Sample records for aerodynamics complex operated

  1. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  2. The space shuttle launch vehicle aerodynamic verification challenges

    NASA Technical Reports Server (NTRS)

    Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.

    1985-01-01

    The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.

  3. Close to real life. [solving for transonic flow about lifting airfoils using supercomputers

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Bailey, F. Ron

    1988-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

  4. In-flight Evaluation of Aerodynamic Predictions of an Air-launched Space Booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1992-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus (registered trademark) air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which the design margins may be more stringent.

  5. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  6. Development of an unsteady aerodynamics model to improve correlation of computed blade stresses with test data

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1985-01-01

    A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energymore » Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.« less

  8. Computational fluid dynamics - The coming revolution

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1982-01-01

    The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.

  9. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.

  10. Bar-Chart-Monitor System For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1993-01-01

    Real-time monitor system provides bar-chart displays of significant operating parameters developed for National Full-Scale Aerodynamic Complex at Ames Research Center. Designed to gather and process sensory data on operating conditions of wind tunnels and models, and displays data for test engineers and technicians concerned with safety and validation of operating conditions. Bar-chart video monitor displays data in as many as 50 channels at maximum update rate of 2 Hz in format facilitating quick interpretation.

  11. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  12. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  13. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    NASA Technical Reports Server (NTRS)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  14. Critical Design Parameters for Pylon-Aided Gaseous Fuel Injection Upstream of a Flameholding Cavity

    DTIC Science & Technology

    2009-03-01

    Spencer Bowen and Neil Rogers was critical to not only the successful completion of this research but my sanity as well. The care, support, and motivation...missile presents a relatively inexpensive alternative that while complex is much more feasible to achieve in the near term. The hypersonic bomber and...scramjet engine operates supersonically throughout. Though aerodynamically complex the scramjet engine is relatively simple, consisting of an inlet

  15. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    NASA Astrophysics Data System (ADS)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.

  16. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  17. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  18. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  19. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  20. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  1. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  2. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  3. Simulation Propulsion System and Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  4. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body simulation software SIMPACK. The aerodynamic loads are calculated using ECN's AeroModule and NREL's BEM code Aerodynl3.

  5. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2013-12-01

    An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

  6. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  7. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  8. Grounding, bonding and shielding for safety and signal interference control

    NASA Technical Reports Server (NTRS)

    Forsyth, T. J.; Bautista, AL

    1990-01-01

    Aircraft models and other aerodynamic tests are conducted at the NASA Ames Research Center National Full Scale Aerodynamics Complex (NFAC). The models, tested in NFAC's wind tunnels, are sometimes heavily instrumented and are connected to a data acquisition system. Besides recording data for evaluation, certain critical information must be monitored to be sure the model is within operational limits. The signals for these parameters are for the most part low-level signals that require good instrumentation amplification. These amplifiers need to be grounded and shielded for common mode rejection and noise reduction. The instrumentation also needs to be grounded to prevent electrical shock hazards. The purpose of this paper is to present an understanding of the principles and purpose of grounding, bonding, and shielding.

  9. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed over the upper and lower surfaces of a standard airfoil, proves to be an effective alternative to standard control surfaces by increasing the flight capability of bird-scale UAVs. The results obtained for this wing design under various flight and flap configurations provide insight into its aerodynamic behavior, which enhance the maneuverability and controllability. The overall method acts as an important tool to create an aerodynamic database to develop a distributed control system for autonomous operation of the multi-flap morphing wing, supporting the use of viscous-inviscid methods as a tool in rapid aerodynamic analysis.

  10. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Boelens, Okko J.

    2015-01-01

    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  11. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    1999-01-01

    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  12. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  13. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal.

    PubMed

    Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates.

  14. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal

    PubMed Central

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765

  15. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  16. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  17. Biomechanics and biomimetics in insect-inspired flight systems

    PubMed Central

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-01-01

    Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780

  18. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  19. One-fiftieth scale model studies of 40-by 80-foot and 80-by 120-foot wind tunnel complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Schmidt, Gene I.; Rossow, Vernon J.; Vanaken, Johannes M.; Parrish, Cynthia L.

    1987-01-01

    The features of a 1/50-scale model of the National Full-Scale Aerodynamics Complex are first described. An overview is then given of some results from the various tests conducted with the model to aid in the design of the full-scale facility. It was found that the model tunnel simulated accurately many of the operational characteristics of the full-scale circuits. Some characteristics predicted by the model were, however, noted to differ from previous full-scale results by about 10%.

  20. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  1. Time-averaged aerodynamic loads on the vane sets of the 40- by 80-foot and 80- by 120-foot wind tunnel complex

    NASA Technical Reports Server (NTRS)

    Aoyagi, Kiyoshi; Olson, Lawrence E.; Peterson, Randall L.; Yamauchi, Gloria K.; Ross, James C.; Norman, Thomas R.

    1987-01-01

    Time-averaged aerodynamic loads are estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). The methods used to compute global and local loads are presented. Experimental inputs used to calculate these loads are based primarily on data obtained from tests conducted in the NFAC 1/10-Scale Vane-Set Test Facility and from tests conducted in the NFAC 1/50-Scale Facility. For those vane sets located directly downstream of either the 40- by 80-ft test section or the 80- by 120-ft test section, aerodynamic loads caused by the impingement of model-generated wake vortices and model-generated jet and propeller wakes are also estimated.

  2. CFD-based design load analysis of 5MW offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  3. Aerodynamic calculations of the Sienna towers buildings complex with respect to human vibrations comfort of their users

    NASA Astrophysics Data System (ADS)

    Krajewski, Piotr; Flaga, Łukasz; Flaga, Andrzej

    2018-01-01

    The paper presents aerodynamic calculations of the Sienna Towers high buildings complex in Warsaw using authors mathematical model of the considered issue. Human vibrations comfort criteria were checked according to ISO/6897. Dynamic coefficients used in the calculations were obtained from wind tunnel tests.

  4. In the Service of the National Economy

    DTIC Science & Technology

    1960-07-22

    research on hydromechanics, particularly as applied to hydroturbines . The construction project for the hydraulic complex in the region of the Sanhsi...Gorge on the Yangtse River, to be initiated next year, will be on a huge scale. The design and manufacture of the huge hydroturbines require the...designed a small hydroturbine to be operated under low pressure (0.3 - 1.0 meters). The laws of the aerodynamics of the propeller were taken into account

  5. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  6. Exploring the Aerodynamic Drag of a Moving Cyclist

    ERIC Educational Resources Information Center

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  7. Adaptive Missile Flight Control for Complex Aerodynamic Phenomena

    DTIC Science & Technology

    2017-08-09

    at high maneuvering conditions motivate guidance approaches that can accommodate uncertainty. Flight control algorithms are one component...performance, but system uncertainty is not directly addressed. Linear, parameter-varying37,38 approaches for munitions expand on optimal control by... post -canard stall. We propose to model these complex aerodynamic mechanisms and use these models in formulating flight controllers within the

  8. Simulation of aerodynamic noise and vibration noise in hard disk drives

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao

    2018-05-01

    Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.

  9. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+.

  10. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  11. Application of supercomputers to computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1984-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. Example results obtained from the successively refined forms of the governing equations are discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to problems of practical importance. Finally, the Numerical Aerodynamic Simulation (NAS) Program - with its 1988 target of achieving a sustained computational rate of 1 billion floating point operations per second and operating with a memory of 240 million words - is discussed in terms of its goals and its projected effect on the future of computational aerodynamics.

  12. Biomechanics and biomimetics in insect-inspired flight systems.

    PubMed

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  13. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  14. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  15. Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods

    NASA Technical Reports Server (NTRS)

    Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan

    2009-01-01

    The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.

  16. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  17. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  18. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  19. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  20. ARC-2010-ACD10-0029-027

    NASA Image and Video Library

    2010-02-16

    Lawrence Livermore National Laboratories media Day for their LLNL project aimed at aerodynamic truck and trailer devices. Tests are being preformed in the Ames Full-Scale Aerodynamic Complex 80x120 foot wind tunnel. Gabriel and Sharon Lozano.

  1. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

  2. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE PAGES

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer; ...

    2018-04-13

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  3. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  4. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  5. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.

  6. High-speed aerodynamic design of space vehicle and required hypersonic wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Sakakibara, Seizou; Hozumi, Kouichi; Soga, Kunio; Nomura, Shigeaki

    Problems associated with the aerodynamic design of space vehicles with emphasis of the role of hypersonic wind tunnel facilities in the development of the vehicle are considered. At first, to identify wind tunnel and computational fluid dynamics (CFD) requirements, operational environments are postulated for hypervelocity vehicles. Typical flight corridors are shown with the associated flow density: real gas effects, low density flow, and non-equilibrium flow. Based on an evaluation of these flight regimes and consideration of the operational requirements, the wind tunnel testing requirements for the aerodynamic design are examined. Then, the aerodynamic design logic and optimization techniques to develop and refine the configurations in a traditional phased approach based on the programmatic design of space vehicle are considered. Current design methodology for the determination of aerodynamic characteristics for designing the space vehicle, i.e., (1) ground test data, (2) numerical flow field solutions and (3) flight test data, are also discussed. Based on these considerations and by identifying capabilities and limits of experimental and computational methods, the role of a large conventional hypersonic wind tunnel and the high enthalpy tunnel and the interrelationship of the wind tunnels and CFD methods in actual aerodynamic design and analysis are discussed.

  7. Aerodynamic analysis of Pegasus - Computations vs reality

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  8. Investigation of effect of propulsion system installation and operation on aerodynamics of an airbreathing hypersonic airplane at Mach 0.3 to 1.2

    NASA Technical Reports Server (NTRS)

    Cubbage, J. M.; Mercer, C. E.

    1977-01-01

    Results from an investigation of the effects of the operation of a combined turbojet/scramjet propulsion system on the longitudinal aerodynamic characteristics of a 1/60-scale hypersonic airbreathing launch vehicle configuration are presented. Decomposition products of hydrogen peroxide were used for simulation of the propulsion system exhaust.

  9. 75 FR 22710 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146-100A and -200A Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... aerodynamic braking and to dump lift to ensure that the wheel brakes can provide the necessary speed reduction... the wheel brakes can provide the necessary speed reduction. A review of the changing operational... on landing to provide aerodynamic braking and to dump lift to ensure that the wheel brakes can...

  10. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  11. A new unified approach to analyze wing-body-tail configurations with control surfaces in steady, oscillatory and fully unsteady, subsonic and supersonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.

  12. Evaluation of aerodynamic derivatives from a magnetic balance system

    NASA Technical Reports Server (NTRS)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  13. Transonic aerodynamic design experience

    NASA Technical Reports Server (NTRS)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  14. Forced response unsteady aerodynamics in a multistage compressor

    NASA Astrophysics Data System (ADS)

    Capece, Vincent Ralph

    The fundamental flow physics of the unsteady aerodynamics associated with forced vibrations in turbomachinery are investigated. Unique data are obtained through a series of experiments in a three stage axial flow research compressor which quantify the unsteady harmonic gust interaction phenomena over a range of operating and geometric conditions at high values of reduced frequency. In these experiments the effects of the following on the stator vane unsteady aerodynamics were quantified: (1) the steady aerodynamic loading, (2) the detailed waveform of the aerodynamic forcing function, including the chordwise and transverse gust components, (3) multistage blade row interactions, and (4) the solidity, ranging from a design value of 1.09 to an isolated airfoil. In addition, the effect of flow separation on the unsteady aerodynamics of an isolated airfoil was also investigated.

  15. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Tobak, M.; Malcolm, G. N.

    1980-01-01

    This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.

  16. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  17. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  18. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  19. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1981-01-01

    A subsonic/supersonic/hypersonic aerodynamic analysis was developed by integrating the Aerodynamic Preliminary Analysis System (APAS), and the inviscid force calculation modules of the Hypersonic Arbitrary Body Program. APAS analysis was extended for nonlinear vortex forces using a generalization of the Polhamus analogy. The interactive system provides appropriate aerodynamic models for a single input geometry data base and has a run/output format similar to a wind tunnel test program. The user's manual was organized to cover the principle system activities of a typical application, geometric input/editing, aerodynamic evaluation, and post analysis review/display. Sample sessions are included to illustrate the specific task involved and are followed by a comprehensive command/subcommand dictionary used to operate the system.

  20. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  1. 12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  2. Special opportunities in helicopter aerodynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1983-01-01

    Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.

  3. The art of spacecraft design: A multidisciplinary challenge

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Levine, M.; Austel, L.

    1989-01-01

    Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.

  4. The Modern Design of Experiments for Configuration Aerodynamics: A Case Study

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2006-01-01

    The effects of slowly varying and persisting covariate effects on the accuracy and precision of experimental result is reviewed, as is the rationale for run-order randomization as a quality assurance tactic employed in the Modern Design of Experiments (MDOE) to defend against such effects. Considerable analytical complexity is introduced by restrictions on randomization in configuration aerodynamics tests because they involve hard-to-change configuration variables that cannot be randomized conveniently. Tradeoffs are examined between quality and productivity associated with varying degrees of rigor in accounting for such randomization restrictions. Certain characteristics of a configuration aerodynamics test are considered that may justify a relaxed accounting for randomization restrictions to achieve a significant reduction in analytical complexity with a comparably negligible adverse impact on the validity of the experimental results.

  5. ARC-2010-ACD10-0020-073

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  6. ARC-2010-ACD10-0020-065

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  7. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  8. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  9. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Smith, C.

    1997-12-01

    The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.

  10. Aerodynamic effects of high-speed passenger trains on other trains.

    DOT National Transportation Integrated Search

    2002-04-01

    This study assesses the potential safety risks associated with aerodynamic loads produced by the Acela high-speed train when passing freight and bi-level commuter passenger cars. Acela operates at speeds up to 150 mph, on tangent tracks adjacent to n...

  11. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. 1: Experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.

    1980-01-01

    The aerodynamic performances of four stator-blade rows are presented and evaluated. The aerodynamic designs of two of these stators were compromised to reduce noise, a third design was not. On a calculated operating line passing through the design point pressure ratio, the best stator had overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some correctable deficiencies due partly to the design compromises for noise. In the end-wall regions blade-element losses were significantly less for the shortest chord studied.

  12. The aerodynamic design of an advanced rotor airfoil

    NASA Technical Reports Server (NTRS)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  13. ARC-2010-ACD10-0020-013

    NASA Image and Video Library

    2010-01-14

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Cab being lifted into the tunnel.

  14. ARC-2010-ACD10-0020-023

    NASA Image and Video Library

    2010-02-03

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Trailer being lifted into the tunnel.

  15. ARC-2010-ACD10-0020-082

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.

  16. ARC-2010-ACD10-0020-079

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.

  17. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  18. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    NASA Astrophysics Data System (ADS)

    Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.

    2014-06-01

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.

  19. COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide

    NASA Technical Reports Server (NTRS)

    Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.

    1977-01-01

    The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.

  20. Estimation of effective aerodynamic roughness with altimeter measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Ritchie, J. C.

    1992-01-01

    A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.

  1. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between computational and measurement data in the bypass duct show that they are in good agreement, thus providing a partial validation of the computational results.

  2. Numerical aerodynamic simulation facility preliminary study: Executive study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.

  3. Longhorn Business Jets

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Developed in NASA's Aircraft Energy Efficiency program and manufactured by Gates Learjet Corporation, the winglet is an aerodynamic innovation designed to reduce fuel consumption and improve airplane performance. Winglets are lifting surfaces designed to operate in the "vortex" or air whirlpool which occurs at an airplane's wingtip. Complex flow of air around wingtip creates drag which retards the plane's progress. Winglet reduces strength of vortex and thereby reduces strength of drag. Additionally, winglet generates its own lift, producing forward thrust in the manner of a boat's sail. Combination of reduced drag and additional thrust adds up to significant improvement in fuel efficiency.

  4. High-angle-of-attack aerodynamics - Lessons learned

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.

    1986-01-01

    Recently, the military and civil technical communities have undertaken numerous studies of the high angle-of-attack aerodynamic characteristics of advanced airplane and missile configurations. The method of approach and the design methodology employed have necessarily been experimental and exploratory in nature, due to the complex nature of separated flows. However, despite the relatively poor definition of many of the key aerodynamic phenomena involved for high-alpha conditions, some generic guidelines for design consideration have been identified. The present paper summarizes some of the more important lessons learned in the area of high angle-of-attack aerodynamics with examples of a number of key concepts and with particular emphasis on high-alpha stability and control characteristics of high performance aircraft. Topics covered in the discussion include the impact of design evolution, forebody flows, control of separated flows, configuration effects, aerodynamic controls, wind-tunnel flight correlation, and recent NASA research activities.

  5. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  6. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids by Using Complex Variables

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  7. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  8. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  9. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  10. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  11. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  12. ARC-2010-ACD10-0020-034

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. LLNL's test piece is being installed on truck.

  13. Track Model: A Proposal of an Interactive Exhibit to Learn Aerodynamics

    ERIC Educational Resources Information Center

    Sturm, Heike; Sturm, Gerd; Bogner, Franz X.

    2011-01-01

    Bird flight and lift in general is a complex subject which is also difficult to teach in a classroom. In order to support the teaching of this curriculum-based subject, an interactive exhibit to demonstrate aerodynamic aspects of objects has been developed, implemented and evaluated with 262 middle school students. The empirical evaluation…

  14. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  15. 27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  16. 26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  17. 28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF EXHAUST AND DEFLECTOR FOR SUBSONIC AERODYNAMICS RESEARCH LABORATORY, BUILDING 25C, WHICH REPLACED THE 10-FOOT WIND TUNNEL (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  18. Program user's manual for an unsteady helicopter rotor-fuselage aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.

    1988-01-01

    The Rotor-Fuselage Analysis is a method of calculating the aerodynamic reaction between a helicopter rotor and fuselage. This manual describes the structure and operation of the computer programs that make up the Rotor-Fuselage Analysis, programs which prepare the input and programs which display the output.

  19. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  20. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    NASA Astrophysics Data System (ADS)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.

  1. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1990-01-01

    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.

  2. Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.

  3. Structural/aerodynamic Blade Analyzer (SAB) User's Guide, Version 1.0

    NASA Technical Reports Server (NTRS)

    Morel, M. R.

    1994-01-01

    The structural/aerodynamic blade (SAB) analyzer provides an automated tool for the static-deflection analysis of turbomachinery blades with aerodynamic and rotational loads. A structural code calculates a deflected blade shape using aerodynamic loads input. An aerodynamic solver computes aerodynamic loads using deflected blade shape input. The two programs are iterated automatically until deflections converge. Currently, SAB version 1.0 is interfaced with MSC/NASTRAN to perform the structural analysis and PROP3D to perform the aerodynamic analysis. This document serves as a guide for the operation of the SAB system with specific emphasis on its use at NASA Lewis Research Center (LeRC). This guide consists of six chapters: an introduction which gives a summary of SAB; SAB's methodology, component files, links, and interfaces; input/output file structure; setup and execution of the SAB files on the Cray computers; hints and tips to advise the user; and an example problem demonstrating the SAB process. In addition, four appendices are presented to define the different computer programs used within the SAB analyzer and describe the required input decks.

  4. CFD investigations of the aerodynamics of vehicle overtaking maneuvers

    NASA Astrophysics Data System (ADS)

    Uddin, Mesbah; Chellaram, Arune Dhiren; Robinson, Austin Clay

    2017-06-01

    When two vehicle bodies are involved in a passing maneuver, interesting and intricate aerodynamic interactions occur between them. Such passing maneuvers are very important in racing and have been an area of active interest in motorsports for quite some time. The existing literature shows only a few studies in this area, and, as such, very little is known about the complex aerodynamics of racing in proximity. This paper presents a Computational Fluid Dynamics (CFD) methodology capable of describing the transient effects that occur in this scenario. This is achieved by simulating two tandem simplified vehicle bodies, the Ahmed body, which were placed in a virtual wind tunnel. One Ahmed body was kept stationary, while the other was allowed to move in the longitudinal direction with a relatively low velocity. In order to achieve reliable CFD results when one of the solid objects is moving, a new meshing methodology, called the overset mesh model, was implemented in the CFD process. The simulations were run using Star CCM+, a commercial finite-volume CFD program, in which the unsteady Reynolds Averaged Navier-Stokes (URANS) solver was applied. The CFD results are compared against fully transient and quasi-steady-state experimental results where encouraging correlations between the CFD and experiments are observed. The veracity of the CFD work presented in this paper provides significant insight into the complex aerodynamics of a passing maneuver, and lays the foundation for further analysis in this area using more complex vehicle shapes and more complex tandem racing or passing maneuvers at a yaw angle.

  5. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  6. RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.; Roberge, A. M.

    1973-01-01

    A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.

  7. An Analysis of the Influence of some External Disturbances on the Aerodynamic Stability of Turbine Engine Axial Flow Fans and Compressors

    DTIC Science & Technology

    1977-08-01

    237 265 X A E DC-T R-77-80 CHAPTER I INTRODUCTION Stable aerodynamic operation of the compression system of an aircraft gas turbine engine is...of an aircraft gas turbine engine consists of one or more compressors arranged in configurations such as those illustrated in Fig. 1 (Appendix A). 1...difficulties in the operation of several aircraft gas turbine engines which have been experienced because of compressor stability problems. Montgomery’s

  8. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  9. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  10. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines

    DOE PAGES

    Zhao, Qiuying; Sheng, Chunhua; Afjeh, Abdollah

    2014-01-01

    Aerodynamic interactions of the model NREL 5 MW offshore horizontal axis wind turbines (HAWT) are investigated using a high-fidelity computational fluid dynamics (CFD) analysis. Four wind turbine configurations are considered; three-bladed upwind and downwind and two-bladed upwind and downwind configurations, which operate at two different rotor speeds of 12.1 and 16 RPM. In the present study, both steady and unsteady aerodynamic loads, such as the rotor torque, blade hub bending moment, and base the tower bending moment of the tower, are evaluated in detail to provide overall assessment of different wind turbine configurations. Aerodynamic interactions between the rotor and tower are analyzed,more » including the rotor wake development downstream. The computational analysis provides insight into aerodynamic performance of the upwind and downwind, two- and three-bladed horizontal axis wind turbines.« less

  11. Estimation of Aerodynamic Stability Derivatives for Space Launch System and Impact on Stability Margins

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Wall, John

    2013-01-01

    This paper describes the techniques involved in determining the aerodynamic stability derivatives for the frequency domain analysis of the Space Launch System (SLS) vehicle. Generally for launch vehicles, determination of the derivatives is fairly straightforward since the aerodynamic data is usually linear through a moderate range of angle of attack. However, if the wind tunnel data lacks proper corrections then nonlinearities and asymmetric behavior may appear in the aerodynamic database coefficients. In this case, computing the derivatives becomes a non-trivial task. Errors in computing the nominal derivatives could lead to improper interpretation regarding the natural stability of the system and tuning of the controller parameters, which would impact both stability and performance. The aerodynamic derivatives are also provided at off nominal operating conditions used for dispersed frequency domain Monte Carlo analysis. Finally, results are shown to illustrate that the effects of aerodynamic cross axis coupling can be neglected for the SLS configuration studied

  12. Aerodynamics of electrically driven freight pipeline system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundgren, T.S.; Zhao, Y.

    2000-06-01

    This paper examines the aerodynamic characteristics of a freight pipeline system in which freight capsules are individually propelled by electrical motors. The fundamental difference between this system and the more extensively studied pneumatic capsule pipeline is the different role played by aerodynamic forces. In a driven system the propelled capsules are resisted by aerodynamic forces and, in reaction, pump air through the tube. In contrast, in a pneumatically propelled system external blowers pump air through the tubes, and this provides the thrust for the capsules. An incompressible transient analysis is developed to study the aerodynamics of multiple capsules in amore » cross-linked two-bore pipeline. An aerodynamic friction coefficient is used as a cost parameter to compare the effects of capsule blockage and headway and to assess the merits of adits and vents. The authors conclude that optimum efficiency for off-design operation is obtained with long platoons of capsules in vented or adit connected tubes.« less

  13. Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1985-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.

  14. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    NASA Astrophysics Data System (ADS)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  15. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.

  16. Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2001-01-01

    Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.

  17. Estimates for the Aerodynamic Coefficients of Ringsail and Disk-Gap-Band Parachutes Operating on Mars

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Snyder, Miranda L.

    2017-01-01

    Models are presented for the aerodynamic coefficients of Supersonic Ringsail and Disk-Gap-Band parachutes as functions of total porosity, Lambda(sub t), Mach number, M, and total angle of attack, Alpha(sub t) (when necessary). The source aerodynamic coefficients data used for creating these models were obtained from a wind tunnel test of subscale parachutes. In this wind tunnel test, subscale parachutes of both parachute types were fabricated from two different fabrics with very different permeabilities. By varying the fabric permeability, while maintaining the parachute geometry constant, it was possible to vary Alpha(sub t). The fabric permeability test data necessary for the calculation of Alpha(sub t) were obtained from samples of the same fabrics used to fabricate the subscale parachutes. Although the models for the aerodynamic coefficients are simple polynomial functions of Alpha(sub t) and M, they are capable of producing good reproductions of the source data. The (Alpha(sub t), M) domains over which these models are applicable are clearly defined. The models are applicable to flight operations on Mars.

  18. Inertia may limit efficiency of slow flapping flight, but mayflies show a strategy for reducing the power requirements of loiter.

    PubMed

    Usherwood, James R

    2009-03-01

    Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.

  19. National Transonic Facility: A review of the operational plan

    NASA Technical Reports Server (NTRS)

    Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.

    1980-01-01

    The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.

  20. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  1. Stability and Control CFD Investigations of a Generic 53 Degree Swept UCAV Configuration

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    2014-01-01

    NATO STO Task Group AVT-201 on "Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles" is studying various computational approaches to predict stability and control parameters for aircraft undergoing non-linear flight conditions. This paper contributes an assessment through correlations with wind tunnel data for the state of aerodynamic predictive capability of time-accurate RANS methodology on the group's focus configuration, a 53deg swept and twisted lambda wing UCAV, undergoing a variety of roll, pitch, and yaw motions. The vehicle aerodynamics is dominated by the complex non-linear physics of round leading-edge vortex flow separation. Correlations with experimental data are made for static longitudinal/lateral sweeps, and at varying frequencies of prescribed roll/pitch/yaw sinusoidal motion for the vehicle operating with and without control surfaces. The data and the derived understanding should prove useful to the AVT-201 team and other researchers who are developing techniques for augmenting flight simulation models from low-speed CFD predictions of aircraft traversing non-linear regions of a flight envelope.

  2. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  3. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747 aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Analytical design and wind tunnel test evaluations covering the feasibility of applying wing tip extensions, winglets, and active control wing had alleviation to the model B747 are described. Aerodynamic improvement offered by wing tip extension and winglet individually, and the combined aerodynamic and weight improvements when wing load alleviation is combined with the tip extension or the winglet are evaluated. Results are presented in the form of incremental effects on weight mission range, fuel usage, cost, and airline operating economics.

  4. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Naumowicz, Tim

    1987-01-01

    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  5. Experimental Study of Lift-Generated Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1998-01-01

    The flow fields of vortices, whether bouyancy-driven or lift-generated, are fascinating fluid-dynamic phenomena which often possess intense swirl velocities and complex time-dependent behavior. As part of the on-going study of vortex behavior, this paper presents a historical overview of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. It is pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The primary purpose of the research to be described is to find a way to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from aerospace journals that are available publicly.

  6. A long-range laser velocimeter for the National Full-Scale Aerodynamics Complex: New developments and experimental application

    NASA Technical Reports Server (NTRS)

    Reinath, Michael S.

    1989-01-01

    A long-range laser velocimeter (LV) developed for remote operation from within the flow fields of the large wind tunnels of the National Full-Scale Aerodynamics Complex is described. Emphasis is placed on recent improvements in optical hardware as well as recent additions to data acquisition and processing techniques. The system has been upgraded from a dual-beam, single-color LV with focal range to 10 m, to a dual-beam, two-color LV with focal range to 20 m. At the new extended measurement range (between 10 and 20 m), signals are photon-resolved, and a photon correlation technique is applied to acquire and process the LV signals. This technique permits recovery of the velocity probability distributions at a particular measurement location from which the mean components of velocity and the corresponding normal stress components of turbulence are obtained. The method used for data reduction is outlined in detail, and a discussion of measurement accuracy is made. To study the performance of the LV and verify the measurement accuracy, laboratory measurements were made in the flow field of a 10 cm-diameter, 30-m/sec axisymmetric jet. A discussion of the requirements and techniques used to seed the flow is made, and boundary-layer surveys of mean velocity and turbulence intensity of the streamwise component and the component normal to the surface are presented.

  7. Lockheed L-1011 Test Station on-board in support of the Adaptive Performance Optimization flight res

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This console and its compliment of computers, monitors and commmunications equipment make up the Research Engineering Test Station, the nerve center for a new aerodynamics experiment being conducted by NASA's Dryden Flight Research Center, Edwards, California. The equipment is installed on a modified Lockheed L-1011 Tristar jetliner operated by Orbital Sciences Corp., of Dulles, Va., for Dryden's Adaptive Performance Optimization project. The experiment seeks to improve the efficiency of long-range jetliners by using small movements of the ailerons to improve the aerodynamics of the wing at cruise conditions. About a dozen research flights in the Adaptive Performance Optimization project are planned over the next two to three years. Improving the aerodynamic efficiency should result in equivalent reductions in fuel usage and costs for airlines operating large, wide-bodied jetliners.

  8. Demonstration of relaxed static stability on a commercial transport

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Davis, W. J.; Willey, C. S.; Cokeley, R. C.

    1984-01-01

    Increasing jet aircraft fuel costs from 25 percent to nearly 60 percent of the aircraft direct operating costs have led to a heavy emphasis on the development of transport aircraft with significantly improved aerodynamic performance. The application of the concept of relaxed static stability (RSS) and the utilization of an active control stability augmentation system make it possible to design an aircraft with reduced aerodynamic trim drag due to a farther-aft cg balance. Reduced aerodynamic parasite drag and lower structural weight due to a smaller horizontal tail surface can also be obtained. The application of RSS has been studied under a NASA-sponsored program to determine ways of improving the energy efficiency in current and future transport aircraft. Attention is given to a near-term pitch active control system, an advanced pitch active control system, and an operational overview.

  9. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

    NASA Astrophysics Data System (ADS)

    Yondo, Raul; Andrés, Esther; Valero, Eusebio

    2018-01-01

    Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-order) aerodynamic models or flight testing are some of the fundamental but complex steps in the various design phases of recent civil transport aircrafts. Current aircraft aerodynamic designs have increase in complexity (multidisciplinary, multi-objective or multi-fidelity) and need to address the challenges posed by the nonlinearity of the objective functions and constraints, uncertainty quantification in aerodynamic problems or the restrained computational budgets. With the aim to reduce the computational burden and generate low-cost but accurate models that mimic those full order models at different values of the design variables, Recent progresses have witnessed the introduction, in real-time and many-query analyses, of surrogate-based approaches as rapid and cheaper to simulate models. In this paper, a comprehensive and state-of-the art survey on common surrogate modeling techniques and surrogate-based optimization methods is given, with an emphasis on models selection and validation, dimensionality reduction, sensitivity analyses, constraints handling or infill and stopping criteria. Benefits, drawbacks and comparative discussions in applying those methods are described. Furthermore, the paper familiarizes the readers with surrogate models that have been successfully applied to the general field of fluid dynamics, but not yet in the aerospace industry. Additionally, the review revisits the most popular sampling strategies used in conducting physical and simulation-based experiments in aircraft aerodynamic design. Attractive or smart designs infrequently used in the field and discussions on advanced sampling methodologies are presented, to give a glance on the various efficient possibilities to a priori sample the parameter space. Closing remarks foster on future perspectives, challenges and shortcomings associated with the use of surrogate models by aircraft industrial aerodynamicists, despite their increased interest among the research communities.

  10. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  11. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  12. Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.

    2016-01-01

    The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.

  13. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  14. Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)

    2014-01-01

    A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.

  15. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  16. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic systemmore » leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.« less

  17. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  18. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  19. KSC-2009-3192

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-3188

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch the joining of the fairing halves around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-3190

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved together for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-3184

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians move the first half of the fairing toward NASA's Lunar Reconnaissance Orbiter, or LRO, with NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for installation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-3189

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved apart for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-3185

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians observe NASA's Lunar Reconnaissance Orbiter, or LRO, with and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, during installation of the fairing. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  5. KSC-2009-3187

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves come together around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent.The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  6. KSC-2009-3193

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves have been joined to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-3191

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  8. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  9. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  10. Thermal Analysis and Correlation of the Mars Odyssey Spacecraft's Solar Array During Aerobraking Operations

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.

    2002-01-01

    The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.

  11. Safe atmosphere entry of an isotope heat source with a single stable trim attitude at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Burns, R. K.

    1972-01-01

    A theoretical investigation has been made to design an isotope heat source capable of satisfying the conflicting thermal requirements of steady-state operation and atmosphere entry. The isotope heat source must transfer heat efficiently to a heat exchange during normal operation with a power system in space, and in the event of a mission abort, it must survive the thermal environment of atmosphere entry and ground impact without releasing radioactive material. A successful design requires a compatible integration of the internal components of the heat source with the external aerodynamic shape. To this end, configurational, aerodynamic, motion, and thermal analyses were coupled and iterated during atmosphere entries at suborbital through superorbital velocities at very shallow and very steep entry angles. Results indicate that both thermal requirements can be satisfied by a heat source which has a single stable aerodynamic orientation at hypersonic speeds. For such a design, the insulation material required to adequately protect the isotope fuel from entry heating need extend only half way around the fuel capsule on the aerodynamically stable (wind-ward) side of the heat source. Thus, a low-thermal-resistance, conducting heat path is provided on the opposite side of the heat source through which heat can be transferred to an adjacent heat exchanger during normal operation without exceeding specified temperature limits.

  12. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  13. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  14. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    2007-01-01

    The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.

  15. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  16. Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics

    NASA Astrophysics Data System (ADS)

    Dawson, Scott T. M.

    This thesis focuses on two major themes: modeling and understanding the dynamics of rapidly pitching airfoils, and developing methods that can be used to extract models and pertinent features from datasets obtained in the study of these and other systems in fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic mode decomposition (DMD), a recently developed method to extract dynamical features and models from data. The investigation of pitching airfoils includes both wind tunnel experiments and direct numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid pitching motion, with the focus on developing a switched linear modeling framework that can accurately predict unsteady aerodynamic forces and pressure distributions throughout arbitrary pitching motions. Numerical simulations are used to study the behavior of sinusoidally pitching airfoils. By systematically varying the amplitude, frequency, mean angle and axis of pitching, a comprehensive database of results is acquired, from which interesting regions in parameter space are identified and studied. Attention is given to pitching at "preferred" frequencies, where vortex shedding in the wake is excited or amplified, leading to larger lift forces. More generally, the ability to extract nonlinear models that describe the behavior of complex fluids systems can assist in not only understanding the dominant features of such systems, but also to achieve accurate prediction and control. One potential avenue to achieve this objective is through numerical approximation of the Koopman operator, an infinite-dimensional linear operator capable of describing finite-dimensional nonlinear systems, such as those that might describe the dominant dynamics of fluids systems. This idea is explored by showing that algorithms designed to approximate the Koopman operator can indeed be utilized to accurately model nonlinear fluids systems, even when the data available is limited or noisy. Data-driven algorithms can be adversely affected by noisy data. Focusing on DMD, it is shown analytically that the algorithm is biased to sensor noise, which explains a previously observed sensitivity to noisy data. Using this finding, a number of modifications to DMD are proposed, which all give better approximations of the true dynamics using noise-corrupted data.

  17. Freight Wing Trailer Aerodynamics Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wingmore » utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.« less

  18. Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.; Powers, S. A.; Roush, R. T.

    1982-01-01

    A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.

  19. An experimental investigation of free-tip response to a jet

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    1986-01-01

    The aerodynamic response of passively oscillating tips appended to a model helicopter rotor was investigated during a whirl test. Tip responsiveness was found to meet free-tip rotor requirements. Experimental and analytical estimates of the free-tip aerodynamic spring, mechanical spring, and aerodynamic damping were calculated and compared. The free tips were analytically demonstrated to be operating outside the tip resonant response region at full-scale tip speeds. Further, tip resonance was shown to be independent of tip speed, given the assumption that the tip forcing frequency is linearly dependent upon the rotor rotational speed.

  20. Using a commercial CAD system for simultaneous input to theoretical aerodynamic programs and wind-tunnel model construction

    NASA Technical Reports Server (NTRS)

    Enomoto, F.; Keller, P.

    1984-01-01

    The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.

  1. Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerand E.

    2010-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper

  2. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  3. Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability

    NASA Technical Reports Server (NTRS)

    Vicker, Darby; Childs, Robert; Rogers,Stuart E.; McMullen, Matthew; Garcia, Joseph; Greathouse, James

    2013-01-01

    Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability.

  4. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  5. Computation of the stability derivatives via CFD and the sensitivity equations

    NASA Astrophysics Data System (ADS)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  6. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    NASA Astrophysics Data System (ADS)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  7. An Experimental and Computational Investigation of Oscillating Airfoil Unsteady Aerodynamics at Large Mean Incidence

    NASA Technical Reports Server (NTRS)

    Capece, Vincent R.; Platzer, Max F.

    2003-01-01

    A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.

  8. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  9. Applied Operations Research: Augmented Reality in an Industrial Environment

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.

    2015-01-01

    Augmented reality is the application of computer generated data or graphics onto a real world view. Its use provides the operator additional information or a heightened situational awareness. While advancements have been made in automation and diagnostics of high value critical equipment to improve readiness, reliability and maintenance, the need for assisting and support to Operations and Maintenance staff persists. AR can improve the human machine interface where computer capabilities maximize the human experience and analysis capabilities. NASA operates multiple facilities with complex ground based HVCE in support of national aerodynamics and space exploration, and the need exists to improve operational support and close a gap related to capability sustainment where key and experienced staff consistently rotate work assignments and reach their expiration of term of service. The initiation of an AR capability to augment and improve human abilities and training experience in the industrial environment requires planning and establishment of a goal and objectives for the systems and specific applications. This paper explored use of AR in support of Operation staff in real time operation of HVCE and its maintenance. The results identified include identification of specific goal and objectives, challenges related to availability and computer system infrastructure.

  10. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  11. Aerodynamic Heat-Power Engine Operating on a Closed Cycle

    NASA Technical Reports Server (NTRS)

    Ackeret, J.; Keller, D. C.

    1942-01-01

    Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.

  12. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  13. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  14. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  15. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  16. Modeling of the UAE Wind Turbine for Refinement of FAST{_}AD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J. M.

    The Unsteady Aerodynamics Experiment (UAE) research wind turbine was modeled both aerodynamically and structurally in the FAST{_}AD wind turbine design code, and its response to wind inflows was simulated for a sample of test cases. A study was conducted to determine why wind turbine load magnitude discrepancies-inconsistencies in aerodynamic force coefficients, rotor shaft torque, and out-of-plane bending moments at the blade root across a range of operating conditions-exist between load predictions made by FAST{_}AD and other modeling tools and measured loads taken from the actual UAE wind turbine during the NASA-Ames wind tunnel tests. The acquired experimental test data representmore » the finest, most accurate set of wind turbine aerodynamic and induced flow field data available today. A sample of the FAST{_}AD model input parameters most critical to the aerodynamics computations was also systematically perturbed to determine their effect on load and performance predictions. Attention was focused on the simpler upwind rotor configuration, zero yaw error test cases. Inconsistencies in input file parameters, such as aerodynamic performance characteristics, explain a noteworthy fraction of the load prediction discrepancies of the various modeling tools.« less

  17. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  18. The aerodynamic challenges of the design and development of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.

    1985-01-01

    The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.

  19. Dynamic gas temperature measurement system. Volume 2: Operation and program manual

    NASA Technical Reports Server (NTRS)

    Purpura, P. T.

    1983-01-01

    The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.

  20. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  1. KSC-2009-3183

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS,wait for fairing installation. The fairing halves are on left and right of the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  2. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    PubMed

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  3. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  4. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.

  5. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are compared with experimental data.

  6. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  7. On the capabilities and limitations of high altitude pseudo-satellites

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; López, Deibi; Domínguez, Diego; García, Adrián; Escapa, Alberto

    2018-04-01

    The idea of self-sustaining air vehicles that excited engineers in the seventies has nowadays become a reality as proved by several initiatives worldwide. High altitude platforms, or Pseudo-satellites (HAPS), are unmanned vehicles that take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. Target applications are communications, Earth observation, positioning and science among others. This paper reviews the major characteristics of stratospheric flight, where airplanes and airships will compete for best performance. The careful analysis of involved technologies and their trends allow budget models to shed light on the capabilities and limitations of each solution. Aerodynamics and aerostatics, structures and materials, propulsion, energy management, thermal control, flight management and ground infrastructures are the critical elements revisited to assess current status and expected short-term evolutions. Stratospheric airplanes require very light wing loading, which has been demonstrated to be feasible but currently limits their payload mass to few tenths of kilograms. On the other hand, airships need to be large and operationally complex but their potential to hover carrying hundreds of kilograms with reasonable power supply make them true pseudo-satellites with enormous commercial interest. This paper provides useful information on the relative importance of the technology evolutions, as well as on the selection of the proper platform for each application or set of payload requirements. The authors envisage prompt availability of both types of HAPS, aerodynamic and aerostatic, providing unprecedented services.

  8. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  9. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  10. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  11. The US National Transonic Facility, NTF

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., Jr.; Gloss, Blair B.

    1989-01-01

    The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.

  12. Application of empirical and linear methods to VSTOL powered-lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Margason, Richard; Kuhn, Richard

    1988-01-01

    Available prediction methods applied to problems of aero/propulsion interactions for short takeoff and vertical landing (STOVL) aircraft are critically reviewed and an assessment of their strengths and weaknesses provided. The first two problems deal with aerodynamic performance effects during hover: (1) out-of-ground effect, and (2) in-ground effect. The first can be evaluated for some multijet cases; however, the second problem is very difficult to evaluate for multijets. The ground-environment effects due to wall jets and fountain flows directly affect hover performance. In a related problem: (3) hot-gas ingestion affects the engine operation. Both of these problems as well as jet noise affect the ability of people to work near the aircraft and the ability of the aircraft to operate near the ground. Additional problems are: (4) the power-augmented lift due to jet-flap effects (both in- and out-of-ground effects), and (5) the direct jet-lift effects during short takeoff and landing (STOL) operations. The final problem: (6) is the aerodynamic/propulsion interactions in transition between hover and wing-borne flight. Areas where modern CFD methods can provide improvements to current computational capabilities are identified.

  13. The Influence of Hoop Diameter on Aerodynamic Performance of O-Ring Paper Plane

    NASA Astrophysics Data System (ADS)

    Ismail, N. I.; Sharudin, Hazim; Talib, R. J.; Hassan, A. A.; Yusoff, H.

    2018-05-01

    The O-ring paper plane can be categorized as one of the Micro Air Vehicle (MAV) based on their characteristics and size. However, the aerodynamics performance of the O-ring paper plane was not fully discovered by previous researchers due to its aerodynamics complexity and various hoop diameters. Thus, the objective of this research is to study the influence of hoop diameters towards the aerodynamics performance of O-ring paper plane. In this works, three types of O-ring paper plane known as Design 1, 2 and 3 with different hoop diameter were initially developed by using the ANSYS-Design Modeler. All the design was analyzed based on aerodynamic simulations works executed on ANSYS-CFX solver. The results suggested that Design 3 (with larger hoop size) produced better CL, CLmax and AoAstall magnitude compared to other design. In fact, O-ring paper plane with larger hoop size configurations showed potential in providing at least 5.2% and 5.9% better performance in stability (ΔCM/ΔCL) and aerodynamic efficiency (CL/CDmax), respectively. Despite the advantages found in lift performances, however, O-ring paper plane with larger hoop size configurations slightly suffered from larger drag increment (CDincrement) compared to smaller hoop size configurations. Based on these results, it can be presumed that O-Ring paper plane with larger hoop sizes contributed into better lift, stability and aerodynamic efficiency performances but slightly suffered from larger drag penalty.

  14. Stability and control flight test results of the space transportation system's orbiter

    NASA Technical Reports Server (NTRS)

    Culp, M. A.; Cooke, D. R.

    1982-01-01

    Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.

  15. STS-40 descent BET products: Development and results

    NASA Technical Reports Server (NTRS)

    Oakes, Kevin F.; Wood, James S.; Findlay, John T.

    1991-01-01

    Descent Best Estimate Trajectory (BET) Data were generated for the final Orbiter Experiments Flight, STS-40. This report discusses the actual development of these post-flight products: the inertial BET, the Extended BET, and the Aerodynamic BET. Summary results are also included. The inertial BET was determined based on processing Tracking and Data Relay Satellite (TDRSS) coherent Doppler data in conjunction with observations from eleven C-band stations, to include data from the Kwajalein Atoll and the usual California coastal radars, as well as data from five cinetheodolite cameras in the vicinity of the runways at EAFB. The anchor epoch utilized for the trajectory reconstruction was 53,904 Greenwich Mean Time (GMT) seconds which corresponds to an altitude at epoch of approximately 708 kft. Atmospheric data to enable development of an Extended BET for this mission were upsurped from the JSC operational post-flight BET. These data were evaluated based on Space Shuttle-derived considerations as well as model comparisons. The Aerodynamic BET includes configuration information, final mass properties, and both flight-determined and predicted aerodynamic performance estimates. The predicted data were based on the final pre-operational databook, updated to include flight determined incrementals based on an earlier ensemble of flights. Aerodynamic performance comparisons are presented and correlated versus statistical results based on twenty-two previous missions.

  16. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  17. Method of Determining the Aerodynamic Characteristics of a Flying Vehicle from the Surface Pressure

    NASA Astrophysics Data System (ADS)

    Volkov, V. F.; Dyad'kin, A. A.; Zapryagaev, V. I.; Kiselev, N. P.

    2017-11-01

    The paper presents a description of the procedure used for determining the aerodynamic characteristics (forces and moments acting on a model of a flying vehicle) obtained from the results of pressure measurements on the surface of a model of a re-entry vehicle with operating retrofire brake rockets in the regime of hovering over a landing surface is given. The algorithm for constructing the interpolation polynomial over interpolation nodes in the radial and azimuthal directions using the assumption on the symmetry of pressure distribution over the surface is presented. The aerodynamic forces and moments at different tilts of the vehicle are obtained. It is shown that the aerodynamic force components acting on the vehicle in the regime of landing and caused by the action of the vertical velocity deceleration nozzle jets are negligibly small in comparison with the engine thrust.

  18. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  19. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    NASA Astrophysics Data System (ADS)

    Rogowski, K.; Hansen, M. O. L.; Maroński, R.; Lichota, P.

    2016-09-01

    Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads and wake velocity profiles behind the rotor are compared with experimental data taken from literature. The level of agreement between CFD and experimental results is reasonable.

  20. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.

  1. Building complex simulations rapidly using MATRIX(x): The Space Station redesign

    NASA Technical Reports Server (NTRS)

    Carrington, C. K.

    1994-01-01

    MSFC's quick response to the Space Station redesign effort last year required the development of a computer simulation to model the attitude and station-keeping dynamics of a complex body with rotating solar arrays in orbit around the Earth. The simulation was written using a rapid-prototyping graphical simulation and design tool called MATRIX(x) and provided the capability to quickly remodel complex configuration changes by icon manipulation using a mouse. The simulation determines time-dependent inertia properties, and models forces and torques from gravity-gradient, solar radiation, and aerodynamic disturbances. Surface models are easily built from a selection of beams, plates, tetrahedrons, and cylinders. An optimization scheme was written to determine the torque equilibrium attitudes that balance gravity-gradient and aerodynamic torques over an orbit, and propellant-usage estimates were determined. The simulation has been adapted to model the attitude dynamics for small spacecraft.

  2. Private Pilot Ground School Course. Instructor's Guide.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This manual consists of 10 lesson plans for use by instructors teaching a private pilot ground school course. Addressed in the individual lesson plans are the following topics: aerodynamics and principles of flight, flight instruments and systems, operational publications, regulations, airplane operations, engine operations, radio communications,…

  3. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  4. X-38 NASA/DLR/ESA-Dassault Aviation Integrated Aerodynamic and Aerothermodynamic Activities

    NASA Technical Reports Server (NTRS)

    Labbe, Steve G.; Perez, Leo F.; Fitzgerald, Steve; Longo, Jose; Rapuc, Marc; Molina, Rafael; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The characterization of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV.

  5. Numerical aerodynamic simulation program long haul communications prototype

    NASA Technical Reports Server (NTRS)

    Cmaylo, Bohden K.; Foo, Lee

    1987-01-01

    This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.

  6. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  7. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    PubMed Central

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155

  8. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  9. Time-Varying Loads of Co-Axial Rotor Blade Crossings

    NASA Technical Reports Server (NTRS)

    Schatzman, Natasha L.; Komerath, Narayanan; Romander, Ethan A.

    2017-01-01

    The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.

  10. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  11. Investigation of inner aerodynamics of the four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Shadrin, E. Yu; Sharypov, O. V.

    2018-03-01

    The internal aerodynamics of a perspective vortex furnace chamber of a pulverized coal boiler with a diagonal arrangement of burners is studied using the non-contact optical method of flow diagnostics. The results of laser Doppler anemometry, characterizing the complex spatial structure of a swirling flow in an isothermal laboratory model of the furnace device, are presented. The velocity distribution in the vortex chamber volume is obtained, and the flow structure in the form of four conjugate closed vortices with curved axes is visualized.

  12. A collection of flow visualization techniques used in the Aerodynamic Research Branch

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.

  13. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  14. Comparative Study on the Prediction of Aerodynamic Characteristics of Aircraft with Turbulence Models

    NASA Astrophysics Data System (ADS)

    Jang, Yujin; Huh, Jinbum; Lee, Namhun; Lee, Seungsoo; Park, Youngmin

    2018-04-01

    The RANS equations are widely used to analyze complex flows over aircraft. The equations require a turbulence model for turbulent flow analyses. A suitable turbulence must be selected for accurate predictions of aircraft aerodynamic characteristics. In this study, numerical analyses of three-dimensional aircraft are performed to compare the results of various turbulence models for the prediction of aircraft aerodynamic characteristics. A 3-D RANS solver, MSAPv, is used for the aerodynamic analysis. The four turbulence models compared are the Sparlart-Allmaras (SA) model, Coakley's q-ω model, Huang and Coakley's k-ɛ model, and Menter's k-ω SST model. Four aircrafts are considered: an ARA-M100, DLR-F6 wing-body, DLR-F6 wing-body-nacelle-pylon from the second drag prediction workshop, and a high wing aircraft with nacelles. The CFD results are compared with experimental data and other published computational results. The details of separation patterns, shock positions, and Cp distributions are discussed to find the characteristics of the turbulence models.

  15. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  16. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  17. Design, fabrication, and test of a composite material wind turbine rotor blade

    NASA Technical Reports Server (NTRS)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  18. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    NASA Technical Reports Server (NTRS)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  19. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  20. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 1: Conventional Arrangement of Exit Nozzle and Surface

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Green, P. N.

    1997-12-01

    The literature on high-speed Coanda flows and its applications is reviewed. The lack of basic information for design engineers is noted. The present paper is based on an investigation of the aeroacoustics and aerodynamics of the high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Schlieren and other flow visualization techniques together with theoretical methods are used to reveal the various features of this complex flow field. The acoustic characteristics were obtained from measurements with an array of microphones in an anechoic chamber. The emphasis is placed on those features of the aerodynamics and aeroacoustics which may be of general interest.

  1. Computational Aerodynamic Modeling of Small Quadcopter Vehicles

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.

    2017-01-01

    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  2. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    PubMed

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  3. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  4. Development of V/STOL methodology based on a higher order panel method

    NASA Technical Reports Server (NTRS)

    Bhateley, I. C.; Howell, G. A.; Mann, H. W.

    1983-01-01

    The development of a computational technique to predict the complex flowfields of V/STOL aircraft was initiated in which a number of modules and a potential flow aerodynamic code were combined in a comprehensive computer program. The modules were developed in a building-block approach to assist the user in preparing the geometric input and to compute parameters needed to simulate certain flow phenomena that cannot be handled directly within a potential flow code. The PAN AIR aerodynamic code, which is higher order panel method, forms the nucleus of this program. PAN AIR's extensive capability for allowing generalized boundary conditions allows the modules to interact with the aerodynamic code through the input and output files, thereby requiring no changes to the basic code and easy replacement of updated modules.

  5. A workstation based simulator for teaching compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.

  6. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  7. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  8. Variable-Complexity Multidisciplinary Optimization on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Grossman, Bernard; Mason, William H.; Watson, Layne T.; Haftka, Raphael T.

    1998-01-01

    This report covers work conducted under grant NAG1-1562 for the NASA High Performance Computing and Communications Program (HPCCP) from December 7, 1993, to December 31, 1997. The objective of the research was to develop new multidisciplinary design optimization (MDO) techniques which exploit parallel computing to reduce the computational burden of aircraft MDO. The design of the High-Speed Civil Transport (HSCT) air-craft was selected as a test case to demonstrate the utility of our MDO methods. The three major tasks of this research grant included: development of parallel multipoint approximation methods for the aerodynamic design of the HSCT, use of parallel multipoint approximation methods for structural optimization of the HSCT, mathematical and algorithmic development including support in the integration of parallel computation for items (1) and (2). These tasks have been accomplished with the development of a response surface methodology that incorporates multi-fidelity models. For the aerodynamic design we were able to optimize with up to 20 design variables using hundreds of expensive Euler analyses together with thousands of inexpensive linear theory simulations. We have thereby demonstrated the application of CFD to a large aerodynamic design problem. For the predicting structural weight we were able to combine hundreds of structural optimizations of refined finite element models with thousands of optimizations based on coarse models. Computations have been carried out on the Intel Paragon with up to 128 nodes. The parallel computation allowed us to perform combined aerodynamic-structural optimization using state of the art models of a complex aircraft configurations.

  9. KSC-2009-1410

    NASA Image and Video Library

    2009-01-27

    VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA

  10. KSC-2009-1411

    NASA Image and Video Library

    2009-01-27

    VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA

  11. KSC-2009-1409

    NASA Image and Video Library

    2009-01-27

    VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA

  12. KSC-2009-3181

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are being prepared for fairing installation. On either side are the two fairing sections that will be installed around the spacecraft for launch. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-3186

    NASA Image and Video Library

    2009-05-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the first half of the fairing is moved into place for installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. At right is the second half. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  14. Parachute Testing for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    This parachute testing for NASA's InSight mission to Mars was conducted inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California, in February 2015. The wind tunnel is 80 feet (24 meters) tall and 120 feet (37 meters) wide. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19405

  15. Comparison of PASCAL and FORTRAN for solving problems in the physical sciences

    NASA Technical Reports Server (NTRS)

    Watson, V. R.

    1981-01-01

    The paper compares PASCAL and FORTRAN for problem solving in the physical sciences, due to requests NASA has received to make PASCAL available on the Numerical Aerodynamic Simulator (scheduled to be operational in 1986). PASCAL disadvantages include the lack of scientific utility procedures equivalent to the IBM scientific subroutine package or the IMSL package which are available in FORTRAN. Advantages include a well-organized, easy to read and maintain writing code, range checking to prevent errors, and a broad selection of data types. It is concluded that FORTRAN may be the better language, although ADA (patterned after PASCAL) may surpass FORTRAN due to its ability to add complex and vector math, and the specify the precision and range of variables.

  16. Effect of flap deflection on the lift coefficient of wings operating in a biplane configuration

    NASA Technical Reports Server (NTRS)

    Stasiak, J.

    1977-01-01

    Biplane models with a lift flap were tested in a wind tunnel to study the effect of flap deflection on the aerodynamic coefficient of the biplane as well as of the individual wings. Optimization of the position flap was carried out, and the effect of changes in the chord length of the lower wing was determined for the aerodynamic structure of a biplane with a lift flap on the upper wing.

  17. Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues

    DTIC Science & Technology

    2007-11-28

    shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...sea basing concept. Detractors challenge airship survivability and ability to operate in adverse weather. Also, hybrid airships use aerodynamic lift and...100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174 feet (53 meters) Height: 55 feet 1 inch (16.79 meters

  18. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  19. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    NASA Astrophysics Data System (ADS)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  20. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  1. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  2. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  3. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  4. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  5. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) energy harvesting to extend operational time and autonomy, and (3) sensing of an aerodynamic force associated with wing deformation.

  6. Flight testing a V/STOL aircraft to identify a full-envelope aerodynamic model

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Bach, Ralph E., Jr.

    1988-01-01

    Flight-test techniques are being used to generate a data base for identification of a full-envelope aerodynamic model of a V/STOL fighter aircraft, the YAV-8B Harrier. The flight envelope to be modeled includes hover, transition to conventional flight and back to hover, STOL operation, and normal cruise. Standard V/STOL procedures such as vertical takeoff and landings, and short takeoff and landings are used to gather data in the powered-lift flight regime. Long (3 to 5 min) maneuvers which include a variety of input types are used to obtain large-amplitude control and response excitations. The aircraft is under continuous radar tracking; a laser tracker is used for V/STOL operations near the ground. Tracking data are used with state-estimation techniques to check data consistency and to derive unmeasured variables, for example, angular accelerations. A propulsion model of the YAV-8B's engine and reaction control system is used to isolate aerodynamic forces and moments for model identification. Representative V/STOL flight data are presented. The processing of a typical short takeoff and slow landing maneuver is illustrated.

  7. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  8. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  9. A computational analysis of the aerodynamic and aeromechanical behavior of the purdue multistage compressor

    NASA Astrophysics Data System (ADS)

    Monk, David James Winchester

    Compressor design programs are becoming more reliant on computational tools to predict and optimize aerodynamic and aeromechanical behavior within a compressor. Recent trends in compressor development continue to push for more efficient, lighter weight, and higher performance machines. To meet these demands, designers must better understand the complex nature of the inherently unsteady flow physics inside of a compressor. As physical testing can be costly and time prohibitive, CFD and other computational tools have become the workhorse during design programs. The objectives of this research were to investigate the aerodynamic and aeromechanical behavior of the Purdue multistage compressor, as well as analyze novel concepts for reducing rotor resonant responses in compressors. Advanced computational tools were utilized to allow an in-depth analysis of the flow physics and structural characteristics of the Purdue compressor, and complement to existing experimental datasets. To analyze the aerodynamic behavior of the compressor a Rolls-Royce CFD code, developed specifically for multistage turbomachinery flows, was utilized. Steady-state computations were performed using the RANS solver on a single-passage mesh. Facility specific boundary conditions were applied to the model, increasing the model fidelity and overall accuracy of the predictions. Detailed investigations into the overall compressor performance, stage performance, and individual blade row performance were completed. Additionally, separation patterns on stator vanes at different loading conditions were investigated by plotting pathlines near the stator suction surfaces. Stator cavity leakage flows were determined to influence the size and extent of stator hub separations. In addition to the aerodynamic analysis, a Rolls-Royce aeroelastic CFD solver was utilized to predict the forced response behavior of Rotor 2, operating at the 1T mode crossing of the Campbell Diagram. This computational tool couples aerodynamic predictions with structural models to determine maximum Rotor 2 vibration amplitudes excited by both vortical and potential disturbances. A multi-bladerow, full-annulus unsteady simulation was performed to capture the aerodynamic forcing functions and understand the influence of bladerow interactions on these flow disturbances. The strength and frequency content of the S1 vortical field and S2 potential field were examined to quantify the aerodynamic forces exciting resonant vibrations. Detailed comparisons were made to experimental datasets acquired on the Purdue compressor which characterize the forced response behavior at the 1T mode crossing. Lastly, stator asymmetry was examined as a means of reducing forced response vibration amplitudes. For this study, a new Stator 1 ring was designed with a reduced vane count, creating the ability to isolate the relative contribution of the S1 wakes on R2 vibrational amplitudes. A second Stator 1 ring was then designed with asymmetric vane spacing such that two stator half-sectors of different vane counts were joined together to form a full stator ring. By joining two stator half-sectors with different vane counts, the energy of the wakes is spread into additional frequencies, thereby reducing the overall amplitudes. The aeroelastic CFD solver was again used to perform steady-state and unsteady simulations, capturing the effect of the stator asymmetry on resonant vibrational amplitudes. The resulting blade deflection amplitudes are presented and discussed in detail.

  10. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  11. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  12. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2012-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition

  13. Aerodynamic Performance Measurements for a Forward Swept Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    One source of noise in high tip speed turbofan engines, caused by shocks, is called multiple pure tone noise (MPT's). A new fan, called the Quiet High Speed Fan (QHSF), showed reduced noise over the part speed operating range, which includes MPT's. The QHSF showed improved performance in most respects relative to a baseline fan; however, a partspeed instability discovered during testing reduced the operating range below acceptable limits. The measured QHSF adiabatic efficiency on the fixed nozzle acoustic operating line was 85.1 percent and the baseline fan 82.9 percent, a 2.2 percent improvement. The operating line pressure rise at design point rotational speed and mass flow was 1.764 and 1.755 for the QHSF and baseline fan, respectively. Weight flow at design point speed was 98.28 lbm/sec for the QHSF and 97.97 lbm/sec for the baseline fan. The operability margin for the QHSF approached 0 percent at the 75 percent speed operating condition. The baseline fan maintained sufficient margin throughout the operating range as expected. Based on the stage aerodynamic measurements, this concept shows promise for improved performance over current technology if the operability limitations can be solved.

  14. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  15. Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  16. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  17. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  18. The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models

    NASA Technical Reports Server (NTRS)

    Hill, Melissa A.; Jackson, E. Bruce

    2007-01-01

    It can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other subsystem models can be automatically imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model and its integration into a simulation environment. The translator performs variable initializations, data table lookups, and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for verification. The implementation is efficient, enabling real-time execution. Simple interface code for the model inputs and outputs is the only requirement to integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class is described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given.

  19. High Reynolds Number Research

    NASA Technical Reports Server (NTRS)

    Baals, D. D. (Editor)

    1977-01-01

    Fundamental aerodynamic questions for which high Reynolds number experimental capability is required are discussed. The operational characteristics and design features of the National Transonic Facility are reviewed.

  20. Software for Collaborative Engineering of Launch Rockets

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  1. An approximately factored incremental strategy for calculating consistent discrete aerodynamic sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.

    1992-01-01

    An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.

  2. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  3. EC97-44347-15

    NASA Image and Video Library

    1997-12-11

    This console and its compliment of computers, monitors and commmunications equipment make up the Research Engineering Test Station, the nerve center for an aerodynamics experiment conducted by NASA's Dryden Flight Research Center, Edwards, California. The equipment was installed on a modified Lockheed L-1011 Tristar jetliner operated by Orbital Sciences Corp., of Dulles, Va., for Dryden's Adaptive Performance Optimization project. The experiment sought to improve the efficiency of long-range jetliners by using small movements of the ailerons to improve the aerodynamics of the wing at cruise conditions.

  4. Aerodynamics of small-scale vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  5. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  6. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:31.

  7. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:43.

  8. The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- The Satellite Test Unit (STU), part of the Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) is seen moments after its ejection from the cargo bay of the Space Shuttle Endeavour. The scene was photographed with an Electronic Still Camera (ESC) onboard Endeavour's crew cabin during the deployment. The six-member crew will continue operations (tracking, rendezvousing and station-keeping) with PAMS-STU periodically throughout the remainder of the mission. GMT: 03:29:29.

  9. Recent Developments in Gun Operating Techniques at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1996-01-01

    This paper describes recent developments in gun operating techniques at the Ames ballistic range complex. This range complex has been in operation since the early 1960s. Behavior of sabots during separation and projectile-target impact phenomena have long been observed by means of short-duration flash X-rays: new versions allow operation in the lower-energy ("soft") X-ray range and have been found to be more effective than the earlier designs. The dynamics of sabot separation is investigated in some depth from X-ray photographs of sabots launched in the Ames 1.0 in and 1.5 in guns; the sabot separation dynamics appears to be in reasonably good agreement with standard aerodynamic theory. Certain sabot packages appear to suffer no erosion or plastic deformation on traversing the gun barrel, contrary to what would be expected. Gun erosion data from the Ames 0.5 in, 1.0 in, and 1.5 in guns is examined in detail and can be correlated with a particular non- dimensionalized powder mass parameter. The gun erosion increases very rapidly as this parameter is increased. Representative shapes of eroded gun barrels are given. Guided by a computational fluid dynamics (CFD) code, the operating conditions of the Ames 0.5 in and 1.5 in guns were modified. These changes involved: (1) reduction in the piston mass, powder mass and hydrogen fill pressure and (2) reduction in pump tube volume, while maintaining hydrogen mass. These changes resulted in muzzle velocity increases of 0.5-0.8 km/sec, achieved simultaneously with 30-50 percent reductions in gun erosion.

  10. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  11. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  12. Bird Flight as a Model for a Course in Unsteady Aerodynamics

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael

    2014-11-01

    Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.

  13. Improving precipitation measurement

    NASA Astrophysics Data System (ADS)

    Strangeways, Ian

    2004-09-01

    Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.

  14. NASTRAN flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs in NASTRAN was modified and applied to investigate the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) variable sweep. The two dimensional subsonic cascade unsteady aerodynamic theory was applied in a strip theory manner with appropriate modifications for the sweep effects. Each strip is associated with a chord selected normal to any spanwise reference curve such as the blade leading edge. The stability of three operating conditions of a 10-bladed propeller is analyzed. Each of these operating conditions is iterated once to determine the flutter boundary. A 5-bladed propeller is also analyzed at one operating condition to investigate stability. Analytical results obtained are in very good agreement with those from wind tunnel tests.

  15. Design applications for supercomputers

    NASA Technical Reports Server (NTRS)

    Studerus, C. J.

    1987-01-01

    The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.

  16. Consideration of Unsteady Aerodynamics and Boundary-Layer Transition in Rotorcraft Airfoil Design

    NASA Astrophysics Data System (ADS)

    Oliveira Vieira, Bernardo Augusto de

    Traditional rotorcraft airfoil design is based on steady-flow aerodynamic requirements. The approach assumes a strong correlation between steady and unsteady aerodynamic characteristics, which is often not observed in practice. This is particularly relevant at high speed and high thrust conditions, when the rotor is susceptible to dynamic stall and its many negative consequences. Given the abrupt nature of the phenomena, large margins are typically established to prevent fatigue loads on the blades and pitch links; thus, limiting operation under high altitudes, high payloads, high temperatures, as well as during maneuvers. This work addresses the problem from the perspective of passive airfoil design. Typical design requirements are revisited to include metrics for improved dynamic stall and new ways to qualifying rotorcraft airfoils are proposed. A number of design studies are conducted to better understand the relation between airfoil shape and dynamic stall behavior. The design manipulations are handled by an inversedesign, conformal mapping method, and unsteady Reynolds-averaged Navier-Stokes equations are used to predict the aerodynamic performance under pitch motion. In unsteady flow, the occurrence of aerodynamic lags in the development of pressures, boundary-layer separation, and viscous-inviscid interactions suggest more strict requirements than in steady flow. In order to postpone the onset of dynamic stall, the design needs to handle competing leading- and trailing-edge separation mechanisms, which are heavily influenced by local supersonic flow, strong shock waves, and laminar-turbulent transition effects. It is found that a particular tailoring of the trailing-edge separation development can provide adequate dynamic stall characteristics and minimize penalties in drag and nose-down pitching moment. At the same time, a proper design of the nose shape is required to avoid strong shock waves and prevent premature leading-edge stall. A proof-of-concept airfoil is developed to improve dynamic stall behavior, while meeting stringent requirements on flight conditions away from stall. Trade-offs to the achievement of typical rotor design requirements are discussed. Performance calculations using information obtained from comprehensive analysis (RCAS) based on a UH-60A helicopter are conducted to estimate gains in the rotor stall boundaries. Results are compared to the baseline UH-60A rotor, as well as a blade that uses a VR-12 airfoil inboard. It is found that the new airfoil can provide expansion of the operational envelope compared to the other two configurations, while still reducing hover drag and maintaining very low pitching moments. Some compromises in the drag rise at high Mach numbers are found in comparison to the VR-12 airfoil. By placing the new airfoil up to r/R = 0.80 on the rotor, the baseline UH-60A maximum speed (mu = 0.37) can be achieved with considerable margins to drag rise. Finally, pitching wing calculations are conducted to demonstrate the proposed concepts in three-dimensional flow. Differences in the development of stall between wings using a VR-12 airfoil and the new airfoil are discussed. Despite the complex evolution of 3-D flow structures, the stall onset mechanisms seem to follow the trends obtained with 2-D simulations. The new wing experiences a more favorable dynamic stall inception and considerable decreases in the integrated (3-D) peak pitching moments. The results are promising and give confidence in the design approach. The applied methodology can aid with the design of airfoils that are more suited for operation at high loading conditions.

  17. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  18. Some lessons from NACA/NASA aerodynamic studies following World War II

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.

  19. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1975-01-01

    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables.

  20. Using the attitude response of aerostable spacecraft to measure thermospheric wind

    NASA Astrophysics Data System (ADS)

    Virgili-Llop, Josep; Roberts, Peter C. E.; Hao, Zhou

    2018-03-01

    In situ measurements of the thermospheric wind can be obtained by observing the attitude response of an aerostable spacecraft. In the proposed method, the aerostable spacecraft is left uncontrolled, freely reacting to the aerodynamic torques, and oscillating around its equilibrium attitude. The wind's magnitude and direction is determined by combining the attitude observations with estimates of the other perturbing torques, atmospheric density, and spacecraft's aerodynamic properties. The spatial resolution of the measurements is proportional to the natural frequency of the attitude's oscillation. Spacecraft with high aerodynamic stiffness to inertia ratios operating at low altitudes exhibit higher natural frequencies, making them particularly suited for this method. A one degree-of-freedom case is used to present and illustrate the proposed method as well as to analyze its performance.

  1. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  2. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  3. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  4. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  5. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  6. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  7. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  8. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

  9. Revised Simulation Model of the Control System, Displays, and Propulsion System for a ASTOVL Lift Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1997-01-01

    This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  10. Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing

    NASA Technical Reports Server (NTRS)

    Woodard, Brian; Diebold, Jeff; Broeren, Andy; Potapczuk, Mark; Lee, Sam; Bragg, Michael

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  11. Application Program Interface for the Orion Aerodynamics Database

    NASA Technical Reports Server (NTRS)

    Robinson, Philip E.; Thompson, James

    2013-01-01

    The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduced

  12. Evaluation and modeling of aerodynamic properties of mung bean seeds

    NASA Astrophysics Data System (ADS)

    Shahbazi, Feizollah

    2015-01-01

    Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.

  13. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  14. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Diebold, Jeff; Bragg, Mike

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice, and spanwise-ridge ice. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  15. An Interactive Educational Tool for Compressible Aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.

  16. Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.

    PubMed

    Di Renzo, M; Urzay, J

    2018-04-26

    Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.

  17. CFD analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  18. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  19. Integrated aerodynamic-structural design of a forward-swept transport wing

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  20. Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Frost, A. L.; Dill, C. C.

    1986-01-01

    An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

  1. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1986-01-01

    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

  2. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  3. Field test report of the Department of Energy's 100-kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Nellums, R. O.

    1985-02-01

    Three second generation Darrieus type vertical axis wind turbines of approximately 120 kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. Test results of this program, including aerodynamic, structural, drive train, and economic data are presented. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. A review of potential design improvements is presented.

  4. The Effect of an Operating Propeller on the Aerodynamic Characteristics of a 1/10-Scale Model of the Lockheed XFV-1 Airplane at High Subsonic Speeds (TED No. NACA DE-377)

    NASA Technical Reports Server (NTRS)

    Sutton, Fred B.; Buell, Donald A.

    1952-01-01

    An investigation was conducted in the Ames 12-foot pressure wind tunnel to determine the effect of an operating propeller on the aerodynamic characteristics of a l/l9-scale model of the Lockheed XFV-1 airplane, Several full-scale power conditions were simulated at Mach numbers from 0.50 to 0.92; the.Reynolds number was constant at 1,7 million. Lift, longitudinal force, pitch, roll, and yaw characteristics, determined with and without power, are presented for the complete model and for various combinations of model components, Results of an investigation to determine the characteristics of the dual-rotating propeller used on the model are given also,

  5. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  6. Collective fluid mechanics of honeybee nest ventilation

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  7. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  8. Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Lee, Sam; Clark, Catherine

    2013-01-01

    The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

  9. Chaotic component obscured by strong periodicity in voice production system

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2008-06-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity.

  10. Chaotic component obscured by strong periodicity in voice production system

    PubMed Central

    Tao, Chao; Jiang, Jack J.

    2010-01-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity. PMID:18643315

  11. Research at NASA's NFAC wind tunnels

    NASA Technical Reports Server (NTRS)

    Edenborough, H. Kipling

    1990-01-01

    The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.

  12. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    NASA Astrophysics Data System (ADS)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  13. Flight effects on the aero/acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of simulated flight speed on the acoustic and aerodynamic characteristics of coannular nozzles is examined. The noise and aerodynamic performance of the coannular nozzle exhaust systems over a large range of operating flight conditions is presented. The jet noise levels of the coannular nozzles are discussed. The impact of fan to primary nozzle area ratio and the presence of an ejector on flight effects are investigated. The impact of flight speed on the individual components of the coannular jet noise was ascertained.

  14. Wing Leading Edge Concepts for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  15. Effect of rotor design tip seed on aerodynamic performance of a model VTOL lift fan under static and crossflow conditions

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Loeffler, I. J.; Lieblein, S.

    1973-01-01

    Results are presented for a wind tunnel investigation of three single VTOL lift fan stages designed for the same overall total pressure ratio at different rotor tip speeds. The stages were tested in a model lift fan installed in a wing pod. The three stages had essentially the same aerodynamic performance along the operating line. However, differences in stage thrust characteristics were obtained when a variation in back pressure was imposed on the stages by cross-flow effects and thrust-vectoring louvers.

  16. NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.

  17. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Rajendran, P.; Khan, S. A.

    2018-01-01

    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  18. Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    2000-01-01

    This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.

  19. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  20. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2001-01-01

    Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.

  1. Development and application of incrementally complex tools for wind turbine aerodynamics

    NASA Astrophysics Data System (ADS)

    Gundling, Christopher H.

    Advances and availability of computational resources have made wind farm design using simulation tools a reality. Wind farms are battling two issues, affecting the cost of energy, that will make or break many future investments in wind energy. The most significant issue is the power reduction of downstream turbines operating in the wake of upstream turbines. The loss of energy from wind turbine wakes is difficult to predict and the underestimation of energy losses due to wakes has been a common problem throughout the industry. The second issue is a shorter lifetime of blades and past failures of gearboxes due to increased fluctuations in the unsteady loading of waked turbines. The overall goal of this research is to address these problems by developing a platform for a multi-fidelity wind turbine aerodynamic performance and wake prediction tool. Full-scale experiments in the field have dramatically helped researchers understand the unique issues inside a large wind farm, but experimental methods can only be used to a limited extent due to the cost of such field studies and the size of wind farms. The uncertainty of the inflow is another inherent drawback of field experiments. Therefore, computational fluid dynamics (CFD) predictions, strategically validated using carefully performed wind farm field campaigns, are becoming a more standard design practice. The developed CFD models include a blade element model (BEM) code with a free-vortex wake, an actuator disk or line based method with large eddy simulations (LES) and a fully resolved rotor based method with detached eddy simulations (DES) and adaptive mesh refinement (AMR). To create more realistic simulations, performance of a one-way coupling between different mesoscale atmospheric boundary layer (ABL) models and the three microscale CFD solvers is tested. These methods are validated using data from incrementally complex test cases that include the NREL Phase VI wind tunnel test, the Sexbierum wind farm and the Lillgrund offshore wind farm. By cross-comparing the lowest complexity free-vortex method with the higher complexity methods, a fast and accurate simulation tool has been generated that can perform wind farm simulations in a few hours.

  2. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  3. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  4. Space Shuttle stability and control flight test techniques

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.

  5. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find the aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  6. A Flight Dynamics Model for a Small Glider in Ambient Winds

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Moerder, Daniel D.; Cox, David E.

    2003-01-01

    In this paper we describe the equations of motion developed for a point-mass zero-thrust (gliding) aircraft model operating in an environment of spatially varying atmospheric winds. The wind effects are included as an integral part of the flight dynamics equations, and the model is controlled through the three aerodynamic control angles. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of small glider simulations. We execute a set of example problems which solve the glider dynamics equations to find aircraft trajectory given specified control inputs. The ambient wind conditions and glider characteristics are varied to compare the simulation results under these different circumstances.

  7. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  8. The Influence of Chordwise Flexibility on the Flow Structure and Streamwise Force of a Sinusoidally Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Olson, David Arthur

    Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing edge. Two-component Molecular Tagging Velocimetry (MTV) is employed to measure the vortical flowfield over the first chord length behind the airfoil. A control volume method is used to estimate the mean thrust of the airfoil based on the mean and fluctuating velocity profiles from the MTV results. The mean thrust results show chordwise flexibility increases the thrust produced by the airfoil over the range of motion parameters and the flexibility considered in this study. The flexible airfoil is also seen to experience the drag-to-thrust crossover at a lower oscillation frequency than its rigid counterpart. The relative change in thrust due to flexibility decreases with increasing amplitude. The increase in thrust can, however, be captured as an amplitude effect when the Strouhal number based on the actual trailing edge displacement, Stte, is used for scaling. Scaling based strictly on the prescribed motion, typically employed in the literature, is not sufficient for the data to collapse. Motion trajectories which produced a classical von Karman vortex street or a reverse von Karman vortex street (depending on the arrangement of the vortices), are considered for further study. The vortices in the wake are characterized in terms of their strength, size, and spacing using phase-averaged MTV results. The circulation of the vortices are shown to collapse for both rigid and flexible airfoils when plotted against Stte. The actual trailing edge displacement is used as a length scale to normalize the transverse and streamwise spacing, and the vortex core size. These measurements also now collapse when plotted against Stte across oscillation amplitude for both the rigid and flexible airfoils.

  9. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.

  10. Aerodynamic-structural model of offwind yacht sails

    NASA Astrophysics Data System (ADS)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the computational force predictions were fair at both wind angles examined. Force predictions were much improved in the overtrimmed setting when the sail was highly stalled and more stable. The same trends in force prediction were seen when employing the aerodynamic-structural model. Predictions were good to fair in the baseline setting but improved in the overtrimmed configuration.

  11. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  12. STARS: An integrated general-purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Gupta, Kajal K.

    1991-01-01

    The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.

  13. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  14. Steady and Oscillatory, Subsonic and Supersonic, Aerodynamic Pressure and Generalized Forces for Complex Aircraft Configurations and Applications to Flutter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, L. T.

    1975-01-01

    A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.

  15. Ares I and Ares I-X Stage Separation Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.

    2011-01-01

    The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.

  16. CTOL Transport Technology, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Technology associated with advanced conventional takeoff and landing transport aircraft is discussed. Topics covered include: advanced aerodynamics and active controls; operations and safety; and advanced systems. Emphasis is placed on increased energy efficiency.

  17. Integrated design and manufacturing for the high speed civil transport (a combined aerodynamics/propulsion optimization study)

    NASA Technical Reports Server (NTRS)

    Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig

    1995-01-01

    This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.

  18. 78 FR 42323 - Pilot Certification and Qualification Requirements for Air Carrier Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... sufficient. \\4\\ In addition, military PIC time (up to 500 hours) in a multiengine turbine-powered, fixed-wing... aerodynamic stall (insufficient airflow over the wings). The flightcrew's response to the stall warning system.... Military PIC time in a multiengine turbine-powered, fixed-wing airplane in an operation requiring more than...

  19. Freight Wing Trailer Aerodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck,more » require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.« less

  20. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  1. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  2. Study of aerodynamic noise in low supersonic operation of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Arnoldi, R. A.

    1972-01-01

    A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.

  3. Aerodynamic Parameters of a UK City Derived from Morphological Data

    NASA Astrophysics Data System (ADS)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  4. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.

  5. Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Eugene, L. Tu

    1996-01-01

    The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.

  6. For operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    Carmon, J. L.

    1983-01-01

    Computer programs for degaussing, magnetic field calculation, low speed wing flap systems aerodynamics, structural panel analysis, dynamic stress/strain data acquisition, allocation and network scheduling, and digital filters are discussed.

  7. A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Innis, R. C.; Grossmith, S.

    1974-01-01

    The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.

  8. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  9. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  10. Study on the aerodynamic behavior of a UAV with an applied seeder for agricultural practices

    NASA Astrophysics Data System (ADS)

    Felismina, Raimundo; Silva, Miguel; Mateus, Artur; Malça, Cândida

    2017-06-01

    It is irrefutable that the use of Unmanned Airborne Vehicle Systems (UAVs) in agricultural tasks and on the analysis of health and vegetative conditions represents a powerful tool in modern agriculture. To contribute to the growth of the agriculture economic sector a seeder to be coupled to any type of UAV was previously developed and designed by the authors. This seeder allows for the deposition of seeds with positional accuracy, i.e., seeds are accurately deposited at pre-established distances between plants [1]. This work aims at analyzing the aerodynamic behavior of UAV/Seeder assembly to determine the suitable inclination - among 0°, 15° and 30° - for its takeoff and for its motion during the seeding operation and, in turn, to define the suitable flight plan that increases the batteries autonomy. For this the ANSYS® FLUENT computational tool was used to simulate a wind tunnel which has as principle the Navier-Stokes differential equations, that designates the fluid flow around the UAV/Seeder assembly. The aerodynamic results demonstrated that for take-off the UAV inclination of 30° is the aerodynamically most favorable position due to the lower aerodynamic drag during the climb. Concerning flying motion during the seeding procedure the UAV inclination of 0° is that which leads to lower UAV/Seeder frontal area and drag coefficient.

  11. CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.

    2001-01-01

    Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.

  12. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  13. Aerodynamic design of the National Rotor Testbed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbinemore » in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.« less

  14. Prediction of forces and moments for flight vehicle control effectors. Part 2: An analysis of delta wing aerodynamic control effectiveness in ground effect

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. Here, an investigation of the aerodynamic control effectiveness of highly swept delta planforms operating in ground effect is presented. A vortex-lattice computer program incorporating a free wake is developed as a tool to calculate aerodynamic stability and control derivatives. Data generated using this program are compared to experimental data and to data from other vortex-lattice programs. Results show that an elevon deflection produces greater increments in C sub L and C sub M in ground effect than the same deflection produces out of ground effect and that the free wake is indeed necessary for good predictions near the ground.

  15. Lift capability prediction for helicopter rotor blade-numerical evaluation

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  16. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    NASA Astrophysics Data System (ADS)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  17. Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel

    NASA Technical Reports Server (NTRS)

    Ver, I. L.; Andersen, D. W.; Bliss, D. B.

    1975-01-01

    An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.

  18. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  19. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    NASA Astrophysics Data System (ADS)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.

  20. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  1. Variable camber rotor study

    NASA Technical Reports Server (NTRS)

    Dadone, L.; Cowan, J.; Mchugh, F. J.

    1982-01-01

    Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.

  2. Aerodynamics of an airfoil with a jet issuing from its surface

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Karamcheti, K.

    1982-01-01

    A simple, two dimensional, incompressible and inviscid model for the problem posed by a two dimensional wing with a jet issuing from its lower surface is considered and a parametric analysis is carried out to observe how the aerodynamic characteristics depend on the different parameters. The mathematical problem constitutes a boundary value problem where the position of part of the boundary is not known a priori. A nonlinear optimization approach was used to solve the problem, and the analysis reveals interesting characteristics that may help to better understand the physics involved in more complex situations in connection with high lift systems.

  3. Wind energy system time-domain (WEST) analyzers

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.; Hoffman, J. A.

    1981-01-01

    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.

  4. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  5. Design techniques for developing a computerized instrumentation test plan. [for wind tunnel test data acquisition system

    NASA Technical Reports Server (NTRS)

    Burnett, S. Kay; Forsyth, Theodore J.; Maynard, Everett E.

    1987-01-01

    The development of a computerized instrumentation test plan (ITP) for the NASA/Ames Research Center National Full Scale Aerodynamics Complex (NFAC) is discussed. The objective of the ITP program was to aid the instrumentation engineer in documenting the configuration and calibration of data acquisition systems for a given test at any of four low speed wind tunnel facilities (Outdoor Aerodynamic Research Facility, 7 x 10, 40 x 80, and 80 x 120) at the NFAC. It is noted that automation of the ITP has decreased errors, engineering hours, and setup time while adding a higher level of consistency and traceability.

  6. Characterization of Lift and Drag on Two Dimensional Airfoils with and without Sinusoidal Leading Edges

    NASA Astrophysics Data System (ADS)

    Acosta, Gregorio I.

    An experimental investigation was taken on a 63-021 NACA airfoil, to characterize lift and drag and how the effects of sinusoidal leading edges affect the aerodynamic properties. A theoretical model is also purposed by implementing a perturbation on thin-airfoil theory. Two sets of airfoils were machined and tested inside a low-speed open circuit wind tunnel. Data from a pressure scanner and particle image velocity will give an insight of how the modified leading edges affect the aerodynamic properties. A Fourier series expansion was used to solve for the lifting-line model, by use of thin-airfoil theory and complex number theory.

  7. Optimization of cascade blade mistuning. I - Equations of motion and basic inherent properties

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1985-01-01

    Attention is given to the derivation of the equations of motion of mistuned compressor blades, interpolating aerodynamic coefficients by means of quadratic expressions in the reduced frequency. If the coefficients of the quadratic expressions are permitted to assume complex values, excellent accuracy is obtained and Pade rational expressions are obviated. On the basis of the resulting equations, it is shown analytically that the sum of all the real parts of the eigenvalues is independent of the mistuning introduced into the system. Blade mistuning is further treated through the aerodynamic energy approach, and the limiting vibration modes associated with alternative mistunings are identified.

  8. Thrust measurements of a complete axisymmetric scramjet in an impulse facility

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.; Mee, D.

    1995-01-01

    This paper describes tests which were conducted in the hypersonic impulse facility T4 on a fully integrated axisymmetric scramjet configuration. In these tests the net force on the scramjet vehicle was measured using a deconvolution force balance. This measurement technique and its application to a complex model such as the scramjet are discussed. Results are presented for the scramjet's aerodynamic drag and the net force on the scramjet when fuel is injected into the combustion chambers. It is shown that a scramjet using a hydrogen-silane fuel produces greater thrust than its aerodynamic drag at flight speeds equivalent to 260 m/s.

  9. Commercial turbofan engine exhaust nozzle flow analyses using PAB3D

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.

    1992-01-01

    Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.

  10. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    NASA Technical Reports Server (NTRS)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  11. KSC-2011-6055

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Atlas rocket stacked inside the Vertical Integration Facility stands ready to receive the Juno spacecraft, enclosed in an Atlas payload fairing. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  12. Technology development status at McDonnell Douglas

    NASA Technical Reports Server (NTRS)

    Rowe, W. T.

    1981-01-01

    The significant technology items of the Concorde and the conceptual MCD baseline advanced supersonic transport are compared. The four major improvements are in the areas of range performance, structures (materials), aerodynamics, and in community noise. Presentation charts show aerodynamic efficiency; the reoptimized wing; low scale lift/drag ratio; control systems; structural modeling and analysis; weight and cost comparisons for superplasticity diffusion bonded titanium sandwich structures and for aluminum brazed titanium honeycomb structures; operating cost reduction; suppressor nozzles; noise reduction and range; the bicone inlet; a market summary; environmental issues; high priority items; the titanium wing and fuselage test components; and technology validation.

  13. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  14. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  15. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.

  16. Gravitational orientation of the orbital complex, Salyut-6--Soyuz

    NASA Technical Reports Server (NTRS)

    Grecho, G. M.; Sarychev, V. A.; Legostayev, V. P.; Sazonov, V. V.; Gansvind, I. N.

    1983-01-01

    A simple mathematical model is proposed for the Salyut-6-Soyuz orbital complex motion with respect to the center of mass under the one-axis gravity-gradient orientation regime. This model was used for processing the measurements of the orbital complex motion parameters when the above orientation region was implemented. Some actual satellite motions are simulated and the satellite's aerodynamic parameters are determined. Estimates are obtained for the accuracy of measurements as well as that of the mathematical model.

  17. 75 FR 49365 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146-100A and -200A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... lift to ensure that the wheel brakes can provide the necessary speed reduction. * * * * * The effects... brakes can provide the necessary speed reduction. A review of the changing operational profile of the... landing to provide aerodynamic braking and to dump lift to ensure that the wheel brakes can provide the...

  18. Design, cost, and advanced technology applications for a military trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Harper, M.

    1975-01-01

    The potential impact is examined of advanced aerodynamic and propulsive technologies in terms of operating and acquisition costs on conceptual mission and performance requirements for a future undergraduate jet pilot trainer aircraft.

  19. High-Lift Flight Tunnel - Phase II Report. Phase 2 Report

    NASA Technical Reports Server (NTRS)

    Lofftus, David; Lund, Thomas; Rote, Donald; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This medium (nitrogen) is cryogenic and pressurized to achieve full flight Reynolds numbers higher than any existing ground test facility world-wide for the range of 0.05 to 0.50 Mach. The results of the Phase II study provide excellent assurance that the HiLiFT concept will provide a valuable low-speed, high Reynolds number ground test facility. The design studies concluded that the HiLiFT facility is feasible to build and operate and the analytical studies revealed no insurmountable difficulties to realizing a practical high Reynolds number ground test facility. It was determined that a national HiLiFT facility, including development, would cost approximately $400M and could be operational by 2013 if fully funded. Study participants included National Aeronautics and Space Administration Langley Research Center as the Program Manager and MSE Technology Applications, Inc., (MSE) of Butte, Montana as the prime contractor and study integrator. MSE#s subcontractors included the University of Texas at Arlington for aerodynamic analyses and the Argonne National Laboratory for magnetic levitation and linear motor technology support.

  20. Golf in the Wind: Exploring the Effect of Wind on the Accuracy of Golf Shots

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Mittal, Rajat

    2015-11-01

    Golf play is highly dependent on the weather conditions with wind being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the wind alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local wind conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of variability in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different wind conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal variability in wind conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of wind direction and wind-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.

  1. Aeroacoustical Study of the Tgv Pantograph Recess

    NASA Astrophysics Data System (ADS)

    NOGER, C.; PATRAT, J. C.; PEUBE, J.; PEUBE, J. L.

    2000-03-01

    The general focus of this aerodynamic noise research, induced by turbulent incompressible flow, is to improve our knowledge of acoustic production mechanisms in the TGV pantograph recess in order to be able to reduce the radiated noise. This work is performed under contract with SNCF as a part of the German-French Cooperation DEUFRAKO K2, and is supported by French Ministries for Transport and Research. Previous studies on TGV noise source locations (DEUFRAKO K) have identified the pantograph recess as one of the important aerodynamic noise sources, for speeds higher than 300 km/h, due to flow separation. The pantograph recess is a very complex rectangular cavity, located both on the power car and the first coach roofs of the TGV, and has not been studied before due to the complex shapes. Its aeroacoustic features are investigated experimentally in a low-subsonic wind tunnel, on a realistic 1/7th scale mock-up both with and without pantographs. Flow velocities, estimated with hot-wire anemometry, and parietal visualizations show the flow to reattach on the recess bottom wall and to separate again at the downstream face. Wall pressure fluctuations and “acoustic” measurements using 14 and 12 in microphones respectively are also measured to qualify the flow: no aerodynamic or acoustic oscillations are observed. The study indicates that the pantograph recess has a different behaviour compared to the usual cavity grazing flows.

  2. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  3. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  4. The prediction of the gas environment of the PHILAE probe during its 2014 descent to the nucleus of the comet 67P

    NASA Astrophysics Data System (ADS)

    Crifo, J.-F.; Zakharov, V. V.; Rodionov, A. V.; Lukyanov, G. A.

    2016-11-01

    One of the objectives of the ESA "ROSETTA" mission to the comet 67P was to insert, in August 2014, an orbiter probe around the so-called nucleus of the comet, and to deposit the "PHILAE" lander at the surface of the nucleus in November 2014. The selection of the landing site and the definition of the release point and initial descent velocity vector were made in the period August to October 2014 on the basis of simulations of the descent trajectory. This requested an assessment of the gravitational and aerodynamic forces on PHILAE. We here describe the so-called RZC model developed to predict the gas environment of 67P in November 2014 and compute the aerodynamic force. We first outline the unusual diffculties resulting from (1) the complexity of the nucleus surface on all scales, (2) the absence of direct measurements of the gas flux at the surface itself, (3) the time-dependence of the gas production induced by the fast nucleus rotation, (4) the need to perform the whole program within less than three months. Then we outline the physical approach adopted to overcome these diffculties, and describe the RZC model which included three differing tools: (1) a set of gasdynamic/gaskinetic codes to compute the vacuum outflow of a rarefied gas mixture from a highly aspherical rotating solid source; (2) an heuristic approach to deal with the solid/gas initial boundary conditions, and (3) an iterative procedure to derive the gas production parameters on the nucleus surface from the observational data acquired from the orbiter probe. The satisfactory operation of the RZC code in the weeks preceding the November 2014 PHILAE descent is shown, and the forecasted aerodynamic force during the PHILAE descent is compared to the gravitational force.

  5. Systems safety monitoring using the National Full-Scale Aerodynamic Complex Bar Chart Monitor

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1990-01-01

    Attention is given to the Bar Chart Monitor system designed for safety monitoring of all model and facility test-related articles in wind tunnels. The system's salient features and its integration into the data acquisition system are discussed.

  6. ARC-1984-AC84-0712-15

    NASA Image and Video Library

    1984-11-08

    Ames Research Center, Moffett Field, CA Aerials showing the National Full Scale Aerodynamic Complex (NFAC) which can be seen from U.S. Highway 101 in Northern California (NOTE: this image in a vertical cropped version was used on the cover of the NFAC dedication brochure)

  7. Solution of nonlinear flow equations for complex aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed

    1992-01-01

    Solution-adaptive CFD codes based on unstructured methods for 3-D complex geometries in subsonic to supersonic regimes were investigated, and the computed solution data were analyzed in conjunction with experimental data obtained from wind tunnel measurements in order to assess and validate the predictability of the code. Specifically, the FELISA code was assessed and improved in cooperation with NASA Langley and Imperial College, Swansea, U.K.

  8. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  9. Future Challenges and Opportunities in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Hefner, Jerry N.

    2000-01-01

    Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

  10. An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi

    1997-01-01

    The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.

  11. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  12. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  13. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  14. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.

    PubMed

    Wang, Chenglei; Tang, Hui

    2018-05-25

    In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St  =  0.3, k  =  0.25 and Re  =  100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.

  15. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    NASA Technical Reports Server (NTRS)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  16. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  17. Reconstruction method for running shape of rotor blade considering nonlinear stiffness and loads

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Kang, Da; Zhong, Jingjun

    2017-10-01

    The aerodynamic and centrifugal loads acting on the rotating blade make the blade configuration deformed comparing to its shape at rest. Accurate prediction of the running blade configuration plays a significant role in examining and analyzing turbomachinery performance. Considering nonlinear stiffness and loads, a reconstruction method is presented to address transformation of a rotating blade from cold to hot state. When calculating blade deformations, the blade stiffness and load conditions are updated simultaneously as blade shape varies. The reconstruction procedure is iterated till a converged hot blade shape is obtained. This method has been employed to determine the operating blade shapes of a test rotor blade and the Stage 37 rotor blade. The calculated results are compared with the experiments. The results show that the proposed method used for blade operating shape prediction is effective. The studies also show that this method can improve precision of finite element analysis and aerodynamic performance analysis.

  18. Evaluation of aero Commander propeller acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1978-01-01

    Acoustic data are analyzed from a series of ground tests performed on an Aero Commander propeller-driven aircraft with an array of microphones flush-mounted on one side of the fuselage. The analyses were concerned with the propeller blade passage noise during static operation at several different engine speeds and included calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones. The results indicate that the pressure field impinging on the fuselage represents primarily aerodynamic (near field) effects in the plane of the propeller at all frequencies. Forward and aft of the propeller plane aerodynamic effects still dominate the pressure field at frequencies below 200 Hz; but at higher frequencies, the pressure field is due to acoustic propagation from an equivalent center located about 0.15 to 0.30 blade diameters inboard from the propeller hub.

  19. V/STOL tilt-rotor study, task 1. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A conceptual design study was conducted to define a representative military and/or commercial tilt-propeller aircraft for short takeoff and landing operation. The level of structural technology selected for the operational aircraft was based on aluminum, steel, titanium, and adhesive bonded structures. The data describe the following: (1) aircraft weight, (2) performance and stability, (3) aerodynamic noise, (4) dynamic characteristics, (5) maintainability and reliability, and (6) operating economics.

  20. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  1. Aerodynamic Classification of Swept-Wing Ice Accretion

    NASA Technical Reports Server (NTRS)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of nominally 3D or highly 3D horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  2. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    NASA Astrophysics Data System (ADS)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  3. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings

    NASA Astrophysics Data System (ADS)

    Lashkajani, Kazem Hasanzadeh

    This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.

  4. Three-dimensional computational aerodynamics in the 1980's

    NASA Technical Reports Server (NTRS)

    Lomax, H.

    1978-01-01

    The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.

  5. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  6. A parallel finite-difference method for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.

  7. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    PubMed

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  8. Experimental Aerodynamic Characteristics of the Pegasus Air-Launched Booster and Comparisons with Predicted and Flight Results

    NASA Technical Reports Server (NTRS)

    Rhode, M. N.; Engelund, Walter C.; Mendenhall, Michael R.

    1995-01-01

    Experimental longitudinal and lateral-directional aerodynamic characteristics were obtained for the Pegasus and Pegasus XL configurations over a Mach number range from 1.6 to 6 and angles of attack from -4 to +24 degrees. Angle of sideslip was varied from -6 to +6 degrees, and control surfaces were deflected to obtain elevon, aileron, and rudder effectiveness. Experimental data for the Pegasus configuration are compared with engineering code predictions performed by Nielsen Engineering & Research, Inc. (NEAR) in the aerodynamic design of the Pegasus vehicle, and with results from the Aerodynamic Preliminary Analysis System (APAS) code. Comparisons of experimental results are also made with longitudinal flight data from Flight #2 of the Pegasus vehicle. Results show that the longitudinal aerodynamic characteristics of the Pegasus and Pegasus XL configurations are similar, having the same lift-curve slope and drag levels across the Mach number range. Both configurations are longitudinally stable, with stability decreasing towards neutral levels as Mach number increases. Directional stability is negative at moderate to high angles of attack due to separated flow over the vertical tail. Dihedral effect is positive for both configurations, but is reduced 30-50 percent for the Pegasus XL configuration because of the horizontal tail anhedral. Predicted longitudinal characteristics and both longitudinal and lateral-directional control effectiveness are generally in good agreement with experiment. Due to the complex leeside flowfield, lateral-directional characteristics are not as well predicted by the engineering codes. Experiment and flight data are in good agreement across the Mach number range.

  9. 14 CFR 23.531 - Hull and main float takeoff condition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or main float— (a) The aerodynamic wing lift is assumed to be zero; and (b) A downward inertia load...=inertia load factor; CTO=empirical seaplane operations factor equal to 0.004; VS1=seaplane stalling speed...

  10. 14 CFR 23.531 - Hull and main float takeoff condition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or main float— (a) The aerodynamic wing lift is assumed to be zero; and (b) A downward inertia load...=inertia load factor; CTO=empirical seaplane operations factor equal to 0.004; VS1=seaplane stalling speed...

  11. 14 CFR 23.531 - Hull and main float takeoff condition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or main float— (a) The aerodynamic wing lift is assumed to be zero; and (b) A downward inertia load...=inertia load factor; CTO=empirical seaplane operations factor equal to 0.004; VS1=seaplane stalling speed...

  12. 14 CFR 23.531 - Hull and main float takeoff condition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or main float— (a) The aerodynamic wing lift is assumed to be zero; and (b) A downward inertia load...=inertia load factor; CTO=empirical seaplane operations factor equal to 0.004; VS1=seaplane stalling speed...

  13. Axial compressor gas path design for desensitization of aerodynamic performance and stability to tip clearance

    NASA Astrophysics Data System (ADS)

    Cevik, Mert

    Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.

  14. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 3: Graphical data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    A graphical presentation of the aerodynamic data acquired during coannular nozzle performance wind tunnel tests is given. The graphical data consist of plots of nozzle gross thrust coefficient, fan nozzle discharge coefficient, and primary nozzle discharge coefficient. Normalized model component static pressure distributions are presented as a function of primary total pressure, fan total pressure, and ambient static pressure for selected operating conditions. In addition, the supersonic cruise configuration data include plots of nozzle efficiency and secondary-to-fan total pressure pumping characteristics. Supersonic and subsonic cruise data are given.

  15. Helicopter gust response characteristics including unsteady aerodynamic stall effects

    NASA Technical Reports Server (NTRS)

    Arcidiacono, P. J.; Bergquist, R. R.; Alexander, W. T., Jr.

    1974-01-01

    The results of an analytical study to evaluate the general response characteristics of a helicopter subjected to various types of discrete gust encounters are presented. The analysis employed was a nonlinear coupled, multi-blade rotorfuselage analysis including the effects of blade flexibility and unsteady aerodynamic stall. Only the controls-fixed response of the basic aircraft without any aircraft stability augmentation was considered. A discussion of the basic differences between gust sensitivity of fixed and rotary wing aircraft is presented. The effects of several rotor configuration and aircraft operating parameters on initial gust-induced load factor and blade vibratory stress and pushrod loads are discussed.

  16. TRW vortex-lattice method subsonic aerodynamic analysis for multiple-lifting-surfaces (N. surface) TRW program number HA010B

    NASA Technical Reports Server (NTRS)

    Gomez, A. V.

    1972-01-01

    The program was designed to provide solutions of engineering accuracy for determining the aerodynamic loads on single- or multiple-lifting-surface configurations that represent vehicles in subsonic flight, e.g., wings, wing-tail, wing-canard, lifting bodies, etc. The preparation is described of the input data, associated input arrangement, and the output format for the program data, including specification of the various operational details of the program such as array sizes, tape numbers utilized, and program dumps. A full description of the underlying theory used in the program development and a review of the program qualification tests are included.

  17. A method of calculation on the airloading of vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Azuma, A.; Kimura, S.

    A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.

  18. Aerodynamic Investigation of a Parabolic Body of Revolution at Mach Number of 1.92 and Some Effects of an Annular Supersonic Jet Exhausting from the Base

    NASA Technical Reports Server (NTRS)

    Love, Eugene S

    1956-01-01

    An aerodynamic investigation of a slender pointed parabolic body of revolution was conducted at Mach number of 1.92 with and without the effects of an annular supersonic jet exhausting from the base. Measurements with the jet inoperative were made of lift, drag, pitching moment, base pressures, and radial and axial pressures. With the jet in operation, pressure measurements were made over the rear of the body with the primary variables being angle of attack, ratio of jet velocity to stream velocity, and ratio of pressure at jet exit to stream pressure.

  19. Empty test section streamlining of the transonic self-streamlining wind tunnel fitted with new walls

    NASA Technical Reports Server (NTRS)

    Lewis, M. C.

    1988-01-01

    The original flexible top and bottom walls of the Transonic Self-Streamlining Wind Tunnel (TSWT), at the University of Southampton, have been replaced with new walls featuring a larger number of static pressure tappings and detailed mechanical improvements. This report describes the streamling method, results, and conclusions of a series of tests aimed at defining sets of aerodynamically straight wall contours for the new flexible walls. This procedure is a necessary prelude to model testing. The quality of data obtained compares favorably with the aerodynamically straight data obtained with the old walls. No operational difficulties were experienced with the new walls.

  20. Investigation at near-sonic speed of some effects of humidity on the longitudinal aerodynamic characteristics of an NASA supercritical wing research airplane model

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1972-01-01

    The Langley 8-foot transonic pressure tunnel was used in an effort to determine the effects of humidity at near-sonic speed on the longitudinal aerodynamic characteristics and wing pressure distributions of an area-rule research airplane model with an NASA supercritical wing. Effects of dewpoint at the normal tunnel operating stagnation temperature of 48.9 C (120 F) and effects of stagnation temperature at a relatively high dewpoint of 15.6 C (60 F) were investigated. The test tunnel stagnation pressure was 101 325 N/sq m (1 atmosphere).

  1. Sensor Systems Collect Critical Aerodynamics Data

    NASA Technical Reports Server (NTRS)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  2. Certification aspects of airplanes which may operate with significant natural laminar flow

    NASA Technical Reports Server (NTRS)

    Gabriel, Edward A.; Tankesley, Earsa L.

    1986-01-01

    Recent research by NASA indicates that extensive natural laminar flow (NLF) is attainable on modern high performance airplanes currently under development. Modern airframe construction methods and materials, such as milled aluminum skins, bonded aluminum skins, and composite materials, offer the potential for production of aerodynamic surfaces having waviness and roughness below the values which are critical for boundary layer transition. Areas of concern with the certification aspects of Natural Laminar Flow (NLF) are identified to stimulate thought and discussion of the possible problems. During its development, consideration has been given to the recent research information available on several small business and experimental airplanes and the certification and operating rules for general aviation airplanes. The certification considerations discussed are generally applicable to both large and small airplanes. However, from the information available at this time, researchers expect more extensive NLF on small airplanes because of their lower operating Reynolds numbers and cleaner leading edges (due to lack of leading-edge high lift devices). Further, the use of composite materials for aerodynamic surfaces, which will permit incorporation of NLF technology, is currently beginning to appear in small airplanes.

  3. Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions

    NASA Astrophysics Data System (ADS)

    Stafford, J.; Jeffers, N.

    2014-07-01

    This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.

  4. Particulate matter over a seven year period in urban and rural areas within, proximal and far from mining and power station operations in Greece.

    PubMed

    Triantafyllou, A G; Zoras, S; Evagelopoulos, V

    2006-11-01

    Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 microm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 - TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.

  5. Description of the US Army small-scale 2-meter rotor test system

    NASA Technical Reports Server (NTRS)

    Phelps, Arthur E., III; Berry, John D.

    1987-01-01

    A small-scale powered rotor model was designed for use as a research tool in the exploratory testing of rotors and helicopter models. The model, which consists of a 29 hp rotor drive system, a four-blade fully articulated rotor, and a fuselage, was designed to be simple to operate and maintain in wind tunnels of moderate size and complexity. Two six-component strain-gauge balances are used to provide independent measurement of the rotor and fuselage aerodynamic loads. Commercially available standardized hardware and equipment were used to the maximum extent possible, and specialized parts were designed so that they could be fabricated by normal methods without using highly specialized tooling. The model was used in a hover test of three rotors having different planforms and in a forward flight investigation of a 21-percent-scale model of a U.S. Army scout helicopter equipped with a mast-mounted sight.

  6. KSC-2011-6054

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, nears the top of the Vertical Integration Facility where it will be positioned on top of the Atlas rocket already stacked inside. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  7. Turbomachinery Course

    NASA Technical Reports Server (NTRS)

    Stinson, Henry; Turner, James (Technical Monitor)

    2002-01-01

    In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.

  8. ARC-2009-ACD09-0141-016

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  9. ARC-2009-ACD09-0141-015

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  10. Magsat attitude dynamics and control: Some observations and explanations

    NASA Technical Reports Server (NTRS)

    Stengle, T. H.

    1980-01-01

    Before its reentry 7 months after launch, Magsat transmitted an abundance of valuable data for mapping the Earth's magnetic field. As an added benefit, a wealth of attitude data for study by spacecraft dynamicists was also collected. Because of its unique configuration, Magsat presented new control problems. With its aerodynamic trim boom, attitude control was given an added dimension. Minimization of attitude drift, which could be mapped in relative detail, became the goal. Momentum control, which was accomplished by pitching the spacecraft in order to balance aerodynamic and gravity gradient torques, was seldom difficult to achieve. Several interesting phenomena observed as part of this activity included occasional momentum wheel instability and a rough correlation between solar flux and the pitch angle required to maintain acceptable momentum. An overview is presented of the attitude behavior of Magsat and some of the control problems encountered. Plausible explanations for some of this behavior are offered. Some of the control philosophy used during the mission is examined and aerodynamic trimming operations are summarized.

  11. Design and performance of energy efficient propellers for Mach 0.8 cruise

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Blaha, B. J.; Mitchell, G. A.; Wikete, J. E.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integrated propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.

  12. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Paxson, Daniel E.; Wilson, Jack; Synder, Philip H.

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.

  13. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  14. Design and performance of energy efficient propellers for Mach 0. 8 cruise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, D.C.; Blaha, B.J.; Mitchell, G.A.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integratedmore » propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.« less

  15. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  16. The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    1994-01-01

    The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.

  17. The Aerodynamic Plane Table

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  18. Viscous Aerodynamic Shape Optimization with Installed Propulsion Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Seidel, Jonathan A.; Rallabhandi, Sriram K.

    2017-01-01

    Aerodynamic shape optimization is demonstrated to tailor the under-track pressure signature of a conceptual low-boom supersonic aircraft. Primarily, the optimization reduces nearfield pressure waveforms induced by propulsion integration effects. For computational efficiency, gradient-based optimization is used and coupled to the discrete adjoint formulation of the Reynolds-averaged Navier Stokes equations. The engine outer nacelle, nozzle, and vertical tail fairing are axi-symmetrically parameterized, while the horizontal tail is shaped using a wing-based parameterization. Overall, 48 design variables are coupled to the geometry and used to deform the outer mold line. During the design process, an inequality drag constraint is enforced to avoid major compromise in aerodynamic performance. Linear elastic mesh morphing is used to deform volume grids between design iterations. The optimization is performed at Mach 1.6 cruise, assuming standard day altitude conditions at 51,707-ft. To reduce uncertainty, a coupled thermodynamic engine cycle model is employed that captures installed inlet performance effects on engine operation.

  19. Recent CFD Simulations of Shuttle Orbiter Contingency Abort Aerodynamics

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Periklis; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, Ethiraj; Wersinski, Paul; Gomez, Reynaldo; Arnold, Jim (Technical Monitor)

    2001-01-01

    Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20-60 degrees, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). While approximately 40 cases have been computed, only a sampling of the results is presented here. The computed results, in general, are in good agreement with the Orbiter Operational Aerodynamic Data Book (OADB) data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects.

  20. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be predicted performance of advanced transports resulting from these devices. Suggestions will be presented for additional innovative high-payoff research leading to further confirmation of these concepts and their application to advanced efficient commercial transport aircraft.

  1. Noise generated by quiet engine fans. 1: FanB

    NASA Technical Reports Server (NTRS)

    Montegani, F. J.

    1972-01-01

    Acoustical tests of full scale fans for jet engines are presented. The fans are described and some aerodynamic operating data are given. Far field noise around the fan was measured for a variety of configurations over a range of operating conditions. Complete results of one third octave band analysis are presented in tabular form. Power spectra and sideline perceived noise levels are included.

  2. Linearized Poststall Aerodynamic and Control Law Models of the X-31A Aircraft and Comparison with Flight Data

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer

    1997-01-01

    The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.

  3. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  4. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Conclusions Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils. PMID:27658310

  5. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    PubMed

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In dynamic stall, leading edge defect imposes a greater influence on the aerodynamic characteristics of airfoil than steady conditions. By increasing in defect length, it is found that the separated area becomes more intense and moves forward along the suction surface. Leading edge defect has significant influence on the aerodynamic and flow characteristics of the airfoil, which will reach a stable status with enough large defect size. The leading edge separation bubble, circulation in the defect cavity and intense tailing edge vortex are the main features of flow around defective airfoils.

  6. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  7. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  8. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    PubMed Central

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  9. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  10. Active aerodynamic drag reduction on morphable cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  11. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  12. Phonatory aerodynamics in connected speech.

    PubMed

    Gartner-Schmidt, Jackie L; Hirai, Ryoji; Dastolfo, Christina; Rosen, Clark A; Yu, Lan; Gillespie, Amanda I

    2015-12-01

    1) Present phonatory aerodynamic data for healthy controls (HCs) in connected speech; 2) contrast these findings between HCs and patients with nontreated unilateral vocal fold paralysis (UVFP); 3) present pre- and post-vocal fold augmentation outcomes for patients with UVFP; 4) contrast data from patients with post-operative laryngeal augmentation to HCs. Retrospective, single-blinded. For phase I, 20 HC participants were recruited. For phase II, 20 patients with UVFP were age- and gender-matched to the 20 HC participants used in phase I. For phase III, 20 patients with UVFP represented a pre- and posttreatment cohort. For phase IV, 20 of the HC participants from phase I and 20 of the postoperative UVFP patients from phase III were used for direct comparison. Aerodynamic measures captured from a sample of the Rainbow Passage included: number of breaths, mean phonatory airflow rate, total duration of passage, inspiratory airflow duration, and expiratory airflow duration. The VHI-10 was also obtained pre- and postoperative laryngeal augmentation. All phonatory aerodynamic measures were significantly increased in patients with preoperative UVFP than the HC group. Patients with laryngeal augmentation took significantly less breaths, had less mean phonatory airflow rate during voicing, and had shorter inspiratory airflow duration than the preoperative UVFP group. None of the postoperative measures returned to HC values. Significant improvement in the Voice Handicap Index-10 scores postlaryngeal augmentation was also found. Methodology described in this study improves upon existing aerodynamic voice assessment by capturing characteristics germane to UVFP patient complaints and measuring change before and after laryngeal augmentation in connected speech. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  13. HOTOL breathes fire to orbit

    NASA Astrophysics Data System (ADS)

    Donaldson, P.

    1986-11-01

    After defining the general operational principles of the 'HOTOL' horizontal takeoff and landing single-stage-to-orbit launch vehicle, a development status assessment is presented for the airframe structure, aerodynamic configuration, guidance and avionics, operational and market economics, and launch preparation/mission abort provisions that are currently envisaged by the HOTOL manufacturers. Attention is given to the competitiveness of HOTOL vis a vis the ESA Ariane V/Hermes and NASA 'Heavylift Shuttle' launch vehicles, which are expected to become operational in a similar time-frame.

  14. Comparison between variable and constant rotor speed operation on WINDMEL-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji

    1996-10-01

    On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.

  15. LinAir: A multi-element discrete vortex Weissinger aerodynamic prediction method

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.

    1993-01-01

    LinAir is a vortex lattice aerodynamic prediction method similar to Weissinger's extended lifting-line theory, except that the circulation around a wing is represented by discrete horseshoe vortices, not a continuous distribution of vorticity. The program calculates subsonic longitudinal and lateral/directional aerodynamic forces and moments for arbitrary aircraft geometries. It was originally written by Dr. Ilan Kroo of Stanford University, and subsequently modified by the author to simplify modeling of complex configurations. The Polhamus leading-edge suction analogy was added by the author to extend the range of applicability of LinAir to low aspect ratio (i.e., fighter-type) configurations. A brief discussion of the theory of LinAir is presented, and details on how to run the program are given along with some comparisons with experimental data to validate the code. Example input and output files are given in the appendices to aid in understanding the program and its use. This version of LinAir runs in the VAX/VMS, Cray UNICOS, and Silicon Graphics Iris workstation environments at the time of this writing.

  16. ED11-0072-14

    NASA Image and Video Library

    2011-03-11

    NASA’s Subsonic Research Aircraft Testbed, or SCRAT, is a modified Gulfstream III that operates out of Armstrong Flight Research Center in Edwards, California. SCRAT the test bed aircraft for the ACTE flexible-flap research project, which examines flexible wing flap technology’s benefits to aerodynamic efficiency.

  17. An experimental investigation of interaction between projectiles and flames

    NASA Astrophysics Data System (ADS)

    Baryshnikov, A. S.; Basargin, I. V.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.

    2015-12-01

    This investigation is devoted to the influence of a heated area of gas on model stability with the supersonic motion during free-flying operation. The conditions of the maximum influence on aerodynamics of body flight in an inhomogeneous heated area are ascertained.

  18. 14 CFR 1201.200 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true General. 1201.200 Section 1201.200... assignments; maintains and upgrades the design of ground and flight systems throughout the operational period... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  19. High-speed rail aerodynamic assessment and mitigation report : final report.

    DOT National Transportation Integrated Search

    2015-12-01

    This report advances the current state of knowledge, as well as shared understanding and evaluation of present procedures used to : mitigate the impacts effects from high-speed trains (HST) operating at speeds between 110 mph and 250 mph. This work g...

  20. Powered wheel for aircraft

    NASA Technical Reports Server (NTRS)

    Long, M. J.; Irick, S. C.; Van Ausdal, R. K.

    1977-01-01

    Single integral unit includes motor, gearbox, and clutch. Device has two-speed capability, fits within aerodynamic contours of aircraft, operates with onboard power source, does not interfere with normal landing gear functions, reduces use of regular brakes in congested areas, and provides locomotion and supplementary braking capability.

  1. Commercial truck platooning - level 2 automation : project summary.

    DOT National Transportation Integrated Search

    2016-08-31

    Besides driver compensation, the largest : operating expense for a line-haul truck is the : cost of fuel. At 65 mph, each truck expends about : 65 percent of its fuel consumption to overcome : the effects of aerodynamic drag. Many of the : large and ...

  2. Investigations and Experiments in the Guidonia Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1939-01-01

    This paper is a presentation of the experiments and equipment used in investigations at the Guidonia wind tunnel. The equipment consisted of: a number of subsonic and supersonic cones, an aerodynamic balance, and optical instruments operating on the Schlieren and interferometer principle.

  3. Shuttle Orbiter Contingency Abort Aerodynamics: Real-Gas Effects and High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Papadopoulos, Periklis E.; Davies, Carol B.; Wright, Michael J.; McDaniel, Ryan D.; Venkatapathy, Ethiraj; Wercinski, Paul F.

    2005-01-01

    An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire vehicle and the control surfaces (body flap, speed brake, and elevons). The latter served the useful purpose of verification of the aerodynamic characteristics that went into the generation of the abort trajectories.

  4. On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2004-01-01

    Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.

  5. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  6. Cartesian-Grid Simulations of a Canard-Controlled Missile with a Free-Spinning Tail

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper presents a series of simulations of a geometrically complex, canard-controlled, supersonic missile with free-spinning tail fins. Time-dependent simulations were performed using an inviscid Cartesian-grid-based method with results compared to both experimental data and high-resolution Navier-Stokes computations. At fixed free stream conditions and canard deflections, the tail spin rate was iteratively determined such that the net rolling moment on the empennage is zero. This rate corresponds to the time-asymptotic rate of the free-to-spin fin system. After obtaining spin-averaged aerodynamic coefficients for the missile, the investigation seeks a fixed-tail approximation to the spin-averaged aerodynamic coefficients, and examines the validity of this approximation over a variety of freestream conditions.

  7. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  8. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  9. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  10. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  11. Modeling of a Sequential Two-Stage Combustor

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.

    2005-01-01

    A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.

  12. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  13. Experimental quiet engine program aerodynamic performance of fan A

    NASA Technical Reports Server (NTRS)

    Giffin, R. G.; Parker, D. E.; Dunbar, L. W.

    1971-01-01

    The aerodynamic component test results are presented of fan A, one of two high-bypass-ratio, 1160 feet per second single-stage fans, which was designed and tested as part of the NASA Experimental Quiet Engine Program. This fan was designed to deliver a bypass pressure ratio of 1.50 with an adiabatic efficiency of 86.5% at a total fan flow of 950 lb/sec. It was tested with and without inlet flow distortion. A bypass total-pressure ratio of 1.52 and an adiabatic efficiency of 88.3% at a total fan flow of 962 lb/sec were actually achieved. An operating margin of 12.4% was demonstrated at design speed.

  14. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  15. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

  16. New rotation-balance apparatus for measuring airplane spin aerodynamics in the wind tunnel

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1978-01-01

    An advanced rotation-balance apparatus has been developed for the Ames 12-ft pressure tunnel to study the effects of spin rate, angles of attack and sideslip, and, particularly, Reynolds number on the aerodynamics of fighter and general aviation aircraft in a steady spin. Angles of attack to 100 deg and angles of sideslip to 30 deg are possible with spin rates to 42 rad/sec (400 rpm) and Reynolds numbers to 30 million/m on fighter models with wing spans that are typically 0.7 m. A complete description of the new rotation-balance apparatus, the sting/balance/model assembly, and the operational capabilities is given.

  17. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  18. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  19. NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.

  20. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.

Top