed stronger relationships between both the aerodynamic and perceptual measures of vocal effort when examined within individuals versus across individuals. Future work is necessary to establish these relationships in individuals with voice disorders across the therapeutic process. PMID:25675090

  20. Three Cheers for a New Attitude.

    ERIC Educational Resources Information Center

    Miller, L. Diane; Labrano, Maureen B.

    1992-01-01

    Inservice workshop trained fourth- and fifth-grade science specialists and their students organized science demonstrations presented by students from each grade level. Describes demonstrations involving liquid bubbles, magnets, measurement, sound, aerodynamics, environmental protection, and air pollution. (MDH)

  1. Building Aerodynamic Databases for the SLS Design Process

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Dalle, Derek J.; Lee, Henry; Meeroff, Jamie; Onufer, Jeffrey; Chan, William; Pulliam, Thomas

    2017-01-01

    NASA's new Space Launch System (SLS) will be the first rocket since the Saturn V (1967-1973) to carry astronauts beyond low earth orbit-and will carry 10% more payload than Saturn V and three times the payload of the space shuttle. The SLS configuration consists of a center core and two solid rocket boosters that separate from the core as their fuel is exhausted two minutes after lift-off. During these first two minutes of flight, the vehicle powers its way through strong shock waves as it accelerates past the speed of sound, then pushes beyond strong aerodynamic loads at the maximum dynamic pressure, and is ultimately enveloped by gaseous plumes from the booster-separation motors. The SLS program relies on computational fluid dynamic (CFD) simulations to provide much of the data needed to build aerodynamic databases describing the structural load distribution, surface pressures, and aerodynamic forces on the vehicle.

  2. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  3. IRVE-II Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  4. Experimental Study of Airfoil Trailing Edge Noise: Instrumentation, Methodology and Initial Results. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Manley, M. B.

    1980-01-01

    The mechanisms of aerodynamic noise generation at the trailing edge of an airfoil is investigated. Instrumentation was designed, a miniature semiconductor strain-gauge pressure transducer and associated electronic amplifier circuitry were designed and tested and digital signal analysis techniques applied to gain insight into the relationship between the dynamic pressure close to the trailing edge and the sound in the acoustic far-field. Attempts are made to verify some trailing-edge noise generation characteristics as theoretically predicted by several contemporary acousticians. It is found that the noise detected in the far-field is comprised of the sum of many uncorrelated emissions radiating from the vicinity of the trailing edge. These emissions appear to be the result of acoustic energy radiation which has been converted by the trailing-edge noise mechanism from the dynamic fluid energy of independent streamwise 'strips' of the turbulent boundary layer flow.

  5. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+.

  6. TR-IA payload recovery system

    NASA Astrophysics Data System (ADS)

    Kochiyama, Jiro; Kinai, Shigeki; Morita, Shinya

    The TR-IA microgravity-experimentation sounding rocket baseline configuration and recovery system are presented. Aerodynamic braking is incorporated through the requisite positioning of the reentry-body center of gravity. The recovery sequence is initiated by baroswitches, which eject the pilot chute. Even in the event of flotation bag malfunction, the structure containing the experiment is watertight. An account is given of the nature and the results of the performance tests conducted to establish the soundness of various materials and components.

  7. Effect of boattail geometry on the acoustics of parallel baffles in ducts

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Unnever, G.; Dudley, M. R.

    1984-01-01

    Sound attenuation and total pressure drop of parallel duct baffles incorporating certain boattail geometries were measured in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The baseline baffles were 1.56 m long and 20 cm thick, on 45-cm center-to-center spacings, and spanned the test section from floor to ceiling. Four different boattails were evaluated: a short, smooth (nonacoustic) boattail; a longer, smooth boattail; and two boattails with perforated surfaces and sound-absorbent filler. Acoustic measurements showed the acoustic boattails improved the sound attenuation of the baffles at approximately half the rate to be expected from constant-thickness sections of the same length; that is, 1.5 dB/n, where n is the ratio of acoustic treatment length to duct passage width between baffles. The aerodynamic total pressure loss was somewhat sensitive to tail geometry. Lengthening the tails to reduce the diffusion half-angle from 11 to 5 degrees reduced the total pressure loss approximately 9%. Perforating the boattails, which increased the surface roughness, did not have a large effect on the total pressure loss. Aerodynamic results are compared with a published empirical method for predicting baffle total pressure drop.

  8. Noise generated by quiet engine fans. 3: Fan C

    NASA Technical Reports Server (NTRS)

    Montegan, F. J.; Schaefer, J. W.; Schmiedlin, R. F.

    1976-01-01

    A family of fans designed with low noise features was acoustically evaluated, and noise results are documented for a 1.6-pressure-ratio, 472-m/sec (155-ft/sec) tip speed fan. The fan is described and some aerodynamic operating data are given. Far field noise around the fan was measured over a range of operating conditions for a variety of configurations having different arrangements of sound absorbing material in the flow ducts. Complete results of 1.3 octave band analysis of the data are presented in tabular form. Included also are acoustic power spectra and sideline perceived noise levels. Representative 1/3 octave band data are presented graphically, and sample graphs of continuous narrow band spectra are also provided.

  9. Method of performing computational aeroelastic analyses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A. (Inventor)

    2011-01-01

    Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.

  10. Mixing Process in Ejector Nozzles Studied at Lewis' Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center has been studying mixing processes in ejector nozzles for its High Speed Research (HSR) Program. This work is directed at finding ways to minimize the noise of a future supersonic airliner. Much of the noise such an airplane would generate would come from the nozzle, where a hot, high-speed jet exits the engine. Several different nozzle configurations were used to produce nozzle systems with different acoustical and aerodynamic characteristics. The acoustical properties were measured by an array of microphones in an anechoic chamber, and the aerodynamics were measured by traditional pressure and temperature instruments as well as by Laser Doppler Velocimetry (LDV), a technique for visualizing the airflow pattern without disturbing it. These measurements were put together and compared for different configurations to examine the relationships between mixing and noise generation. The mixer-ejector nozzle with the installed flow-visualization windows (foreground), the optical equipment and the supporting structure for the Laser Doppler Velocimetry flow visualization (midfield), and the sound-absorbing wedges used to create an anechoic environment for acoustic testing (background) is shown. The High Speed Research Program is a NASA-funded effort, in cooperation with the U.S. aerospace industry, to develop enabling technologies for a future supersonic airliner. One of the technological barriers being addressed is noise generated during near-airport operation. The mixer-ejector nozzle concept is being examined as a way to reduce jet noise while maintaining thrust. Ambient air is mixed with the high-velocity engine exhaust to reduce the jet velocity and hence the noise generated by the jet. The model was designed and built by Pratt & Whitney under NASA contract. The test, completed in June 1995, was conducted in Lewis' Aero-Acoustic Propulsion Laboratory.

  11. Aerodynamics model for a generic ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.

    1995-01-01

    This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

  12. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Casper, Jay H.

    2005-01-01

    The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.

  13. Reduction of centrifugal fan noise by use of resonators

    NASA Astrophysics Data System (ADS)

    Neise, W.; Koopmann, G. H.

    1980-11-01

    A method by which an acoustic resonator can be used to reduce at source the aerodynamic noise generated by turbomachinery has been investigated experimentally. The casing of a small, centrifugal blower was modified by replacing the cut-off of the scroll with the mouth of a quarter-wavelength resonator. The mouth of the resonator was constructed from a series of perforated plates with the same curvature as the cut-off to preserve the original geometry of the casing. Tuning of the resonator was achieved by changing the length via a movable end plug. The noise measurements were made in an anechoically terminated outlet duct at nearly a free delivery operating condition of the blower. With appropriate tuning of the resonator, reductions in the blade passing frequency tones of up to 29 dB were observed with corresponding overall sound pressure levels reductions of up to 7 dB(A). Parameters which influenced the band width of the resonator response were the porosity and the size of the resonator mouth and the flow velocity near the cut-off region. Throughout the tests, the aerodynamic performance of the blower was unaffected by the addition of the resonator to the casing.

  14. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  15. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  16. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  17. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].

  18. Modeling Programs Increase Aircraft Design Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the aircraft to safe flight. Today, all aircraft must have a flutter boundary 15 percent beyond the aircraft s expected maximum speed to ensure that flutter conditions are not encountered in flight. NASA continues to support research in new aircraft designs to improve knowledge of aeroelasticity and flutter. Through platforms such as Dryden Flight Research Center s Active Aeroelastic Wing (AAW) research aircraft, the Agency researches methods for in-flight validation of predictions and for controlling and taking advantage of aeroelastic conditions to enhance aircraft performance.

  19. The Anna's hummingbird chirps with its tail: a new mechanism of sonation in birds

    PubMed Central

    Clark, Christopher James; Feo, Teresa J

    2008-01-01

    A diverse array of birds apparently make mechanical sounds (called sonations) with their feathers. Few studies have established that these sounds are non-vocal, and the mechanics of how these sounds are produced remains poorly studied. The loud, high-frequency chirp emitted by a male Anna's hummingbird (Calypte anna) during his display dive is a debated example. Production of the sound was originally attributed to the tail, but a more recent study argued that the sound is vocal. Here, we use high-speed video of diving birds, experimental manipulations on wild birds and laboratory experiments on individual feathers to show that the dive sound is made by tail feathers. High-speed video shows that fluttering of the trailing vane of the outermost tail feathers produces the sound. The mechanism is not a whistle, and we propose a flag model to explain the feather's fluttering and accompanying sound. The flag hypothesis predicts that subtle changes in feather shape will tune the frequency of sound produced by feathers. Many kinds of birds are reported to create aerodynamic sounds with their wings or tail, and this model may explain a wide diversity of non-vocal sounds produced by birds. PMID:18230592

  20. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.

    PubMed

    Lagier, Aude; Legou, Thierry; Galant, Camille; Amy de La Bretèque, Benoit; Meynadier, Yohann; Giovanni, Antoine

    2017-12-01

    The objective was to study the behavior of the larynx during shouted voice production, when the larynx is exposed to extremely high subglottic pressure. The study involved electroglottographic, acoustic, and aerodynamic analyses of shouts produced at maximum effort by three male participants. Under a normal speaking voice, the voice sound pressure level (SPL) is proportional to the subglottic pressure. However, when the subglottic pressure reached high levels, the voice SPL reached a maximum value and then decreased as subglottic pressure increased further. Furthermore, the electroglottographic signal sometimes lost its periodicity during the shout, suggesting irregular vocal fold vibration.

  1. Aeroacoustic simulation of a linear cascade by a prefactored compact scheme

    NASA Astrophysics Data System (ADS)

    Ghillani, Pietro

    This work documents the development of a three-dimensional high-order prefactored compact finite-difference solver for computational aeroacoustics (CAA) based on the inviscid Euler equations. This time explicit scheme is applied to representative problems of sound generation by flow interacting with solid boundaries. Four aeroacoustic problems are explored and the results validated against available reference analytical solution. Selected mesh convergence studies are conducted to determine the effective order of accuracy of the complete scheme. The first test case simulates the noise emitted by a still cylinder in an oscillating field. It provides a simple validation for the CAA-compatible solid wall condition used in the remainder of the work. The following test cases are increasingly complex versions of the turbomachinery rotor-stator interaction problem taken from NASA CAA workshops. In all the cases the results are compared against the available literature. The numerical method features some appreciable contributions to computational aeroacoustics. A reduced data exchange technique for parallel computations is implemented, which requires the exchange of just two values for each boundary node, independently of the size of the zone overlap. A modified version of the non-reflecting buffer layer by Chen is used to allow aerodynamic perturbations at the through flow boundaries. The Giles subsonic boundary conditions are extended to three-dimensional curvilinear coordinates. These advances have enabled to resolve the aerodynamic noise generation and near-field propagation on a representative cascade geometry with a time-marching scheme, with accuracy similar to spectral methods..

  2. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  3. Sonic boom generated by a slender body aerodynamically shaded by a disk spike

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2018-03-01

    The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.

  4. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  5. The aerodynamic analysis of the gyroplane rotating-wing system

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1934-01-01

    An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified.

  6. A wind-tunnel investigation of the effects of thrust-axis inclination on propeller first-order vibration

    NASA Technical Reports Server (NTRS)

    Gray, W H; Hallissy, J M , Jr

    1950-01-01

    Data on the aerodynamic excitation of first-order vibration occurring in a representative three-blade propeller having its thrust axis inclined to the air stream at angles of 0 degrees, 4.55 degrees, and 9.8 degrees are included in this paper. For several representative conditions the aerodynamic excitation has been computed and compared with the measured values. Blade stresses also were measured to permit the evaluation of the blade stress resulting from a given blade aerodynamic excitation. It was concluded that the section aerodynamic exciting force of a pitched propeller may be computed accurately at low rotational speeds. As section velocities approach the speed of sound, the accuracy of computation of section aerodynamic exciting force is not always so satisfactory. First-order blade vibratory stresses were computed with satisfactory accuracy from untilted-propeller loading data. A stress prediction which assumes a linear relation between first-order vibratory stress and the product of pitch angle and dynamic pressure and which is based on stresses at low rotational speeds will be conservative when the outer portions of the blade are in the transonic and low supersonic speed range.

  7. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    PubMed

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-06

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  8. Application of inflatable aeroshell structures for Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Jurewicz, David; Lichodziejewski, Leo; Tutt, Ben; Gilles, Brian; Brown, Glen

    Future space missions will require improvements in the Entry, Descent, and Landing (EDL) phases of the mission architecture. The focus of this paper is to discuss recent advances in analysis, fabrication techniques, ground testing, and flight testing of a stacked torus Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and its application to the future of EDL. The primary structure of a stacked torus HIAD consists of nested inflatable tori of increasing major diameter bonded and strapped to form a rigid structure after inflation. The underlying structure of the decelerator is covered with a flexible Thermal Protection System (TPS) capable of high heat flux. The inflatable aeroshell and TPS are packed around a centerbody within the launch fairing and deployed prior to atmospheric reentry. Recent fabrication of multiple HIADs between 3 and 6 meters has led to significant advances in process control and validation of the scalability of the technology. Progress has been made in generating and validating LS-DYNA FEA models to replicate flight loading in addition to analytical models of substructures. Coupon and component testing has improved the validation of modeling techniques and assumptions at the subsystem level. A ground testing campaign at the National Full-Scale Aerodynamics Center (NFAC) wind tunnel at NASA Ames Research center generated substantial aerodynamic and loading data to validate full system modeling with comparable dynamic pressures to a hypersonic reentry. The Inflatable Reentry Vehicle - 3 (IRVE-3) sounding rocket flight test was conducted with NASA Langley Research Center in July 2012. The IRVE-3 mission verified the structural and thermal performance of the stacked torus configuration. Further development of the stacked torus configuration is currently being conducted to increase the thermal capability, deceleration loads, and understanding of the interactions and effects of constituent components. The results of this research have expanded the- feasible flight envelope of stacked torus HIAD designs over a range of sizes, loading conditions, and heating.

  9. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  10. Aerodynamic Efficiency Analysis on Modified Drag Generator of Tanker-Ship Using Symmetrical Airfoil

    NASA Astrophysics Data System (ADS)

    Moranova, Starida; Rahmat Hadiyatul A., S. T.; Indra Permana S., S. T.

    2018-04-01

    Time reduction of tanker ship spent in the sea should be applied for solving problems occured in oil and gas distribution, such as the unpunctuality of the distribution and oil spilling. The aerodynamic design for some parts that considered as drag generators is presumed to be one of the solution, utilizing our demand of the increasing speed. This paper suggests two examples of the more-aerodynamic design of a part in the tanker that is considered a drag generator, and reports the value of drag generated from the basic and the suggested aerodynamic designs. The new designs are made by adding the NACA airfoil to the cross section of the drag generator. The scenario is assumed with a 39 km/hour speed of tanker, neglecting the hydrodynamic effects occured in the tanker by cutting it at the waterline which separated the drag between air and water. The results of produced drag in each design are calculated by Computational Fluid Dynamic method.

  11. FAA Film Catalog.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    Some 75 films from the U.S. Department of Transportation's Federal Aviation Administration are listed in this catalog. Topics dealt with include aerodynamics, airports, aviation history and careers, flying clubs, navigation and weather. Most of the films are 16mm sound and color productions. Filmstrips requiring a 35mm projector and phonograph or…

  12. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  13. User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Conley, Joseph L.

    1992-01-01

    The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.

  14. Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Ver, I. L.; Andersen, D. W.; Bliss, D. B.

    1975-01-01

    An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.

  15. Contra-Rotating Open Rotor Tone Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2014-01-01

    Reliable prediction of contra-rotating open rotor (CROR) noise is an essential element of any strategy for the development of low-noise open rotor propulsion systems that can meet both the community noise regulations and the cabin noise limits. Since CROR noise spectra typically exhibits a preponderance of tones, significant efforts have been directed towards predicting their tone spectra. To that end, there has been an ongoing effort at NASA to assess various in-house open rotor tone noise prediction tools using a benchmark CROR blade set for which significant aerodynamic and acoustic data had been acquired in wind tunnel tests. In the work presented here, the focus is on the near-field noise of the benchmark open rotor blade set at the cruise condition. Using an analytical CROR tone noise model with input from high-fidelity aerodynamic simulations, detailed tone noise spectral predictions have been generated and compared with the experimental data. Comparisons indicate that the theoretical predictions are in good agreement with the data, especially for the dominant CROR tones and their overall sound pressure level. The results also indicate that, whereas individual rotor tones are well predicted by the linear sources (i.e., thickness and loading), for the interaction tones it is essential that the quadrupole sources be included in the analysis.

  16. Laryngeal airway reconstruction indicates that rodent ultrasonic vocalizations are produced by an edge-tone mechanism

    PubMed Central

    Borgard, Heather L.

    2017-01-01

    Some rodents produce ultrasonic vocalizations (USVs) for social communication using an aerodynamic whistle, a unique vocal production mechanism not found in other animals. The functional anatomy and evolution of this sound production mechanism remains unclear. Using laryngeal airway reconstruction, we identified anatomical specializations critical for USV production. A robust laryngeal cartilaginous framework supports a narrow supraglottal airway. An intralaryngeal airsac-like cavity termed the ventral pouch was present in three muroid rodents (suborder Myomorpha), but was absent in a heteromyid rodent (suborder Castorimorpha) that produces a limited vocal repertoire and no documented USVs. Small lesions to the ventral pouch in laboratory rats caused dramatic changes in USV production, supporting the hypothesis that an interaction between a glottal exit jet and the alar edge generates ultrasonic signals in rodents. The resulting undulating airflow around the alar edge interacts with the resonance of the ventral pouch, which may function as a Helmholtz resonator. The proposed edge-tone mechanism requires control of intrinsic laryngeal muscles and sets the foundation for acoustic variation and diversification among rodents. Our work highlights the importance of anatomical innovations in the evolution of animal sound production mechanisms. PMID:29291091

  17. Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    2007-01-01

    Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.

  18. Tanker Avionics/Aircrew Complement Evaluation (TAACE). Phase 0. Analysis and Mockup. Volume II. Summary of Data.

    DTIC Science & Technology

    1980-05-01

    However, the TF-33s would greatly enhance the mission capabilities of the aircraft. The addition of winglets will increase range and decrease fuel...a sound and capable system. There are certainly some improvements that can be made. A better boom with better aerodynamic design would help

  19. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  20. How do laryngeal and respiratory functions contribute to differentiate actors/actresses and untrained voices?

    PubMed

    Master, Suely; Guzman, Marco; Azócar, Maria Josefina; Muñoz, Daniel; Bortnem, Cori

    2015-05-01

    The present study aimed to compare actors/actresses's voices and vocally trained subjects through aerodynamic and electroglottographic (EGG) analyses. We hypothesized that glottal and breathing functions would reflect technical and physiological differences between vocally trained and untrained subjects. Forty participants with normal voices participated in this study (20 professional theater actors and 20 untrained participants). In each group, 10 male and 10 female subjects were assessed. All participants underwent aerodynamic and EGG assessment of voice. From the Phonatory Aerodynamic System, three protocols were used: comfortable sustained phonation with EGG, voice efficiency with EGG, and running speech. Contact quotient was calculated from EGG. All phonatory tasks were produced at three different loudness levels. Mean sound pressure level and fundamental frequency were also assessed. Univariate, multivariate, and correlation statistical analyses were performed. Main differences between vocally trained and untrained participants were found in the following variables: mean sound pressure level, phonatory airflow, subglottic pressure, inspiratory airflow duration, inspiratory airflow, and inspiratory volume. These variables were greater for trained participants. Mean pitch was found to be lower for trained voices. The glottal source seemed to have a weak contribution when differentiating the training status in speaking voice. More prominent changes between vocally trained and untrained participants are demonstrated in respiratory-related variables. These findings may be related to better management of breathing function (better breath support). Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.

    1990-01-01

    The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.

  2. Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns.

    PubMed

    Ros, Ivo G; Bassman, Lori C; Badger, Marc A; Pierson, Alyssa N; Biewener, Andrew A

    2011-12-13

    Turning is crucial for animals, particularly during predator-prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90° turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird's flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon's upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory.

  3. Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns

    PubMed Central

    Ros, Ivo G.; Bassman, Lori C.; Badger, Marc A.; Pierson, Alyssa N.; Biewener, Andrew A.

    2011-01-01

    Turning is crucial for animals, particularly during predator–prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90° turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird’s flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon’s upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory. PMID:22123982

  4. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  5. Refraction of Sound Emitted Near Solid Boundaries from a Sheared Jet

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Oyedrian, Ayo A.; Krejsa, Eugene A.

    1998-01-01

    A mathematical model is developed to describe the sound emitted from an arbitrary point within a turbulent flow near solid boundaries. A unidirectional, transversely sheared mean flow is assumed, and the cross-section of the cold jet is of arbitrary shape. The analysis begins with Lilley's formulation of aerodynamic noise and, depending upon the specific model of turbulence used, leads via Fourier analysis to an expression for the spectral density of the intensity of the far-field sound emitted from a unit volume of turbulence. The expressions require solution of a reduced Green's function of Lilley's equation as well as certain moving axis velocity correlations of the turbulence. Integration over the entire flow field is required in order to predict the sound emitted by the complete flow. Calculations are presented for sound emitted from a plugflow jet exiting a semi-infinite flat duct. Polar plots of the far-field directivity show the dependence upon frequency and source position within the duct. Certain model problems are suggested to investigate the effect of duct termination, duct geometry, and mean flow shear upon the far-field sound.

  6. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap

    NASA Astrophysics Data System (ADS)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong

    2017-10-01

    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  7. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  8. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses.

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1973-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN IV for an IBM 360/91 computer.

  9. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1972-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN 4 for an IBM 360/91 computer.

  10. IRVE-3 Post-Flight Reconstruction

    NASA Technical Reports Server (NTRS)

    Olds, Aaron D.; Beck, Roger; Bose, David; White, Joseph; Edquist, Karl; Hollis, Brian; Lindell, Michael; Cheatwood, F. N.; Gsell, Valerie; Bowden, Ernest

    2013-01-01

    The Inflatable Re-entry Vehicle Experiment 3 (IRVE-3) was conducted from the NASA Wallops Flight Facility on July 23, 2012. Launched on a Black Brant XI sounding rocket, the IRVE-3 research vehicle achieved an apogee of 469 km, deployed and inflated a Hypersonic Inflatable Aerodynamic Decelerator (HIAD), re-entered the Earth's atmosphere at Mach 10 and achieved a peak deceleration of 20 g's before descending to splashdown roughly 20 minutes after launch. This paper presents the filtering methodology and results associated with the development of the Best Estimated Trajectory of the IRVE-3 flight test. The reconstructed trajectory is compared against project requirements and pre-flight predictions of entry state, aerodynamics, HIAD flexibility, and attitude control system performance.

  11. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  12. Developmental Changes in Laryngeal and Respiratory Function with Variations in Sound Pressure Level.

    ERIC Educational Resources Information Center

    Stathopoulos, Elaine T.; Sapienza, Christine M.

    1997-01-01

    The development of the speech production system was investigated among 120 children (ages 4-14 years) and 20 adults. Aerodynamic and acoustic results suggest that men and 14-year-old boys function differently than women and all other groups of children. Data generally suggest that laryngeal and respiratory behavior of children is not easily…

  13. Time-averaged aerodynamic loads on the vane sets of the 40- by 80-foot and 80- by 120-foot wind tunnel complex

    NASA Technical Reports Server (NTRS)

    Aoyagi, Kiyoshi; Olson, Lawrence E.; Peterson, Randall L.; Yamauchi, Gloria K.; Ross, James C.; Norman, Thomas R.

    1987-01-01

    Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.

  14. Aerodynamics of the pseudo-glottis.

    PubMed

    Kotby, M N; Hegazi, M A; Kamal, I; Gamal El Dien, N; Nassar, J

    2009-01-01

    The aim of this work is to study the hitherto unclear aerodynamic parameters of the pseudo-glottis following total laryngectomy. These parameters include airflow rate, sub-pseudo-glottic pressure (SubPsG), efficiency and resistance, as well as sound pressure level (SPL). Eighteen male patients who have undergone total laryngectomy, with an age range from 54 to 72 years, were investigated in this study. All tested patients were fluent esophageal 'voice' speakers utilizing tracheo-esophageal prosthesis. The airflow rate, SubPsG and SPL were measured. The results showed that the mean value of the airflow rate was 53 ml/s, the SubPsG pressure was 13 cm H(2)O, while the SPL was 66 dB. The normative data obtained from the true glottis in healthy age-matched subjects are 89 ml/s, 7.9 cm H(2)O and 70 dB, respectively. Other aerodynamic indices were calculated and compared to the data obtained from the true glottis. Such a comparison of the pseudo-glottic aerodynamic data to the data of the true glottis gives an insight into the mechanism of action of the pseudo-glottis. The data obtained suggests possible clinical applications in pseudo-voice training. Copyright 2009 S. Karger AG, Basel.

  15. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  16. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.

    PubMed

    Portillo, María Priscilla; Rojas, Sandra; Guzman, Marco; Quezada, Camilo

    2018-03-01

    The present study aimed to observe whether physiological warm-up and traditional singing warm-up differently affect aerodynamic, electroglottographic, acoustic, and self-perceived parameters of voice in Contemporary Commercial Music singers. Thirty subjects were asked to perform a 15-minute session of vocal warm-up. They were randomly assigned to one of two types of vocal warm-up: physiological (based on semi-occluded exercises) or traditional (singing warm-up based on open vowel [a:]). Aerodynamic, electroglottographic, acoustic, and self-perceived voice quality assessments were carried out before (pre) and after (post) warm-up. No significant differences were found when comparing both types of vocal warm-up methods, either in subjective or in objective measures. Furthermore, the main positive effect observed in both groups when comparing pre and post conditions was a better self-reported quality of voice. Additionally, significant differences were observed for sound pressure level (decrease), glottal airflow (increase), and aerodynamic efficiency (decrease) in the traditional warm-up group. Both traditional and physiological warm-ups produce favorable voice sensations. Moreover, there are no evident differences in aerodynamic and electroglottographic variables when comparing both types of vocal warm-ups. Some changes after traditional warm-up (decreased intensity, increased airflow, and decreased aerodynamic efficiency) could imply an early stage of vocal fatigue. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. A review of the theory of trailing edge noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1978-01-01

    Literature on the theory of the generation of sound by the interaction of low Mach number turbulent flow with the edge of a semi-infinite rigid plate is critically reviewed. Three different approaches to the subject are identified, consisting of theories based on (1) Lighthill's acoustic analogy; (2) the solution of special, linearized hydroacoustic problems; and (3) ad hoc aerodynamic source models. When appropriately interpreted, all relevant theories produce essentially identical predictions in the limit of very small Mach numbers. None of the theories discusses the implications of the Kutta condition, however, nor of the effect of forward flight and source motion relative to the trailing edge. An outline of a redevelopment of the theory is included to give a unified view of the problem, exhibit the significance of the various approximations, and incorporate the effect of mean motion and of the Kutta condition.

  18. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  19. Effects of Bel Canto Training on Acoustic and Aerodynamic Characteristics of the Singing Voice.

    PubMed

    McHenry, Monica A; Evans, Joseph; Powitzky, Eric

    2016-03-01

    This study was designed to assess the impact of 2 years of operatic training on acoustic and aerodynamic characteristics of the singing voice. This is a longitudinal study. Participants were 21 graduate students and 16 undergraduate students. They completed a variety of tasks, including laryngeal videostroboscopy, audio recording of pitch range, and singing of syllable trains at full voice in chest, passaggio, and head registers. Inspiration, intraoral pressure, airflow, and sound pressure level (SPL) were captured during the syllable productions. Both graduate and undergraduate students significantly increased semitone range and SPL. The contributions to increased SPL were typically increased inspiration, increased airflow, and reduced laryngeal resistance, although there were individual differences. Two graduate students increased SPL without increased airflow and likely used supraglottal strategies to do so. Students demonstrated improvements in both acoustic and aerodynamic components of singing. Increasing SPL primarily through respiratory drive is a healthy strategy and results from intensive training. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Pavement noise measurements in Poland

    NASA Astrophysics Data System (ADS)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  1. N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Iwagami, N.; Oyama, K.-I.

    2013-11-01

    The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.

  2. Workshop on Aircraft Surface Representation for Aerodynamic Computation

    NASA Technical Reports Server (NTRS)

    Gregory, T. J. (Editor); Ashbaugh, J. (Editor)

    1980-01-01

    Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.

  3. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Bothmore » turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.« less

  4. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  5. An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet

    NASA Astrophysics Data System (ADS)

    LI, S.-M.; HANUSKA, C. A.; NG, W. F.

    2001-11-01

    An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.

  6. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    PubMed Central

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  7. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  8. Aerodynamic Noise and Suppressors,

    DTIC Science & Technology

    1981-05-29

    students can not hear the orders of gym teachers in schools, some patients in hospitals will shiver such that nurses can not give them shots, and few...Ei.h () w te E i tc iden L s .und ene rg y, L ref[ icted s.auiid t-nergy. aiid absorbed sound eiiergv. a It is obvious trim LIuat~iui 3l tiiat, withj a

  9. A theoretical analysis of the effect of thrust-related turbulence distortion on helicopter rotor low-frequency broadband noise

    NASA Technical Reports Server (NTRS)

    Williams, M.; Harris, W. L.

    1984-01-01

    The purpose of the analysis is to determine if inflow turbulence distortion may be a cause of experimentally observed changes in sound pressure levels when the rotor mean loading is varied. The effect of helicopter rotor mean aerodynamics on inflow turbulence is studied within the framework of the turbulence rapid distortion theory developed by Pearson (1959) and Deissler (1961). The distorted inflow turbulence is related to the resultant noise by conventional broadband noise theory. A comparison of the distortion model with experimental data shows that the theoretical model is unable to totally explain observed increases in model rotor sound pressures with increased rotor mean thrust. Comparison of full scale rotor data with the theoretical model shows that a shear-type distortion may explain decreasing sound pressure levels with increasing thrust.

  10. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle

    2009-01-01

    JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.

  11. The influence of periodic wind turbine noise on infrasound array measurements

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Ceranna, Lars

    2017-02-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. These systems are equipped with highly sensitive micro pressure sensors accurately measuring acoustic signals in a frequency range inaudible to the human ear. Ten years of data (2006-2015) from the infrasound array IGADE in Northern Germany are analysed to quantify the influence of wind turbine noise on infrasound recordings. Furthermore, a theoretical model is derived and validated by a field experiment with mobile micro-barometer stations. Fieldwork was carried out 2004 to measure the infrasonic pressure level of a single horizontal-axis wind turbine and to extrapolate the sound effect for a larger number of nearby wind turbines. The model estimates the generated sound pressure level of wind turbines and thus enables for specifying the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. This aspect is particularly important to guarantee the monitoring performance of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and thus have to meet stringent specifications with respect to infrasonic background noise.

  12. Measurement of Model Noise in a Hard-Wall Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    2006-01-01

    Identification, analysis, and control of fluid-mechanically-generated sound from models of aircraft and automobiles in special low-noise, semi-anechoic wind tunnels are an important research endeavor. Such studies can also be done in aerodynamic wind tunnels that have hard walls if phased microphone arrays are used to focus on the noise-source regions and reject unwanted reflections or background noise. Although it may be difficult to simulate the total flyover or drive-by noise in a closed wind tunnel, individual noise sources can be isolated and analyzed. An acoustic and aerodynamic study was made of a 7-percent-scale aircraft model in a NASA Ames 7-by-10-ft (about 2-by-3-m) wind tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated landing, takeoff, and approach configurations were evaluated at Mach 0.26. Using a phased microphone array mounted in the ceiling over the inverted model, various noise sources in the high-lift system, landing gear, fins, and miscellaneous other components were located and compared for sound level and frequency at one flyover location. Numerous noise-alleviation devices and modifications of the model were evaluated. Simultaneously with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by geometric modifications. Most modern microphone-array systems function in the frequency domain in the sense that spectra of the microphone outputs are computed, then operations are performed on the matrices of microphone-signal cross-spectra. The entire acoustic field at one station in such a system is acquired quickly and interrogated during postprocessing. Beam-forming algorithms are employed to scan a plane near the model surface and locate noise sources while rejecting most background noise and spurious reflections. In the case of the system used in this study, previous studies in the wind tunnel have identified noise sources up to 19 dB below the normal background noise of the wind tunnel. Theoretical predictions of array performance are used to minimize the width and the side lobes of the beam pattern of the microphone array for a given test arrangement. To capture flyover noise of the inverted model, a 104-element microphone array in a 622-mm-diameter cluster was installed in a 19-mm-thick poly(methyl methacrylate) plate in the ceiling of the test section of the wind tunnel above the aircraft model (see Figure 1). The microphones were of the condenser type, and their diaphragms were mounted flush in the array plate, which was recessed 12.7 mm into the ceiling and covered by a porous aromatic polyamide cloth (not shown in the figure) to minimize boundary-layer noise. This design caused the level of flow noise to be much less than that of flush-mount designs. The drawback of this design was that the cloth attenuated sound somewhat and created acoustic resonances that could grow to several dB at a frequency of 10 kHz.

  13. Experimental and Analytical Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas

    2005-01-01

    An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.

  14. Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Petersen, K. L.

    1993-01-01

    This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.

  15. Aircraft geometry verification with enhanced computer generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  16. Aerodynamic Validation of Emerging Projectile Configurations

    DTIC Science & Technology

    2011-12-01

    was benchmarked against modern aerodynamic prediction programs like ANSYS CFX and Aero-Prediction 09 (AP09). Next, a comparison was made between two...types of angle of attack generation methods in ANSYS CFX . The research then focused on controlled tilting of the projectile’s nose to investigate the...resulting aerodynamic effects. ANSYS CFX was found to provide better agreement with the experimental data than AP09. 14. SUBJECT

  17. Effect of pneumotach on measurement of vocal function

    NASA Astrophysics Data System (ADS)

    Walters, Gage; McPhail, Michael; Krane, Michael

    2017-11-01

    Aerodynamic and acoustic measurements of vocal function were performed in a physical model of the human airway with and without a pneumotach (Rothenberg mask), used by clinicians to measure vocal volume flow. The purpose of these experiments was to assess whether the device alters acoustic and aerodynamic conditions sufficiently to change phonation behavior. The airway model, which mimics acoustic behavior of an adult human airway from trachea to mouth, consists of a 31.5cm long straight duct with a 2.54cm square cross section. Model vocal folds comprised of molded silicone rubber were set into vibration by introducing airflow from a compressed air source. Measurements included transglottal pressure difference, mean volume flow, vocal fold vibratory motion, and sound pressure measured at the mouth. The experiments show that while the pneumotach imparted measurable aerodynamic and acoustic loads on the system, measurement of mean glottal resistance was not affected. Acoustic pressure levels were attenuated, however, suggesting clinical acoustic measurements of vocal function need correction when performed in conjunction with a pneumotach Acknowledge support from NIH DC R01005642-11.

  18. Generation of Aerodynamics Via Physics-Based Virtual Flight Simulations

    DTIC Science & Technology

    2008-12-01

    problems associated with projectile and missile aerodynamics. For maneuvering munitions, the effect of many new weapon control mechanisms being...dynamic simulation. The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2...an unsteady aerodynamic moment along with terms due to the fact that the center of pressure and center of Magnus are not located at the mass

  19. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  20. Practical Applications of a Building Method to Construct Aerodynamic Database of Guided Missile Using Wind Tunnel Test Data

    NASA Astrophysics Data System (ADS)

    Kim, Duk-hyun; Lee, Hyoung-Jin

    2018-04-01

    A study of efficient aerodynamic database modeling method was conducted. A creation of database using periodicity and symmetry characteristic of missile aerodynamic coefficient was investigated to minimize the number of wind tunnel test cases. In addition, studies of how to generate the aerodynamic database when the periodicity changes due to installation of protuberance and how to conduct a zero calibration were carried out. Depending on missile configurations, the required number of test cases changes and there exist tests that can be omitted. A database of aerodynamic on deflection angle of control surface can be constituted using phase shift. A validity of modeling method was demonstrated by confirming that the result which the aerodynamic coefficient calculated by using the modeling method was in agreement with wind tunnel test results.

  1. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    NASA Astrophysics Data System (ADS)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude-squared coherence between the velocity and pressure fluctuations in the vicinity of the noise sources. Moreover, a reduction in the correlation level of the wall pressure fluctuations along the vane leading-edge is observed, as well as destructive phase interference along the vane leading-edge.

  2. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film.

    PubMed

    Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa

    2018-08-10

    We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

  3. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  4. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from the smallest to the largest nozzle was 12.9 percent of the baseline nozzle area. The results will show that there are significant changes in aerodynamic performance and farfield acoustics as the fan nozzle area is increased. The weight flow through the fan model increased between 7 and 9 percent, the fan and stage pressure dropped between 8 and 10 percent, and the adiabatic efficiency increased between 2 and 3 percent--the magnitude of the change dependent on the fan speed. Results from force balance measurements of fan and outlet guide vane thrust will show that as the nozzle exit area is increased the combined thrust of the fan and outlet guide vanes together also increases, between 2 and 3.5 percent, mainly due to the increase in lift from the outlet guide vanes. In terms of farfield acoustics, the overall sound power level produced by the fan stage dropped nearly linearly between 1 dB at takeoff condition and 3.5 dB at approach condition, mainly due to a decrease in the broadband noise levels. Finally, fan swirl angle survey and Laser Doppler Velocimeter mean velocity and turbulence data obtained in the fan wake will show that the swirl angles and turbulence levels within the wake decrease as the fan nozzle area increases, which helps to explain the drop in the fan broadband noise at all fan speeds.

  5. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    NASA Astrophysics Data System (ADS)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  6. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    PubMed

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  7. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  8. High capacity aerodynamic air bearing (HCAB) for laser scanning applications

    NASA Astrophysics Data System (ADS)

    Coleman, Sean M.

    2005-08-01

    A high capacity aerodynamic air bearing (HCAB) has been developed for the laser scanning market. The need for increasing accuracies in the prepress and print plate-making market is causing a shift from ball bearing to air bearing scanners. Aerostatic air bearings are a good option to meet this demand for better performance however, these bearings tend to be expensive and require an additional air supply, filtering and drying system. Commercially available aerodynamic bearings have been typically limited to small mirrors, on the order of 3.5" diameter and less than 0.5" thick. A large optical facet, hence a larger mirror, is required to generate the high number of pixels needed for this type of application. The larger optic necessitated the development of a high capacity 'self-generating' or aerodynamic air bearing that would meet the needs of the optical scanning market. Its capacity is rated up to 6.0" diameter and 1.0" thick optics. The performance of an aerodynamic air bearing is better than a ball bearing and similar to an aerostatic air bearing. It retains the low costs while eliminating the need for ancillary equipment required by an aerostatic bearing.

  9. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  10. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  11. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  12. Generation of the Ares I-X Flight Test Vehicle Aerodynamic Data Book and Comparison To Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X.; Krist, Steven E.; Compton, William B.

    2011-01-01

    A 3.5-year effort to characterize the aerodynamic behavior of the Ares I-X Flight Test Vehicle (AIX FTV) is described in this paper. The AIX FTV was designed to be representative of the Ares I Crew Launch Vehicle (CLV). While there are several differences in the outer mold line from the current revision of the CLV, the overall length, mass distribution, and flight systems of the two vehicles are very similar. This paper briefly touches on each of the aerodynamic databases developed in the program, describing the methodology employed, experimental and computational contributions to the generation of the databases, and how well the databases and underlying computations compare to actual flight test results.

  13. Aerodynamic sound of flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord Reynolds number of 104. The far-field noise is computed using Curle's extension to the Lighthill analogy (Curle 1955). An effective method for separating the physical noise source from spurious boundary contributions is developed. This allows an accurate evaluation of the Reynolds stress volume quadrupoles, in addition to the more readily computable surface dipoles due to the unsteady lift and drag. The effect of noncompact source distribution on the far-field sound is assessed using an efficient integration scheme for the Curle integral, with full account of retarded-time variations. The numerical results confirm in quantitative terms that the far-field sound is dominated by the surface pressure dipoles at low Mach number. The techniques developed are applicable to a wide range of flows, including jets and mixing layers, where the Reynolds stress quadrupoles play a prominent or even dominant role in the overall sound generation.

  14. SHEFEX - the vehicle and sub-systems for a hypersonic re-entry flight experiment

    NASA Astrophysics Data System (ADS)

    Turner, John; Hörschgen, Marcus; Turner, Peter; Ettl, Josef; Jung, Wolfgang; Stamminger, Andreas

    2005-08-01

    The purpose of the Sharp Edge Flight Experiment (SHEFEX) is to investigate the aerodynamic behaviour and thermal problems of an unconventional shape for re-entry vehicles, comprising multi-facetted surfaces with sharp edges. The main object of this experiment is the correlation of numerical analysis with real flight data in terms of the aerodynamic effects and structural concept for the thermal protection system (TPS). The Mobile Rocket Base of the German Aerospace Center (DLR) is responsible for the test flight of SHEFEX on a two stage unguided solid propellant sounding rocket which is required to provide a velocity of the order of March 7 for more than 30 seconds during atmospheric re-entry. This paper discusses the problems associated with the mission requirements and the solutions developed for the vehicle and sub-systems.

  15. Review of NASA's (National Aeronautics and Space Administration) Numerical Aerodynamic Simulation Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    NASA has planned a supercomputer for computational fluid dynamics research since the mid-1970's. With the approval of the Numerical Aerodynamic Simulation Program as a FY 1984 new start, Congress requested an assessment of the program's objectives, projected short- and long-term uses, program design, computer architecture, user needs, and handling of proprietary and classified information. Specifically requested was an examination of the merits of proceeding with multiple high speed processor (HSP) systems contrasted with a single high speed processor system. The panel found NASA's objectives and projected uses sound and the projected distribution of users as realistic as possible at this stage. The multiple-HSP, whereby new, more powerful state-of-the-art HSP's would be integrated into a flexible network, was judged to present major advantages over any single HSP system.

  16. Evaluation of the Supraglottic and Subglottic Activities Including Acoustic Assessment of the Opera-Chant Singers.

    PubMed

    Petekkaya, Emine; Yücel, Ahmet Hilmi; Sürmelioğlu, Özgür

    2017-12-28

    Opera and chant singers learn to effectively use aerodynamic components by breathing exercises during their education. Aerodynamic components, including subglottic air pressure and airflow, deteriorate in voice disorders. This study aimed to evaluate the changes in aerodynamic parameters and supraglottic structures of men and women with different vocal registers who are in an opera and chant education program. Vocal acoustic characteristics, aerodynamic components, and supraglottic structures were evaluated in 40 opera and chant art branch students. The majority of female students were sopranos, and the male students were baritone or tenor vocalists. The acoustic analyses revealed that the mean fundamental frequency was 152.33 Hz in the males and 218.77 Hz in the females. The estimated mean subglottal pressures were similar in females (14.99 cmH 2 O) and in males (14.48 cmH 2 O). Estimated mean airflow rates were also similar in both groups. The supraglottic structure compression analyses revealed partial anterior-posterior compressions in 2 tenors and 2 sopranos, and false vocal fold compression in 2 sopranos. Opera music is sung in high-pitched sounds. Attempts to sing high-pitched notes and frequently using register transitions overstrain the vocal structures. This intense muscular effort eventually traumatizes the vocal structures and causes supraglottic activity. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Active sources in the cutoff of centrifugal fans to reduce the blade tones at higher-order duct mode frequencies

    NASA Astrophysics Data System (ADS)

    Neise, W.; Koopmann, G. H.

    1991-01-01

    A previously developed (e.g., Neise and Koopmann, 1984; Koopmann et al., 1988) active noise control technique in which the unwanted acoustic signals from centrifugal fans are suppressed by placing two externally driven sources near the cutoff of the casing was applied to the frequency region where not only plane sound waves are propagational in the fan ducts but also higher-order acoustic modes. Using a specially designed fan noise testing facility, the performance of two fans (280-mm impeller diam and 508 mm diam) was monitored with static pressure taps mounted peripherally around the inlet nozzle. Experimental results show that the aerodynamically generated source pressure field around the cutoff is too complex to be successfully counterimaged by only two active sources introduced in this region. It is suggested that, for an efficient application of this noise control technique in the higher-order mode frequency regime, it is neccessary to use an active source involving larger number of individually driven loudspeakers.

  18. Investigation of turbocharger compressor surge inception by means of an acoustic two-port model

    NASA Astrophysics Data System (ADS)

    Kabral, R.; Åbom, M.

    2018-01-01

    The use of centrifugal compressors have increased tremendously in the last decade being implemented in the modern IC engine design as a key component. However, an efficient implementation is restricted by the compression system surge phenomenon. The focus in the investigation of surge inception have mainly been on the aerodynamic field while neglecting the acoustic field. In the present work a new method based on the full acoustic 2-port model is proposed for investigation of centrifugal compressor stall and surge inception. Essentially, the compressor is acoustically decoupled from the compression system, hence enabling the determination of sound generation and the quantification of internal aero-acoustic coupling effects, both independently of the connected pipe system. These frequency dependent quantities are indicating if the compressor is prone to self-sustained oscillations in case of positive feedback when installed in a system. The method is demonstrated on experimentally determined 2-port data of an automotive turbocharger centrifugal compressor under a variety of realistic operating conditions.

  19. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  20. Critical review of the trailing edge condition in steady and unsteady flow. Blade flutter in compressors and fans: Numerical simulation of the aerodynamic loading

    NASA Technical Reports Server (NTRS)

    Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

    1982-01-01

    Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

  1. Fish bioacoustics.

    PubMed

    Ladich, Friedrich

    2014-10-01

    Bony fishes have evolved a diversity of sound generating mechanisms and produce a variety of sounds. By contrast to sound generating mechanisms, which are lacking in several taxa, all fish species possess inner ears for sound detection. Fishes may also have various accessory structures such as auditory ossicles to improve hearing. The distribution of sound generating mechanisms and accessory hearing structures among fishes indicates that acoustic communication was not the driving force in their evolution. It is proposed here that different constraints influenced hearing and sound production during fish evolution, namely certain life history traits (territoriality, mate attraction) in the case of sound generating mechanisms, and adaptation to different soundscapes (ambient noise conditions) in accessory hearing structures (Ecoacoustical constraints hypothesis). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Aerodynamic flow deflector to increase large scale wind turbine power generation by 10%.

    DOT National Transportation Integrated Search

    2015-11-01

    The innovation proposed in this paper has the potential to address both the efficiency demands of wind farm owners as well as to provide a disruptive design innovation to turbine manufacturers. The aerodynamic deflector technology was created to impr...

  3. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  4. A numerical and theoretical study on the aerodynamics of a rhinoceros beetle (Trypoxlyus dichotomus) and optimization of its wing kinematics in hover

    NASA Astrophysics Data System (ADS)

    Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon

    2017-11-01

    We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.

  5. Overview of Propulsion Systems for a Mars Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.

    2001-01-01

    The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.

  6. Open Source Software Openfoam as a New Aerodynamical Simulation Tool for Rocket-Borne Measurements

    NASA Astrophysics Data System (ADS)

    Staszak, T.; Brede, M.; Strelnikov, B.

    2015-09-01

    The only way to do in-situ measurements, which are very important experimental studies for atmospheric science, in the mesoshere/lower thermosphere (MLT) is to use sounding rockets. The drawback of using rockets is the shock wave appearing because of the very high speed of the rocket motion (typically about 1000 mIs). This shock wave disturbs the density, the temperature and the velocity fields in the vicinity of the rocket, compared to undisturbed values of the atmosphere. This effect, however, can be quantified and the measured data has to be corrected not just to make it more precise but simply usable. The commonly accepted and widely used tool for this calculations is the Direct Simulation Monte Carlo (DSMC) technique developed by GA. Bird which is available as stand-alone program limited to use a single processor. Apart from complications with simulations of flows around bodies related to different flow regimes in the altitude range of MLT, that rise due to exponential density change by several orders of magnitude, a particular hardware configuration introduces significant difficulty for aerodynamical calculations due to choice of the grid sizes mainly depending on the demands on adequate DSMCs and good resolution of geometries with scale differences of factor of iO~. This makes either the calculation time unreasonably long or even prevents the calculation algorithm from converging. In this paper we apply the free open source software OpenFOAM (licensed under GNU GPL) for a three-dimensional CFD-Simulation of a flow around a sounding rocket instrumentation. An advantage of this software package, among other things, is that it can run on high performance clusters, which are easily scalable. We present the first results and discuss the potential of the new tool in applications for sounding rockets.

  7. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  8. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  9. An Aerodynamic Analysis of a Spinning Missile with Dithering Canards

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.; Nygaard, Tor A.

    2003-01-01

    A generic spinning missile with dithering canards is used to demonstrate the utility of an overset structured grid approach for simulating the aerodynamics of rolling airframe missile systems. The approach is used to generate a modest aerodynamic database for the generic missile. The database is populated with solutions to the Euler and Navier-Stokes equations. It is used to evaluate grid resolution requirements for accurate prediction of instantaneous missile loads and the relative aerodynamic significance of angle-of-attack, canard pitching sequence, viscous effects, and roll-rate effects. A novel analytical method for inter- and extrapolation of database results is also given.

  10. Rationale for the tinnitus retraining therapy trial.

    PubMed

    Formby, Craig; Scherer, Roberta

    2013-01-01

    The Tinnitus Retraining Therapy Trial (TRTT) is a National Institutes of Health-sponsored, multi-centered, placebo-controlled, randomized trial evaluating the efficacy of tinnitus retraining therapy (TRT) and its component parts, directive counseling and sound therapy, as treatments for subjective debilitating tinnitus in the military. The TRTT will enroll 228 individuals at an allocation ratio of 1:1:1 to: (1) directive counseling and sound therapy using conventional sound generators; (2) directive counseling and placebo sound generators; or (3) standard of care as administered in the military. Study centers include a Study Chair's Office, a Data Coordinating Center, and six Military Clinical Centers with treatment and data collection standardized across all clinics. The primary outcome is change in Tinnitus Questionnaire (TQ) score assessed longitudinally at 3, 6, 12, and 18-month follow-up visits. Secondary outcomes include: Change in TQ sub-scales, Tinnitus Handicap Inventory, Tinnitus Functional Index, and TRT interview visual analog scale; audiometric and psychoacoustic measures; and change in quality of life. The TRTT will evaluate TRT efficacy by comparing TRT (directive counseling and conventional sound generators) with standard of care; directive counseling by comparing directive counseling plus placebo sound generators versus standard of care; and sound therapy by comparing conventional versus placebo sound generators. We hypothesize that full TRT will be more efficacious than standard of care, directive counseling and placebo sound generators more efficacious than standard of care, and conventional more efficacious than placebo sound generators in habituating the tinnitus awareness, annoyance, and impact on the study participant's life.

  11. Detection and generation of first sound in4He by vibrating superleak transducers

    NASA Astrophysics Data System (ADS)

    Giordano, N.; Edison, N.

    1986-07-01

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid4He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation.

  12. Detection and generation of first sound in /sup 4/He by vibrating superleak transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, N.; Edison, N.

    Measurement is made of the first-sound generation and detection efficiencies of vibrating superleak transducers (VSTs) operated in superfluid /sup 4/He. This is accomplished by using an ordinary pressure transducer to generate first sound with a VST as the detector, and by using a pressure transducer to detect the sound generated by a VST. The results are in reasonably good agreement with the current theory of VST operation.

  13. Investigation to Study the Aerodynamic Ship Wake Turbulence Generated by a DD963 Destroyer.

    DTIC Science & Technology

    1979-10-01

    development of aircraft control systems and aerodynamics and ship interfacing hardware. The DD 963 had previously been designated as the smallest non...P AD-AOA3 663 BOEING VERTOL CO PHILADELPHIA PA F/6 20/4 INVESTI6ATION To STUDY THE AERODYNAMIC SHIP WAKE TURBULENCE GEN-ETCIU) OCT 79 T S GARNETT...16s9o * PHILADELPHIA. PENNSYLVANIA 10142 4 April 1980 8-1162-6192 Naval Air Development Center Warminster, Pennsylvania 18974 Attention: Code 6053

  14. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  15. A New Mechanism of Sound Generation in Songbirds

    NASA Astrophysics Data System (ADS)

    Goller, Franz; Larsen, Ole N.

    1997-12-01

    Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.

  16. Experimental verification of propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Munro, D. H.; Zimmer, J. A.

    1980-01-01

    Results of experimental measurements of the sound fields of 1/4-scale general aviation propellers are presented and experimental wake surveys and pressure signatures obtained are compared with theoretical predictions. Experiments were performed primarily on a 1C160 propeller model mounted in front of a symmetric body in an anechoic wind tunnel, and measured the thrust and torque produced by propeller at different rotation speeds and tunnel velocities, wakes at three axial distances, and sound pressure at various azimuths and tip speeds with advance ratio or tunnel velocity constant. Aerodynamic calculations of blade loading were performed using airfoil section characteristics and a modified strip analysis procedure. The propeller was then modeled as an array of point sound sources with each point characterized by the force and volume of the corresponding propeller section in order to obtain the acoustic characteristics. Measurements are found to agree with predictions over a wide range of operating conditions, tip speeds and propeller nacelle combinations, without the use of adjustable constants.

  17. The Supersonic Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1950-01-01

    An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.

  18. Harmonic Hopping, and Both Punctuated and Gradual Evolution of Acoustic Characters in Selasphorus Hummingbird Tail-Feathers

    PubMed Central

    Clark, Christopher James

    2014-01-01

    Models of character evolution often assume a single mode of evolutionary change, such as continuous, or discrete. Here I provide an example in which a character exhibits both types of change. Hummingbirds in the genus Selasphorus produce sound with fluttering tail-feathers during courtship. The ancestral character state within Selasphorus is production of sound with an inner tail-feather, R2, in which the sound usually evolves gradually. Calliope and Allen's Hummingbirds have evolved autapomorphic acoustic mechanisms that involve feather-feather interactions. I develop a source-filter model of these interactions. The ‘source’ comprises feather(s) that are both necessary and sufficient for sound production, and are aerodynamically coupled to neighboring feathers, which act as filters. Filters are unnecessary or insufficient for sound production, but may evolve to become sources. Allen's Hummingbird has evolved to produce sound with two sources, one with feather R3, another frequency-modulated sound with R4, and their interaction frequencies. Allen's R2 retains the ancestral character state, a ∼1 kHz “ghost” fundamental frequency masked by R3, which is revealed when R3 is experimentally removed. In the ancestor to Allen's Hummingbird, the dominant frequency has ‘hopped’ to the second harmonic without passing through intermediate frequencies. This demonstrates that although the fundamental frequency of a communication sound may usually evolve gradually, occasional jumps from one character state to another can occur in a discrete fashion. Accordingly, mapping acoustic characters on a phylogeny may produce misleading results if the physical mechanism of production is not known. PMID:24722049

  19. On-road and wind-tunnel measurement of motorcycle helmet noise.

    PubMed

    Kennedy, J; Carley, M; Walker, I; Holt, N

    2013-09-01

    The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise.

  20. Laryngeal Aerodynamics in Healthy Older Adults and Adults With Parkinson's Disease.

    PubMed

    Matheron, Deborah; Stathopoulos, Elaine T; Huber, Jessica E; Sussman, Joan E

    2017-03-01

    The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and individuals with PD who had a diagnosis of hypophonia. Increased vocal intensity was elicited via monaurally presented multitalker background noise. At a comfortable speaking intensity, HOAs and individuals with PD produced comparable vocal intensity, rates of vocal fold closure, and minimum flow. HOAs used smaller OQs, higher subglottal pressure, and lower peak-to-peak flow than individuals with PD. Both groups increased speaking intensity when speaking in noise to the same degree. However, HOAs produced increased intensity with greater driving pressure, faster vocal fold closure rates, and smaller OQs than individuals with PD. Monaural background noise elicited equivalent vocal intensity increases in HOAs and individuals with PD. Although both groups used laryngeal mechanisms as expected to increase sound pressure level, they used these mechanisms to different degrees. The HOAs appeared to have better control of the laryngeal mechanism to make changes to their vocal intensity.

  1. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  2. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  3. Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.

  4. Fluid mechanics and solidification investigations in low-gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.

    1980-01-01

    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  5. The Rocket Electric Field Sounding (REFS) Program: Prototype Design and Successful First Launch

    DTIC Science & Technology

    1992-01-15

    insulators surrounding the stators, and stator edges themselves, are fully covered by the rotor , so that any effects of charge on the insulators are...Jumper performed a separate analysis of the aerodynamics (primarily the " Magnus effect ") induced by the relative rotation of rocket body and shell. The...significant advantages over an aircraft in simplicity and calibration. A single cylindrical rotor covering most of the payload acts as the shutter for all

  6. A Multigrid Approach to Embedded-Grid Solvers

    DTIC Science & Technology

    1992-08-01

    previously as a Master’s Thesis at the University of Florida. Not edited by TESCO , Inc. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE...domain decomposition techniques in order to accurately model the aerodynamics of complex geometries 𔃾, 5, 11, 12, 13, 24’. Although these high...quantities subscripted by oc denote reference values in the undisturbed gas. Uv v, e e P - (10) Where • = (7b,/•)1/2, is the speed of sound in the

  7. Transonic streamline of symmetric wing under the influence unilateral oscillations characterized by the spectrum of two frequencies

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2017-10-01

    Forced high-frequency vibrations of the airfoil surface part with the amplitude almost equal to the sound velocity can change significantly the lift force of the symmetric profile streamlined at zero angle of attack. The oscillation consists of two harmonics. The ratio of harmonics frequencies values is equal to 2. The present work shows that the aerodynamic properties depend significantly on the specific energy contribution of each frequency.

  8. Rationale for the tinnitus retraining therapy trial

    PubMed Central

    Formby, Craig; Scherer, Roberta

    2013-01-01

    The Tinnitus Retraining Therapy Trial (TRTT) is a National Institutes of Health-sponsored, multi-centered, placebo-controlled, randomized trial evaluating the efficacy of tinnitus retraining therapy (TRT) and its component parts, directive counseling and sound therapy, as treatments for subjective debilitating tinnitus in the military. The TRTT will enroll 228 individuals at an allocation ratio of 1:1:1 to: (1) directive counseling and sound therapy using conventional sound generators; (2) directive counseling and placebo sound generators; or (3) standard of care as administered in the military. Study centers include a Study Chair’s Office, a Data Coordinating Center, and six Military Clinical Centers with treatment and data collection standardized across all clinics. The primary outcome is change in Tinnitus Questionnaire (TQ) score assessed longitudinally at 3, 6, 12, and 18-month follow-up visits. Secondary outcomes include: Change in TQ sub-scales, Tinnitus Handicap Inventory, Tinnitus Functional Index, and TRT interview visual analog scale; audiometric and psychoacoustic measures; and change in quality of life. The TRTT will evaluate TRT efficacy by comparing TRT (directive counseling and conventional sound generators) with standard of care; directive counseling by comparing directive counseling plus placebo sound generators versus standard of care; and sound therapy by comparing conventional versus placebo sound generators. We hypothesize that full TRT will be more efficacious than standard of care, directive counseling and placebo sound generators more efficacious than standard of care, and conventional more efficacious than placebo sound generators in habituating the tinnitus awareness, annoyance, and impact on the study participant’s life. PMID:23571304

  9. ISAC - A tool for aeroservoelastic modeling and analysis. [Interaction of Structures, Aerodynamics, and Control

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood T.

    1993-01-01

    This paper discusses the capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrate some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  10. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  11. Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner

    NASA Astrophysics Data System (ADS)

    Wu, Chengjun; Liu, Jiang; Pan, Jie

    2014-07-01

    DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

  12. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    NASA Astrophysics Data System (ADS)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  13. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  14. Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

    NASA Astrophysics Data System (ADS)

    Eggers, Th.

    2005-02-01

    The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.

  15. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  16. Characterizing Aeroelastic Systems Using Eigenanalysis, Explicitly Retaining The Aerodynamic Degrees of Freedom

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Dowell, Earl H.

    2001-01-01

    Discrete time aeroelastic models with explicitly retained aerodynamic modes have been generated employing a time marching vortex lattice aerodynamic model. This paper presents analytical results from eigenanalysis of these models. The potential of these models to calculate the behavior of modes that represent damped system motion (noncritical modes) in addition to the simple harmonic modes is explored. A typical section with only structural freedom in pitch is examined. The eigenvalues are examined and compared to experimental data. Issues regarding the convergence of the solution with regard to refining the aerodynamic discretization are investigated. Eigenvector behavior is examined; the eigenvector associated with a particular eigenvalue can be viewed as the set of modal participation factors for that particular mode. For the present formulation of the equations of motion, the vorticity for each aerodynamic element appears explicitly as an element of each eigenvector in addition to the structural dynamic generalized coordinates. Thus, modal participation of the aerodynamic degrees of freedom can be assessed in M addition to participation of structural degrees of freedom.

  17. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  18. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  19. The effect of vocal fold vertical stiffness gradient on sound production

    NASA Astrophysics Data System (ADS)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  20. A numerical investigation of the airfoil-gust interaction noise in transonic flows: Acoustic processes

    NASA Astrophysics Data System (ADS)

    Zhong, Siyang; Zhang, Xin; Gill, James; Fattah, Ryu; Sun, Yuhao

    2018-07-01

    The sound produced by airfoil-gust interaction is a significant source of broadband noise in turbofan engines or contra-rotating open rotors (CRORs). There are competing mechanisms in this regime because of the presence of shocks that were seldom considered in the previous subsonic studies. A numerical investigation of airfoil-gust interaction noise at transonic speeds is undertaken in this work. By introducing vortical gust/synthetic turbulence to specified regions in the computational domain to interact with different elements in the flow field, it is shown that the dominant sound source is caused by leading edge-gust interaction. It is demonstrated that both streamwise and transverse disturbances interact with the near-field non-uniform mean flow and shocks can produce sound using a local gust injection method. The propagation of sound is significantly influenced by the presence of the shocks, and the far field radiation pattern is changed. We also study the effect of gust strength on the near and far field properties. The linearity is maintained for gust strength smaller than 1.0% of the mean flow velocity. Otherwise, the shocks may experience oscillations that will alter the near-field aerodynamics and far-field radiation.

  1. On the role of glottis-interior sources in the production of voiced sound.

    PubMed

    Howe, M S; McGowan, R S

    2012-02-01

    The voice source is dominated by aeroacoustic sources downstream of the glottis. In this paper an investigation is made of the contribution to voiced speech of secondary sources within the glottis. The acoustic waveform is ultimately determined by the volume velocity of air at the glottis, which is controlled by vocal fold vibration, pressure forcing from the lungs, and unsteady backreactions from the sound and from the supraglottal air jet. The theory of aerodynamic sound is applied to study the influence on the fine details of the acoustic waveform of "potential flow" added-mass-type glottal sources, glottis friction, and vorticity either in the glottis-wall boundary layer or in the portion of the free jet shear layer within the glottis. These sources govern predominantly the high frequency content of the sound when the glottis is near closure. A detailed analysis performed for a canonical, cylindrical glottis of rectangular cross section indicates that glottis-interior boundary/shear layer vortex sources and the surface frictional source are of comparable importance; the influence of the potential flow source is about an order of magnitude smaller. © 2012 Acoustical Society of America

  2. X-33 Aerodynamic and Aeroheating Computations for Wind Tunnel and Flight Conditions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Thompson, Richard A.; Murphy, Kelly J.; Nowak, Robert J.; Riley, Christopher J.; Wood, William A.; Alter, Stephen J.; Prabhu, Ramadas K.

    1999-01-01

    This report provides an overview of hypersonic Computational Fluid Dynamics research conducted at the NASA Langley Research Center to support the Phase II development of the X-33 vehicle. The X-33, which is being developed by Lockheed-Martin in partnership with NASA, is an experimental Single-Stage-to-Orbit demonstrator that is intended to validate critical technologies for a full-scale Reusable Launch Vehicle. As part of the development of the X-33, CFD codes have been used to predict the aerodynamic and aeroheating characteristics of the vehicle. Laminar and turbulent predictions were generated for the X 33 vehicle using two finite- volume, Navier-Stokes solvers. Inviscid solutions were also generated with an Euler code. Computations were performed for Mach numbers of 4.0 to 10.0 at angles-of-attack from 10 deg to 48 deg with body flap deflections of 0, 10 and 20 deg. Comparisons between predictions and wind tunnel aerodynamic and aeroheating data are presented in this paper. Aeroheating and aerodynamic predictions for flight conditions are also presented.

  3. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  4. Inclusion of unsteady aerodynamics in longitudinal parameter estimation from flight data. [use of vortices and mathematical models for parameterization from flight characteristics

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Wells, W. R.; Keskar, D. A.

    1979-01-01

    A simple vortex system, used to model unsteady aerodynamic effects into the rigid body longitudinal equations of motion of an aircraft, is described. The equations are used in the development of a parameter extraction algorithm. Use of the two parameter-estimation modes, one including and the other omitting unsteady aerodynamic modeling, is discussed as a means of estimating some acceleration derivatives. Computer generated data and flight data, used to demonstrate the use of the parameter-extraction algorithm are studied.

  5. Autonomous momentum management for space station

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.

  6. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  7. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition

    NASA Technical Reports Server (NTRS)

    Thomas, Almuttil M.; Tiwari, Surendra N.

    1994-01-01

    Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.

  8. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  9. Quantitative analysis of professionally trained versus untrained voices.

    PubMed

    Siupsinskiene, Nora

    2003-01-01

    The aim of this study was to compare healthy trained and untrained voices as well as healthy and dysphonic trained voices in adults using combined voice range profile and aerodynamic tests, to define the normal range limiting values of quantitative voice parameters and to select the most informative quantitative voice parameters for separation between healthy and dysphonic trained voices. Three groups of persons were evaluated. One hundred eighty six healthy volunteers were divided into two groups according to voice training: non-professional speakers group consisted of 106 untrained voices persons (36 males and 70 females) and professional speakers group--of 80 trained voices persons (21 males and 59 females). Clinical group consisted of 103 dysphonic professional speakers (23 males and 80 females) with various voice disorders. Eighteen quantitative voice parameters from combined voice range profile (VRP) test were analyzed: 8 of voice range profile, 8 of speaking voice, overall vocal dysfunction degree and coefficient of sound, and aerodynamic maximum phonation time. Analysis showed that healthy professional speakers demonstrated expanded vocal abilities in comparison to healthy non-professional speakers. Quantitative voice range profile parameters- pitch range, high frequency limit, area of high frequencies and coefficient of sound differed significantly between healthy professional and non-professional voices, and were more informative than speaking voice or aerodynamic parameters in showing the voice training. Logistic stepwise regression revealed that VRP area in high frequencies was sufficient to discriminate between healthy and dysphonic professional speakers for male subjects (overall discrimination accuracy--81.8%) and combination of three quantitative parameters (VRP high frequency limit, maximum voice intensity and slope of speaking curve) for female subjects (overall model discrimination accuracy--75.4%). We concluded that quantitative voice assessment with selected parameters might be useful for evaluation of voice education for healthy professional speakers as well as for detection of vocal dysfunction and evaluation of rehabilitation effect in dysphonic professionals.

  10. An integrated experimental and computational approach to material selection for sound proof thermally insulted enclosure of a power generation system

    NASA Astrophysics Data System (ADS)

    Waheed, R.; Tarar, W.; Saeed, H. A.

    2016-08-01

    Sound proof canopies for diesel power generators are fabricated with a layer of sound absorbing material applied to all the inner walls. The physical properties of the majority of commercially available sound proofing materials reveal that a material with high sound absorption coefficient has very low thermal conductivity. Consequently a good sound absorbing material is also a good heat insulator. In this research it has been found through various experiments that ordinary sound proofing materials tend to rise the inside temperature of sound proof enclosure in certain turbo engines by capturing the heat produced by engine and not allowing it to be transferred to atmosphere. The same phenomenon is studied by creating a finite element model of the sound proof enclosure and performing a steady state and transient thermal analysis. The prospects of using aluminium foam as sound proofing material has been studied and it is found that inside temperature of sound proof enclosure can be cut down to safe working temperature of power generator engine without compromise on sound proofing.

  11. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.

  12. Incremental Aerodynamic Coefficient Database for the USA2

    NASA Technical Reports Server (NTRS)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  13. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  14. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  15. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  16. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L., Jr.

    1978-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  17. Monitoring the state of the human airways by analysis of respiratory sound

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Patterson, J. L. Jr

    1979-01-01

    A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.

  18. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  19. Fluid-acoustic interactions and their impact on pathological voiced speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.; Plesniak, Michael W.

    2011-11-01

    Voiced speech is produced by vibration of the vocal fold structures. Vocal fold dynamics arise from aerodynamic pressure loadings, tissue properties, and acoustic modulation of the driving pressures. Recent speech science advancements have produced a physiologically-realistic fluid flow solver (BLEAP) capable of prescribing asymmetric intraglottal flow attachment that can be easily assimilated into reduced order models of speech. The BLEAP flow solver is extended to incorporate acoustic loading and sound propagation in the vocal tract by implementing a wave reflection analog approach for sound propagation based on the governing BLEAP equations. This enhanced physiological description of the physics of voiced speech is implemented into a two-mass model of speech. The impact of fluid-acoustic interactions on vocal fold dynamics is elucidated for both normal and pathological speech through linear and nonlinear analysis techniques. Supported by NSF Grant CBET-1036280.

  20. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  1. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  2. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.

    PubMed

    Di Renzo, M; Urzay, J

    2018-04-26

    Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.

  3. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  4. Contributions of TetrUSS to Project Orion

    NASA Technical Reports Server (NTRS)

    Mcmillin, Susan N.; Frink, Neal T.; Kerimo, Johannes; Ding, Djiang; Nayani, Sudheer; Parlette, Edward B.

    2011-01-01

    The NASA Constellation program has relied heavily on Computational Fluid Dynamics simulations for generating aerodynamic databases and design loads. The Orion Project focuses on the Orion Crew Module and the Orion Launch Abort Vehicle. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been applied in a supporting role to the Crew Exploration Vehicle Aerosciences Project for investigating various aerodynamic sensitivities and supplementing the aerodynamic database. This paper provides an overview of the contributions from the TetrUSS team to the Project Orion Crew Module and Launch Abort Vehicle aerodynamics, along with selected examples to highlight the challenges encountered along the way. A brief description of geometries and tasks will be discussed followed by a description of the flow solution process that produced production level computational solutions. Four tasks conducted by the USM3D team will be discussed to show how USM3D provided aerodynamic data for inclusion in the Orion aero-database, contributed data for the build-up of aerodynamic uncertainties for the aero-database, and provided insight into the flow features about the Crew Module and the Launch Abort Vehicle.

  5. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  6. Autonomous momentum management for space station, exhibit A

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.

  7. Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.

    1990-01-01

    The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.

  8. SHEFEX II - Aerodynamic Re-Entry Controlled Sharp Edge Flight Experiment

    NASA Astrophysics Data System (ADS)

    Longo, J. M. A.; Turner, J.; Weihs, H.

    2009-01-01

    In this paper the basic goals and architecture of the SHEFEX II mission is presented. Also launched by a two staged sounding rocket system SHEFEX II is a consequent next step in technology test and demonstration. Considering all experience and collected flight data obtained during the SHEFEX I Mission, the test vehicle has been re-designed and extended by an active control system, which allows active aerodynamic control during the re-entry phase. Thus, ceramic based aerodynamic control elements like rudders, ailerons and flaps, mechanical actuators and an automatic electronic control unit has been implemented. Special focus is taken on improved GNC Elements. In addition, some other experiments including an actively cooled thermal protection element, advanced sensor equipment, high temperature antenna inserts etc. are part of the SHEFEX II experimental payload. A final 2 stage configuration has been selected considering Brazilian solid rocket boosters derived from the S 40 family. During the experiment phase a maximum entry velocity of Mach around 10 is expected for 50 seconds. Considering these flight conditions, the heat loads are not representative for a RLV re-entry, however, it allows to investigate the principal behaviour of such a facetted ceramic TPS, a sharp leading edge at the canards and fins and all associated gas flow effects and their structural response.

  9. Measurement and Numerical Calculation of Force on a Particle in a Strong Acoustic Field Required for Levitation

    NASA Astrophysics Data System (ADS)

    Kozuka, Teruyuki; Yasui, Kyuichi; Tuziuti, Toru; Towata, Atsuya; Lee, Judy; Iida, Yasuo

    2009-07-01

    Using a standing-wave field generated between a sound source and a reflector, it is possible to trap small objects at nodes of the sound pressure distribution in air. In this study, a sound field generated under a flat or concave reflector was studied by both experimental measurement and numerical calculation. The calculated result agrees well with the experimental data. The maximum force generated between a sound source of 25.0 mm diameter and a concave reflector is 0.8 mN in the experiment. A steel ball of 2.0 mm in diameter was levitated in the sound field in air.

  10. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  11. F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  12. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  13. Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.

  14. Aerodynamic database development of the ESA intermediate experimental vehicle

    NASA Astrophysics Data System (ADS)

    Pezzella, Giuseppe; Marino, Giuliano; Rufolo, Giuseppe C.

    2014-01-01

    This work deals with the aerodynamic database development of the Intermediate Experiment Vehicle. The aerodynamic analysis, carried out for the whole flight scenario, relies on computational fluid dynamics, wind tunnel test, and engineering-based design data generated during the project phases, from rarefied flow conditions, to hypersonic continuum flow up to reach subsonic speeds regime. Therefore, the vehicle aerodynamic database covers the range of Mach number, angle of attack, sideslip and control surface deflections foreseen for the vehicle nominal re-entry. In particular, the databasing activities are developed in the light of build-up approach. This means that all aerodynamic force and moment coefficients are provided by means of a linear summation over certain number of incremental contributions such as, for example, effect of sideslip angle, aerodynamic control surface effectiveness, etc. Each force and moment coefficient is treated separately and appropriate equation is provided, in which all the pertinent contributions for obtaining the total coefficient for any selected flight conditions appear. To this aim, all the available numerical and experimental aerodynamic data are gathered in order to explicit the functional dependencies from each aerodynamic model addend through polynomial expressions obtained with the least squares method. These polynomials are function of the primary variable that drives the phenomenon whereas secondary dependencies are introduced directly into its unknown coefficients which are determined by means of best-fitting algorithms.

  15. A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

    NASA Astrophysics Data System (ADS)

    Langthjem, Mikael A.; Nakano, Masami

    2018-05-01

    The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

  16. Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency.

    PubMed

    Timm, Jana; Schönwiesner, Marc; Schröger, Erich; SanMiguel, Iria

    2016-07-01

    Stimuli caused by our own movements are given special treatment in the brain. Self-generated sounds evoke a smaller brain response than externally generated ones. This attenuated response may reflect a predictive mechanism to differentiate the sensory consequences of one's own actions from other sensory input. It may also relate to the feeling of being the agent of the movement and its effects, but little is known about how sensory suppression of brain responses to self-generated sounds is related to judgments of agency. To address this question, we recorded event-related potentials in response to sounds initiated by button presses. In one condition, participants perceived agency over the production of the sounds, whereas in another condition, participants experience an illusory lack of agency caused by changes in the delay between actions and effects. We compared trials in which the timing of button press and sound was physically identical, but participants' agency judgment differed. Results show reduced amplitudes of the auditory N1 component in response to self-generated sounds irrespective of agency experience, whilst P2 effects correlate with the perception of agency. Our findings suggest that suppression of the auditory N1 component to self-generated sounds does not depend on adaptation to specific action-effect time delays, and does not determine agency judgments, however, the suppression of the P2 component might relate more directly to the experience of agency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The aerodynamics of free-flight maneuvers in Drosophila.

    PubMed

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2003-04-18

    Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.

  18. Do body mass index and fat volume influence vocal quality, phonatory range, and aerodynamics in females?

    PubMed

    Barsties, Ben; Verfaillie, Rudi; Roy, Nelson; Maryn, Youri

    2013-01-01

    To analyze the impact of body weight and body fat volume on selected parameters of vocal quality, phonatory range, and aerodynamics in females. Based on measurements of body mass index in combination with body fat volume, 29 normophonic female subjects were classified as normal weight, underweight, and obese. Voice quality was investigated via auditory-perceptual ratings of breathiness, roughness, and overall dysphonia severity, via various acoustic measures and a multiparametric index. Phonatory range performance was examined using selected measures of the voice range profile and speech range profile. Measures of vocally relevant aerodynamics included vital capacity (i.e., VC), expected VC, phonation quotient, and maximum phonation time (i.e., MPT). Significant differences between the three weight groups were found across several measures of intensity, VC, MPT, and shimmer. As compared to the other groups, significantly higher values of maximum and minimum intensity levels, as well as sound pressure level during habitual running speech were observed for the obese group (all p-values<0.05); whereas, the underweight group had significantly lower values for VC and ratio of expected to measured VC (p-values<0.01). Furthermore, underweight subjects differed significantly as compared to normal weight subjects with lower MPT (p=0.025) and higher lowest-F0 (p=0.035). Finally the obese group showed significantly lower shimmer values than the normal weight subjects (p<0.05). Body weight and body fat volume appear to influence select objective measures of voice quality, vocal aerodynamics, and phonatory range performance.

  19. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.

    PubMed

    Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu

    2010-06-01

    An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.

  20. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Muljadi, E.; Jonkman, J.

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. Asmore » described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.« less

  1. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  2. Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array

    NASA Astrophysics Data System (ADS)

    Kao, Yi-Huan

    An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.

  3. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  4. Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vegendla, Prasad; Sofu, Tanju; Saha, Rohit

    2017-01-31

    Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimummore » curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.« less

  5. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  6. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  7. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  8. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  9. A smoke generator system for aerodynamic flight research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Curry, Robert E.; Tracy, Gene V.

    1989-01-01

    A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.

  10. Vortex-flow aerodynamics - An emerging design capability

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1981-01-01

    Promising current theoretical and simulational developments in the field of leading edge vortex-generating delta, arrow ogival wings are reported, along with the history of theory and experiment leading to them. The effects of wing slenderness, leading edge nose radius, Mach number and incidence variations, and planform on the onset of vortex generation and redistribution of aerodynamic loads are considered. The range of design possibilities in this field are consequential for the future development of strategic aircraft, supersonic transports and commercial cargo aircraft which will possess low-speed, high-lift capability by virtue of leading edge vortex generation and control without recourse to heavy and expensive leading edge high-lift devices and compound airfoils. Attention is given to interactive graphics simulation devices recently developed.

  11. An aerodynamic model for insect flapping wings in forward flight.

    PubMed

    Han, Jong-Seob; Chang, Jo Won; Han, Jae-Hung

    2017-03-31

    This paper proposes a semi-empirical quasi-steady aerodynamic model of a flapping wing in forward flight. A total of 147 individual cases, which consisted of advance ratios J of 0 (hovering), 0.125, 0.25, 0.5, 0.75, 1 and  ∞, and angles of attack α of  -5 to 95° at intervals of 5°, were examined to extract the aerodynamic coefficients. The Polhamus leading-edge suction analogy and power functions were then employed to establish the aerodynamic model. In order to preserve the existing level of simplicity, K P and K V , the correction factors of the potential and vortex force models, were rebuilt as functions of J and α. The estimations were nearly identical to direct force/moment measurements which were obtained from both artificial and practical wingbeat motions of a hawkmoth. The model effectively compensated for the influences of J, particularly showing outstanding moment estimation capabilities. With this model, we found that using a lower value of α during the downstroke would be an effective strategy for generating adequate lift in forward flight. The rotational force and moment components had noticeable portions generating both thrust and counteract pitching moment during pronation. In the upstroke phase, the added mass component played a major role in generating thrust in forward flight. The proposed model would be useful for a better understanding of flight stability, control, and the dynamic characteristics of flapping wing flyers, and for designing flapping-wing micro air vehicles.

  12. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.

    PubMed

    Aono, Hikaru; Liang, Fuyou; Liu, Hao

    2008-01-01

    We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.

  13. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  14. Smart vortex generator transformed by change in ambient temperature and aerodynamic force

    NASA Astrophysics Data System (ADS)

    Ikeda, Tadashige; Masuda, Shinya; Ueda, Tetsuhiko

    2007-04-01

    A Smart Vortex Generator (SVG) concept has been proposed, where the SVG is autonomously transformed between an upright vortex-generating position in take-off and landing and a flat drag-reducing position in a cruise. This SVG is made of a Shape Memory Alloy (SMA), which is in the austenite phase and memorizes the upright position at high temperatures of the take-off and landing. At low temperatures during ascent the SVG is transformed into a martensite phase, and it lies flat against a base structure due to external or/and internal forces. In this paper, we examine whether the SVG can be transformed into the drag-reducing position by an aerodynamic force. To this end, numerical simulations are carried out with a simple line element model. The aerodynamic force applied on the SVG is calculated by a commercial CFD program. Result reveals that this SVG can be transformed from the upright vortex-generating position into the drag-reducing position by just an airplane climbing, and vice versa, if the SMA applied to the SVG has the two-way shape memory effect. If the SMA has the one-way shape memory effect, it is necessary to reduce the stiffness of the SVG or/and use a counter spring.

  15. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  16. Reactive Flow Control of Delta Wing Vortex (Postprint)

    DTIC Science & Technology

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  17. Does a pneumotach accurately characterize voice function?

    NASA Astrophysics Data System (ADS)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  18. Noise Prediction of NASA SR2 Propeller in Transonic Conditions

    NASA Astrophysics Data System (ADS)

    Gennaro, Michele De; Caridi, Domenico; Nicola, Carlo De

    2010-09-01

    In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.

  19. Structural and Optical Properties Studies Of Ar2+ Ion Implanted Mn Deposited GaAs

    NASA Astrophysics Data System (ADS)

    De Gennaro, Michele; Caridi, Domenico; de Nicola, Carlo

    2010-09-01

    In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.

  20. AERODYNAMIC SOUND OF A BODY IN ARBITRARY, DEFORMABLE MOTION, WITH APPLICATION TO PHONATION

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2012-01-01

    The method of tailored Green’s functions advocated by Doak (Proceedings of the Royal Society A254 (1960) 129 – 145.) for the solution of aeroacoustic problems is used to analyse the contribution of the mucosal wave to self-sustained modulation of air flow through the glottis during the production of voiced speech. The amplitude and phase of the aerodynamic surface force that maintains vocal fold vibration are governed by flow separation from the region of minimum cross-sectional area of the glottis, which moves back and forth along its effective length accompanying the mucosal wave peak. The correct phasing is achieved by asymmetric motion of this peak during the opening and closing phases of the glottis. Limit cycle calculations using experimental data of Berry et al. (Journal of the Acoustical Society of America 110 (2001) 2539 – 2547.) obtained using an excised canine hemilarynx indicate that the mechanism is robust enough to sustain oscillations over a wide range of voicing conditions. PMID:24031098

  1. Transonic empirical configuration design process

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T.

    1983-01-01

    This lecture describes some of the experimental research pertaining to transonic configuration development conducted by the Transonic Aerodynamics Branch of the NASA Langley Research Center. Discussions are presented of the following: use of florescent oil films for the study of surface boundary layer flows; the severe effect of wind tunnel wall interference on the measured configuration drag rise near the speed of sound as determined by a comparison between wind tunnel and free air results; the development of a near sonic transport configuration incorporating a supercritical wing and an indented fuselage, designed on the basis of the area rule with a modification to account for the presence of local supersonic flow above the wing; a device for improving the transonic pitch up of swept wings with very little added drag at the cruise condition; a means for reducing the large transonic aerodynamic interference between the wing, fuselage, nacelle and pylon for a for a fuselage mounted nacelle having the inlet above the wing; and methods for reducing the transonic interference between flows over a winglet and the wing.

  2. ISAC: A tool for aeroservoelastic modeling and analysis

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood Tiffany

    1993-01-01

    The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  3. Aerodynamic preliminary analysis system 2. Part 2: User's manuals

    NASA Technical Reports Server (NTRS)

    Divan, P.

    1981-01-01

    An aerodynamic analysis system based on potential theory at subsonic/supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional chracteristics may be generated. The analysis has been implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Typical simulation indicates that program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  4. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  5. An early glimpse at long-term subsonic commercial turbofan technology requirements. [fuel conservation

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Dugan, J. F.

    1975-01-01

    This paper reports on the exploratory investigation and initial findings of the study of future turbofan concepts to conserve fuel. To date, these studies have indicated a potential reduction in cruise thrust specific fuel consumption in 1990 turbofans of approximately 15% relative to present day new engines through advances in internal aerodynamics, structure-mechanics, and materials. Advanced materials also offer the potential for fuel savings through engine weight reduction. Further studies are required to balance fuel consumption reduction with sound airlines operational economics.

  6. Longitudinal Stability and Trim Changes at Speeds Near the Speed of Sound

    DTIC Science & Technology

    1944-01-01

    oeeaslcnally lanrcrou, tn their^ffec?«’ £ Ceff?o^l G 2891! U- 76, </J6> Chief «none these effects , on complete aircraft, la * lar^e laoreaae...aerodynamic centre irrjfe- - - cos 0)dB " 2/fc-l Jß ,in 2MO To >\\pply these cxprtrrlons to conventional aircraft, the effects of the vortex system...nocond fcrra it in seen that the effectiveness of a control is much reduced at supersonic speeds, if we empöre the chonre in lift with chnnf-inr

  7. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  8. Universal mechanisms of sound production and control in birds and mammals

    PubMed Central

    Elemans, C.P.H; Rasmussen, J.H.; Herbst, C.T.; Düring, D.N.; Zollinger, S.A.; Brumm, H.; Srivastava, K.; Svane, N.; Ding, M.; Larsen, O.N.; Sober, S.J.; Švec, J.G.

    2015-01-01

    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans. PMID:26612008

  9. Universal mechanisms of sound production and control in birds and mammals.

    PubMed

    Elemans, C P H; Rasmussen, J H; Herbst, C T; Düring, D N; Zollinger, S A; Brumm, H; Srivastava, K; Svane, N; Ding, M; Larsen, O N; Sober, S J; Švec, J G

    2015-11-27

    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans.

  10. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  11. Prediction, Measurement, and Suppression of High Temperature Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Bhat, T. R. S.; Jansen, Bernard J.

    1999-01-01

    The photograph in figure 1 displays a water cooled round convergent-divergent supersonic nozzle operating slightly overexpanded near 2460 F. The nozzle is designed to produce shock free flow near this temperature at Mach 2. The exit diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to establish properties of the sound field associated with high temperature supersonic jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of the compressible Rayleigh model to account for principle physical features of the observed sound emission. The experiment is conducted statically (i.e. M(sub f) = 0.) in the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic measurements are obtained in this study along with numerical plume simulation and theoretical prediction of jet noise. Detailed results from this study are reported previously by Seiner, Ponton, Jansen, and Lagen.

  12. Low-speed wind tunnel tests of a 50.8-centimeter (20-in.) 1.15-pressure-ratio fan engine model

    NASA Technical Reports Server (NTRS)

    Wesoky, H. L.; Abbott, J. M.; Albers, J. A.; Dietrich, D. A.

    1974-01-01

    At a typical STOL aircraft takeoff and landing velocity, wind tunnel aerodynamic and acoustic measurements demonstrated that an inlet lip-area contraction ratio of 1.35 was superior to a ratio of 1.26 at high incidence angles. A 17 percent reduction in net thrust and an increase of 9 decibels in sound pressure level at the blade passing frequency resulted from inlet flow separation at an incidence angle of 50 deg with the 1.26-contraction-ratio inlet. Reverse-thrust forces obtained with blade rotation through the feathered angle were 1.8 times larger than with blade rotation through the flat angle. Reverse-thrust force was reduced from 30 to 50 percent and sound pressure level increased from 3 to 7 decibels at the blade passing frequency between the wind-tunnel-off condition and a typical STOL aircraft landing velocity.

  13. Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)

    PubMed Central

    Bredlau, Justin P.; Mohajer, Yasha J.; Cameron, Timothy M.; Kester, Karen M.; Fine, Michael L.

    2013-01-01

    Background Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ∼220 Hz, but the sound waveform indicates a higher frequency resonance ∼5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ∼1000. Conclusions and Significance Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production. PMID:23630622

  14. A general introduction to aeroacoustics and atmospheric sound

    NASA Technical Reports Server (NTRS)

    Lighthill, James

    1992-01-01

    A single unifying principle (based upon the nonlinear 'momentum-flux' effects produced when different components of a motion transport different components of its momentum) is used to give a broad scientific background to several aspects of the interaction between airflows and atmospheric sound. First, it treats the generation of sound by airflows of many different types. These include, for example, jet-like flows involving convected turbulent motions (with the resulting aeroacoustic radiation sensitively dependent on the Mach number of convection) and they include, as an extreme case, the supersonic 'boom' (shock waves generated by a supersonically convected flow pattern). Next, an analysis is given of sound propagation through nonuniformly moving airflows, and the exchange is quantified of energy between flow and sound; while, finally, problems are examined of how sound waves 'on their own' may generate the airflows known as acoustic streaming.

  15. On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lai, K. C.; Lim, T. T.; Yeo, K. S.

    2010-12-01

    Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.

  16. Sound-burst Generator for Measuring Coal Properties

    NASA Technical Reports Server (NTRS)

    Hadden, W. J. J.; Mills, J. M.; Pierce, A. D.

    1982-01-01

    Acoustical properties of coal can be measured accurately and with relative ease with aid of digital two-channel sine-wave sound generator. Generator is expected to provide information for development of acoustic devices for measuring thickness of coal in longwall mining. In echo-cancellation measurements, sound bursts are sent to coal sample from opposite directions. Transmitted and reflected amplitudes and phases are measured by transducers to determine coal properties.

  17. 49 CFR 325.39 - Measurement procedure; highway operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall be made of the sound level generated by a motor vehicle operating through the measurement area on..., acceleration or deceleration. (b) The sound level generated by the motor vehicle is the highest reading observed on the sound level measurement system as the vehicle passes through the measurement area...

  18. 49 CFR 325.39 - Measurement procedure; highway operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall be made of the sound level generated by a motor vehicle operating through the measurement area on..., acceleration or deceleration. (b) The sound level generated by the motor vehicle is the highest reading observed on the sound level measurement system as the vehicle passes through the measurement area...

  19. A neuronal network model with simplified tonotopicity for tinnitus generation and its relief by sound therapy.

    PubMed

    Nagashino, Hirofumi; Kinouchi, Yohsuke; Danesh, Ali A; Pandya, Abhijit S

    2013-01-01

    Tinnitus is the perception of sound in the ears or in the head where no external source is present. Sound therapy is one of the most effective techniques for tinnitus treatment that have been proposed. In order to investigate mechanisms of tinnitus generation and the clinical effects of sound therapy, we have proposed conceptual and computational models with plasticity using a neural oscillator or a neuronal network model. In the present paper, we propose a neuronal network model with simplified tonotopicity of the auditory system as more detailed structure. In this model an integrate-and-fire neuron model is employed and homeostatic plasticity is incorporated. The computer simulation results show that the present model can show the generation of oscillation and its cessation by external input. It suggests that the present framework is promising as a modeling for the tinnitus generation and the effects of sound therapy.

  20. Repeated imitation makes human vocalizations more word-like.

    PubMed

    Edmiston, Pierce; Perlman, Marcus; Lupyan, Gary

    2018-03-14

    People have long pondered the evolution of language and the origin of words. Here, we investigate how conventional spoken words might emerge from imitations of environmental sounds. Does the repeated imitation of an environmental sound gradually give rise to more word-like forms? In what ways do these forms resemble the original sounds that motivated them (i.e. exhibit iconicity)? Participants played a version of the children's game 'Telephone'. The first generation of participants imitated recognizable environmental sounds (e.g. glass breaking, water splashing). Subsequent generations imitated the previous generation of imitations for a maximum of eight generations. The results showed that the imitations became more stable and word-like, and later imitations were easier to learn as category labels. At the same time, even after eight generations, both spoken imitations and their written transcriptions could be matched above chance to the category of environmental sound that motivated them. These results show how repeated imitation can create progressively more word-like forms while continuing to retain a resemblance to the original sound that motivated them, and speak to the possible role of human vocal imitation in explaining the origins of at least some spoken words. © 2018 The Author(s).

  1. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin

    2016-03-01

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.

  2. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  3. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  4. Apparatus and method for aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Williamson, John W. (Inventor); al-Darwish, Mohamad M. (Inventor); Cashen, Grant E. (Inventor)

    1993-01-01

    An apparatus for the levitation of a liquid drop by a fluid flow comprising a profile generator, a fluid flow supply means operatively connected to the profile generator. The profile generator includes an elongate cylindrical shell in which is contained a profiling means for configuring the velocity profile of the fluid flow exiting the profile generator.

  5. Rapid Generation of Conceptual and Preliminary Design Aerodynamic Data by a Computer Aided Process

    DTIC Science & Technology

    2000-06-01

    methodologies, oftenpeculiar requirements such as flexibility and robustness of blended with sensible ’guess-estimated’ values. Due to peculiaremequirments...from the ’raw’ appropriate blending interpolation between the given data aerodynamic data is a process which certainly requires yields generally...like component patches are described by defining the evolution of a conic curve between two opposite boundary curves by means of blending functions

  6. Biomechanics and biomimetics in insect-inspired flight systems

    PubMed Central

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-01-01

    Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780

  7. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds.

    PubMed

    Johansson, L Christoffer; Maeda, Masateru; Henningsson, Per; Hedenström, Anders

    2018-01-01

    How aerodynamic power required for animal flight varies with flight speed determines optimal speeds during foraging and migratory flight. Despite its relevance, aerodynamic power provides an elusive quantity to measure directly in animal flight. Here, we determine the aerodynamic power from wake velocity fields, measured using tomographical particle image velocimetry, of pied flycatchers flying freely in a wind tunnel. We find a shallow U-shaped power curve, which is flatter than expected by theory. Based on how the birds vary body angle with speed, we speculate that the shallow curve results from increased body drag coefficient and body frontal area at lower flight speeds. Including modulation of body drag in the model results in a more reasonable fit with data than the traditional model. From the wake structure, we also find a single starting vortex generated from the two wings during the downstroke across flight speeds (1-9 m s -1 ). This is accomplished by the arm wings interacting at the beginning of the downstroke, generating a unified starting vortex above the body of the bird. We interpret this as a mechanism resulting in a rather uniform downwash and low induced power, which can help explain the higher aerodynamic performance in birds compared with bats. © 2018 The Author(s).

  8. Field sampling of loose erodible material: A new method to consider the full particle-size range

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Gill, Thomas E.

    2017-04-01

    The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.

  9. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    PubMed

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  10. Non-Contact Ultrasonic Imaging

    DTIC Science & Technology

    2016-10-31

    difficult to measure because of the amount of sound at the difference frequency still produced in the air. Nonlinear Reflection off of a Curved Surface...separate sound generated in air from sound generated in liquid. Two incoming rays incident upon a curved surface may reflect collinearly. At a different... sound reflecting off of the air-water interface from the air, the energy density of the incident and reflected waves are around 1000x that of the

  11. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  12. Transonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/LaRC 8 foot TPT (LA62). [wind tunnel stability tests in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Gamble, J. D.; Buhl, M. L., Jr.; Parrell, H.

    1975-01-01

    The objective of the test was to generate a detailed aerodynamic data base which can be used to substantiate the aerodynamic design data book for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in Mach number, angle of attack, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -4 deg to 20 deg, at angles of sideslip of 0 deg and 2 deg. The test Mach numbers were from 0.35 to 1.20. The Reynolds number for most of the test was held at a constant 3.5 million per foot.

  13. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  14. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  15. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...

  16. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...

  17. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  18. Pediatric normative data for the KayPENTAX phonatory aerodynamic system model 6600.

    PubMed

    Weinrich, Barbara; Brehm, Susan Baker; Knudsen, Courtney; McBride, Stephanie; Hughes, Michael

    2013-01-01

    The objectives of this study were to (1) establish a preliminary pediatric normative database for the KayPENTAX Phonatory Aerodynamic System (PAS) Model 6600 (KayPENTAX Corp, Montvale, NJ) and (2) identify whether the data obtained were age- and/or gender-dependent. Prospective data collection across groups. A sample of 60 children (30 females and 30 males) with normal voices was divided into three age groups (6.0-9.11, 10.0-13.11, 14.0-17.11 years) with equal distribution of males and females within each group. Five PAS protocols (vital capacity, maximum sustained phonation, comfortable sustained phonation, variation in sound pressure level, voicing efficiency) were used to collect 45 phonatory aerodynamic measures. Measurements for the 45 PAS parameters examined revealed 13 parameters to have a difference that was statistically significant by age and/or gender. There was a significant age×gender interaction for mean pitch in the four protocols that reported this measure. Males in the oldest group had significantly lower mean pitch values than the middle and young groups. Statistically significant main effect differences were noted for seven parameters across three age groups (expiratory volume, expiratory airflow duration, phonation time, pitch range (in 2 protocols), aerodynamic resistance, acoustic ohms). Significant main effect differences for genders (males > females) were found for expiratory volume and peak expiratory airflow. The age- and gender-related differences found for some parameters within each of the five protocols are important for the interpretation of data obtained from PAS. These results could be explained by developmental changes that occur in the male and female respiratory and laryngeal systems. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation

    PubMed Central

    Krishnan, Krishnamoorthy; Ben-Gida, Hadar; Kirchhefer, Adam J.; Kopp, Gregory A.; Guglielmo, Christopher G.

    2017-01-01

    Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named ‘double branch’). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag. PMID:28163881

  20. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration

    PubMed Central

    Zañartu, Matías; Ho, Julio C.; Mehta, Daryush D.; Hillman, Robert E.; Wodicka, George R.

    2014-01-01

    A model-based inverse filtering scheme is proposed for an accurate, non-invasive estimation of the aerodynamic source of voiced sounds at the glottis. The approach, referred to as subglottal impedance-based inverse filtering (IBIF), takes as input the signal from a lightweight accelerometer placed on the skin over the extrathoracic trachea and yields estimates of glottal airflow and its time derivative, offering important advantages over traditional methods that deal with the supraglottal vocal tract. The proposed scheme is based on mechano-acoustic impedance representations from a physiologically-based transmission line model and a lumped skin surface representation. A subject-specific calibration protocol is used to account for individual adjustments of subglottal impedance parameters and mechanical properties of the skin. Preliminary results for sustained vowels with various voice qualities show that the subglottal IBIF scheme yields comparable estimates with respect to current aerodynamics-based methods of clinical vocal assessment. A mean absolute error of less than 10% was observed for two glottal airflow measures –maximum flow declination rate and amplitude of the modulation component– that have been associated with the pathophysiology of some common voice disorders caused by faulty and/or abusive patterns of vocal behavior (i.e., vocal hyperfunction). The proposed method further advances the ambulatory assessment of vocal function based on the neck acceleration signal, that previously have been limited to the estimation of phonation duration, loudness, and pitch. Subglottal IBIF is also suitable for other ambulatory applications in speech communication, in which further evaluation is underway. PMID:25400531

  1. X-33 Computational Aeroheating/Aerodynamic Predictions and Comparisons With Experimental Data

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Thompson, Richard A.; Berry, Scott A.; Horvath, Thomas J.; Murphy, Kelly J.; Nowak, Robert J.; Alter, Stephen J.

    2003-01-01

    This report details a computational fluid dynamics study conducted in support of the phase II development of the X-33 vehicle. Aerodynamic and aeroheating predictions were generated for the X-33 vehicle at both flight and wind-tunnel test conditions using two finite-volume, Navier-Stokes solvers. Aerodynamic computations were performed at Mach 6 and Mach 10 wind-tunnel conditions for angles of attack from 10 to 50 with body-flap deflections of 0 to 20. Additional aerodynamic computations were performed over a parametric range of free-stream conditions at Mach numbers of 4 to 10 and angles of attack from 10 to 50. Laminar and turbulent wind-tunnel aeroheating computations were performed at Mach 6 for angles of attack of 20 to 40 with body-flap deflections of 0 to 20. Aeroheating computations were performed at four flight conditions with Mach numbers of 6.6 to 8.9 and angles of attack of 10 to 40. Surface heating and pressure distributions, surface streamlines, flow field information, and aerodynamic coefficients from these computations are presented, and comparisons are made with wind-tunnel data.

  2. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, M.; Asai, M.; Inasawa, A.

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less

  3. Applications of Laplace transform methods to airfoil motion and stability calculations

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1979-01-01

    This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.

  4. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  5. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  6. Broad band sound from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Shepherd, K. P.; Grosveld, F. W.

    1981-01-01

    Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction.

  7. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  8. Determination of rotor harmonic blade loads from acoustic measurements

    NASA Technical Reports Server (NTRS)

    Kasper, P. K.

    1975-01-01

    The magnitude of discrete frequency sound radiated by a rotating blade is strongly influenced by the presence of a nonuniform distribution of aerodynamic forces over the rotor disk. An analytical development and experimental results are provided for a technique by which harmonic blade loads are derived from acoustic measurements. The technique relates, on a one-to-one basis, the discrete frequency sound harmonic amplitudes measured at a point on the axis of rotation to the blade-load harmonic amplitudes. This technique was applied to acoustic data from two helicopter types and from a series of test results using the NASA-Langley Research Center rotor test facility. The inferred blade-load harmonics for the cases considered tended to follow an inverse power law relationship with harmonic blade-load number. Empirical curve fits to the data showed the harmonic fall-off rate to be in the range of 6 to 9 db per octave of harmonic order. These empirical relationships were subsequently used as input data in a compatible far field rotational noise prediction model. A comparison between predicted and measured off-axis sound harmonic levels is provided for the experimental cases considered.

  9. Application of the aeroacoustic analogy to a shrouded, subsonic, radial fan

    NASA Astrophysics Data System (ADS)

    Buccieri, Bryan M.; Richards, Christopher M.

    2016-12-01

    A study was conducted to investigate the predictive capability of computational aeroacoustics with respect to a shrouded, subsonic, radial fan. A three dimensional unsteady fluid dynamics simulation was conducted to produce aerodynamic data used as the acoustic source for an aeroacoustics simulation. Two acoustic models were developed: one modeling the forces on the rotating fan blades as a set of rotating dipoles located at the center of mass of each fan blade and one modeling the forces on the stationary fan shroud as a field of distributed stationary dipoles. Predicted acoustic response was compared to experimental data measured at two operating speeds using three different outlet restrictions. The blade source model predicted overall far field sound power levels within 5 dB averaged over the six different operating conditions while the shroud model predicted overall far field sound power levels within 7 dB averaged over the same conditions. Doubling the density of the computational fluids mesh and using a scale adaptive simulation turbulence model increased broadband noise accuracy. However, computation time doubled and the accuracy of the overall sound power level prediction improved by only 1 dB.

  10. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  11. Shuttle Orbiter Contingency Abort Aerodynamics: Real-Gas Effects and High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Papadopoulos, Periklis E.; Davies, Carol B.; Wright, Michael J.; McDaniel, Ryan D.; Venkatapathy, Ethiraj; Wercinski, Paul F.

    2005-01-01

    An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire vehicle and the control surfaces (body flap, speed brake, and elevons). The latter served the useful purpose of verification of the aerodynamic characteristics that went into the generation of the abort trajectories.

  12. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  13. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  14. Automatic Sound Generation for Spherical Objects Hitting Straight Beams Based on Physical Models.

    ERIC Educational Resources Information Center

    Rauterberg, M.; And Others

    Sounds are the result of one or several interactions between one or several objects at a certain place and in a certain environment; the attributes of every interaction influence the generated sound. The following factors influence users in human/computer interaction: the organization of the learning environment, the content of the learning tasks,…

  15. Statistical characteristic in time-domain of direct current corona-generated audible noise from conductor in corona cage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo

    The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals aremore » extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.« less

  16. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  17. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.

    PubMed

    Cheng, Y S; Yazzie, D; Gao, J; Muggli, D; Etter, J; Rosenthal, G J

    2003-01-01

    Polylactic acid (PLA) powders have been used as vector particles to carry pharmaceutical material. Drugs incorporated in the PLA powder can be retained in the lung for a longer period and may be more effective than free-form drugs. A new formulation of L-PLA dry powder, which was easy to disperse in the air, was produced by using a supercritical technology. The L-PLA powder was characterized in terms of physical particle size and aerodynamic size as generated with a Turbuhaler dry powder inhaler (DPI). Electron microscopy analysis of the particles indicated that they were individual particles in bulk form and became aggregate particles after generation by the Turbuhaler. Aerodynamic particle size analysis using both an Aerodynamic Particle Sizer (APS) aerosol spectrometer and Andersen impactor showed that the aerodynamic size decreased as the flow rate in the Turbuhaler increased from 28.3 to 90 L min(-1). Deposition patterns in the human respiratory tract were estimated using a realistic physical replica of human airways. Deposition of the L-PLA was high (80.8%) in the oral airway at 28.3 L min(-1) and an average of 73.4% at flow rates of 60 and 90 L min(-1). In the lung region, the deposition totaled 7.2% at 28.3 L min(-1), 18.3% at 60 L min(-1), and 17.6% at 90 L min(-1). These deposition patterns were consistent with aerodynamic size measurement, which showed 76 to 86% deposition in the USP/EP (US Pharmacopoeia/European Pharmacopoeia) induction port. As the flow rate increased, fewer aggregates were formed resulting in the smaller aerodynamic particles. As a result, more particles penetrated the oral airways and were available for deposition in the lung. Our results showed that L-PLA particles as manufactured by the supercritical technology could be used in a DPI that does not require the use of carrier particles to facilitate aerosol delivery.

  18. Alteration of Duration Mismatch Negativity Induced by Transcranial Magnetic Stimulation Over the Left Parietal Lobe.

    PubMed

    Oshima, Hirokazu; Shiga, Tetsuya; Niwa, Shin-Ichi; Enomoto, Hiroyuki; Ugawa, Yoshikazu; Yabe, Hirooki

    2017-01-01

    Mismatch negativity (MMN) is generated by a comparison between an incoming sound and the memory trace of preceding sounds stored in sensory memory without any attention to the sound. N100 (N1) is associated with the afferent response to sound onset and reflects early analysis of stimulus characteristics. MMN generators are present in the temporal and frontal lobe, and N1 generators are present in the temporal lobe. The parietal lobe is involved in MMN generation elicited by a change in duration. The anatomical network connecting these areas, lateralization, and the effect of the side of ear stimulation on MMN remain unknown. Thus, we studied the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the left parietal lobe on MMN and N1 in 10 healthy subjects. Low-frequency rTMS over the left parietal lobe decreased the amplitude of MMN following right ear sound stimulation, but the amplitude was unaffected with left ear sound stimulation. We observed no significant changes in the amplitude of N1 or the latency of MMN or N1. These results suggest that low-frequency rTMS over the left parietal lobe modulates the detection of early auditory changes in duration in healthy subjects. Stimulation that is contralateral to the side of the ear experiencing sound may affect the generation of duration MMN more than ipsilateral stimulation. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  19. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  20. CFD-Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  1. Suppression of tonal noise in a centrifugal fan using guide vanes

    NASA Astrophysics Data System (ADS)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  2. Development of the mathematical model for design and verification of acoustic modal analysis methods

    NASA Astrophysics Data System (ADS)

    Siner, Alexander; Startseva, Maria

    2016-10-01

    To reduce the turbofan noise it is necessary to develop methods for the analysis of the sound field generated by the blade machinery called modal analysis. Because modal analysis methods are very difficult and their testing on the full scale measurements are very expensive and tedious it is necessary to construct some mathematical models allowing to test modal analysis algorithms fast and cheap. At this work the model allowing to set single modes at the channel and to analyze generated sound field is presented. Modal analysis of the sound generated by the ring array of point sound sources is made. Comparison of experimental and numerical modal analysis results is presented at this work.

  3. Correlation between Identification Accuracy and Response Confidence for Common Environmental Sounds

    DTIC Science & Technology

    set of environmental sounds with stimulus control and precision. The present study is one in a series of efforts to provide a baseline evaluation of a...sounds from six broad categories: household items, alarms, animals, human generated, mechanical, and vehicle sounds. Each sound was presented five times

  4. 49 CFR 325.73 - Microphone distance correction factors. 1

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... factors. 1 1 Table 1, in § 325.7 is a tabulation of the maximum allowable sound level readings taking into... target point is other than 50 feet (15.2 m), the maximum observed sound level reading generated by the... observed sound level readings generated by the motor vehicle in accordance with § 325.59 of this part shall...

  5. 49 CFR 325.73 - Microphone distance correction factors. 1

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... factors. 1 1 Table 1, in § 325.7 is a tabulation of the maximum allowable sound level readings taking into... target point is other than 50 feet (15.2 m), the maximum observed sound level reading generated by the... observed sound level readings generated by the motor vehicle in accordance with § 325.59 of this part shall...

  6. Proceedings of the Second International Congress on Recent Developments in Air- and Structure-Borne Sound and Vibration (2nd) Held in Auburn University, Alabama on 4-6 March 1992. Volume 1

    DTIC Science & Technology

    1992-03-06

    convected at high speed ". Philosophical Transactions of the Royal Society A , Vol. 255, 1963, pp. 469-503. 16. DOWLING, A.P., FFOWCS WILLIAMS, J.E. and...atmosphere Af, 1 , M,2 convective Mach number of large scale turbulence structures on the high and low speed sides, respec- tively, of a two-dimensional...level of aerodynamic detuning (0 gust frequency 113 INTRODUCTION In the design of high performance gas turbine engines, acoustic analyses are a

  7. A computer program to generate equations of motion matrices, L217 (EOM). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Kroll, R. I.; Clemmons, R. E.

    1979-01-01

    The equations of motion program L217 formulates the matrix coefficients for a set of second order linear differential equations that describe the motion of an airplane relative to its level equilibrium flight condition. Aerodynamic data from FLEXSTAB or Doublet Lattice (L216) programs can be used to derive the equations for quasi-steady or full unsteady aerodynamics. The data manipulation and the matrix coefficient formulation are described.

  8. Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues

    DTIC Science & Technology

    2007-11-28

    shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...sea basing concept. Detractors challenge airship survivability and ability to operate in adverse weather. Also, hybrid airships use aerodynamic lift and...100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174 feet (53 meters) Height: 55 feet 1 inch (16.79 meters

  9. Biomechanics and biomimetics in insect-inspired flight systems.

    PubMed

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  10. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  11. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  12. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.

    PubMed

    Li, Chengyu; Dong, Haibo

    2017-02-03

    This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.

  13. Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor

    NASA Astrophysics Data System (ADS)

    Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco

    2016-02-01

    In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.

  14. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  15. Overview of the Cranked-Arrow Wing Aerodynamics Project International

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Lamar, John E.

    2008-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project. Various flight, wind-tunnel and Computational Fluid Dynamics data sets were generated as part of the project. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International and is concluded by an introduction to the results of a four year computational predictive study of data collected at flight conditions by participating researchers.

  16. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  17. An extended BET format for La RC shuttle experiments: Definition and development

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Henry, M. W.

    1981-01-01

    A program for shuttle post-flight data reduction is discussed. An extended Best Estimate Trajectory (BET) file was developed. The extended format results in some subtle changes to the header record. The major change is the addition of twenty-six words to each data record. These words include atmospheric related parameters, body axis rate and acceleration data, computed aerodynamic coefficients, and angular accelerations. These parameters were added to facilitate post-flight aerodynamic coefficient determinations as well as shuttle entry air data sensor analyses. Software (NEWBET) was developed to generate the extended BET file utilizing the previously defined ENTREE BET, a dynamic data file which may be either derived inertial measurement unit data or aerodynamic coefficient instrument package data, and some atmospheric information.

  18. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  19. Ground/Flight Correlation of Aerodynamic Loads with Structural Response

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Davis, Mark C.

    2009-01-01

    Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.

  20. Simulation Propulsion System and Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  1. Aerodynamics, sensing and control of insect-scale flapping-wing flight.

    PubMed

    Shyy, Wei; Kang, Chang-Kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-02-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.

  2. Experimental Investigation of Aerodynamics of Feather-Covered Flapping Wing.

    PubMed

    Yang, Wenqing; Song, Bifeng

    2017-01-01

    Avian flight has an outstanding performance than the manmade flapping wing MAVs. Considering that the feather is light and strong, a new type of the flapping wing was designed and made, whose skeleton is carbon fiber rods and covered by goose feathers as the skin. Its aerodynamics is tested by experiments and can be compared with conventional artificial flapping wings made of carbon fiber rods as the skeleton and polyester membrane as the skin. The results showed that the feathered wing could generate more lift than the membrane wing in the same flapping kinematics because the feathered wing can have slots between feathers in an upstroke process, which can mainly reduce the negative lift. At the same time, the power consumption also decreased significantly, due to the decrease in the fluctuating range of the periodic lift curve, which reduced the offset consumption of lift. At the same time, the thrusts generated by the feather wing and the membrane wing are similar with each other, which increases with the increase of flapping frequency. In general, the aerodynamic performances of the feather wing are superior to that of the membrane wings.

  3. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    PubMed Central

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  4. Aerodynamics and flow features of a damselfly in takeoff flight.

    PubMed

    Bode-Oke, Ayodeji T; Zeyghami, Samane; Dong, Haibo

    2017-09-26

    Flight initiation is fundamental for survival, escape from predators and lifting payload from one place to another in biological fliers and can be broadly classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of great interest to understand how these non-jumping takeoffs occur and what strategies insects use to generate large amount of forces required for this highly demanding flight initiation mode. Here, for the first time, we report accurate wing and body kinematics measurements of a damselfly during a non-jumping takeoff. Furthermore, using a high fidelity computational fluid dynamics simulation, we identify the 3D flow features and compute the wing aerodynamics forces to unravel the key mechanisms responsible for generating large flight forces. Our numerical results show that a damselfly generates about three times its body weight during the first half-stroke for liftoff. In generating these forces, the wings flap through a steeply inclined stroke plane with respect to the horizon, slicing through the air at high angles of attack (45°-50°). Consequently, a leading edge vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. Our analysis also shows that forewing-hindwing interaction plays a favorable role in enhancing both lift and thrust production during takeoff.

  5. Aerodynamic sound of a body in arbitrary, deformable motion, with application to phonation

    NASA Astrophysics Data System (ADS)

    Howe, M. S.; McGowan, R. S.

    2013-08-01

    The method of tailored Green's functions advocated by Doak [Acoustic radiation from a turbulent fluid containing foreign bodies, Proceedings of the Royal Society A 254 (1960) 129-145] for the solution of aeroacoustic problems is used to analyse the contribution of the mucosal wave to self-sustained modulation of air flow through the glottis during the production of voiced speech. The amplitude and phase of the aerodynamic surface force that maintains vocal fold vibration are governed by flow separation from the region of minimum cross-sectional area of the glottis, which moves back and forth along its effective length accompanying the mucosal wave peak. The correct phasing is achieved by asymmetric motion of this peak during the opening and closing phases of the glottis. Limit cycle calculations using experimental data of Berry et al. [High-speed digital imaging of the medial surface of the vocal folds, Journal of the Acoustical Society of America110 (2001) 2539-2547] obtained using an excised canine hemilarynx indicate that the mechanism is robust enough to sustain oscillations over a wide range of voicing conditions.

  6. Laryngeal aerodynamics associated with oral contraceptive use: preliminary findings.

    PubMed

    Gorham-Rowan, Mary; Fowler, Linda

    2009-01-01

    The purpose of this study was to examine possible differences in laryngeal aerodynamic measures during connected speech associated with oral contraceptive (OC) use. Eight women taking an OC, and eight others not taking an OC, participated in the study. Three trials of syllable /p/repetitions were obtained using a circumferentially vented face mask and small translabial tube. All participants were recorded on or near days 7 and 14 of their menstrual cycle. Subglottal pressure (P(SG)) and average airflow rates were obtained to determine laryngeal airway resistance. Glottal airflow measures of peak flow, minimum flow, alternating flow, as well as relative sound level (RSL) were obtained. P(SG) was obtained from the pressure peak associated with/p/. All airflow parameters and RSL were obtained from the vowel portion. No significant differences were found related to day of recording or OC use, indicating that OC use does not significantly affect laryngeal airflow regulation. The reader will better understand the effects of hormones and oral contraceptives on the female voice, as well as the specific changes in vocal function that may occur in conjunction with the use of oral contraceptives.

  7. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model

    PubMed Central

    Wang, Zhaoxuan; Talaat, Khaled; Glide-Hurst, Carri; Dong, Haibo

    2018-01-01

    Background Human snores are caused by vibrating anatomical structures in the upper airway. The glottis is a highly variable structure and a critical organ regulating inhaled flows. However, the effects of the glottis motion on airflow and breathing sound are not well understood, while static glottises have been implemented in most previous in silico studies. The objective of this study is to develop a computational acoustic model of human airways with a dynamic glottis and quantify the effects of glottis motion and tidal breathing on airflow and sound generation. Methods Large eddy simulation and FW-H models were adopted to compute airflows and respiratory sounds in an image-based mouth-lung model. User-defined functions were developed that governed the glottis kinematics. Varying breathing scenarios (static vs. dynamic glottis; constant vs. sinusoidal inhalations) were simulated to understand the effects of glottis motion and inhalation pattern on sound generation. Pressure distributions were measured in airway casts with different glottal openings for model validation purpose. Results Significant flow fluctuations were predicted in the upper airways at peak inhalation rates or during glottal constriction. The inhalation speed through the glottis was the predominating factor in the sound generation while the transient effects were less important. For all frequencies considered (20–2500 Hz), the static glottis substantially underestimated the intensity of the generated sounds, which was most pronounced in the range of 100–500 Hz. Adopting an equivalent steady flow rather than a tidal breathing further underestimated the sound intensity. An increase of 25 dB in average was observed for the life condition (sine-dynamic) compared to the idealized condition (constant-rigid) for the broadband frequencies, with the largest increase of approximately 40 dB at the frequency around 250 Hz. Conclusion Results show that a severely narrowing glottis during inhalation, as well as flow fluctuations in the downstream trachea, can generate audible sound levels. PMID:29101633

  8. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.

    PubMed

    Xi, Jinxiang; Wang, Zhaoxuan; Talaat, Khaled; Glide-Hurst, Carri; Dong, Haibo

    2018-05-01

    Human snores are caused by vibrating anatomical structures in the upper airway. The glottis is a highly variable structure and a critical organ regulating inhaled flows. However, the effects of the glottis motion on airflow and breathing sound are not well understood, while static glottises have been implemented in most previous in silico studies. The objective of this study is to develop a computational acoustic model of human airways with a dynamic glottis and quantify the effects of glottis motion and tidal breathing on airflow and sound generation. Large eddy simulation and FW-H models were adopted to compute airflows and respiratory sounds in an image-based mouth-lung model. User-defined functions were developed that governed the glottis kinematics. Varying breathing scenarios (static vs. dynamic glottis; constant vs. sinusoidal inhalations) were simulated to understand the effects of glottis motion and inhalation pattern on sound generation. Pressure distributions were measured in airway casts with different glottal openings for model validation purpose. Significant flow fluctuations were predicted in the upper airways at peak inhalation rates or during glottal constriction. The inhalation speed through the glottis was the predominating factor in the sound generation while the transient effects were less important. For all frequencies considered (20-2500 Hz), the static glottis substantially underestimated the intensity of the generated sounds, which was most pronounced in the range of 100-500 Hz. Adopting an equivalent steady flow rather than a tidal breathing further underestimated the sound intensity. An increase of 25 dB in average was observed for the life condition (sine-dynamic) compared to the idealized condition (constant-rigid) for the broadband frequencies, with the largest increase of approximately 40 dB at the frequency around 250 Hz. Results show that a severely narrowing glottis during inhalation, as well as flow fluctuations in the downstream trachea, can generate audible sound levels.

  9. External Acoustic Liners for Multi-Functional Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Czech, Michael J. (Inventor); Howerton, Brian M. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor)

    2017-01-01

    Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.

  10. Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2004-01-01

    This publication contains the proceedings of the Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. In this workshop, as in previous workshops, the problems were devised to gauge the technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly from the fundamental governing equations. A variety of benchmark problems have been previously solved ranging from simple geometries with idealized acoustic conditions to test the accuracy and effectiveness of computational algorithms and numerical boundary conditions; to sound radiation from a duct; to gust interaction with a cascade of airfoils; to the sound generated by a separating, turbulent viscous flow. By solving these and similar problems, workshop participants have shown the technical progress from the basic challenges to accurate CAA calculations to the solution of CAA problems of increasing complexity and difficulty. The fourth CAA workshop emphasized the application of CAA methods to the solution of realistic problems. The workshop was held at the Ohio Aerospace Institute in Cleveland, Ohio, on October 20 to 22, 2003. At that time, workshop participants presented their solutions to problems in one or more of five categories. Their solutions are presented in this proceedings along with the comparisons of their solutions to the benchmark solutions or experimental data. The five categories for the benchmark problems were as follows: Category 1:Basic Methods. The numerical computation of sound is affected by, among other issues, the choice of grid used and by the boundary conditions. Category 2:Complex Geometry. The ability to compute the sound in the presence of complex geometric surfaces is important in practical applications of CAA. Category 3:Sound Generation by Interacting With a Gust. The practical application of CAA for computing noise generated by turbomachinery involves the modeling of the noise source mechanism as a vortical gust interacting with an airfoil. Category 4:Sound Transmission and Radiation. Category 5:Sound Generation in Viscous Problems. Sound is generated under certain conditions by a viscous flow as the flow passes an object or a cavity.

  11. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  12. Time-Varying Loads of Co-Axial Rotor Blade Crossings

    NASA Technical Reports Server (NTRS)

    Schatzman, Natasha L.; Komerath, Narayanan; Romander, Ethan A.

    2017-01-01

    The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.

  13. Effects of sounds generated by a dental turbine and a stream on regional cerebral blood flow and cardiovascular responses.

    PubMed

    Mishima, Riho; Kudo, Takumu; Tsunetsugu, Yuko; Miyazaki, Yoshifumi; Yamamura, Chie; Yamada, Yoshiaki

    2004-09-01

    Effects of sound generated by a dental turbine and a small stream (murmur) and the effects of no sound (null, control) on heart rate, systolic and diastolic blood pressure, and hemodynamic changes (oxygenated, deoxygenated, and total hemoglobin concentrations) in the frontal cortex were measured in 18 young volunteers. Questionnaires completed by the volunteers were also evaluated. Near-infrared spectroscopy and the Finapres technique were employed to measure hemodynamic and vascular responses, respectively. The subjects assessed the murmur, null, and turbine sounds as "pleasant," "natural," and "unpleasant," respectively. Blood pressures changed in response to the murmur, null, and turbine sound stimuli as expected: lower than the control level, unchanged, and higher than the control level, respectively. Mean blood pressure values tended to increase gradually over the recording time even during the null sound stimulation, possibly because of the recording environment. Oxygenated hemoglobin concentrations decreased drastically in response to the dental turbine sound, while deoxygenated hemoglobin concentrations remained unchanged and thus total hemoglobin concentrations decreased (due to the decreased oxygenated hemoglobin concentrations). Hemodynamic responses to the murmuring sound and the null sound were slight or unchanged, respectively. Surprisingly, heart rate measurements remained fairly stable in response to the stimulatory noises. In conclusion, we demonstrate here that sound generated by a dental turbine may affect cerebral blood flow and metabolism as well as autonomic responses. Copyright 2004 The Society of the Nippon Dental University

  14. Sound representation in higher language areas during language generation

    PubMed Central

    Magrassi, Lorenzo; Aromataris, Giuseppe; Cabrini, Alessandro; Annovazzi-Lodi, Valerio; Moro, Andrea

    2015-01-01

    How language is encoded by neural activity in the higher-level language areas of humans is still largely unknown. We investigated whether the electrophysiological activity of Broca’s area correlates with the sound of the utterances produced. During speech perception, the electric cortical activity of the auditory areas correlates with the sound envelope of the utterances. In our experiment, we compared the electrocorticogram recorded during awake neurosurgical operations in Broca’s area and in the dominant temporal lobe with the sound envelope of single words versus sentences read aloud or mentally by the patients. Our results indicate that the electrocorticogram correlates with the sound envelope of the utterances, starting before any sound is produced and even in the absence of speech, when the patient is reading mentally. No correlations were found when the electrocorticogram was recorded in the superior parietal gyrus, an area not directly involved in language generation, or in Broca’s area when the participants were executing a repetitive motor task, which did not include any linguistic content, with their dominant hand. The distribution of suprathreshold correlations across frequencies of cortical activities varied whether the sound envelope derived from words or sentences. Our results suggest the activity of language areas is organized by sound when language is generated before any utterance is produced or heard. PMID:25624479

  15. Photoacoustic sounds from meteors

    DOE PAGES

    Spalding, Richard; Tencer, John; Sweatt, William; ...

    2017-02-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with –11 to –13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally.more » Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that –12 brightness meteors can generate audible sound at ~25 dB SPL. As a result, the photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.« less

  16. Transonic-supersonic high Reynolds number stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the VSD high speed wind tunnel (LA67)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A detailed aerodynamic data base which can be used to substantiate the aerodynamic design data book for the current shuttle orbiter configuration was generated. Special attention was directed to definition of non-linear aerodynamic characteristics by taking data at small increments in the angle of attack, angle of sideslip, Mach number, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -2 deg to as high as 32 deg at angles of sideslip of 0 deg, 1 deg, and +2 deg. The test Mach numbers were 0.60, 0.80, 0.90, 1.2, 1.5, 2.0, 3.0, and 4.6. The effects of Reynolds number were investigated and covered a range from 5.0 to 16.0 million per foot.

  17. Aerodynamic resistance reduction of electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The generation of an EHV aerodynamic data base was initiated by conducting full-scale wind tunnel tests on 16 vehicles. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current 4-passenger prototype automobile which was designed with aerodynamics as an integrated parameter. Characteristic effects of aspect ratio or fineness ratio which might appear if electric vehicle shape proportions were to vary significantly from current automobiles were identified. Some preliminary results indicate a 5 to 10% variation in drag over the range of interest. Effective drag coefficient wind-weighting factors over J227a driving cycles in the presence of annual mean wind fields were identified. Such coefficients, when properly weighted, were found to be from 5 to 65% greater than the zero-yaw drag coefficient in the cases presented. A vehicle aerodynamics bibliography of over 160 entries, in six general categories is included.

  18. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  19. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  20. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  1. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  2. Electric power from vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  3. Aerodynamic design and analysis of a highly loaded turbine exhaust

    NASA Technical Reports Server (NTRS)

    Huber, F. W.; Montesdeoca, X. A.; Rowey, R. J.

    1993-01-01

    The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented.

  4. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  5. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  6. Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues

    DTIC Science & Technology

    2008-04-15

    shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...airships use aerodynamic lift and will take-off and land much like conventional aircraft. Some estimate that 1,000 ton-class hybrid aircraft will require...Description153 Power plant: Four Pratt & Whitney F117-PW-100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174

  7. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    PubMed Central

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  8. An intelligent artificial throat with sound-sensing ability based on laser induced graphene.

    PubMed

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-24

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  9. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  10. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  11. Comparison of theoretical and flight-measured local flow aerodynamics for a low-aspect-ratio fin

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.; Sandlin, D. R.

    1984-01-01

    Flight test and theoretical aerodynamic data were obtained for a flight test fixture mounted on the underside of an F-104G aircraft. The theoretical data were generated using two codes, a two dimensional transonic code called Code H, and a three dimensional subsonic and supersonic code call wing-body. Pressure distributions generated by the codes for the flight test fixture as well as boundary layer displacement thickness generated by the two dimensional code were compared to the flight test data. The two dimensional code pressure distributions compared well except at the minimum pressure point and trailing edge. Shock locations compared well except at high transonic speeds. The three dimensional code pressure distributions compared well except at the trailing edge of the flight test fixture. The two dimensional code does not predict displacement thickness of the flight test fixture well.

  12. 200 kHz Commercial Sonar Systems Generate Lower Frequency Side Lobes Audible to Some Marine Mammals

    PubMed Central

    Deng, Z. Daniel; Southall, Brandon L.; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Ingraham, John M.

    2014-01-01

    The spectral properties of pulses transmitted by three commercially available 200 kHz echo sounders were measured to assess the possibility that marine mammals might hear sound energy below the center (carrier) frequency that may be generated by transmitting short rectangular pulses. All three sounders were found to generate sound at frequencies below the center frequency and within the hearing range of some marine mammals, e.g. killer whales, false killer whales, beluga whales, Atlantic bottlenose dolphins, harbor porpoises, and others. The frequencies of these sub-harmonic sounds ranged from 90 to 130 kHz. These sounds were likely detectable by the animals over distances up to several hundred meters but were well below potentially harmful levels. The sounds generated by the sounders could potentially affect the behavior of marine mammals within fairly close proximity to the sources and therefore the exclusion of echo sounders from environmental impact analysis based solely on the center frequency output in relation to the range of marine mammal hearing should be reconsidered. PMID:24736608

  13. A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise

    NASA Astrophysics Data System (ADS)

    Patel, Krishna

    As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used for predicting downstream propagating interaction noise.

  14. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  15. Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering.

    PubMed

    Pozdnyakova, I; Hennet, L; Brun, J-F; Zanghi, D; Brassamin, S; Cristiglio, V; Price, D L; Albergamo, F; Bytchkov, A; Jahn, S; Saboungi, M-L

    2007-03-21

    The dynamic structure factor S(Q,omega) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8 nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.

  16. Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, I.; Hennet, L.; Brun, J.-F.; Zanghi, D.; Brassamin, S.; Cristiglio, V.; Price, D. L.; Albergamo, F.; Bytchkov, A.; Jahn, S.; Saboungi, M.-L.

    2007-03-01

    The dynamic structure factor S(Q,ω) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.

  17. Numerical Prediction of Combustion-induced Noise using a hybrid LES/CAA approach

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias; Pitsch, Heinz; Kaltenbacher, Manfred

    2006-11-01

    Noise generation in technical devices is an increasingly important problem. Jet engines in particular produce sound levels that not only are a nuisance but may also impair hearing. The noise emitted by such engines is generated by different sources such as jet exhaust, fans or turbines, and combustion. Whereas the former acoustic mechanisms are reasonably well understood, combustion-generated noise is not. A methodology for the prediction of combustion-generated noise is developed. In this hybrid approach unsteady acoustic source terms are obtained from an LES and the propagation of pressure perturbations are obtained using acoustic analogies. Lighthill's acoustic analogy and a non-linear wave equation, accounting for variable speed of sound, have been employed. Both models are applied to an open diffusion flame. The effects on the far field pressure and directivity due to the variation of speed of sound are analyzed. Results for the sound pressure level will be compared with experimental data.

  18. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.

  19. Influence of vortical flow structures on the glottal jet location in the supraglottal region.

    PubMed

    Kniesburges, Stefan; Hesselmann, Christina; Becker, Stefan; Schlücker, Eberhard; Döllinger, Michael

    2013-09-01

    Within the fully coupled multiphysics phonation process, the fluid flow plays an important role for sound production. This study addresses phenomena in the flow downstream of synthetic self-oscillating vocal folds. An experimental setup consisting of devices for producing and conditioning the flow including the main test channel was applied. The supraglottal channel was designed to prevent an acoustic coupling to the vocal folds. Hence, the oscillations were aerodynamically driven. The cross-section of the supraglottal channel was systematically varied by increasing the distance between the lateral channel walls. The vocal folds consisted of silicone rubber of homogenous material distribution generating self-sustained oscillations. The airflow was visualized in the immediate supraglottal region using a laser-sheet technique and a digital high-speed camera. Furthermore, the flow was studied by measuring the static pressure distributions on both lateral supraglottal channel walls. The results clearly showed different flow characteristics depending on the supraglottal configuration. In all cases with supraglottal channel, the jet was located asymmetrical and bent in medial-lateral direction. Furthermore, the side to which the jet was deflected changed in between the consecutive cycles showing a bifurcational behavior. Previously, this phenomenon was explained by the Coanda effect. However, the present data suggest that the deflection of the jet was mainly caused by large air vortices in the supraglottal channel produced by the flow field of previous oscillations. In contrast, for the case without supraglottal channel, the air jet was found totally symmetrical stabilized by the constant pressure in the ambient region. The emitted sound signal showed additional subharmonic tonal peaks for the asymmetric flow cases, which are characteristics for diplophonia. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  20. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    NASA Astrophysics Data System (ADS)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  1. Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.

    2006-01-01

    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod

  2. Aerodynamic and acoustic effects of ventricular gap.

    PubMed

    Alipour, Fariborz; Karnell, Michael

    2014-03-01

    Supraglottic compression is frequently observed in individuals with dysphonia. It is commonly interpreted as an indication of excessive circumlaryngeal muscular tension and ventricular medialization. The purpose of this study was to describe the aerodynamic and acoustic impact of varying ventricular medialization in a canine model. Subglottal air pressure, glottal airflow, electroglottograph, acoustic signals, and high-speed video images were recorded in seven excised canine larynges mounted in vitro for laryngeal vibratory experimentation. The degree of gap between the ventricular folds was adjusted and measured using sutures and weights. Data were recorded during phonation when the ventricular gap was narrow, neutral, and large. Glottal resistance was estimated by measures of subglottal pressure and glottal flow. Glottal resistance increased systematically as ventricular gap became smaller. Wide ventricular gaps were associated with increases in fundamental frequency and decreases in glottal resistance. Sound pressure level did not appear to be impacted by the adjustments in ventricular gap used in this research. Increases in supraglottic compression and associated reduced ventricular width may be observed in a variety of disorders that affect voice quality. Ventricular compression may interact with true vocal fold posture and vibration resulting in predictable changes in aerodynamic, physiological, acoustic, and perceptual measures of phonation. The data from this report supports the theory that narrow ventricular gaps may be associated with disordered phonation. In vitro and in vivo human data are needed to further test this association. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  3. NACA Conference on Aerodynamic Problems of Transonic Airplane Design

    NASA Technical Reports Server (NTRS)

    1949-01-01

    During the past several years it has been necessary for aeronautical research workers to exert a good portion of their effort in developing the means for conducting research in the high-speed range. The transonic range particularly has presented a very acute problem because of the choking phenomena in wind tunnels at speeds close to the speed of sound. At the same time, the multiplicity of design problems for aircraft introduced by the peculiar flow problems of the transonic speed range has given rise to an enormous demand for detail design data. Substantial progress has been made, however, in developing the required research techniques and in supplying the demand for aerodynamic data required for design purposes. In meeting this demand, it has been necessary to resort to new techniques possessing such novel features that the results obtained have had to be viewed with caution. Furthermore, the kinds of measurements possible with these various techniques are so varied that the correlation of results obtained by different techniques generally becomes an indirect process that can only be accomplished in conjunction with the application of estimates of the extent to which the results of measurements by any given technique are modified by differences that are inherent in the techniques. Thus, in the establishment of the validity and applicability of data obtained by any given technique, direct comparisons between data from different sources are a supplement to but not a substitute for the detailed knowledge required of the characteristics of each technique and fundamental aerodynamic flow phenomena.

  4. Aquatic Acoustic Metrics Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals.more » In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  5. A CFD-informed quasi-steady model of flapping wing aerodynamics.

    PubMed

    Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J

    2015-11-01

    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.

  6. A CFD-informed quasi-steady model of flapping wing aerodynamics

    PubMed Central

    Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.

    2016-01-01

    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891

  7. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  8. Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.

    1992-01-01

    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.

  9. ERP correlates of processing the auditory consequences of own versus observed actions.

    PubMed

    Ghio, Marta; Scharmach, Katrin; Bellebaum, Christian

    2018-06-01

    Research has so far focused on neural mechanisms that allow us to predict the sensory consequences of our own actions, thus also contributing to ascribing them to ourselves as agents. Less attention has been devoted to processing the sensory consequences of observed actions ascribed to another human agent. Focusing on audition, there is consistent evidence of a reduction of the auditory N1 ERP for self- versus externally generated sounds, while ERP correlates of processing sensory consequences of observed actions are mainly unexplored. In a between-groups ERP study, we compared sounds generated by self-performed (self group) or observed (observation group) button presses with externally generated sounds, which were presented either intermixed with action-generated sounds or in a separate condition. Results revealed an overall reduction of the N1 amplitude for processing action- versus externally generated sounds in both the intermixed and the separate condition, with no difference between the groups. Further analyses, however, suggested that an N1 attenuation effect relative to the intermixed condition at frontal electrode sites might exist only for the self but not for the observation group. For both groups, we found a reduction of the P2 amplitude for processing action- versus all externally generated sounds. We discuss whether the N1 and the P2 reduction can be interpreted in terms of predictive mechanisms for both action execution and observation, and to what extent these components might reflect also the feeling of (self) agency and the judgment of agency (i.e., ascribing agency either to the self or to others). © 2017 Society for Psychophysiological Research.

  10. Stridulatory sound-production and its function in females of the cicada Subpsaltria yangi.

    PubMed

    Luo, Changqing; Wei, Cong

    2015-01-01

    Acoustic behavior plays a crucial role in many aspects of cicada biology, such as reproduction and intrasexual competition. Although female sound production has been reported in some cicada species, acoustic behavior of female cicadas has received little attention. In cicada Subpsaltria yangi, the females possess a pair of unusually well-developed stridulatory organs. Here, sound production and its function in females of this remarkable cicada species were investigated. We revealed that the females could produce sounds by stridulatory mechanism during pair formation, and the sounds were able to elicit both acoustic and phonotactic responses from males. In addition, the forewings would strike the body during performing stridulatory sound-producing movements, which generated impact sounds. Acoustic playback experiments indicated that the impact sounds played no role in the behavioral context of pair formation. This study provides the first experimental evidence that females of a cicada species can generate sounds by stridulatory mechanism. We anticipate that our results will promote acoustic studies on females of other cicada species which also possess stridulatory system.

  11. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  12. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  13. Aerodynamic preliminary analysis system. Part 2: User's manual and program description

    NASA Technical Reports Server (NTRS)

    Divan, P.; Dunn, K.; Kojima, J.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed. Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  14. Review of Cranked-Arrow Wing Aerodynamics Project: Its International Aeronautical Community Role

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Obara, Clifford J.

    2007-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research (HSR) program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project (CAWAP). Various flight, wind-tunnel and Computational Fluid Dynamics (CFD) data sets were generated during the CAWAP. These unique and open flight datasets for surface pressures, boundary-layer profiles and skinfriction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International (CAWAPI) and is concluded by an introduction to the results of a 4 year CFD predictive study of data collected at flight conditions by participating researchers.

  15. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1975-01-01

    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables.

  16. Development of an aerodynamic measurement system for hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Fujita, K.; Suzuki, T.

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  17. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  18. Cerebellar contribution to the prediction of self-initiated sounds.

    PubMed

    Knolle, Franziska; Schröger, Erich; Kotz, Sonja A

    2013-10-01

    In everyday life we frequently make the fundamental distinction between sensory input resulting from our own actions and sensory input that is externally-produced. It has been speculated that making this distinction involves the use of an internal forward-model, which enables the brain to adjust its response to self-produced sensory input. In the auditory domain, this idea has been supported by event-related potential and evoked-magnetic field studies revealing that self-initiated sounds elicit a suppressed N100/M100 brain response compared to externally-produced sounds. Moreover, a recent study reveals that patients with cerebellar lesions do not show a significant N100-suppression effect. This result supports the theory that the cerebellum is essential for generating internal forward predictions. However, all except one study compared self-initiated and externally-produced auditory stimuli in separate conditions. Such a setup prevents an unambiguous interpretation of the N100-suppression effect when distinguishing self- and externally-produced sensory stimuli: the N100-suppression can also be explained by differences in the allocation of attention in different conditions. In the current electroencephalography (EEG)-study we investigated the N100-suppression effect in an altered design comparing (i) self-initiated sounds to externally-produced sounds that occurred intermixed with these self-initiated sounds (i.e., both sound types occurred in the same condition) or (ii) self-initiated sounds to externally-produced sounds that occurred in separate conditions. Results reveal that the cerebellum generates selective predictions in response to self-initiated sounds independent of condition type: cerebellar patients, in contrast to healthy controls, do not display an N100-suppression effect in response to self-initiated sounds when intermixed with externally-produced sounds. Furthermore, the effect is not influenced by the temporal proximity of externally-produced sounds to self-produced sounds. Controls and patients showed a P200-reduction in response to self-initiated sounds. This suggests the existence of an additional and probably more conscious mechanism for identifying self-generated sounds that does not functionally depend on the cerebellum. Copyright © 2012 Elsevier Srl. All rights reserved.

  19. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  20. Aeroacoustic Characterization of the NASA Ames Experimental Aero-Physics Branch 32- by 48-Inch Subsonic Wind Tunnel with a 24-Element Phased Microphone Array

    NASA Technical Reports Server (NTRS)

    Costanza, Bryan T.; Horne, William C.; Schery, S. D.; Babb, Alex T.

    2011-01-01

    The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic measurements with a phased microphone array was recently explored. Acoustic characterization of the wind tunnel was carried out with a floor-mounted 24-element array and two ceiling-mounted speakers. The minimum speaker level for accurate level measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and streamwise speaker locations. A variety of post-processing procedures, including conventional beamforming and deconvolutional processing such as TIDY, were used. The speaker measurements, with and without flow, were used to compare actual versus simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel background noise were found valuable for predicting sound levels for which the speakers were detectable when the wind was on. Speaker sources were detectable 2 - 10 dB below the peak background noise level with conventional data processing. The effectiveness of background noise cross-spectral matrix subtraction was assessed and found to improve the detectability of test sound sources by approximately 10 dB over a wide frequency range.

  1. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  2. Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers

    NASA Astrophysics Data System (ADS)

    Yeager, D. M.; Lauchle, G. C.

    1987-11-01

    The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.

  3. Turbofan noise generation. Volume 2: Computer programs

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  4. Turbofan noise generation. Volume 2: Computer programs

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.

  5. Calcium and stretch activation modulate power generation in Drosophila flight muscle.

    PubMed

    Wang, Qian; Zhao, Cuiping; Swank, Douglas M

    2011-11-02

    Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  7. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents.

  8. Smart pitch control strategy for wind generation system using doubly fed induction generator

    NASA Astrophysics Data System (ADS)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  9. FLPP IXV Re-Entry Vehicle, Supersonic Charectisation Based on DNW SST Wind Tunnel Tests and CFD

    NASA Astrophysics Data System (ADS)

    Kapteijn, C.; Maseland, H.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloscheck, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues for controlled re-entry, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for future space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on- ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re- entry system, integrating the critical re- entry technologies at the system level. In particular, the IXV shall demonstrate system integrated key technologies such as lifting flight control by means of aerodynamic surfaces that are one of the main primary objectives of the experimental investigation. Lifting and aerodynamic controlled re-entry represents a significant capability advancement with respect to the ballistic re-entry of capsules like the ARD. Since hypersonic aerodynamics is essentially different from supersonic aerodynamics, the current mission is to perform an atmospheric re-entry in combination with a safe recovery the in supersonic flight regime. However, mission extension to trimmed transonic flight is under consideration based on a preliminary analysis of the aerodynamic characteristics of the IXV configuration. Since the beginning of the IXV project, an aerodynamic data base (AEDB) has been built up and continuously updated integrating the additional information mainly provided by means of CFD (ie: Euler and Navier-Stokes) and lately also by means of WTTs. This AEDB serves for flying qualities analysis and for re-entry simulations. During the development phase B2/C1, the effectiveness of the control surfaces and their impact on te vehicle's aerodynamic forces in the supersonic regime is measured for a number of discrete deflection settings in the Super-Sonic wind Tunnel (SST) of DNW. Enabling an improved understanding of the measured aerodynamic characteristics, complementary computations were performed by Thales Alenia Space. The complete set of data was analyzed and compared enabling a consolidation of the nominal aerodynamic and aerodynamic uncertainties as well. The paper presents the main objectives of the supersonic characterisation of IXV including WTTs, and the main outcomes of the current data comparisons.

  10. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation

    PubMed Central

    Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  11. Design of a simple Gerdien condenser for ionospheric D-region charged particle density and mobility measurements. [for Arcas rocket sounding

    NASA Technical Reports Server (NTRS)

    Farrokh, H.

    1975-01-01

    The theory of a Gerdien condenser operating in a collision controlled medium is reviewed. Design and electronics of a Gerdien condenser probe suitable for flying on the Arcas rocket is presented. Aerodynamics properties of the instrument in continuous flow are discussed. The method of data reduction and experimental results of one successful flight at White Sands Missile Range (WSMR), New Mexico, on 11 January 1974 are reported. This investigation shows positive ions in two relatively distinct mobility groups between 47 and 65 km and a more continuous distribution of mobilities between 38 and 47 km.

  12. Aerodynamic particle size analysis of aerosols from pressurized metered-dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Wiersema, Kimberly J; Doyle, Cathy C

    2003-10-22

    The purpose of this research was to compare three different methods for the aerodynamic assessment of (1) chloroflurocarbon (CFC)--fluticasone propionate (Flovent), (2) CFC-sodium cromoglycate (Intal), and (3) hydrofluoroalkane (HFA)--beclomethasone dipropionate (Qvar) delivered by pressurized metered dose inhaler. Particle size distributions were compared determining mass median aerodynamic diameter (MMAD), geometric standard deviation (GSD), and fine particle fraction <4.7 microm aerodynamic diameter (FPF(<4.7 microm)). Next Generation Pharmaceutical Impactor (NGI)-size distributions for Flovent comprised finer particles than determined by Andersen 8-stage impactor (ACI) (MMAD = 2.0 +/- 0.05 micro m [NGI]; 2.8 +/- 0.07 microm [ACI]); however, FPF(<4.7 microm) by both impactors was in the narrow range 88% to 93%. Size distribution agreement for Intal was better (MMAD = 4.3 +/- 0.19 microm (NGI), 4.2 +/- 0.13 microm (ACI), with FPF(<4.7 microm) ranging from 52% to 60%. The Aerodynamic Particle Sizer (APS) undersized aerosols produced with either formulation (MMAD = 1.8 +/- 0.07 micro m and 3.2 +/- 0.02 micro m for Flovent and Intal, respectively), but values of FPF(<4.7 microm)from the single-stage impactor (SSI) located at the inlet to the APS (82.9% +/- 2.1% [Flovent], 46.4% +/- 2.4% [Intal]) were fairly close to corresponding data from the multi-stage impactors. APS-measured size distributions for Qvar (MMAD = 1.0 +/- 0.03 micro m; FPF(<4.7 micro m)= 96.4% +/- 2.5%), were in fair agreement with both NGI (MMAD = 0.9 +/- 0.03 micro m; FPF(<4.7 microm)= 96.7% +/- 0.7%), and ACI (MMAD = 1.2 +/- 0.02 microm, FPF(<4.7 microm)= 98% +/- 0.5%), but FPF(<4.7 microm) from the SSI (67.1% +/- 4.1%) was lower than expected, based on equivalent data obtained by the other techniques. Particle bounce, incomplete evaporation of volatile constituents and the presence of surfactant particles are factors that may be responsible for discrepancies between the techniques.

  13. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment

    NASA Astrophysics Data System (ADS)

    Liu, Jinmei; Cui, Nuanyang; Gu, Long; Chen, Xiaobo; Bai, Suo; Zheng, Youbin; Hu, Caixia; Qin, Yong

    2016-02-01

    An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry.An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09087c

  14. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  15. PIFCGT: A PIF autopilot design program for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  16. Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Murphy, R. C.; Beranek, J. A.; Davis, R. A.

    1987-01-01

    A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately.

  17. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    NASA Astrophysics Data System (ADS)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  18. Presystolic tricuspid valve closure: an alternative mechanism of diastolic sound genesis.

    PubMed

    Lee, C H; Xiao, H B; Gibson, D G

    1990-01-01

    We describe a previously unrecognised cause of an added diastolic heart sound. The patient had first-degree heart block and diastolic tricuspid regurgitation, leading to presystolic closure of the tricuspid valve and the production of a loud diastolic sound. Unlike previously described mechanisms for diastolic sounds, this sound was generated by the sudden acceleration of retrograde AV flow in late diastole.

  19. A possible approach to optimization of parameters of sound-absorbing structures for multimode waveguides

    NASA Astrophysics Data System (ADS)

    Mironov, M. A.

    2011-11-01

    A method of allowing for the spatial sound field structure in designing the sound-absorbing structures for turbojet aircraft engine ducts is proposed. The acoustic impedance of a duct should be chosen so as to prevent the reflection of the primary sound field, which is generated by the sound source in the absence of the duct, from the duct walls.

  20. Flight of the dragonflies and damselflies.

    PubMed

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.

  1. Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Urzay, Javier; Moin, Parviz

    2017-11-01

    Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.

  2. Flight of the dragonflies and damselflies

    PubMed Central

    Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-01-01

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528779

  3. In vivo measurement of aerodynamic weight support in freely flying birds

    NASA Astrophysics Data System (ADS)

    Lentink, David; Haselsteiner, Andreas; Ingersoll, Rivers

    2014-11-01

    Birds dynamically change the shape of their wing during the stroke to support their body weight aerodynamically. The wing is partially folded during the upstroke, which suggests that the upstroke of birds might not actively contribute to aerodynamic force production. This hypothesis is supported by the significant mass difference between the large pectoralis muscle that powers the down-stroke and the much smaller supracoracoideus that drives the upstroke. Previous works used indirect or incomplete techniques to measure the total force generated by bird wings ranging from muscle force, airflow, wing surface pressure, to detailed kinematics measurements coupled with bird mass-distribution models to derive net force through second derivatives. We have validated a new method that measures aerodynamic force in vivo time-resolved directly in freely flying birds which can resolve this question. The validation of the method, using independent force measurements on a quadcopter with pulsating thrust, show the aerodynamic force and impulse are measured within 2% accuracy and time-resolved. We demonstrate results for quad-copters and birds of similar weight and size. The method is scalable and can be applied to both engineered and natural flyers across taxa. The first author invented the method, the second and third authors validated the method and present results for quadcopters and birds.

  4. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  5. A Numerical Experiment on the Role of Surface Shear Stress in the Generation of Sound

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wang, Meng; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The sound generated due to a localized flow over an infinite flat surface is considered. It is known that the unsteady surface pressure, while appearing in a formal solution to the Lighthill equation, does not constitute a source of sound but rather represents the effect of image quadrupoles. The question of whether a similar surface shear stress term constitutes a true source of dipole sound is less settled. Some have boldly assumed it is a true source while others have argued that, like the surface pressure, it depends on the sound field (via an acoustic boundary layer) and is therefore not a true source. A numerical experiment based on the viscous, compressible Navier-Stokes equations was undertaken to investigate the issue. A small region of a wall was oscillated tangentially. The directly computed sound field was found to to agree with an acoustic analogy based calculation which regards the surface shear as an acoustically compact dipole source of sound.

  6. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  7. Ground/Flight Correlation of Aerodynamic Loads with Structural Response

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Davis, Mark C.

    2009-01-01

    United States Air Force Research Laboratory (AFRL) ground tests at the NASA Transonic Dynamics Tunnel (TDT) and NASA flight tests provide a basis and methodology for in-flight characterization of the aeroelastic performance through the monitoring of the fluid-structure interaction using surface flow sensors. NASA NF-15B flight tests provided a unique opportunity to test the correlation of aerodynamic loads with sectional flow attachment/detachment points, also known as flow bifurcation points (FBPs), as observed in previous wind tunnel tests. The NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. These data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in root-bending strains and hot-film sensor signals near the stagnation region that were highly correlated. For the TDT tests, a flexible wing section developed under the AFRL SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at multiple span stations. The TDT tests provided data showing a gradual phase change between the FBP and the structural mode occurred during a resonant condition as the wings structural modes were excited by the tunnel-generated gusts.

  8. Experimental Investigation of Aerodynamics of Feather-Covered Flapping Wing

    PubMed Central

    Song, Bifeng

    2017-01-01

    Avian flight has an outstanding performance than the manmade flapping wing MAVs. Considering that the feather is light and strong, a new type of the flapping wing was designed and made, whose skeleton is carbon fiber rods and covered by goose feathers as the skin. Its aerodynamics is tested by experiments and can be compared with conventional artificial flapping wings made of carbon fiber rods as the skeleton and polyester membrane as the skin. The results showed that the feathered wing could generate more lift than the membrane wing in the same flapping kinematics because the feathered wing can have slots between feathers in an upstroke process, which can mainly reduce the negative lift. At the same time, the power consumption also decreased significantly, due to the decrease in the fluctuating range of the periodic lift curve, which reduced the offset consumption of lift. At the same time, the thrusts generated by the feather wing and the membrane wing are similar with each other, which increases with the increase of flapping frequency. In general, the aerodynamic performances of the feather wing are superior to that of the membrane wings. PMID:29527117

  9. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    NASA Astrophysics Data System (ADS)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  10. Collective fluid mechanics of honeybee nest ventilation

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  11. THE SOUND PATTERN OF ENGLISH.

    ERIC Educational Resources Information Center

    CHOMSKY, NOAM; HALLE, MORRIS

    "THE SOUND PATTERN OF ENGLISH" PRESENTS A THEORY OF SOUND STRUCTURE AND A DETAILED ANALYSIS OF THE SOUND STRUCTURE OF ENGLISH WITHIN THE FRAMEWORK OF GENERATIVE GRAMMAR. IN THE PREFACE TO THIS BOOK THE AUTHORS STATE THAT THEIR "WORK IN THIS AREA HAS REACHED A POINT WHERE THE GENERAL OUTLINES AND MAJOR THEORETICAL PRINCIPLES ARE FAIRLY CLEAR" AND…

  12. Environmental and Management Goal Setting for the Long Island Sound Comprehensive Conservation and Management Plan

    EPA Science Inventory

    Over the past 3 years the Long Island Sound Study (LISS) has been developing a revised Comprehensive Conservation and Management Plan (CCMP), the blueprint for the protection and restoration of the Sound for the next generation. Long Island Sound is located within the most densel...

  13. Next Generation Simulation Training for Pararescue Forces

    DTIC Science & Technology

    2014-02-13

    then leverage a 5.1 or 7.1 surround sound processor to create a soundscape that is consistent with the landscape produced by the IG. The NCHCI...area. These two zones were fed DirectSound 3D audio to create a soundscape for the environment. The sound produced was the stock sounds bundled with the

  14. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?

    PubMed

    Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-07-08

    This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.

  15. Turbofan noise generation. Volume 1: Analysis

    NASA Astrophysics Data System (ADS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-07-01

    Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.

  16. Turbofan noise generation. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Theobald, M. A.; Mark, W. D.

    1982-01-01

    Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.

  17. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling methods developed herein.

  18. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling method developed herein.

  19. Reduced order modeling of head related transfer functions for virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Willhite, Joel A.; Frampton, Kenneth D.; Grantham, D. Wesley

    2003-04-01

    The purpose of this work is to improve the computational efficiency in acoustic virtual applications by creating and testing reduced order models of the head related transfer functions used in localizing sound sources. State space models of varying order were generated from zero-elevation Head Related Impulse Responses (HRIRs) using Kungs Single Value Decomposition (SVD) technique. The inputs to the models are the desired azimuths of the virtual sound sources (from minus 90 deg to plus 90 deg, in 10 deg increments) and the outputs are the left and right ear impulse responses. Trials were conducted in an anechoic chamber in which subjects were exposed to real sounds that were emitted by individual speakers across a numbered speaker array, phantom sources generated from the original HRIRs, and phantom sound sources generated with the different reduced order state space models. The error in the perceived direction of the phantom sources generated from the reduced order models was compared to errors in localization using the original HRIRs.

  20. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under extreme conditions. Finally, considering these aerodynamic loads, the blade mass reductions achievable by biplane blades are quantified. The internal structure of the biplane blades are designed using a multi-disciplinary optimization which seeks to minimize mass, subject to constraints which represent realistic design requirements. Using this approach, it is shown that biplane blades can be built more than 45% lighter than a similarly-optimized conventional blade; the reasons for these mass reductions are examined in detail. As blade length is increased, these mass reductions are shown to be even more significant. These large mass reductions are indicative of significant cost of electricity reductions from rotors fitted with biplane blades. Taken together, these results show that biplane blades are a concept which can enable the next generation of larger wind turbine rotors.

  1. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  2. Radar cross section studies

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.

    1987-01-01

    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets.

  3. Parameter Studies, time-dependent simulations and design with automated Cartesian methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael

    2005-01-01

    Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.

  4. Ultrasonic Emission from Nanocrystalline Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shinoda, Hiroyuki; Koshida, Nobuyoshi

    A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

  5. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    PubMed Central

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.

    2012-01-01

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353

  6. Numerical Investigation on Aerodynamic and Combustion Performance of Chevron Mixer Inside an Afterburner.

    PubMed

    Yong, Shan; JingZhou, Zhang; Yameng, Wang

    2014-11-01

    To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.

  7. Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

    2001-01-01

    The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

  8. SUPIN: A Computational Tool for Supersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2016-01-01

    A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.

  9. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  10. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  11. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  12. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  13. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  14. Lateral attenuation of aircraft sound levels over an acoustically hard water surface : Logan airport study

    DOT National Transportation Integrated Search

    2002-01-31

    Accurate modeling of the lateral attenuation of sound is : essential for accurate prediction of aircraft noise. Lateral : attenuation contains many aspects of sound generation and : propagation, including ground effects (sometimes referred to :...

  15. Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu; Campbell, Richard L.

    2014-01-01

    The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.

  16. Emmons spot forcing for turbulent drag reduction

    NASA Technical Reports Server (NTRS)

    Goodman, W. L.

    1985-01-01

    An Emmons spot-generation wind tunnel system has been designed to trigger closely spaced Emmons spots in the spanwise and longitudinal directions of an aerodynamic surface. For certain combinations of generator frequencies and amplitude, hole size, and hole spacing, experimental results indicate smaller turbulence scales and a reduction in skin friction of about 15 percent.

  17. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    NASA Astrophysics Data System (ADS)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.

  18. Inexpensive Data Acquisition with a Sound Card

    NASA Astrophysics Data System (ADS)

    Hassan, Umer; Pervaiz, Saad; Anwar, Muhammad Sabieh

    2011-12-01

    Signal generators, oscilloscopes, and data acquisition (DAQ) systems are standard components of the modern experimental physics laboratory. The sound card, a built-in component in the ubiquitous personal computer, can be utilized for all three of these tasks1,2 and offers an attractive option for labs in developing countries such as ours—Pakistan—where affordability is always of prime concern. In this paper, we describe in a recipe fashion how the sound card is used for DAQ and signal generation.

  19. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.

  20. Neonatal incubators: a toxic sound environment for the preterm infant?*.

    PubMed

    Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth

    2012-11-01

    High sound pressure levels may be harmful to the maturing newborn. Current guidelines suggest that the sound pressure levels within a neonatal intensive care unit should not exceed 45 dB(A). It is likely that environmental noise as well as the noise generated by the incubator fan and respiratory equipment may contribute to the total sound pressure levels. Knowledge of the contribution of each component and source is important to develop effective strategies to reduce noise within the incubator. The objectives of this study were to determine the sound levels, sound spectra, and major sources of sound within a modern neonatal incubator (Giraffe Omnibed; GE Healthcare, Helsinki, Finland) using a sound simulation study to replicate the conditions of a preterm infant undergoing high-frequency jet ventilation (Life Pulse, Bunnell, UT). Using advanced sound data acquisition and signal processing equipment, we measured and analyzed the sound level at a dummy infant's ear and at the head level outside the enclosure. The sound data time histories were digitally acquired and processed using a digital Fast Fourier Transform algorithm to provide spectra of the sound and cumulative sound pressure levels (dBA). The simulation was done with the incubator cooling fan and ventilator switched on or off. In addition, tests were carried out with the enclosure sides closed and hood down and then with the enclosure sides open and the hood up to determine the importance of interior incubator reverberance on the interior sound levels With all the equipment off and the hood down, the sound pressure levels were 53 dB(A) inside the incubator. The sound pressure levels increased to 68 dB(A) with all equipment switched on (approximately 10 times louder than recommended). The sound intensity was 6.0 × 10(-8) watts/m(2); this sound level is roughly comparable with that generated by a kitchen exhaust fan on high. Turning the ventilator off reduced the overall sound pressure levels to 64 dB(A) and the sound pressure levels in the low-frequency band of 0 to 100 Hz were reduced by 10 dB(A). The incubator fan generated tones at 200, 400, and 600 Hz that raised the sound level by approximately 2 dB(A)-3 dB(A). Opening the enclosure (with all equipment turned on) reduced the sound levels above 50 Hz by reducing the revereberance within the enclosure. The sound levels, especially at low frequencies, within a modern incubator may reach levels that are likely to be harmful to the developing newborn. Much of the noise is at low frequencies and thus difficult to reduce by conventional means. Therefore, advanced forms of noise control are needed to address this issue.

  1. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hearing Living Symbols and Nonliving Icons: Category Specificities in the Cognitive Processing of Environmental Sounds

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; McDonnell, John; McAdams, Stephen

    2010-01-01

    The neurocognitive processing of environmental sounds and linguistic stimuli shares common semantic resources and can lead to the activation of motor programs for the generation of the passively heard sound or speech. We investigated the extent to which the cognition of environmental sounds, like that of language, relies on symbolic mental…

  3. 49 CFR 325.71 - Scope of the rules in this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the sound level generated by a motor vehicle, as displayed on a sound level measurement system, during the measurement of the motor vehicle's sound level emissions at a test site which is not a standard site. (b) The purpose of adding or subtracting a correction factor is to equate the sound level reading...

  4. 49 CFR 325.71 - Scope of the rules in this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the sound level generated by a motor vehicle, as displayed on a sound level measurement system, during the measurement of the motor vehicle's sound level emissions at a test site which is not a standard site. (b) The purpose of adding or subtracting a correction factor is to equate the sound level reading...

  5. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  6. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckman, Gregory J.; Scallion, William I.

    2003-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.

  7. The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1991-01-01

    A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.

  8. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  9. Frequency analysis of tangential force measurements on a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra

    2016-09-01

    This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.

  10. MM-122: High speed civil transport

    NASA Technical Reports Server (NTRS)

    Demarest, Bill; Anders, Kurt; Manchec, John; Yang, Eric; Overgaard, Dan; Kalkwarf, Mike

    1992-01-01

    The rapidly expanding Pacific Rim market along with other growing markets indicates that the future market potential for a high speed civil transport is great indeed. The MM-122 is the answer to the international market desire for a state of the art, long range, high speed civil transport. It will carry 250 passengers a distance of 5200 nm at over twice the speed of sound. The MM-122 is designed to incorporate the latest technologies in the areas of control systems, propulsions, aerodynamics, and materials. The MM-122 will accomplish these goals using the following design parameters. First, a double delta wing planform with highly swept canards and an appropriately area ruled fuselage will be incorporated to accomplish desired aerodynamic characteristics. Propulsion will be provided by four low bypass variable cycle turbofan engines. A quad-redundant fly-by-wire flight control system will be incorporated to provide appropriate static stability and level 1 handling qualities. Finally, the latest in conventional metallic and modern composite materials will be used to provide desired weight and performance characteristics. The MM-122 incorporates the latest in technology and cost minimization techniques to provide a viable solution to this future market potential.

  11. A Sub-Orbital Platform for Flight Tests of Small Space Capsules

    NASA Astrophysics Data System (ADS)

    Pereira, P. Moraes A. L., Jr.; Silva, C. R.; Villas Bôas, D. J.; Corrêa, F., Jr.; Miyoshi, J. H.; Loures da Costa, L. E.

    2002-01-01

    In the development of a small recoverable space capsule, flight tests using sub-orbital rockets are considered. For this test series, a platform for aerodynamic and thermal measurements as also for qualification tests of onboard sub-systems and equipment was specified and is actually under development. This platform, known as SARA Suborbital, is specified to withstand a sub-orbital flight with the high performance sounding rocket VS40 and to be recovered at the sea. To perform the testing program, a flight trajectory with adequate aeroballistic parameters, as for instance high velocities in dense atmosphere and average re-entry velocity, is considered. The testing program includes measurements of aerodynamic pressures and thermal characteristics, three- axis acceleration, acoustic pressure level inside the platform and vibration environment. Beside this, tests to characterise the performance of the data acquisition and transmission system, the micro-gravity environment and to qualify the recovery system will be carried out. During the return flight, the dynamics of parachutes deployment and platform water impact, as also rescue procedures will also be observed. The present article shows the concept of the platform, describes in detail the experiments, and concludes with a discussion on the flight trajectory and recovery procedure.

  12. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  13. Realization of an omnidirectional source of sound using parametric loudspeakers.

    PubMed

    Sayin, Umut; Artís, Pere; Guasch, Oriol

    2013-09-01

    Parametric loudspeakers are often used in beam forming applications where a high directivity is required. Withal, in this paper it is proposed to use such devices to build an omnidirectional source of sound. An initial prototype, the omnidirectional parametric loudspeaker (OPL), consisting of a sphere with hundreds of ultrasonic transducers placed on it has been constructed. The OPL emits audible sound thanks to the parametric acoustic array phenomenon, and the close proximity and the large number of transducers results in the generation of a highly omnidirectional sound field. Comparisons with conventional dodecahedron loudspeakers have been made in terms of directivity, frequency response, and in applications such as the generation of diffuse acoustic fields in reverberant chambers. The OPL prototype has performed better than the conventional loudspeaker especially for frequencies higher than 500 Hz, its main drawback being the difficulty to generate intense pressure levels at low frequencies.

  14. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  15. Large Eddy Simulation of Sound Generation by Turbulent Reacting and Nonreacting Shear Flows

    NASA Astrophysics Data System (ADS)

    Najafi-Yazdi, Alireza

    The objective of the present study was to investigate the mechanisms of sound generation by subsonic jets. Large eddy simulations were performed along with bandpass filtering of the flow and sound in order to gain further insight into the pole of coherent structures in subsonic jet noise generation. A sixth-order compact scheme was used for spatial discretization of the fully compressible Navier-Stokes equations. Time integration was performed through the use of the standard fourth-order, explicit Runge-Kutta scheme. An implicit low dispersion, low dissipation Runge-Kutta (ILDDRK) method was developed and implemented for simulations involving sources of stiffness such as flows near solid boundaries, or combustion. A surface integral acoustic analogy formulation, called Formulation 1C, was developed for farfield sound pressure calculations. Formulation 1C was derived based on the convective wave equation in order to take into account the presence of a mean flow. The formulation was derived to be easy to implement as a numerical post-processing tool for CFD codes. Sound radiation from an unheated, Mach 0.9 jet at Reynolds number 400, 000 was considered. The effect of mesh size on the accuracy of the nearfield flow and farfield sound results was studied. It was observed that insufficient grid resolution in the shear layer results in unphysical laminar vortex pairing, and increased sound pressure levels in the farfield. Careful examination of the bandpass filtered pressure field suggested that there are two mechanisms of sound radiation in unheated subsonic jets that can occur in all scales of turbulence. The first mechanism is the stretching and the distortion of coherent vortical structures, especially close to the termination of the potential core. As eddies are bent or stretched, a portion of their kinetic energy is radiated. This mechanism is quadrupolar in nature, and is responsible for strong sound radiation at aft angles. The second sound generation mechanism appears to be associated with the transverse vibration of the shear-layer interface within the ambient quiescent flow, and has dipolar characteristics. This mechanism is believed to be responsible for sound radiation along the sideline directions. Jet noise suppression through the use of microjets was studied. The microjet injection induced secondary instabilities in the shear layer which triggered the transition to turbulence, and suppressed laminar vortex pairing. This in turn resulted in a reduction of OASPL at almost all observer locations. In all cases, the bandpass filtering of the nearfield flow and the associated sound provides revealing details of the sound radiation process. The results suggest that circumferential modes are significant and need to be included in future wavepacket models for jet noise prediction. Numerical simulations of sound radiation from nonpremixed flames were also performed. The simulations featured the solution of the fully compressible Navier-Stokes equations. Therefore, sound generation and radiation were directly captured in the simulations. A thickened flamelet model was proposed for nonpremixed flames. The model yields artificially thickened flames which can be better resolved on the computational grid, while retaining the physically currect values of the total heat released into the flow. Combustion noise has monopolar characteristics for low frequencies. For high frequencies, the sound field is no longer omni-directional. Major sources of sound appear to be located in the jet shear layer within one potential core length from the jet nozzle.

  16. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  17. Spectral characteristics of wake vortex sound during roll-up

    DOT National Transportation Integrated Search

    2003-12-01

    This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The : study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensi...

  18. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  19. An experimental investigation of flow around a vehicle passing through a tornado

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Obara, Kouhei; Okura, Nobuyuki

    2016-03-01

    Flow around a vehicle running through a tornado was investigated experimentally. A tornado simulator was developed to generate a tornado-like swirl flow. PIV study confirmed that the simulator generates two-celled vortices which are observed in the natural tornadoes. A moving test rig was developed to run a 1/40 scaled train-shaped model vehicle under the tornado simulator. The car contained pressure sensors, a data logger with an AD converter to measure unsteady surface pressures during its run through the swirling flow. Aerodynamic forces acting on the vehicle were estimated from the pressure data. The results show that the aerodynamic forces change its magnitude and direction depending on the position of the car in the swirling flow. The asymmetry of the forces about the vortex centre suggests the vehicle itself may deform the flow field.

  20. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

Top