Science.gov

Sample records for aerodynamics project international

  1. Overview of the Cranked-Arrow Wing Aerodynamics Project International

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.; Lamar, John E.

    2008-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project. Various flight, wind-tunnel and Computational Fluid Dynamics data sets were generated as part of the project. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International and is concluded by an introduction to the results of a four year computational predictive study of data collected at flight conditions by participating researchers.

  2. Review of Cranked-Arrow Wing Aerodynamics Project: Its International Aeronautical Community Role

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Obara, Clifford J.

    2007-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research (HSR) program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project (CAWAP). Various flight, wind-tunnel and Computational Fluid Dynamics (CFD) data sets were generated during the CAWAP. These unique and open flight datasets for surface pressures, boundary-layer profiles and skinfriction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International (CAWAPI) and is concluded by an introduction to the results of a 4 year CFD predictive study of data collected at flight conditions by participating researchers.

  3. The Cranked Arrow Wing Aerodynamics Project (CAWAP) and its Extension to the International Community as CAWAPI: Objectives and Overview

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Obara, Clifford J.

    2009-01-01

    This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research (HSR) program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project (CAWAP). Various flight, wind-tunnel and Computational Fluid Dynamics (CFD) data sets were generated during the CAWAP. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International (CAWAPI) and is concluded by an introduction to the results of a 5-year CFD predictive study of data.

  4. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of

  5. The anatomy and internal aerodynamics of canine olfaction

    NASA Astrophysics Data System (ADS)

    Craven, Brent; Paterson, Eric; Settles, Gary

    2007-11-01

    High-resolution magnetic resonance imaging (MRI) scans of the nasal airway of a large dog reveal an intricate scrollwork of nasal conchae providing large surface area for heat, moisture, and odorant transfer. From these anatomical scans we reconstruct a 3-D surface model of the nasal passage and extract detailed morphometric data providing insight into the internal airflows of canine olfaction. A complicated airway network is revealed, wherein the branched maxilloturbinate and ethmoturbinate scrolls are structurally distinct. 3-D airway connectivity also reveals separate respiratory and olfactory flow paths. Knowing the approximate airflow rate and frequency of canine sniffing, we find Reynolds numbers that are, surprisingly, well below the turbulent-flow threshold. Finally, the internal aerodynamics and transport phenomena of canine olfaction are considered via non-dimensional analysis and initially-simple theoretical and computational models. (To appear in the Anatomical Record.)

  6. Project Management for International Development.

    ERIC Educational Resources Information Center

    Axelrod, Valija M.; Magisos, Joel H.

    A project developed a content model for international project management training. It also compiled a bibliography of project management references, identified specific project management training needs based upon a survey of international sponsors and contractor personnel, and documented the training needs of international project managers. Data…

  7. Project: Internal communications

    NASA Technical Reports Server (NTRS)

    Black, Lydia

    1994-01-01

    The purpose of this study was to ascertain the perceived information needs of NASA Langley employees. One hundred and twelve face-to-face interviews were conducted with a representative sample of aero-space technologists, administrative professionals, technicians. and secretarial/clerical personnel. Results of employee perceptions are analyzed and summarized using affinity diagramming. Particular strategies to maximize use of existing internal communication networks are discussed.

  8. The International Project. Progress Report.

    ERIC Educational Resources Information Center

    Rutimann, Hans

    The International Project of the Commission on Preservation and Access was begun in June 1988 to explore the feasibility of creating an international database of preserved materials. Its main goals are to: (1) determine the extent to which preservation records exist in other countries; (2) identify the difficulties in converting records to…

  9. Nacelle Aerodynamic and Inertial Loads (NAIL) project. Appendix B

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The testing was conducted on the Boeing-owned 747 RA001 test bed airplane during the concurrent 767/JT9D-7R4 engine development program. Following a functional check flight conducted from Boeing Field International (BFI) on 3 October 1980, the airplane and test personnel were ferried to Valley Industrial Park (GSG) near Glasgow, Montana, on 7 October 1980. The combined NAL and 7670JT9D-7R4 test flights were conducted at the Glasgow remote test site, and the airplane was returned to Seattle on 26 October 1980.

  10. Unidata's International Efforts and Projects

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan

    2010-05-01

    Increasingly, the conduct of science requires strong international scientific partnerships and the sharing of data, information, knowledge and other assets. This is particularly true in the geosciences where the highly coupled nature of the Earth system and the need to understand global environmental processes and their regional linkages have heightened the importance of international collaborations. As geoscience studies become a team effort involving networked scientists and data providers, it is crucial that there is full, open, reliable and timely access to and sharing of earth system science data. Unidata, which is funded by the United States National Science Foundation, recognizes the benefits of international scientific partnerships and the value of networked communities, as institutions and people exchange data, knowledge and other resources. Unidata's international data sharing activities began modestly as the MeteoForum project in Latin America in 2001, but have since grown to include several projects and collaborations in many countries. Unidata's growing portfolio of international activities are conducted in close collaboration with academic, research, and operational institutions worldwide. Specific emphasis of those efforts is on sharing data, and provision of software, support, and training. Real-time atmospheric science data delivered have helped to initiate teaching innovations in universities, advanced research, and facilitated operational forecasting. In this talk, an overview of Unidata's approach to gradual but organic international broadening will be presented, along with examples of specific collaborations and activities via myriad internationally-linked efforts and projects. In addition to describing these efforts, the talk will summarize some of the lessons learned in developing, implementing, and supporting those activities.

  11. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  12. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  13. International Alligator Rivers Analog Project

    SciTech Connect

    Bichard, G.F.

    1988-01-01

    The Australian Nuclear Science and Technology Organization (ANSTO), the Japan Atomic Energy Research Institute, the Swedish Nuclear Power Inspectorate, the U.K. Department of the Environment, the US Nuclear Regulatory Commission (NRC), and the Power Reactor and Nuclear Fuel Development Corporation of Japan are participating under the aegis of the Nuclear Energy Agency in the International Alligator Rivers Analog Project. The project has a duration of 3 yr, starting in 1988. The project has grown out of a research program on uranium ore bodies as analogs of high-level waste (HLW) repositories undertaken by ANSTO supported by the NRC. A primary objective of the project is to develop an approach to radionuclide transport model validation that may be used by the participants to support assessments of the safety of radioactive waste repositories. The approach involves integrating mathematical and physical modeling with hydrological and geochemical field and laboratory investigations of the analog site. The Koongarra uranium ore body has been chosen as the analog site because it has a secondary ore body that has formed over the past million years as a result of leaching by groundwater flowing through fractures in the primary ore body.

  14. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects

    NASA Astrophysics Data System (ADS)

    Reynier, Philippe

    2014-10-01

    This contribution is a survey of aerodynamic and aerothermodynamics data related to Mars entry. The survey includes the studies carried out in the frame of projects aiming at preparing exploration missions involving entry probes into Mars atmosphere and the efforts have been concentrated on the aerothermodynamics developments. Russian (including former Soviet Union), European and NASA aerothermodynamics developments for preparing such missions have been accounted for. If a focus has been dedicated to the flight data gathered during Viking and Mars Pathfinder entries, the experimental and numerical activities carried out for the different projects have been also considered. The emphasis has been put on the post-flight analysis of flight experiments. The objective of the activity has been to develop a database of the developments performed for Mars entry that will be of interest for the preparation of future missions and for testing new models related to radiative transfer, and chemical kinetics schemes based on a state-to-state approach.

  15. Project Panama: An International Service Project

    ERIC Educational Resources Information Center

    Aydlett, Lydia; Randolph, Mickey; Wells, Gayle

    2010-01-01

    Participation in service learning projects is a growing phenomenon at universities and colleges. Research indicates service projects are beneficial for college students and adults. There is little data investigating developmental differences in how younger versus older participants perceive the service learning process. In this project, older…

  16. International Space Station Medical Project

    NASA Technical Reports Server (NTRS)

    Starkey, Blythe A.

    2008-01-01

    The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.

  17. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session

  18. A review of steps taken to create an international virtual laboratory at NASA Langley for aerodynamic prediction and comparison

    NASA Astrophysics Data System (ADS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2004-04-01

    A review of the steps taken to establish an international virtual laboratory (VL) at the NASA Langley Research Center for aerodynamic prediction and comparison of flight data in the post-09/11/2001 cyber-terrorist environment is detailed here. The key features of the VL include an intuitive, web-based user interface for ease of access, a secure high-speed Internet connection between browser and server, a relational database architecture for data and information search, and a secure file-storage system. The detailed planning and handling of such issues as security, computer firewall access and legal protection of data are provided.

  19. International Research Reactor Decommissioning Project

    SciTech Connect

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  20. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  1. International Deaf Education Teacher-Training Projects.

    ERIC Educational Resources Information Center

    Moulton, Robert; Chinn, Kathleen

    2002-01-01

    This article discusses the need and challenges of developing nations regarding audiological and educational services for children who are deaf or hard-of-hearing. Stellar international programs are described. Availability and use of current computer technology is discussed and suggestions are made for international projects in audiology and deaf…

  2. Project International Emphasis Interim Report, July 1991.

    ERIC Educational Resources Information Center

    Blois, Beverly, Ed.; Williams, Barbara

    Project International Emphasis (PIE), a curriculum development effort involving all 24 colleges in the Virginia Community College System (VCCS), focuses on the infusion of globally oriented components across the academic curriculum and in related career development programs. Activities undertaken during the project's first year included an annual…

  3. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  4. Human genetics: international projects and personalized medicine.

    PubMed

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015. PMID:26581075

  5. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  6. [International project--MGTX study].

    PubMed

    Yoshikawa, Hiroaki

    2007-11-01

    MGTX Study is a multi-center, international, single-blinded, randomized trial to determine whether extended transsternal thymectomy (ETTX) for patients with myasthenia gravis receiving the prednisone protocol confers added benefits to the prednisone protocol alone. The aims of the study are answering following three questions. 1) Does ETTX combined with prednisone result in a greater improvement in myasthenic weakness, compared to prednisone alone? 2) Does ETTX combined with prednisone result in a lower total dose of prednisone, thus decreasing the likelihood of concurrent and long-term toxic effects, compared to prednisone alone? 3) Does ETTX combined with prednisone enhance quality of life by reducing adverse events and symptoms associated with the therapies, compared to prednisone alone? Primary outcome measure is consists with 1) Comparison of the prednisone protocol alone to prednisone protocol plus ETTX, based on the clinical response to therapy measured over the 3 year trial period by the Area Under the Quantitative Myasthenia Gravis (QMG) Weakness Score (AUQMG), and 2) Testing the difference in the total prednisone used over the 3 year trial period measured by pill count from blister packs (Area Under the Prednisone Dose Time Curve, AUDTC), conditional on the results of comparing AUQMG. PMID:18210825

  7. Governance of the International Linear Collider Project

    SciTech Connect

    Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly

  8. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  9. Chinese Meridian Project and its international cooperation

    NASA Astrophysics Data System (ADS)

    Yang, Guotao; Wang, Chi; Jiao, Jing; Liu, Zhengkuan

    2016-07-01

    Meridian Space Weather Monitoring Project (Meridian Project) has a Chinese multi-station chain along 120ºE longitude to monitor space environment, starting from Mohe, the most northern station in China, through Beijing, Wuhan and extended to Zhongshan station in the Antarctic. The Meridian Project consists of 15 observational stations, the instruments includes magnetometer, ionosonde, incoherent scattering radar, HF back-scattering radar, VLF receiver, LIDAR, and Fabry-Perot interferometer (FPI). The Meridian Project has finished its construction phase in 2012, and started its running phase in 2013. Until now, more than 100 papers have been published by using Meridian Project data. The Meridian Project also provide service for Chinese space activity. The International Space Weather Meridian Circle Program (IMCP) is based upon the Meridian Project. With the international cooperation around this circle, we should take full advantage of foreign resources. The Meridian Project will be extended to Russian, though many Southeast Asia countries such as Australia, and so on. Furthermore, it will be extended to the countries located in the west hemisphere near 60° meridian. The first and only ground-based global space weather monitoring circle will be formed. Cooperation agreements for IMCP have been signed, and we will develop IMCP more deeply in the 2016 COSPAR meeting.

  10. International Project Participation by Women Academics

    ERIC Educational Resources Information Center

    Arthur, Nancy; Patton, Wendy; Giancarlo, Christine

    2007-01-01

    The internationalization of higher education has led to changing roles for academics, including opportunities to participate in international projects. The extent to which academics feel prepared to enter this arena has received little attention. This study examines women academics' perceptions of barriers to, facilitators of, and career benefits…

  11. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  12. International Distance Education: The Digital Communities Project.

    ERIC Educational Resources Information Center

    Howard-Vital, Michelle R.; Rosenkoetter, Marlene

    This paper describes the participation of the University of North Carolina at Wilmington (UNCW) in the virtual university component of the Digital Communities Project in Japan. It examines the characteristics of an experimental, international, distance-learning collaboration and explores the politics and practicalities related to international…

  13. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  14. International Project Management Committee: Overview and Activities

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward

    2010-01-01

    This slide presentation discusses the purpose and composition of the International Project Management Committee (IMPC). The IMPC was established by members of 15 space agencies, companies and professional organizations. The goal of the committee is to establish a means to share experiences and best practices with space project/program management practitioners at the global level. The space agencies that are involved are: AEB, DLR, ESA, ISRO, JAXA, KARI, and NASA. The industrial and professional organizational members are Comau, COSPAR, PMI, and Thales Alenia Space.

  15. Aerodynamics overview of the ground transportation systems (GTS) project for heavy vehicle drag reduction

    SciTech Connect

    Gutierrez, W.T.; Hassan, B.; Croll, R.H.; Rutledge, W.H.

    1995-12-31

    The focus of the research was to investigate the fundamental aerodynamics of the base flow of a tractor trailer that would prove useful in fluid flow management. Initially, industry design needs and constraints were defined. This was followed by an evaluation of state-of-the-art Navier-Stokes based computational fluid dynamics tools. Analytical methods were then used in combination with computational tools in a design process. Several geometries were tested at 1:8 scale in a low speed wind tunnel. In addition to the baseline geometry, base add-on devices of the class of ogival boattails and slants were analyzed.

  16. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  17. Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo

    2003-01-01

    Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.

  18. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  19. International Interdisciplinary Research Institute Project in Senegal

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  20. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  1. An investigation of the internal and external aerodynamics of cattle trucks

    NASA Technical Reports Server (NTRS)

    Muirhead, V. U.

    1983-01-01

    Wind tunnel tests were conducted on a one-tenth scale model of a conventional tractor trailer livestock hauler to determine the air flow through the trailer and the drag of the vehicle. These tests were conducted with the trailer empty and with a full load of simulated cattle. Additionally, the drag was determined for six configurations, of which details for three are documented herein. These are: (1) conventional livestock trailer empty, (2) conventional trailer with smooth sides (i.e., without ventilation openings), and (3) a stream line tractor with modified livestock trailer (cab streamlining and gap fairing). The internal flow of the streamlined modification with simulated cattle was determined with two different ducting systems: a ram air inlet over the cab and NACA submerged inlets between the cab and trailer. The air flow within the conventional trailer was random and variable. The streamline vehicle with ram air inlet provided a nearly uniform air flow which could be controlled. The streamline vehicle with NACA submerged inlets provided better flow conditions than the conventional livestock trailer but not as uniform or controllable as the ram inlet configuration.

  2. An investigation of the internal and external aerodynamics of cattle trucks. Final Report

    SciTech Connect

    Muirhead, V.U.

    1983-05-01

    Wind tunnel tests were conducted on a one-tenth scale model of a conventional tractor trailer livestock hauler to determine the air flow through the trailer and the drag of the vehicle. These tests were conducted with the trailer empty and with a full load of simulated cattle. Additionally, the drag was determined for six configurations, of which details for three are documented herein. These are: (1) conventional livestock trailer empty, (2) conventional trailer with smooth sides (i.e., without ventilation openings), and (3) a stream line tractor with modified livestock trailer (cab streamlining and gap fairing). The internal flow of the streamlined modification with simulated cattle was determined with two different ducting systems: a ram air inlet over the cab and NACA submerged inlets between the cab and trailer. The air flow within the conventional trailer was random and variable. The streamline vehicle with ram air inlet provided a nearly uniform air flow which could be controlled. The streamline vehicle with NACA submerged inlets provided better flow conditions than the conventional livestock trailer but not as uniform or controllable as the ram inlet configuration.

  3. Missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1988-01-01

    The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.

  4. Aerodynamic simulation

    SciTech Connect

    Not Available

    1993-01-01

    In this article two integral computational fluid dynamics methods for steady-state and transient vehicle aerodynamic simulations are described using a Chevrolet Corvette ZR-1 surface panel model. In the last decade, road-vehicle aerodynamics have become an important design consideration. Originally, the design of low-drag shapes was given high priority due to worldwide fuel shortages that occurred in the mid-seventies. More recently, there has been increased interest in the role aerodynamics play in vehicle stability and passenger safety. Consequently, transient aerodynamics and the aerodynamics of vehicle in yaw have become important issues at the design stage. While there has been tremendous progress in Navier-Stokes methodology in the last few years, the physics of bluff-body aerodynamics are still very difficult to model correctly. Moreover, the computational effort to perform Navier-Stokes simulations from the geometric stage to complete flow solutions requires much computer time and impacts the design cycle time. In the short run, therefore, simpler methods must be used for such complicated problems. Here, two methods are described for the simulation of steady-state and transient vehicle aerodynamics.

  5. The human genome project and international health

    SciTech Connect

    Watson, J.D.; Cook-Deegan, R.M. )

    1990-06-27

    The human genome project is designed to provide common resources for the study of human genetics, and to assist biomedical researchers in their assault on disease. The main benefit will be to provide several kinds of maps of the human genome, and those of other organisms, to permit rapid isolation of genes for further study about DNA structure and function. This article describes genome research programs in developed and developing countries, and the international efforts that have contributed to genome research programs. For example, the large-scale collaborations to study Duchenne's muscular dystrophy, Huntington's disease, Alzheimer's disease, cystic fibrosis involve collaborators from many nations and families spread throughout the world. In the USA, the US Department of Energy was first to start a dedicated genome research program in 1987. Since then, another major government program has begun at the National Center for Human Genome Research of the National Institutes of Health. Italy, China, Australia, France, Canada, and Japan have genome research programs also.

  6. Hypersonic aerodynamic coefficients and convection flow estimation in a HERMES type project

    NASA Technical Reports Server (NTRS)

    Pollak, C.

    1987-01-01

    An analysis of all the experimental and computation requirements of the HERMES project is presented. The discussion includes the influence of the upper atmosphere composition and possible chemical reactions, the information collected in Orbiter experiments, the possibility of utilizing plasma generators and CF4 in wind tunnel tests, the development of parabolized Navier-Stokes models and solutions, and the computing capacity requirements.

  7. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  8. International environmental issues and requirements for new power projects

    SciTech Connect

    Newman, J.R.; Maltby, J.H.

    1997-12-31

    The purpose of this presentation was to discuss the emerging role of financial entities in determining environmental requirements for international power projects. The paper outlines the following: emerging conditions; examples of announced privatization energy projects by country; types of government and international financial entity sources; problems for IPPs; similarity and differences between the World Bank and the USEPA; comparison of the international standards and regulations for power plants; recent trends/issues involving international power project approval; and recommendations for understanding/expediting the financial entities` environmental approval process and how to expedite this process.

  9. A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.

    2015-01-01

    A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.

  10. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  11. Bayesian Probabilistic Projection of International Migration.

    PubMed

    Azose, Jonathan J; Raftery, Adrian E

    2015-10-01

    We propose a method for obtaining joint probabilistic projections of migration for all countries, broken down by age and sex. Joint trajectories for all countries are constrained to satisfy the requirement of zero global net migration. We evaluate our model using out-of-sample validation and compare point projections to the projected migration rates from a persistence model similar to the method used in the United Nations' World Population Prospects, and also to a state-of-the-art gravity model. PMID:26358699

  12. Teaching International Business via Social Media Projects

    ERIC Educational Resources Information Center

    Alon, Ilan; Herath, Ruwanthi Kumari

    2014-01-01

    The purpose of this study is to evaluate the outcomes of an experiential learning technique coupled with social media in an international marketing course. It was conducted among 155 students placed in groups that were assigned to develop a YouTube video for use as a country branding marketing tool. Measured evaluations of the students'…

  13. The Human Genome Project: An Imperative for International Collaboration.

    ERIC Educational Resources Information Center

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  14. Developing Context in International Civic Education Projects

    ERIC Educational Resources Information Center

    Craddock, Alden W.

    2007-01-01

    Because of its inherent political nature, projects for developing civic education in emerging democracies have often been criticized for being a tool for hegemonic control by the "West." Much of these suspicions have been pointed at the United States (US) due to the government's policy of supporting educational reform in emerging democracies. Many…

  15. Federal Workplace Literacy Project. Internal Evaluation Report.

    ERIC Educational Resources Information Center

    Matuszak, David J.

    This report describes the following components of the Nestle Workplace Literacy Project: six job task analyses, curricula for six workplace basic skills training programs, delivery of courses using these curricula, and evaluation of the process. These six job categories were targeted for training: forklift loader/checker, BB's processing systems…

  16. International Document Delivery: The ADONIS Project.

    ERIC Educational Resources Information Center

    Stern, Barrie; Campbell, Robert

    1989-01-01

    Describes the development of a project to test whether publishers can gain copyright revenue by supplying their journals in machine readable form for document delivery centers. Areas discussed include technical considerations; document delivery centers involved; workstation development; and statistical analyses to be reported at the end of the…

  17. The International Project. 1992 Update. Including "Microfilming Projects Abroad."

    ERIC Educational Resources Information Center

    Rutimann, Hans

    This publication describes national and international book preservation programs, including: (l) the European Register of Microform Masters (EROMM), a cooperative effort in which the Commission on Preservation and Access is a partner; (2) national preservation programs in Germany, France, Ireland, Britain, Netherlands, Sweden, China, and Central…

  18. A Country Report Project for an International Economics Class.

    ERIC Educational Resources Information Center

    Abdalla, Adil E. A.

    1993-01-01

    Asserts that international economics textbooks pay too little attention to the complexity of issues and problems facing individual nations. Describes a country report project included as part of a college-level international or development economics course. Provides two student instruction sheets and a sample country report. (CFR)

  19. International Projects Development: From Decision Cycle to Overseas Reality.

    ERIC Educational Resources Information Center

    Franklyn, Gaston J.

    The major elements of the industry-based planning process can be successfully applied to the development and implementation of international projects in educational institutions. International education programs share the following fundamental structural elements with business and industry: they compete in the market place, and exist by managing…

  20. International network of cancer genome projects

    PubMed Central

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  1. Project-Based Learning and International Business Education

    ERIC Educational Resources Information Center

    Danford, Gerard L.

    2006-01-01

    Project-based Learning (PbL) mirrors that of real-world business situations. PbL engages students in real projects for real corporations. Furthermore, this is an effective learning methodology which can be easily incorporated into a dynamic and challenging learning context such as international business education. Engaging in student-corporate…

  2. International Group Heterogeneity and Students' Business Project Achievement

    ERIC Educational Resources Information Center

    Ding, Ning; Bosker, Roel J.; Xu, Xiaoyan; Rugers, Lucie; van Heugten, Petra PAM

    2015-01-01

    In business higher education, group project work plays an essential role. The purpose of the present study is to explore the relationship between the group heterogeneity of students' business project groups and their academic achievements at both group and individual levels. The sample consists of 536 freshmen from an International Business School…

  3. College Professors' and Instructors' Attitudes toward International Project Activity

    ERIC Educational Resources Information Center

    Ryzhkova, I. V.

    2010-01-01

    The Bologna process, the most successful European project in the field of higher education, calls for colleges and universities to take joint actions to create a unified European educational space. One possible way to accomplish this task is to implement international scientific research projects. In connection with this, it becomes necessary to…

  4. Alligator rivers analogue project an OECD/NEA international project

    SciTech Connect

    Duerden, P.; Airey, P.; Pescatore, C.

    1994-12-31

    The Koongarra uranium deposit in the Alligator Rivers Region of the Northern Territory of Australia was studied as a natural analogue of the far field behaviour of high level waste repositories following groundwater ingress. A number of mathematical modelling approaches were developed for processes as diverse as groundwater transport, host rock weathering, radionuclide sorption, evolution of the uranium dispersion fan and the distribution of uranium series nuclides between mineral assemblages in weathered host rock. Some of these models are relevant to performance assessment at the level of individual processes and subsystem performance. Through the project, new insights into the application of the natural analogue approach to the assessment of potential waste repository sites were obtained.

  5. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  6. An Overview of the International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    Briggs, J. Blair; Gulliford, Jim

    2014-10-09

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  7. Exploring International Investment through a Classroom Portfolio Simulation Project

    ERIC Educational Resources Information Center

    Chen, Xiaoying; Yur-Austin, Jasmine

    2013-01-01

    A rapid integration of financial markets has prevailed during the last three decades. Investors are able to diversify investment beyond national markets to mitigate return volatility of a "pure domestic portfolio." This article discusses a simulation project through which students learn the role of international investment by managing…

  8. Do International Online Collaborative Learning Projects Impact Ethnocentrism?

    ERIC Educational Resources Information Center

    Boehm, Diane; Kurthen, Hermann; Aniola-Jedrzejek, Lilianna

    2010-01-01

    Preparing students for success in a globalized world invites new approaches. Online collaboration between students from different countries via globally networked learning environments (GNLEs) is one such approach. This article presents the results of a six-semester study beginning in 2006 of international online project collaborations between…

  9. Student experiences with an international public health exchange project.

    PubMed

    Critchley, Kim A; Richardson, Eileen; Aarts, Clara; Campbell, Barbara; Hemmingway, Ann; Koskinen, Liisa; Mitchell, Maureen P; Nordstrom, Pam

    2009-01-01

    With growing interconnectivity of healthcare systems worldwide and increased immigration, inappropriate cultural and role assumptions are often seen when cultures clash within a country or when there is practice across country boundaries in times of disaster and during international travel. To increase students' multicultural awareness and work experiences abroad, the authors describe a 7-school, 5-country international student exchange project. The authors also share the students' evaluations of their experiences as they are challenged to erase boundaries and embrace nursing across countries. Participating faculty describe the process, challenges, and keys to success found in creating and living this international project. Students involved in the exchange process evaluate the learning opportunities and challenges and the joy of coming together as newfound colleagues and friends. PMID:20339334

  10. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  11. Managing environmental issues during international electric power project development

    SciTech Connect

    Cooper, H.W.

    1998-07-01

    Responsible international project developers most often view environmental matters with quite mixed emotions. Those with whom Dynalytics has worked would certainly never contemplate jeopardizing the health of anyone in the world. But while they want their projects realized, and are willing to implement reasonable requirements, they are often asked to do more than is appropriate, more than is technologically possible, and more than is financially possible. The paper discusses the following: who is in charge of environmental matters; whose environmental standards apply; the role of technology; accelerating timetables and reducing costs; documentation and applications; and post-construction requirements.

  12. Noise prediction and control of Pudong International Airport expansion project.

    PubMed

    Lei, Bin; Yang, Xin; Yang, Jianguo

    2009-04-01

    The Environmental Impact Assessment (EIA) process of the third runway building project of Pudong International Airport is briefly introduced in the paper. The basic principle, the features, and the operation steps of newly imported FAA's Integrated Noise Model (INM) are discussed for evaluating the aircraft noise impacts. The prediction of the aircraft noise and the countermeasures for the noise mitigation are developed, which includes the reasonable runway location, the optimized land use, the selection of low noise aircrafts, the Fly Quit Program, the relocation of sensitive receptors and the noise insulation of sensitive buildings. Finally, the expansion project is justified and its feasibility is confirmed. PMID:18373206

  13. Designing a process for executing projects under an international agreement

    NASA Technical Reports Server (NTRS)

    Mohan, S. N.

    2003-01-01

    Projects executed under an international agreement require special arrangements in order to operate within confines of regulations issued by the State Department and the Commerce Department. In order to communicate enterprise-level guidance and procedural information uniformly to projects based on interpretations that carry the weight of institutional authority, a process was developed. This paper provides a script for designing processes in general, using this particular process for context. While the context is incidental, the method described is applicable to any process in general. The paper will expound on novel features utilized for dissemination of the procedural details over the Internet following such process design.

  14. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  15. Managing International Consulting Projects and International Business Courses Using Virtual Teams

    ERIC Educational Resources Information Center

    Prachyl, Cheryl; Quintanilla, Hector; Gutiérrez, Luis Antonio

    2011-01-01

    The Instituto Tecnologico y de Estudios Superiores de Monterrey and Texas Wesleyan University used technology based courses to enhance internationalization of their curricula. These courses required students to use computer technology as the distance communication medium and to complete an applied international consulting project as part of each…

  16. International Infrastructure for Planetary Sciences: Universal Planetary Database Development Project 'the International Planetary Data Alliance'

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa; Crichton, D.; Capria, M. T.; Beebe, R.; Zender, J.

    2009-09-01

    The International Planetary Data Alliance (IPDA), formed under COSPAR in 2008, is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive standards that make it easier to share data across international boundaries. In June - July 2009, we held the 4th Steering Committee meeting. Thanks to the many players from several agencies and institutions in the world, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA & N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. The projects demonstrated the feasibility of sharing data and emphasized the importance of developing common data standards to ensure world-wide access to international planetary archives. The Venus Express Interoperability project leveraged standards and technology efforts from both the Planetary Data System (PDS) and IPDA in order to deliver a new capability for data sharing between NASA/PDS and ESA/PSA. This project demonstrated a model and framework for linking compliant planetary archive systems for future international missions. The next step for IPDA, during the 2009-2010 period, will be to work with NASA/PDS to review and participate in an upgrade of its standards to improve both the consistency of the standards to build compliant international archives as well as improve long-term usability of the science data products. This paper presents the achievements and plans, which will be summarized in the paper which will appear in 'Space Research Today' in December 2009.

  17. Freight Wing Trailer Aerodynamics

    SciTech Connect

    Graham, Sean; Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  18. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  19. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  20. A role for NGOs in international renewable energy project development

    SciTech Connect

    Bartholf, T.R.

    1997-12-01

    An NGO is an international term for non-government organizations, often it is used in connection with non-profit, community-based and/or voluntary business activities. To be successful in supporting energy projects, these organizations generally exhibit certain characteristics: they are familiar with the end-use requirements; they are typically neutral to the technology; they emphasize training; they do not carry a large bureacratic structure, at home or in the field; they typically can adapt to do numerous functions; they can often attract other support. The author discusses several examples of such organizations who have been highly successful. The author sees a continuing role for such groups in developing renewable energy sources in the rural setting to include: continued development of new activity in rural areas; development of institutional framework for future market activity; an increased role in managing international development activities; more direct involvement with for-profit technical and financial organizations.

  1. The GEM project: An international collaboration to survey galacticradiation emission

    SciTech Connect

    Torres, S.; Canon, V.; Casas, R.; Umana, A.; Tello, C.; Villela,T.; Bersanelli, M.; Bensadoun, M.; deAmici, G.; Limon, M.; Smoot, G.; Witebsky, C.

    1996-05-11

    The GEM (Galactic Emission Mapping) project is an international collaboration established with the aim of surveying the full sky at long wavelengths with a multi-frequency radio telescope. A total of 745 hours of observation at 408 MHz were completed from an Equatorial site in Colombia. The observations cover the celestial band O-h < alpha < 24(h), and -24 degrees 22 minutes < delta < +35 degrees 37 minutes. Preliminary results of this partial survey will be discussed. A review of the instrumental setup and a similar to 10 degrees resolution sky map at 408 MHz is presented.

  2. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  3. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-01-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  4. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  5. Status, Plans and Initial Results for Ares I Crew Launch Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Hall, Robert M.; Haynes, Davy A.; Pamadi, Bandu N.; Taylor, Terry L.; Seaford, C. Mark

    2008-01-01

    Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics

  6. Via GeoAlpina - an international project of IYPE

    NASA Astrophysics Data System (ADS)

    Piller, Werner E.

    2010-05-01

    Mountainous areas show earth science features in a very conspicuous, frequently even in a spectacular way. Because of the general perception of the beauty of mountains many mountainous regions are well developed in terms of trails and touristic infrastructure. Therefore, mountains are a key area to bring earth sciences closer to people. In many mountain chains all over the world (e.g., Alps, Pyrenees, Andes, Rocky Mountains) far-ranging walking and hiking trails are developed to serve a broad audience. To provide this audience with basic information in geological phenomena along such trails the project "Via Geo..." was born as an international activity within the International Year of Planet Earth. The Alps have been selected to act as a pilot project with six Alpine nations participating: Austria, France, Germany, Italy, Slovenia, and Switzerland. Many well maintained trails exist bridging the Alps from the Adriatic Sea in Trieste (Italy) to Monte Carlo (Monaco) in the Western Mediterranean. Some of these trails are included in the project "Via Alpina". The idea of Via GeoAlpina is to point at geological attractions along the trails of Via Alpina or in their vicinity and offer simple but striking information. Various earth science fields will be covered, such as geology, geophysics, paleontology, mineralogy, hydrogeology, pedology, climatology, and geomorphology. The trail descriptions can be accessed and downloaded from the Via GeoAlpina website. In 2009 every country inaugurated Via GeoAlpina on a national base with a particular opening event in the presence of local authorities and local and national media. These events were accompanied with the distribution of flyers, by offering guided tours and by installation of panels in the field. These activities, however, should be followed by even more actions in the following years. These follow-ups should attract local and regional authorities at state, county or village level and will ideally be financed by private

  7. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  8. Physics at the International Science and Engineering Fair.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1979-01-01

    A judge for the physics projects for the 1979 International Science and Engineering Fair describes many of the more popular science projects. Projects described include the following: carbon dioxide and helium-neon lasers, reverse flame investigations, holography, construction of a magnetic bottle to confine plasma, and aerodynamic drag. (BT)

  9. Aerodynamic Characterization of a Modern Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  10. The International Satellite Cloud Climatology Project (ISCCP) - The first project of the World Climate Research Programme

    NASA Technical Reports Server (NTRS)

    Schiffer, R. A.; Rossow, W. B.

    1983-01-01

    The first project of the World Climate Research Program is the International Satellite Cloud Climatology Project, (ISCCP) whose objective is the collection and analysis of satellite radiance data in order to infer the global distribution of cloud radiative properties and improve the modeling of cloud effects on climate. The operational component of ISCCP takes advantage of the global coverage provided by the current and planned international array of geostationary and polar-orbiting meteorological satellites in the 1980s. It will produce a five-year global radiance and cloud data set. The research component of ISCCP will coordinate studies to validate climatology, improve cloud analysis algorithms, improve cloud effects modelling, and investigate the role of clouds in the atmospheric radiation budget and hydrologic cycle.

  11. The ALTCRISS Project On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Casolino, M.; Altamura, F.; Minori, M.; Picozza, P.; Fuglesang, C.; Galper, A.; Popov, A.; Benghin, V.; Petrov, V. M.

    2006-01-01

    The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above approximately equal to 60 MeV/n; a number of passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO the Life and Physical Science of 2004 and was begun in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end expedition 12 and 13.

  12. Managing data for the international, multicentre INTERGROWTH-21st Project.

    PubMed

    Ohuma, E O; Hoch, L; Cosgrove, C; Knight, H E; Cheikh Ismail, L; Juodvirsiene, L; Papageorghiou, A T; Al-Jabri, H; Domingues, M; Gilli, P; Kunnawar, N; Musee, N; Roseman, F; Carter, A; Wu, M; Altman, D G

    2013-09-01

    The INTERGROWTH-21(st) Project data management was structured incorporating both a centralised and decentralised system for the eight study centres, which all used the same database and standardised data collection instruments, manuals and processes. Each centre was responsible for the entry and validation of their country-specific data, which were entered onto a centralised system maintained by the Data Coordinating Unit in Oxford. A comprehensive data management system was designed to handle the very large volumes of data. It contained internal validations to prevent incorrect and inconsistent values being captured, and allowed online data entry by local Data Management Units, as well as real-time management of recruitment and data collection by the Data Coordinating Unit in Oxford. To maintain data integrity, only the Data Coordinating Unit in Oxford had access to all the eight centres' data, which were continually monitored. All queries identified were raised with the relevant local data manager for verification and correction, if necessary. The system automatically logged an audit trail of all updates to the database with the date and name of the person who made the changes. These rigorous processes ensured that the data collected in the INTERGROWTH-21(st) Project were of exceptionally high quality. PMID:23679040

  13. The International Reactor Physics Experiment Evaluation Project (IRPhEP)

    SciTech Connect

    Blair Briggs, J.; Sartori, E.; Scott, L.

    2006-07-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined. (authors)

  14. The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Enrico Sartori; Lori Scott

    2006-09-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined.

  15. Via GeoAlpina - an international project of IYPE (Invited)

    NASA Astrophysics Data System (ADS)

    Piller, W. E.

    2009-12-01

    Mountainous areas show geological features in a very conspicuous, frequently even in a spectacular way. Because of the general perception of the beauty of mountains many mountainous regions are well developed in terms of touristic infrastructure and accessibility. Therefore, mountains are a key area to bring earth sciences closer to people. In many mountain chains all over the world (e.g., Alps, Pyrenees, Andes, Rocky Mountains, Himalayas) far-ranging walking and hiking trails are developed to serve a broad spectrum of activists. To supply this audience with basic information about geological phenomena and processes along such trails the project “Via Geo...” was born as an international activity within the International Year of Planet Earth. This approach may and should be applied in different parts of the world. The Alps have been selected to act in a pilot project with six Alpine nations participating in “Via GeoAlpina”: Austria, France, Germany, Italy, Slovenia, and Switzerland. This is due to the fact that a wealth of well maintained trails and touristic infrastructure exists all over the Alps. Some of these are included in the project “Via Alpina” bridging the entire mountain system from the Adriatic Sea at Trieste (Italy) to Monte Carlo (Monaco) in the Western Mediterranean. The idea of Via GeoAlpina is to point at geological attractions along the trails of Via Alpina or in their vicinity and to offer simple but clear-cut information on these features. Various earth science fields will be covered, such as geology, geophysics, paleontology, mineralogy, hydrogeology, pedology, climatology, and geomorphology. In addition, particular topics on applied earth science aspects, e.g, mineral recourses and geological hazards, which are of particular importance for society, will be addressed. This information is primarily web-based and trail descriptions can be accessed and downloaded from the Via GeoAlpina website (http://www.viageoalpina.org). In 2009

  16. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    SciTech Connect

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Schulz, H.; Sievers, J.

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency`s (NEA`s) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission`s (NRC`s) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG.

  17. Control of helicopter rotorblade aerodynamics

    NASA Technical Reports Server (NTRS)

    Fabunmi, James A.

    1991-01-01

    The results of a feasibility study of a method for controlling the aerodynamics of helicopter rotorblades using stacks of piezoelectric ceramic plates are presented. A resonant mechanism is proposed for the amplification of the displacements produced by the stack. This motion is then converted into linear displacement for the actuation of the servoflap of the blades. A design which emulates the actuation of the servoflap on the Kaman SH-2F is used to demonstrate the fact that such a system can be designed to produce the necessary forces and velocities needed to control the aerodynamics of the rotorblades of such a helicopter. Estimates of the electrical power requirements are also presented. A Small Business Innovation Research (SBIR) Phase 2 Program is suggested, whereby a bench-top prototype of the device can be built and tested. A collaborative effort between AEDAR Corporation and Kaman Aerospace Corporation is anticipated for future effort on this project.

  18. Numerical Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

  19. Uncertainty in Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

    2003-01-01

    An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

  20. Computation of dragonfly aerodynamics

    NASA Astrophysics Data System (ADS)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  1. Introduction to the hydrogeochemical investigations within the International Stripa Project

    USGS Publications Warehouse

    Nordstrom, D.K.; Olsson, T.; Carlsson, L.; Fritz, P.

    1989-01-01

    The International Stripa Project (1980-1990) has sponsored hydrogeochemical investigations at several subsurface drillholes in the granitic portion of an abandoned iron ore mine, central Sweden. The purpose has been to advance our understanding of geochemical processes in crystalline bedrock that may affect the safety assessment of high-level radioactive waste repositories. More than a dozen investigators have collected close to a thousand water and gas samples for chemical and isotopic analyses to develop concepts for the behavior of solutes in a granitic repository environment. The Stripa granite is highly radioactive and has provided an exceptional opportunity to study the behavior of natural radionuclides, especially subsurface production. Extensive microfracturing, low permeability with isolated fracture zones of high permeability, unusual water chemistry, and a typical granitic mineral assemblage with thin veins and fracture coatings of calcite, chlorite, seriate, epidote and quartz characterize the site. Preliminary groundwater flow modeling indicates that the mine has perturbed the flow environment to a depth of about 3 km and may have induced deep groundwaters to flow into the mine. ?? 1989.

  2. The Luneburg Sustainable University Project in International Comparison: An Assessment against North American Peers

    ERIC Educational Resources Information Center

    Beringer, Almut

    2007-01-01

    Purpose: To assess the Luneburg Sustainable University Project (the Project) in a non-European international context; to relate the project scholarly approach to selected scholarly and practice-oriented North American sustainability in higher education (SHE) methods; to analyze project innovations against North American initiatives.…

  3. Applied aerodynamics: Challenges and expectations

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Smith, Charles A.

    1993-01-01

    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft.

  4. Getting To Know You: IRA's International Development Division and the RWCT Project.

    ERIC Educational Resources Information Center

    Miller, Larry

    2001-01-01

    Presents an interview with Scott Walter (director of the International Development Division of the International Reading Association) and Wendy Saul (senior editor of "Thinking Classroom") about the division's activities and projects, especially the Reading and Writing for Critical Thinking (RWCT) project, which introduces research-based…

  5. Report on Exxon Education Foundation-Funded Project to Increase International Dimensions of Community College Curricula.

    ERIC Educational Resources Information Center

    Spitzer, Manon

    A description is provided of a project conducted by Universities Field Staff International (UFSI) to increase the international dimension of community college education in the Northeastern U.S. through a series of faculty and curriculum development workshops. Section I defines the origins of the project, describing community college interest in…

  6. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  7. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  8. Aerodynamics. [Numerical simulation using supercomputers

    SciTech Connect

    Graves, R.A. Jr.

    1988-01-01

    A projection is made of likely improvements in the economics of commercial aircraft operation due to developments in aerodynamics in the next half-century. Notable among these improvements are active laminar flow control techniques' application to third-generation SSTs, in order to achieve an L/D value of about 20; this is comparable to current subsonic transports, and has the further consequence of reducing cabin noise. Wave-cancellation systems may also be used to eliminate sonic boom overpressures, and rapid-combustion systems may be able to eliminate all pollutants from jet exhausts other than CO/sub 2/.

  9. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  10. IPDA PDS4 Project: Towards an International Planetary Data Standard

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Roatsch, Thomas; Capria, Maria Teresa; Heather, David; Yamamoto, Yukio; Hughes, Steven; Stein, Thomas; Cecconi, Baptiste; Prashar, Ajay; Batanov, Oleg; Gopala Krishna, Barla

    2016-07-01

    The International Planetary Data Alliance (IPDA) is an international collaboration of space agencies with the main objective of facilitating discovery, access and use of planetary data managed across international boundaries. For this purpose, the IPDA has adopted the NASA's Planetary Data System (PDS) standard as the de-facto archiving standard, and is working towards the internationalisation of the new generation of the standards, called PDS4. PDS4 is the largest upgrade in the history of the PDS, and is a significant step towards an online, distributed, model-driven and service-oriented architecture international archive. Following the successful deployment of PDS4 to support NASA's LADEE and MAVEN missions, PDS4 was endorsed by IPDA in 2014. This has led to the adoption of PDS4 by a number of international space agencies (ESA, JAXA, ISRO and Roscosmos, among others) for their upcoming missions. In order to closely follow the development of the PDS4 standards and to coordinate the international contribution and participation in its evolution, a group of experts from each international agency is dedicated to review different aspects of the standards and to capture recommendations and requirements to ensure the international needs are met. The activities performed by this group cover the assessment and implementation of all aspects of PDS4, including its use, documentation, tools, validation strategies and information model. This contribution will present the activities carried out by this group and how this partnership between PDS and IPDA provides an excellent foundation towards an international platform for planetary science research.

  11. Information Technology Team Projects in Higher Education: An International Viewpoint

    ERIC Educational Resources Information Center

    Lynch, Kathy; Heinze, Aleksej; Scott, Elsje

    2007-01-01

    It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…

  12. Lessons from an International e-Learning Project

    ERIC Educational Resources Information Center

    Breen, Paul

    2007-01-01

    This paper offers a critical examination of an e-learning project in the context of a Distance Education training program delivered to teacher trainers in Rwanda. In examining the successes and failures of the project, it uses a framework based on ideas promulgated by Moore (1995) and strives to provide guidance and reference for future projects…

  13. Canada-India Institutional Cooperation Project: International Partnerships in Education.

    ERIC Educational Resources Information Center

    Yule, Alix

    The Canada-India Institutional Cooperation Project (CIICP) is a joint venture by the Association of Canadian Community Colleges and the governments of India and Canada designed to contribute to human resource development in India's polytechnic system. Specifically, the project seeks to develop replicable models of institutional development in 13…

  14. Academic Librarians and Project Management: An International Study

    ERIC Educational Resources Information Center

    Serrano, Silvia Cobo; Avilés, Rosario Arquero

    2016-01-01

    Because information and documentation units in libraries have responsibility for an ever-increasing number of projects, this paper aims at analyzing the discipline of project management in library and information science (LIS) from a professional perspective. To that end, the researchers employed quantitative and qualitative methodology based on a…

  15. One University's Strategy for Keeping International Projects Running Smoothly

    ERIC Educational Resources Information Center

    Fischer, Karin

    2009-01-01

    This article describes how a university tackled some of the basic challenges of internationalizing its campuses. The University of Washington created the Global Support Project, a one-stop shop for faculty and staff members doing research or running programs abroad. The project is run by senior administrators but relies on designated go-to people…

  16. Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark

    2006-01-01

    Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.

  17. Enhancing International Research and Development-Project Activity on University Campuses: Insights from U.S. Senior International Officers

    ERIC Educational Resources Information Center

    Koehn, Peter H.; Deardorff, Darla K.; Bolognese, Kerry D.

    2011-01-01

    In the interconnected world of the UN Decade of Education for Sustainable Development, the ability of higher-education institutions to contribute to and benefit from international research undertakings, sustainable-development-project activity, and capacity-building endeavors requires transnational involvement. While the potential benefits are…

  18. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  19. An International Comparison of Final-Year Design Project Curricula

    ERIC Educational Resources Information Center

    Kentish, Sandra E.; Shallcross, David C.

    2006-01-01

    This paper reviews design teaching at a total of 15 chemical engineering departments across Australia, Singapore, and the United Kingdom. The emphasis is on the capstone Design Project, which can be viewed as a major transition subject for students as they move into the workplace. The study shows that this subject has evolved to act as an…

  20. Learning Effects of an International Group Competition Project

    ERIC Educational Resources Information Center

    Akpinar, Murat; del Campo, Cristina; Eryarsoy, Enes

    2015-01-01

    This study investigates the effects of collaboration and competition on students' learning performance in a course of business statistics. The collaboration involved a simultaneously organised group competition project with analysis of real-life business problems among students. Students from the following schools participated: JAMK…

  1. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  2. Contributions of international cooperation projects to the HIV/AIDS response in China

    PubMed Central

    Sun, Jiangping; Liu, Hui; Li, Hui; Wang, Liqiu; Guo, Haoyan; Shan, Duo; Bulterys, Marc; Korhonen, Christine; Hao, Yang; Ren, Minghui

    2010-01-01

    Background For 20 years, China has participated in 267 international cooperation projects against the HIV/AIDS epidemic and received ∼526 million USD from over 40 international organizations. These projects have played an important role by complementing national efforts in the fight against HIV/AIDS in China. Methods The diverse characteristics of these projects followed three phases over 20 years. Initially, stand-alone projects provided technical support in surveillance, training or advocacy for public awareness. As the epidemic spread across China, projects became a part of the comprehensive and integrated national response. Currently, international best practices encourage the inclusion of civil society and non-governmental organizations in an expanded response to the epidemic. Results Funding from international projects has accounted for one-third of the resources provided for the HIV/AIDS response in China. Beyond this strong financial support, these programmes have introduced best practices, accelerated the introduction of AIDS policies, strengthened capacity, improved the development of grassroots social organizations and established a platform for communication and experience sharing with the international community. However, there are still challenges ahead, including integrating existing resources and exploring new programme models. The National Centre for AIDS/STD Control and Prevention (NCAIDS) in China is consolidating all international projects into national HIV prevention, treatment and care activities. Conclusion International cooperation projects have been an invaluable component of China’s response to HIV/AIDS, and China has now been able to take this information and share its experiences with other countries with the help of these same international programmes. PMID:21113032

  3. The International Data Sharing Challenge: Realities and Lessons Learned from International Field Projects and Data Analysis Efforts

    NASA Astrophysics Data System (ADS)

    Williams, S. F.; Moore, J. A.

    2014-12-01

    One of the major challenges facing science in general is how foster trust and cooperation between nations that then allows the free and open exchange of data. The rich data coming from many nations conducting Arctic research must be allowed to be brought together to understand and assess the huge changes now underway in the Arctic regions. The NCAR Earth Observing Laboratory has been supporting a variety of international field process studies and WCRP sponsored international projects that require international data collection and exchange in order to be successful. Some of the programs include the Surface Heat Budget of the Arctic (SHEBA) International Tundra Experiment (ITEX), the Arctic Climate Systems Study (ACSYS), the Distributed Biological Observatory (DBO), and the Coordinated Energy and water-cycle Observations Project (CEOP) to name a few. EOL played a major role in the data management of these projects, but the CEOP effort in particular involved coordinating common site documentation and data formatting across a global network (28 sites). All these unique projects occurred over 25 years but had similar challenges in the international collection, archival, and access to the rich datasets that are their legacy. The Belmont Forum offers as its main challenge to deliver knowledge needed for action to avoid or adapt to environmental change. One of their major themes is related to the study of these changes in the Arctic. The development of capable e-infrastructure (technologies and groups supporting international collaborative environments networks and data centers) to allow access to large diverse data collections is key to meeting this challenge. The reality of meeting this challenge, however, is something much more difficult. The authors will provide several specific examples of successes and failures when trying to meet the needs of an international community of researchers specifically related to Belmont Forum Work Package Themes regarding standards of

  4. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  5. Making mapping matter: a case study for short project international partnerships by global public health students

    PubMed Central

    Wyber, Rosemary; Potter, James R.; Weaver, Jennifer B.

    2014-01-01

    Background A large number of global public health students seek international experience as part of their academic curriculum. These placements are often short, given the constraints of cost and time available within the academic calendar. In contrast to international electives for clinical students there are few published guidelines on practical, ethical or feasible projects. This paper describes a ten-day sanitation mapping project in Mumbai, India and explores the broader implications for global public health student electives. Methods Three graduate public health students conducted a geographic review of sanitation facilities in Cheeta Camp informal settlement, Mumbai. Forty-six toilet blocks with 701 individual seats were identified. The project was reviewed ethically, educationally and logistically as a possible model for other short-term international projects. Conclusions Clearer guidelines are needed to support non-clinical placements by global public health students. Projects that are feasible, relevant and meaningful should be foster maximise benefit for learners and host communities. PMID:24964783

  6. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles

    PubMed Central

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005–2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales. PMID:26930402

  7. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles.

    PubMed

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales. PMID:26930402

  8. A mission design for International Manned Mars Mission - From the 1991 International Space University (ISU) Design Project

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1991-01-01

    The International Space University (ISU) conducted a study of an international program to support human exploration of Mars as its annual Design Project activity during its 1991 summer session in Toulouse, France. Although an ISU Design Project strives to produce an in-depth analysis during the intense 10-week summer session, the International Mars Mission (IMM) project was conducted in a manner designed to provide a learning experience for young professionals working in an unusual multidisciplinary and multinational environment. The breadth of the IMM study exceeds that of most Mars mission studies of the past, encompassing political organization for long-term commitment, multinational management structure, cost analysis, mission architecture, vehicle configuration, crew health, life support, Mars surface infrastructure, mission operations, technology evaluation, risk assessment, scientific planning, exploration, communication networks, and Martian resource utilization. The IMM Final Report has particular value for those seeking insight into the choices made by a multinational group working in an apolitical environment on the problems of international cooperation in space.

  9. Framing "World Class" Differently: International and Korean Participants' Perceptions of the World Class University Project

    ERIC Educational Resources Information Center

    Jang, Deok-Ho; Kim, Leo

    2013-01-01

    This study analyzes how the world class university (WCU) project in Korea is perceived by participating international scholars and Korean principal investigators by conducting focus group interviews and utilizing semantic network analysis. While international scholars and Korean principal investigators agree that the success of WCU depends on…

  10. Evaluating the Investment Benefit of Multinational Enterprises' International Projects Based on Risk Adjustment: Evidence from China

    ERIC Educational Resources Information Center

    Chen, Chong

    2016-01-01

    This study examines the international risks faced by multinational enterprises to understand their impact on the evaluation of investment projects. Moreover, it establishes a 'three-dimensional' theoretical framework of risk identification to analyse the composition of international risk indicators of multinational enterprises based on the theory…

  11. Developing international research projects: the case of the Sino/US grass alliance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many cases, international cooperative research projects have yielded large dividends to its research participants and cliental as outcomes have been high-impact products. For these reasons, the development of productive and long-lasting international cooperative research efforts is important to ...

  12. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  13. Integral Reactor Physics Benchmarks - the International Criticality Safety Benchmark Evaluation Project (icsbep) and the International Reactor Physics Experiment Evaluation Project (irphep)

    NASA Astrophysics Data System (ADS)

    Briggs, J. Blair; Nigg, David W.; Sartori, Enrico

    2006-04-01

    Since the beginning of the nuclear industry, thousands of integral experiments related to reactor physics and criticality safety have been performed. Many of these experiments can be used as benchmarks for validation of calculational techniques and improvements to nuclear data. However, many were performed in direct support of operations and thus were not performed with a high degree of quality assurance and were not well documented. For years, common validation practice included the tedious process of researching integral experiment data scattered throughout journals, transactions, reports, and logbooks. Two projects have been established to help streamline the validation process and preserve valuable integral data: the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP). The two projects are closely coordinated to avoid duplication of effort and to leverage limited resources to achieve a common goal. A short history of these two projects and their common purpose are discussed in this paper. Accomplishments of the ICSBEP are highlighted and the future of the two projects outlined.

  14. UNESCO and the Associated Schools Project: Symbolic Affirmation of World Community, International Understanding, and Human Rights

    ERIC Educational Resources Information Center

    Suarez, David F.; Ramirez, Francisco O.; Koo, Jeong-Woo

    2009-01-01

    The UNESCO Associated Schools Project emphasizes world community, human rights, and international understanding. This article investigates the emergence and global diffusion of the project from 1953 to 2001, estimating the influence of national, regional, and world characteristics on the likelihood of a country adopting a UNESCO school. It also…

  15. A PDS Partnership Goes International: Phase I of an American-Slovenian Collaborative Research Project

    ERIC Educational Resources Information Center

    Catelli, Linda; Carlino, Joan; Jackson, Valerie; Petraglia, GinaMarie

    2011-01-01

    The focus of the article is on Phase I of an American-Slovenian collaborative research project that was aimed at investigating effective classroom teaching-learning performances. The international project involved Dowling College and its first Professional Development School (PDS)--the Belmont Elementary PDS--and the University of Primorska at…

  16. Evaluation in Cross-Cultural Contexts: Proposing a Framework for International Education and Training Project Evaluations.

    ERIC Educational Resources Information Center

    bin Yahya, Ismail; And Others

    This paper focuses on the need for increased sensitivity and responsiveness in international education and training project evaluations, particularly those in Third World countries. A conceptual-theoretical framework for designing and developing models appropriate for evaluating education and training projects in non-Western cultures is presented.…

  17. Aerodynamic drag in cycling: methods of assessment.

    PubMed

    Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William

    2011-09-01

    When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance. PMID:21936289

  18. Aerodynamics of Race Cars

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  19. Aerodynamics Improve Wind Wheel

    NASA Technical Reports Server (NTRS)

    Ramsey, V. W.

    1982-01-01

    Modifications based on aerodynamic concepts would raise efficiency of wind-wheel electric-power generator. Changes smooth airflow, to increase power output, without increasing size of wheel. Significant improvements in efficiency anticipated without any increase in size or number of moving parts and without departing from simplicity of original design.

  20. Game analysis and benefit allocation in international projects among owner, supervisor and contractor

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Wang, Yong; Guo, Sini; Xu, Xiaofeng; Che, Cheng

    2016-04-01

    International projects are different from general domestic ones. In order to analyse the differences, a tripartite game model is built up to describe the relationship among owner, supervisor and general contractor, and some measures are given for the owner to more effectively complete the project. In addition, a project schedule selection model is formulated and a new benefit allocation method is proposed by introducing a new modified Shapley value with weighted factor.

  1. Global oximetry: an international anaesthesia quality improvement project.

    PubMed

    Walker, I A; Merry, A F; Wilson, I H; McHugh, G A; O'Sullivan, E; Thoms, G M; Nuevo, F; Whitaker, D K

    2009-10-01

    Pulse oximetry is mandatory during anaesthesia in many countries, a standard endorsed by the World Health Organization 'Safe Surgery Saves Lives' initiative. The Association of Anaesthetists of Great Britain and Ireland, the World Federation of Societies of Anaesthesiologists and GE Healthcare collaborated in a quality improvement project over a 15-month period to investigate pulse oximetry in four pilot sites in Uganda, Vietnam, India and the Philippines, using 84 donated pulse oximeters. A substantial gap in oximeter provision was demonstrated at the start of the project. Formal training was essential for oximeter-naïve practitioners. After introduction of oximeters, logbook data were collected from over 8000 anaesthetics, and responses to desaturation were judged appropriate. Anaesthesia providers believed pulse oximeters were essential for patient safety and defined characteristics of the ideal oximeter for their setting. Robust systems for supply and maintenance of low-cost oximeters are required for sustained uptake of pulse oximetry in low- and middle-income countries. PMID:19735394

  2. Aerodynamic heated steam generating apparatus

    SciTech Connect

    Kim, K.

    1986-08-12

    An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

  3. Aerodynamic characteristics of aerofoils I

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The object of this report is to bring together the investigations of the various aerodynamic laboratories in this country and Europe upon the subject of aerofoils suitable for use as lifting or control surfaces on aircraft. The data have been so arranged as to be of most use to designing engineers and for the purposes of general reference. The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use, and yet is one for which a desired transformation can be easily made. For this purpose a set of transformation constants is included in this report.

  4. Performance of SMA-reinforced composites in an aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, John; Boller, Christian

    2002-07-01

    Within the European collaborative applied fundamental research project ADAPT, fundamentals of SMA-reinforced composites were evaluated and the specific manufacturing techniques for these composites developed and realised. The involved partners are listed at the end. To demonstrate applicability of these composites a realistically scaled aerodynamic profile of around 0.5m span by 0.5m root chord was designed, manufactured and assembled. The curved skins were manufactured as SMA composites with two layers of SMA-wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and activated and excited by a shaker at its tip which allowed to test the dynamic performance of the profile under different external loading conditions with various internal actuation conditions through the SMA wires. The paper includes some background of the design and manufacturing of the aerodynamic profile and will discuss some of the results determined recently on the test rig. A view with regard to future wind tunnel testing will be given as well.

  5. Mobile Air Quality Studies (MAQS)-an international project

    PubMed Central

    2010-01-01

    Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure. Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone. PMID:20380704

  6. The Polarized Electron Source for the International Collider (ILC) Project

    NASA Astrophysics Data System (ADS)

    Brachmann, A.; Clendenin, J. E.; Garwin, E. L.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Prescott, C. Y.; Sheppard, J.; Turner, J.; Zhou, F.

    2007-06-01

    The ILC project will be the next large high energy physics tool that will use polarized electrons (and positrons). For this machine spin physics will play an important role. The polarized electron source design is based on electron injectors built for the Stanford Linear Collider (polarized) and Tesla Test Facility (un-polarized). The ILC polarized electron source will provide a 5GeV spin polarized electron beam for injection into the ILC damping ring. Although most ILC machine parameters have been achieved by the SLC or TTF source, features of both must be integrated into one design. The bunch train structure presents unique challenges to the source laser drive system. A suitable laser system has not yet been demonstrated and is part of the ongoing R&D program for ILC at SLAC. Furthermore, ILC injector R&D incorporates photocathode development, increasing available polarization, and improving operational properties in gun vacuum systems. Another important area of research and development is advancing the design of DC and RF electron gun technology for polarized sources. This presentation presents the current status of the design and outlines aspects of the relevant R&D program carried out within the ILC community.

  7. Nozzle Aerodynamic Stability During a Throat Shift

    NASA Technical Reports Server (NTRS)

    Kawecki, Edwin J.; Ribeiro, Gregg L.

    2005-01-01

    An experimental investigation was conducted on the internal aerodynamic stability of a family of two-dimensional (2-D) High Speed Civil Transport (HSCT) nozzle concepts. These nozzles function during takeoff as mixer-ejectors to meet acoustic requirements, and then convert to conventional high-performance convergent-divergent (CD) nozzles at cruise. The transition between takeoff mode and cruise mode results in the aerodynamic throat and the minimum cross-sectional area that controls the engine backpressure shifting location within the nozzle. The stability and steadiness of the nozzle aerodynamics during this so called throat shift process can directly affect the engine aerodynamic stability, and the mechanical design of the nozzle. The objective of the study was to determine if pressure spikes or other perturbations occurred during the throat shift process and, if so, identify the caused mechanisms for the perturbations. The two nozzle concepts modeled in the test program were the fixed chute (FC) and downstream mixer (DSM). These 2-D nozzles differ principally in that the FC has a large over-area between the forward throat and aft throat locations, while the DSM has an over-area of only about 10 percent. The conclusions were that engine mass flow and backpressure can be held constant simultaneously during nozzle throat shifts on this class of nozzles, and mode shifts can be accomplished at a constant mass flow and engine backpressure without upstream pressure perturbations.

  8. Web Services and Handle Infrastructure - WDCC's Contributions to International Projects

    NASA Astrophysics Data System (ADS)

    Föll, G.; Weigelt, T.; Kindermann, S.; Lautenschlager, M.; Toussaint, F.

    2012-04-01

    Climate science demands on data management are growing rapidly as climate models grow in the precision with which they depict spatial structures and in the completeness with which they describe a vast range of physical processes. The ExArch project is exploring the challenges of developing a software management infrastructure which will scale to the multi-exabyte archives of climate data which are likely to be crucial to major policy decisions in by the end of the decade. The ExArch approach to future integration of exascale climate archives is based on one hand on a distributed web service architecture providing data analysis and quality control functionality across archvies. On the other hand a consistent persistent identifier infrastructure is deployed to support distributed data management and data replication. Distributed data analysis functionality is based on the CDO climate data operators' package. The CDO-Tool is used for processing of the archived data and metadata. CDO is a collection of command line Operators to manipulate and analyse Climate and forecast model Data. A range of formats is supported and over 500 operators are provided. CDO presently is designed to work in a scripting environment with local files. ExArch will extend the tool to support efficient usage in an exascale archive with distributed data and computational resources by providing flexible scheduling capabilities. Quality control will become increasingly important in an exascale computing context. Researchers will be dealing with millions of data files from multiple sources and will need to know whether the files satisfy a range of basic quality criterea. Hence ExArch will provide a flexible and extensible quality control system. The data will be held at more than 30 computing centres and data archives around the world, but for users it will appear as a single archive due to a standardized ExArch Web Processing Service. Data infrastructures such as the one built by ExArch can greatly

  9. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  10. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  11. Promoting Eurofab: Communications on a Sensitive International Project

    SciTech Connect

    Duperray, J.

    2006-07-01

    To reduce the risk of nuclear weapons materials falling into the wrong hands, the United States and the Russian Federation agreed in September 2000 on the disposition of 68 metric tons of surplus weapons-grade plutonium, 34 tons from each side. Both countries are to dispose of their plutonium by converting it to mixed oxide fuel (MOX) to be used to generate electricity in existing reactors. Before significant quantities of MOX fuel can be used in U.S. reactors, the performance of this European technology must be verified by the United States Nuclear Regulatory Commission (NRC). The construction of a U.S. MOX fuel fabrication facility is under way, but the United States does not currently have the capability to produce MOX fuel. The U.S. Department of Energy (DOE) therefore made arrangements with the AREVA group to have four MOX assemblies fabricated in France from U.S. weapons-grade plutonium. In October 2004, 140 kilograms of defense plutonium powder were shipped from Charleston, South Carolina, to Cherbourg, France. Five months later, four lead assemblies, fabricated at COGEMA's Cadarache and Melox sites in southern France, were transported back to the United States for loading in the Catawba nuclear station in North Carolina operated by Duke Power. This transportation and fabrication operation, code-named Eurofab, brought us face-to-face with major communications issues, and all the more so in that special nuclear materials were involved against a backdrop of bilateral non-proliferation agreements. From the very beginning of Eurofab, we expected this project to be the object of much media interest - which certainly came true - and the importance of a dedicated, multilateral communications policy was obvious to all partners. Nuclear opponents in the U.S. and France were mobilizing well in advance to thwart the operation. Early on, to provide the media and the general public with objective information and squelch misinformation, the parties set up a communications

  12. HYSHOT-2 Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cain, T.; Owen, R.; Walton, C.

    2005-02-01

    The scramjet flight test Hyshot-2, flew on the 30 July 2002. The programme, led by the University of Queensland, had the primary objective of obtaining supersonic combustion data in flight for comparison with measurements made in shock tunnels. QinetiQ was one of the sponsors, and also provided aerodynamic data and trajectory predictions for the ballistic re-entry of the spinning sounding rocket. The unconventional missile geometry created by the nose-mounted asymmetric-scramjet in conjunction with the high angle of attack during re-entry makes the problem interesting. This paper presents the wind tunnel measurements and aerodynamic calculations used as input for the trajectory prediction. Indirect comparison is made with data obtained in the Hyshot-2 flight using a 6 degree-of-freedom trajectory simulation.

  13. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  14. Aerodynamics: The Wright Way

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer Hansen

    2010-01-01

    This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

  15. The project De Caldas International Project: An example of a large-scale radwaste isolation natural analogue study

    SciTech Connect

    Shea, M.

    1995-09-01

    The proper isolation of radioactive waste is one of today`s most pressing environmental issues. Research is being carried out by many countries around the world in order to answer critical and perplexing questions regarding the safe disposal of radioactive waste. Natural analogue studies are an increasingly important facet of this international research effort. The Pocos de Caldas Project represents a major effort of the international technical and scientific community towards addressing one of modern civilization`s most critical environmental issues - radioactive waste isolation.

  16. Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project

    SciTech Connect

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.; Barr, D.; Chijimatsu, M.; Kolditz, O.; Liu, Q.; Oda, Y.; Wang, W.; Xie, M.; Zhang, C.

    2005-10-19

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.

  17. Project Adopsys as an example of international collaboration in the field of photonics

    NASA Astrophysics Data System (ADS)

    Zoric, Nenad; Livshits, Irina; Urbach, Paul

    2015-01-01

    Tendencies of international cooperation in engineering education became very visible during recent years. We demonstrate this statement on one currently running EU project ADOPSYS in the field of optical design, which is an important part of engineering education in photonics. This example shows the importance of the input from different countries and organizations - both from industry and academia. Seven universities and eight optical companies are involved in the project ADOPSYS. Sharing experience of Academia education activity we provide new international type of education "free-of borders". We are going to discuss the key enable technology - PHOTONICS, which is widely used in modern society. Engineering science became very international. For communicating between people from different countries the English language is now used almost exclusively. For a fruitful collaboration between people from different nations, in multi-national projects, tolerance and respect are required between people of different political, cultural, educational backgrounds.

  18. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    SciTech Connect

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  19. Aerodynamic investigations into various low speed L/D improvement devices on the 140A/B space shuttle orbiter configuration in the Rockwell International low speed wind tunnel (OA86)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1974-01-01

    Tests were conducted to investigate various base drag reduction techniques in an attempt to improve Orbiter lift-to-drag ratios and to calculate sting interference effects on the Orbiter aerodynamic characteristics. Test conditions and facilites, and model dimensional data are presented along with the data reduction guidelines and data set/run number collation used for the studies. Aerodynamic force and moment data and the results of stability and control tests are also given.

  20. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  1. International assistance and health care reform in Poland: barriers to project development and implementation.

    PubMed

    Sabbat, J

    1997-09-01

    The restoration of democracy in Poland initiated a major system transformation including reform of the health sector. The international community were quick to respond to the need for assistance. Polish proposals were supported by international experts and projects were developed together with international development agencies and donors. Donors had no experience of central and eastern Europe, these countries had never been beneficiaries of aid and neither side had experience working together. Progress and absorption of funds was slow. Comparative experience from developing countries was used to analyze the barriers encountered in project development and implementation in Poland. The conditions necessary for implementation were not satisfied. Insufficient attention was paid to the project process. Barriers originate on the side of both donors and recipients and additionally from programme characteristics. The most serious problems experience in Poland were lack of government commitment to health care reform leading to failure to provide counterpart funds and low capacity for absorption of aid. Rent seeking attitudes were important. Donor paternalistic attitudes, complex procedures and lack of innovative approach were also present. Poor coordination was a problem on both sides. Multi-lateral projects were too complex and it was not always possible to integrate project activities with routine ones. External consultants played an excessive role in project development and implementation, absorbing a large portion of funds. The barriers have been operationalised to create a checklist which requires validation elsewhere and may be useful for those working in this field. PMID:10170090

  2. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  3. Freight Wing Trailer Aerodynamics Final Technical Report

    SciTech Connect

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products

  4. An Assessment of Experiential Learning of Global Poverty Issues through International Service Projects

    ERIC Educational Resources Information Center

    Le, Quan V.; Raven, Peter V.

    2015-01-01

    Service learning has been used to supplement a standard business curriculum, but not typically in an international business context. We report the results of two short-term study abroad programs in which we incorporated service learning projects, one in Cambodia and the other in Vietnam. Our objective is to assess how we organized and delivered…

  5. Quality in E-Learning--A Conceptual Framework Based on Experiences from Three International Benchmarking Projects

    ERIC Educational Resources Information Center

    Ossiannilsson, E.; Landgren, L.

    2012-01-01

    Between 2008 and 2010, Lund University took part in three international benchmarking projects, "E-xcellence+," the "eLearning Benchmarking Exercise 2009," and the "First Dual-Mode Distance Learning Benchmarking Club." A comparison of these models revealed a rather high level of correspondence. From this finding and from desktop studies of the…

  6. Evaluation of the Unesco Associated Schools Project in Education for International Co-operation and Peace.

    ERIC Educational Resources Information Center

    Churchill, Stacy; Omari, Issa

    In accordance with a mandate from Unesco's 1978 General Conference, an evaluation methodology and instruments were devised to assess the Unesco Associated School's success in encouraging international peace and human rights. The background of this assessment project and a report of evaluation activities are presented in this document. The…

  7. Expanding Access, Participation, and Success in International Baccalaureate Programmes (IB Access Project): Evaluation Report Year Two

    ERIC Educational Resources Information Center

    Gerry, Gail; Corcoran, Tom

    2011-01-01

    In the fall of 2009, the Bill and Melinda Gates Foundation funded a three-year project proposed by the International Baccalaureate (IB) to demonstrate the feasibility of increasing the participation of minority students and students in poverty in its Middle Years Programme (MYP) and Diploma Programme (DP) in selected school districts in the…

  8. Learning from the Innovative Open Practices of Three International Health Projects: IACAPAP, VCPH and Physiopedia

    ERIC Educational Resources Information Center

    Coughlan, Tony; Perryman, Leigh-Anne

    2015-01-01

    Open educational resources and open educational practices are being increasingly used around the globe to train and support professionals in areas where funding and resources are scarce. This paper evaluates the open educational practices (OEP) of three global health projects operating outside academia--the International Association for Child and…

  9. Evidence from the New Cases in the International Successful School Principalship Project (ISSPP)

    ERIC Educational Resources Information Center

    Drysdale, Lawrie

    2011-01-01

    This issue of "Leadership and Policy in Schools" outlines research into successful principal leadership from the perspective of four countries--New Zealand, Israel, Cyprus, and the USA (San Antonio). The research followed the methods and protocols established by the International Successful School Principalship Project (ISSPP), which was…

  10. Pupils' View of Mathematics: Initial Report for an International Comparison Project. Research Report 152.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki

    This report describes the theoretical background of an international comparison project on pupils' mathematical beliefs and outlines its realization. The first chapter briefly discusses problems with the underlying concepts of "belief" and "conception." The central concept, view of mathematics, is introduced in the second chapter. The meaning of…

  11. The International Resilience Project Findings from the Research and the Effectiveness of Interventions.

    ERIC Educational Resources Information Center

    Grotberg, Edith H.

    This article discusses the nature of resilience in children, means to measure and verify it, and attempts to promote it through education; it also describes a study of parental, teacher and caregiver efforts to promote resilience in children. The International Resilience Project examined resilience factors children and their parents use in…

  12. Creating International Community Service Learning Experiences in a Capstone Marketing-Projects Course

    ERIC Educational Resources Information Center

    Metcalf, Lynn E.

    2010-01-01

    This article outlines the development of a project-based capstone marketing course, specifically designed to provide marketing students with an international community service learning experience. It differs significantly from previous studies, which focus on integrating service learning into existing marketing courses and on helping local…

  13. EFL Learners' Intercultural Competence Development in an International Web Collaboration Project

    ERIC Educational Resources Information Center

    Lázár, Ildikó

    2015-01-01

    This article is based on an analysis of a small sample of data from an international web collaboration project between four classes of English as a foreign language (EFL) learners guided by their English teachers in four different countries in Europe. As few studies have been published about intercultural communication in blended learning EFL…

  14. Applicability of Standards for Evaluations of Educational Programs, Projects and Materials in an International Setting.

    ERIC Educational Resources Information Center

    Marklund, Sixten

    1984-01-01

    While the "Standards for Evaluations of Educational Programs, Projects and Materials" provides a good checklist of prerequisites, such standards do not guarantee indisputable outcomes. Reanalysis of reading comprehension and mathematics mean achievement data from an international evaluation study illustrates how political bias can complicate…

  15. Implications from the Use of ICT by Language Teachers--Participants of International Projects

    ERIC Educational Resources Information Center

    Gajek, Elzbieta

    2015-01-01

    Telecollaboration in international school projects requires various competences from the participating teachers. A combination of intercultural, linguistic, technical and subject competences builds ground for successful team work with foreign partners. This article presents a survey on the use of ICT by language teachers, their attitudes to ICT…

  16. Student Identities and the Tourist Gaze in International Service-Learning: A University Project in Belize

    ERIC Educational Resources Information Center

    Prins, Esther; Webster, Nicole

    2010-01-01

    This qualitative study explores how 11 university students in a U.S. service-learning course in Belize understood and represented their identities during the project, particularly their use of "the tourist" as a construct to interpret their experiences. Drawing on literature in international service-learning (ISL) and tourism studies, the article…

  17. 75 FR 59049 - International Education Programs Service; Fulbright-Hays Group Projects Abroad Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...The Assistant Secretary for Postsecondary Education announces two priorities for the Fulbright-Hays Group Projects Abroad (GPA) Program administered by the International Education Programs Service. The Assistant Secretary may use these priorities for competitions in fiscal year (FY) 2011 and later years. We intend these two priorities to help increase the number of teachers at the......

  18. Numerical Aerodynamic Simulation (NAS)

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.

    1983-01-01

    The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.

  19. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  20. Toward the Redefinition of the Kilogram from the 28Si International Research Project

    NASA Astrophysics Data System (ADS)

    Fujii, Kenichi

    In the international system of units, the kilogram in the only SI base unit still defined by a material artefact. In order to redefine this unit with a fundamental physical constant, an international research project was launched in 2004 for determining the Avogadro constant, NA, by counting the atoms in an isotopically enriched 28Si crystal. The counting procedure relies on the measurements of the molar and atomic volumes of 1 kg spheres made of the 28Si crystal. In 2011, the project succeeded in measuring the Avogadro constant with a smallest standard uncertainty, 3.0 × 10-8 NA. Because of an unexpected metallic contamination at the surface of the spheres, the measurement uncertainty was larger than the target of the project by a factor of 1.5. In order to further reduce the uncertainty, a new international research project was launched in 2012. Outline of the new project and the improvements of the measurements will be introduced at the forum. Note from Publisher: This article contains the abstract only.

  1. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  2. High speed civil transport aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1994-01-01

    This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.

  3. Development of Joint Climate and Discharge Projections for the International Rhine River Basin - the CHR RheinBlick2050 Project

    NASA Astrophysics Data System (ADS)

    Görgen, K.; Pfister, L.

    2008-12-01

    The anticipated climate change will lead to modified hydro-meteorological regimes that influence discharge behaviour and hydraulics of rivers. This has variable impacts on managed (anthropogenic) and unmanaged (natural) systems, depending on their sensitivity and vulnerability (ecology, economy, infrastructure, transport, energy production, water management, etc.). Decision makers in these contexts need adequate adaptation strategies to minimize adverse effects of climate change, i.e. an improved knowledge on the potential impacts including uncertainties means an extension of the informed options open to users. The goal of the highly applied study presented here is the development of joint, consistent climate and discharge projections for the international Rhine River catchments (Switzerland, France, Germany, Netherlands) in order to assess future changes of hydro-meteorological regimes in the meso- and macroscale Rhine River catchments and to derive and improve the understanding of such impacts on hydrologic and hydraulic processes. The RheinBlick2050 project is an international effort initiated by the International Commission for the Hydrology of the Rhine Basin (CHR) in close cooperation with the International Commission for the Protection of the Rhine. The core experiment design foresees a data-synthesis, multi-model approach where (transient) (bias- corrected) regional climate change projections are used as forcing data for existing calibrated hydrological (and hydraulic) models at a daily temporal resolution over mesoscale catchments of the Rhine River. Mainly for validation purposes, hydro-meteorological observations from national weather services are compiled into a new consistent 5 km x 5 km reference dataset from 1961 to 2005. RCM data are mainly used from the ENSEMBLES project and other existing dynamical downscaling model runs to derive probabilistic ensembles and thereby also access uncertainties on a regional scale. A benchmarking is helping to

  4. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  5. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  6. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  7. Aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Murman, E. M.; Chapman, G. T.

    1983-01-01

    The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

  8. On Wings: Aerodynamics of Eagles.

    ERIC Educational Resources Information Center

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  9. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  10. An international comparison of PPP in road projects and prospects for Japan

    NASA Astrophysics Data System (ADS)

    Onaka, Takafumi; Morichi, Sigeru; Inoue, Satoshi; Hibino, Naohiko

    Japanese PFI Law was enacted in Japan in 1999. In these eleven years almost all PFI projects were for buildings, while the infrastructure projects were only about 5% in total. Regarding to the road projects that have been managed by the government, there are various bottlenecks for the implementation of PFI. The purposes of this paper are firstly to investigate the time series trend of the PPP projects in the wor ld, secondly to make international comparative study of the PPP-related institutions, and thirdly to propose the desirable improvements of the Japanese institution in many countries. The key issues of the proposal are the support systems for the risk management by the government which squares the rationale and transparence and the deregulation. Finally introduction of PFI scheme into the toll roads which managed by the public corporations of local governments are proposed as a first step in Japan.

  11. Mexico City Air quality: Progress of an international collaborative project to define air quality management options

    NASA Astrophysics Data System (ADS)

    Streit, Gerald E.; Guzmán, Francisco

    The Mexico City Air Quality Research Initiative was a 3-yr international collaborative project to develop or adapt a set of air quality management decision analysis tools for Mexico City and make them available to Mexican policy makers. The project comprised three tasks: modeling and simulation, characterization and measurement, and strategic evaluation. A prognostic, mesoscale meteorological model was adapted to the region of Mexico City and linked to a 3-D airshed model. These were extensively tested against data from the air quality monitoring network and from three intensive field campaigns. The interaction between policy and science was promoted through the development of a formal multiattribute decision analysis model to evaluate alternative control strategies. The project benefited by having researchers from both nations working side by side as peers, by having both nations investing resources and having an interest in the success of the project, and by having an objective, not of advocacy, but of the application of science to problem solving.

  12. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    SciTech Connect

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and the IRPh

  13. The conceptual framework of the International Tobacco Control (ITC) Policy Evaluation Project

    PubMed Central

    Fong, G T; Cummings, K M; Borland, R; Hastings, G; Hyland, A; Giovino, G A; Hammond, D; Thompson, M E

    2006-01-01

    This paper describes the conceptual model that underlies the International Tobacco Control Policy Evaluation Project (ITC Project), whose mission is to measure the psychosocial and behavioural impact of key policies of the Framework Convention on Tobacco Control (FCTC) among adult smokers, and in some countries, among adult non‐smokers and among youth. The evaluation framework utilises multiple country controls, a longitudinal design, and a pre‐specified, theory‐driven conceptual model to test hypotheses about the anticipated effects of specific policies. The ITC Project consists of parallel prospective cohort surveys of representative samples of adult smokers currently in nine countries (inhabited by over 45% of the world's smokers), with other countries being added in the future. Collectively, the ITC Surveys constitute the first‐ever international cohort study of tobacco use. The conceptual model of the ITC Project draws on the psychosocial and health communication literature and assumes that tobacco control policies influence tobacco related behaviours through a causal chain of psychological events, with some variables more closely related to the policy itself (policy‐specific variables) and other variables that are more downstream from the policy, which have been identified by health behaviour and social psychological theories as being important causal precursors of behaviour (psychosocial mediators). We discuss the objectives of the ITC Project and its potential for building the evidence base for the FCTC. PMID:16754944

  14. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  15. Contribution of the Japan International Cooperation Agency health-related projects to health system strengthening

    PubMed Central

    2013-01-01

    Background The Japan International Cooperation Agency (JICA) has focused its attention on appraising health development assistance projects and redirecting efforts towards health system strengthening. This study aimed to describe the type of project and targets of interest, and assess the contribution of JICA health-related projects to strengthening health systems worldwide. Methods We collected a web-based Project Design Matrix (PDM) of 105 JICA projects implemented between January 2005 and December 2009. We developed an analytical matrix based on the World Health Organization (WHO) health system framework to examine the PDM data and thereby assess the projects’ contributions to health system strengthening. Results The majority of JICA projects had prioritized workforce development, and improvements in governance and service delivery. Conversely, there was little assistance for finance or medical product development. The vast majority (87.6%) of JICA projects addressed public health issues, for example programs to improve maternal and child health, and the prevention and treatment of infectious diseases such as AIDS, tuberculosis and malaria. Nearly 90% of JICA technical healthcare assistance directly focused on improving governance as the most critical means of accomplishing its goals. Conclusions Our study confirmed that JICA projects met the goals of bilateral cooperation by developing workforce capacity and governance. Nevertheless, our findings suggest that JICA assistance could be used to support financial aspects of healthcare systems, which is an area of increasing concern. We also showed that the analytical matrix methodology is an effective means of examining the component of health system strengthening to which the activity and output of a project contributes. This may help policy makers and practitioners focus future projects on priority areas. PMID:24053583

  16. The aerodynamics of smoke particle sampling

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Rapp, M.

    2005-08-01

    There is a great interest in nanometer-sized particles in the mesosphere at the moment with the recent launches of the MAGIC and ECOMA payloads. However, rocket-borne measurements of these particles are far from trivial. Since rocket payloads move through the measurement volume with supersonic speeds they can introduce aerodynamic perturbations that complicate the collection of e.g. smoke particle measurements in this region. Nanometer-sized particles tend to follow the gas flow around the payload and do not reach the detector if the aerodynamic design of the instrument has not been considered carefully. The analysis is further complicated by the fact that the payload moves from continuum flow conditions to free molecular flow conditions via the transition regime. Therefore, aerodynamics simulations are of critical importance for the success of these projects. To simulate the gas flow around the rocket payload a Direct Simulation Monte Carlo program is used. A simple model has been developed to introduce smoke particles in the gas flow and determine their trajectories. The result from this is a specific lower limit to the size of smoke particles detectable by various detector designs.

  17. Internal receptors in insect appendages project directly into a special brain neuropile

    PubMed Central

    2013-01-01

    Background The great majority of afferent neurons of insect legs project into their segmental ganglion. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. Such intersegmental projections never ascend as far as the brain and they form extensive ramifications within thoracic ganglia. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion. Results We describe novel afferent neurons in distal segments of locust legs that project directly into the brain without forming ramifications in other ganglia. In the brain, the fibres terminate with characteristic terminals in a small neuropile previously named the superficial ventral inferior protocerebrum. The somata of these neurons are located in the tibiae and tarsi of all legs and they are located within branches of peripheral nerves, or closely associated with such branches. They are not associated with any accessory structures such as tendons or connective tissue strands as typical for insect internal mechanoreceptors such as chordotonal organs or stretch receptors. Morphologically they show great similarity to certain insect infrared receptors. We could not observe projections into the superficial ventral inferior protocerebrum after staining mandibular or labial nerves, but we confirm previous studies that showed projections into the same brain neuropile after staining maxillary and antennal nerves, indicating that most likely similar neurons are present in these appendages also. Conclusion Because of their location deep within the lumen of appendages the function of these neurons as infrared receptors is unlikely. Their projection pattern and other morphological features indicate that the neurons convey information about an internal physiological parameter directly into a special brain neuropile. We discuss their possible function as thermoreceptors. PMID:24015902

  18. Partial support for the International Global Atmospheric Chemistry Core Project Office

    SciTech Connect

    Prinn, Ronald G.

    2001-05-04

    IGAC provides an international framework for the planning, coordination, and execution of atmospheric--biospheric research with emphasis on projects which require resources beyond the capabilities of any single nation. The development of chemical emission inventories by IGAC scientists, the development and intercomparison under IGAC leadership of existing chemical transport models, the analysis of data gathered during IGAC-sponsored field campaigns, etc., has provided new scientific information essential to the development of the discipline.

  19. International collaboration on prevention of shaken baby syndrome - an ongoing project/intervention.

    PubMed

    Foley, Sue; Kovács, Zsuzsanna; Rose, Jenny; Lamb, Robyn; Tolliday, Fran; Simons-Coghill, Martine; Stephens, Amanda; Scheiber, Dóra; Toma, Andrea; Asbóth, Katalin; Kassai, Tamás; Agathonos, Helen; Lopes, Nahara R L; Williams, Lúcia C A; Sahin, Figen; Tasar, Aysin; Sarten, Terry

    2013-11-01

    Caring for young infants can be stressful. Non-accidental brain or head injury (shaken baby syndrome) is a result of parental stress, and a lack of knowledge of how to respond to a crying infant and the dangers of shaking a child. This article demonstrates the value of international collaboration in projects to prevent child maltreatment. It includes reports of prevention of shaken baby syndrome programmes in Australia, Hungary, Greece, Brazil and Turkey. PMID:24070038

  20. The Activities of the International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    SciTech Connect

    Briggs, Joseph Blair

    2001-10-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) – Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled “International Handbook of Evaluated Criticality Safety Benchmark Experiments”. The 2001 Edition of the Handbook contains benchmark specifications for 2642 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data.

  1. International Low Impact Docking System (iLIDS) Project Technical Requirements Specification, Revision F

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2011-01-01

    The NASA Docking System (NDS) is NASA's implementation for the emerging International Docking System Standard (IDSS) using low impact docking technology. The NASA Docking System Project (NDSP) is the International Space Station (ISS) Program's project to produce the NDS, Common Docking Adapter (CDA) and Docking Hub. The NDS design evolved from the Low Impact Docking System (LIDS). The acronym international Low Impact Docking System (iLIDS) is also used to describe this system as well as the Government Furnished Equipment (GFE) project designing the NDS for the NDSP. NDS and iLIDS may be used interchangeability. This document will use the acronym iLIDS. Some of the heritage documentation and implementations (e.g., software command names, requirement identification (ID), figures, etc.) used on NDS will continue to use the LIDS acronym. This specification defines the technical requirements for the iLIDS GFE delivered to the NDSP by the iLIDS project. This document contains requirements for two iLIDS configurations, SEZ29101800-301 and SEZ29101800-302. Requirements with the statement, iLIDS shall, are for all configurations. Examples of requirements that are unique to a single configuration may be identified as iLIDS (-301) shall or iLIDS (-302) shall. Furthermore, to allow a requirement to encompass all configurations with an exception, the requirement may be designated as iLIDS (excluding -302) shall. Verification requirements for the iLIDS project are identified in the Verification Matrix (VM) provided in the iLIDS Verification and Validation Document, JSC-63966. The following definitions differentiate between requirements and other statements: Shall: This is the only verb used for the binding requirements. Should/May: These verbs are used for stating non-mandatory goals. Will: This verb is used for stating facts or declaration of purpose. A Definition of Terms table is provided in Appendix B to define those terms with specific tailored uses in this document.

  2. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  3. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  4. Dynamic soaring: aerodynamics for albatrosses

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration.

  5. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  6. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  7. Aerodynamics of Wiffle Balls

    NASA Astrophysics Data System (ADS)

    Utvich, Alexis; Jemmott, Colin; Logan, Sheldon; Rossmann, Jenn

    2003-11-01

    A team of undergraduate students has performed experiments on Wiffle balls in the Harvey Mudd College wind tunnel facility. Wiffle balls are of particular interest because they can attain a curved trajectory with little or no pitcher-imparted spin. The reasons behind this have not previously been quantified formally. A strain gauge device was designed and constructed to measure the lift and drag forces on the Wiffle ball; a second device to measure lift and drag on a spinning ball was also developed. Experiments were conducted over a range of Reynolds numbers corresponding to speeds of roughly 0-40 mph. Lift forces of up to 0.2 N were measured for a Wiffle ball at 40 mph. This is believed to be due to air flowing into the holes on the Wiffle ball in addition to the effect of the holes on external boundary layer separation. A fog-based flow visualization system was developed in order to provide a deeper qualitative understanding of what occurred in the flowfield surrounding the ball. The data and observations obtained in this study support existing assumptions about Wiffle ball aerodynamics and begin to elucidate the mechanisms involved in Wiffle ball flight.

  8. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  9. The aerodynamics of propellers

    NASA Astrophysics Data System (ADS)

    Wald, Quentin R.

    2006-02-01

    The theory and the design of propellers of minimum induced loss is treated. The pioneer analysis of this problem was presented more than half a century ago by Theodorsen, but obscurities in his treatment and inaccuracies and limited coverage in his tables of the Goldstein circulation function for helicoidal vortex sheets have not been remedied until the present work which clarifies and extends his work. The inverse problem, the prediction of the performance of a given propeller of arbitrary form, is also treated. The theory of propellers of minimum energy loss is dependent on considerations of a regular helicoidal trailing vortex sheet; consequently, a more detailed discussion of the dynamics of vortex sheets and the consequences of their instability and roll up is presented than is usually found in treatments of propeller aerodynamics. Complete and accurate tables of the circulation function are presented. Interference effects between a fuselage or a nacelle and the propeller are considered. The regimes of propeller, vortex ring, and windmill operation are characterized.

  10. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  11. [Technical project for the management and functioning of an Internal Medicine care unit].

    PubMed

    del Castillo Rueda, A; de Portugal Alvarez, J

    2004-01-01

    The Internal Medicine Services have a central role in the medical care in our hospital system both as to the volume of patients attended and their variety, reflecting of the preparation and multi-tasking ability of their professionals. The current norms for coverage of heads-of-service demands the presentation of a management project that must test our knowledge, skills and aptitudes for the clinical and medical management and in order to reflect them in a document of commitment with the management and with our fellows who are a part of the care unit. The person in charge of the service, as boss, agent or leader, is the one who must mark the strategic lines, to indicate the aims, to define the projects, to coordinate the tasks and to evaluate the results with other offers to obtain agreed-upon aims controlling the different points of view. Our professional and social commitment is: sharing clinical management with ethics, quality and welfare safety, to offer our patients (consumer or users) the best results (effectiveness), with useful measurements (efficacy) and with the minors drawbacks and costs (efficiency). The aim of this work is to offer the elements that are necessary for the accomplishment and introduction of a project of clinical management in a service of internal medicine, highlighting its methodology and the most important problems than can arise as well as the possible care alternatives. PMID:15195484

  12. International shock-wave database project : report of the requirements workshop.

    SciTech Connect

    Aidun, John Bahram; Lomonosov, Igor V.; Levashov, Pavel R.

    2012-03-01

    We report on the requirements workshop for a new project, the International Shock-Wave database (ISWdb), which was held October 31 - November 2, 2011, at GSI, Darmstadt, Germany. Participants considered the idea of this database, its structure, technical requirements, content, and principles of operation. This report presents the consensus conclusions from the workshop, key discussion points, and the goals and plan for near-term and intermediate-term development of the ISWdb. The main points of consensus from the workshop were: (1) This international database is of interest and of practical use for the shock-wave and high pressure physics communities; (2) Intermediate state information and off-Hugoniot information is important and should be included in ISWdb; (3) Other relevant high pressure and auxiliary data should be included to the database, in the future; (4) Information on the ISWdb needs to be communicated, broadly, to the research community; and (5) Operating structure will consist of an Advisory Board, subject-matter expert Moderators to vet submitted data, and the database Project Team. This brief report is intended to inform the shock-wave research community and interested funding agencies about the project, as its success, ultimately, depends on both of these groups finding sufficient value in the database to use it, contribute to it, and support it.

  13. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    NASA Technical Reports Server (NTRS)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  14. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    SciTech Connect

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-07-21

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  15. An International Research Strategy: Towards a Joint IGBP/IHDP/WCRP Global Carbon Cycle Project

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.

    2001-05-01

    The International Geosphere Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP) have agreed upon a joint project that integrates the biological, ecological, social, and physical climate communities is crucial towards understanding the Earth's global carbon system. This joint science project will provide a platform to address the needs of the assessment, observing, and other scientific research communities. The aim is to address the necessary science needs while keeping in mind the policy relevance for carbon management strategies. The Joint Carbon Cycle has several fundamental drivers: first, the human-environment system is intimately linked with the biophsysical carbon cycle; second, it is clear that the terrestrial and ocean biosphere respond variably over space and time to fluctuations in atmospheric CO2, however, the patterns and processes that drive these responses in a coupled human-biophysical Earth's systems are largely unknown; and third, to predict and understand a linked human-biophysical carbon cycle, a multiple constraint approach must be utilized that integrates process studies, manipulative experiments, observations and models. Finally, an international Project is necessary to facilitate and coordinate cooperation between national and regional programmes and governments to fit the pieces of the global carbon puzzle in a coherent manner. A central problem in carbon cycle research is the synthesis of a wide variety of different measurements to provide the best possible information about the space-time distribution of carbon fluxes and stores in the human, oceanic and terrestrial biospheres. Three key strategies will be employed to address our uncertainties in global carbon sources and sinks: (1) To constrain global carbon fluxes and stores from multiple sources by integrating process studies, experiments, models, observations and case studies; (2) To incorporate institutions as

  16. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD

  17. Benchmark Data Through The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Dr. Enrico Sartori

    2005-09-01

    The International Reactor Physics Experiments Evaluation Project (IRPhEP) was initiated by the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency’s (NEA) Nuclear Science Committee (NSC) in June of 2002. The IRPhEP focus is on the derivation of internationally peer reviewed benchmark models for several types of integral measurements, in addition to the critical configuration. While the benchmarks produced by the IRPhEP are of primary interest to the Reactor Physics Community, many of the benchmarks can be of significant value to the Criticality Safety and Nuclear Data Communities. Benchmarks that support the Next Generation Nuclear Plant (NGNP), for example, also support fuel manufacture, handling, transportation, and storage activities and could challenge current analytical methods. The IRPhEP is patterned after the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and is closely coordinated with the ICSBEP. This paper highlights the benchmarks that are currently being prepared by the IRPhEP that are also of interest to the Criticality Safety Community. The different types of measurements and associated benchmarks that can be expected in the first publication and beyond are described. The protocol for inclusion of IRPhEP benchmarks as ICSBEP benchmarks and for inclusion of ICSBEP benchmarks as IRPhEP benchmarks is detailed. The format for IRPhEP benchmark evaluations is described as an extension of the ICSBEP format. Benchmarks produced by the IRPhEP add new dimension to criticality safety benchmarking efforts and expand the collection of available integral benchmarks for nuclear data testing. The first publication of the "International Handbook of Evaluated Reactor Physics Benchmark Experiments" is scheduled for January of 2006.

  18. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  19. The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1988-01-01

    The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.

  20. International project on human daily dietary intake of minor and trace elements

    SciTech Connect

    Iyengar, V.

    1986-01-01

    A coordinate research program on dietary intake of nutrient and other elements initiated by the International Atomic Energy Agency (IAEA) is currently under way. The purpose of the core program of this project is to obtain reliable data on the average daily intakes of several important minor and trace elements in diets consumed in a number of developed and developing countries such as Brazil, Canada, China, Iran, Italy, Spain, Sudan, Sweden, Thailand, and Turkey. In the core program which will be collected for determination of the nutrient elements such as calcium, magnesium, copper, iron, iodine, selenium, and zinc, among others. The project also provides for the measurement of aluminum, arsenic, cadmium, mercury, and lead in view of the biological significance of these elements as toxicants in the diet and includes estimation of the energy, phytate, and fiber components of the diet.

  1. Modular projects and 'mean questions': best practices for advising an International Genetically Engineered Machines team.

    PubMed

    Tsui, Jennifer; Meyer, Anne S

    2016-07-01

    In the yearly Internationally Genetically Engineered Machines (iGEM) competition, teams of Bachelor's and Master's students design and build an engineered biological system using DNA technologies. Advising an iGEM team poses unique challenges due to the inherent difficulties of mounting and completing a new biological project from scratch over the course of a single academic year; the challenges in obtaining financial and structural resources for a project that will likely not be fully realized; and conflicts between educational and competition-based goals. This article shares tips and best practices for iGEM team advisors, from two team advisors with very different experiences with the iGEM competition. PMID:27231240

  2. Coordinated international action to accelerate genome-to-phenome with FAANG, The Functional Annotation of Animal Genomes project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....

  3. Leo de Ball and his Contribution to International Astrometry Projects around 1900

    NASA Astrophysics Data System (ADS)

    Habison, P.

    Leo de Ball was born in Lobberich at the German-Dutch border in 1853. From 1871 onwards he studied astronomy and physics at the universities in Berlin and Bonn. After having received his doctorate in 1877 he became assistant at the ``Herzogliche Sternwarte in Gotha''. From 1881-82 he spent two years at the ``Sternwarte des Kammerherrn von Bülow'' in Bothkamp. There he discovered the minor planet ``Athamantis'' on 3 September 1882. In 1883 he followed an invitation from Folie to the observatory Ougrée near Lüttich. There he published four remarkable papers on stellar and planetary astrometry. In 1891 he received a call to Moriz von Kuffners observatory in Vienna and was assigned director of this young institute. In the same year he started to participate in international projects. During that time it was suggested to extend the ``Zonenunternehmen der Astronomischen Gesellschaft'' also to southern declinations. Leo de Ball contributed to this project and Kuffner Observatory was assigned the southern declination zone from -6 to -10 degrees. This work occupied most of his time from 1892 to 1902. The catalogue of 8468 stars down to magnitude nine was finally published in 1904. In 1900 Leo de Ball initiated a new project for determining relative parallaxes of 252 stars in collaboration with four observatories in Europe and the United States. Although the project was only partly realized, Leo de Ball published relative parallaxes of 16 stars, observed from 1901-07 with the Vienna heliometer. The talk will give a brief overview of Leo de Ball's life and will then focus on his work and international collaborations from 1891-1916.

  4. The MOM Project: delivering maternal health services among internally displaced populations in eastern Burma.

    PubMed

    Mullany, Luke C; Lee, Catherine I; Paw, Palae; Shwe Oo, Eh Kalu; Maung, Cynthia; Kuiper, Heather; Masenior, Nicole; Mansenior, Nicole; Beyrer, Chris; Lee, Thomas J

    2008-05-01

    Alternative strategies to increase access to reproductive health services among internally displaced populations are urgently needed. In eastern Burma, continuing conflict and lack of functioning health systems render the emphasis on facility-based delivery with skilled attendants unfeasible. Along the Thailand-Burma border, local organisations have implemented an innovative pilot, the Mobile Obstetric Maternal Health Workers (MOM) Project, establishing a three-tiered collaborative network of community-based reproductive health workers. Health workers from local organisations received practical training in basic emergency obstetric care plus blood transfusion, antenatal care and family planning at a central facility. After returning to their target communities inside Burma, these first-tier maternal health workers trained a second tier of local health workers and a third tier of traditional birth attendants (TBAs) to provide a limited subset of these interventions, depending on their level of training. In this ongoing project, close communication between health workers and TBAs promotes acceptance and coverage of maternity services throughout the community. We describe the rationale, design and implementation of the project and a parallel monitoring plan for evaluation of the project. This innovative obstetric health care delivery strategy may serve as a model for the delivery of other essential health services in this population and for increasing access to care in other conflict settings. PMID:18513606

  5. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  6. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.

    PubMed

    Stone, William C; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  7. Aerodynamic Simulation of the MEXICO Rotor

    NASA Astrophysics Data System (ADS)

    Herraez, I.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.

    2014-12-01

    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed.

  8. Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  9. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  10. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  11. Aerodynamic drag on intermodal railcars

    NASA Astrophysics Data System (ADS)

    Kinghorn, Philip; Maynes, Daniel

    2014-11-01

    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  12. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric

  13. International Collaboration and Academic Exchange of the CHAIN Project in this Three Years (Period)

    NASA Astrophysics Data System (ADS)

    Ueno, Satoru; Shibata, Kazunari; Morita, Satoshi; Kimura, Goichi; Asai, Ayumi; Kitai, Reizaburo; Ichimoto, Kiyoshi; Nagata, Shin'ichi; Ishii, Takako; Nakatani, Yoshikazu; Masashi, Yamaguchi; et al.

    2014-02-01

    We will introduce contents of international collaboration and academic exchange of the CHAIN project in recent three years (ISWI period). After April of 2010, we have not obtained any enough budget for new instruments. Therefore, we have not been able to install new Flare Monitoring Telescopes (FMT) in new countries, such as Algeria. On the other hand, however, we have continued international academic exchange through scientific and educational collaboration with mainly Peru, such as data-analysis training, holding scientific workshops etc. Additionally, in this year, King Saudi University of Saudi Arabia and CRAAG of Algeria have planned to build a new FMT in their university by their own budget. Therefore, we have started some collaboration in the field of technical advices of instruments and scientific themes etc. Moreover, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO) also offered us participation in the CHAIN-project. We would like to continue to consider the possibility of academic collaboration with such new positive developing nations, too.

  14. Aerodynamics in Sports Technology

    NASA Technical Reports Server (NTRS)

    Leon, Mark; Budenbender, Christiy; Mehta, Rabi

    1999-01-01

    The following report is broken down into two components. First, a status report covering the period from January 4, 1999 to February 28, 1999. The remainder of the report summarizes all project accomplishments from June 1997 through February, 1999.

  15. Partitioning internal variability and model uncertainty components in a multireplicate multimodel ensemble of hydrometeorological future projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Saïd, Mériem; Lafaysse, Matthieu; Gailhlard, Joël; Mezghani, Abdelkader

    2014-05-01

    A simple and robust framework was proposed by Hingray and Mériem (2013) for the partitioning of the different components of internal variability and model uncertainty in a multireplicate multimodel ensemble (MRMME) of climate projections obtained for a suite of statistical downscaling models (SDMs) and global climate models (GCMs). It is based on the quasi-ergodic assumption for transient climate simulations. Model uncertainty components are estimated from the noise-free signals of each modeling chain using a two-way ANOVA framework. The residuals from the noise-free signal are used to estimate the large and small scale internal variability (IV) components associated with each considered GCM/SDM configuration. This framework makes it possible to take into account all runs and replicates available from any climate ensemble of opportunity. This quasi-ergodic ANOVA framework was applied to the MRMME of hydrometeorological simulations produced for the Upper Durance River basin (French Alps) over the 1860-2100 period within the RIWER2030 research project (http://www.lthe.fr/RIWER2030/). The different uncertainty sources were quantified as a function of lead time for projected changes in temperature, precipitation, evaporation losses, snow cover and discharges (Lafaysse et al., 2013). For temperature, GCM uncertainty prevails and, as opposed to IV, SDM uncertainty is non-negligible. Significant warming and in turn significant changes are predicted for evaporation, snow cover and seasonality of discharges. For precipitation, GCM and SDM uncertainty components are of the same order. Despite high model uncertainty, the non-zero climate change response of simulation chains is significant and annual precipitation is expected to decrease. However, high values are obtained for the large and small scale components of IV, inherited respectively from the GCMs and the different replicates of a given SDM. The same applies for annual discharge. The uncertainty in values that could

  16. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  17. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  18. The role of international research projects in the dissemination of innovative technologies in Russia: AgroAtlas case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper uses the AgroAtlas project (www.agroatlas.ru) as a case study to illustrate how international projects can be an important resource to help train teachers and scientists in emerging technology including geographic information systems (GIS) software. The paper discusses a series of 10- day...

  19. A Quantitative and Qualitative Evaluation of Student Participants' Contribution to Carrying out an Online International Collaborative Project on Education

    ERIC Educational Resources Information Center

    Suzuki, Chizuko; Ishida, Kenichi; Yoshihara, Shota; Schultheis, Klaudia; Riedhammer, Barbara

    2014-01-01

    This study evaluates an international collaborative project developed and practiced on the internet, as a form of SNS, focusing on how much university students from six countries worldwide participated in the project, from the viewpoint of the participants' contribution to the forum discussion of their own group's topic on education. The 66…

  20. "Light: Beyond the Bulb": A Project for the International Year of Light 2015

    NASA Astrophysics Data System (ADS)

    Megan, Watzke; Arcand, Kimberly K.

    2015-01-01

    'Light: Beyond the Bulb' (LBTB) is a free grass-roots international exhibition program for the International Year of Light 2015 that showcases the different types and behaviors of light across the electromagnetic spectrum as well as a multitude of ways that light is being used in research and technology (including astronomy) today. LBTB contains striking images and informative captions that have been crowd-sourced and then expert-curated for science content, high-quality printability, beauty, and ability to engage the greater public. Spearheaded by the team that created "From Earth to the Universe" for the International Year of Astronomy 2009 and 'From Earth to the Solar System' for NASA's Year of the Solar System 2010-2011, LBTB will bring this 'public science' model to IYL and place light-based content into traditional and non-traditional science outreach locations. This talk will outline the LBTB project, describe opportunities for how the astronomical community can get involved, and discuss the potential benefits that LBTB may provide for the disciplines related to the AAS and its members.

  1. Strategies for Creating Cornerstone Education Projects for the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Isbell, D.

    2008-12-01

    The General Assembly of the United Nations has designated 2009 as the International Year of Astronomy (IYA2009), a year-long global education program to commemorates the 400th anniversary of Galileo's first astronomical observations through a telescope. IYA2009 has an importance well beyond what can be accomplished in just one year. The main goal is to use this year to build sustainable, long-term education programs for measurable changes in science literacy in school children and in the public at large. The National Optical Astronomy Observatory (NOAO) with headquarters in Tucson and the American Astronomical Society (AAS) with headquarters in Washington D.C. are leading the coordination of IYA2009 activities in the United States under a grant from the National Science Foundation. NASA is also playing a large role. NOAO and AAS are working closely with United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Astronomical Union (IAU), Astronomical Society of the Pacific (ASP), American Association of Variable Star Observers (AAVSO), The International Dark-Sky Association (IDA), and other trusted astronomy partners worldwide. Through collaboration and coordination, the participating partners will convey the excitement of personal discovery, the merits of the scientific process, and the pleasure of sharing new and fundamental knowledge about the Universe. This talk will describe the goals of the major cornerstone projects led by the United States including the Galileoscope education kit, dark skies education, image exhibition, and Galileo teacher training project. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  2. Aerodynamic results of an abort separation effects test (IA8) conducted in the NASA/ARC 14-foot transonic wind tunnel on a model (6-OTS) of the Rockwell International launch configuration integrated vehicle

    NASA Technical Reports Server (NTRS)

    Campbell, J. H.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a 6-OTS 0.015-scale model. The Ames dual sting support separation rig was used to obtain grid-type data for tank-booster abort from orbiter (SSV). Freestream data were obtained for the orbiter to provide a baseline for evaluation of proximity effects. Data were obtained at Mach numbers from 0.32 to 1.1, and Reynolds number per foot varying from 2.1 million to 3.9 million. Data are not presented. Because of balance failure, a very substantial portion of the test was run with a dummy balance in the tank boosters configuration.

  3. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  4. The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011

    PubMed Central

    Gilbert, Jack A.; Bailey, Mark; Field, Dawn; Fierer, Noah; Fuhrman, Jed A.; Hu, Bin; Jansson, Janet; Knight, Rob; Kowalchuk, George A.; Kyrpides, Nikos C.; Meyer, Folker; Stevens, Rick

    2011-01-01

    This report details the outcome of the 1st International Earth Microbiome Project Conference. The 2-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on the 14th-15th June 2011, and was hosted by BGI (formally the Beijing Genomics Institute). The conference was arranged as a formal launch for the Earth Microbiome Project, to highlight some of the exciting research projects, results of the preliminary pilot studies, and to provide a discussion forum for the types of technology and experimental approaches that will come to define the standard operating procedures of this project.

  5. Aerodynamics Of Missiles: Present And Future

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N.

    1991-01-01

    Paper reviews variety of topics in aerodynamics of missiles. Describes recent developments and suggests areas in which future research fruitful. Emphasis on stability and control of tactical missiles. Aerodynamic problems discussed in general terms without reference to particular missiles.

  6. Crosscutting Requirements in the International Project on Innovative Reactors and Fuel Cycles (INPRO)

    SciTech Connect

    Steur, Ronald; Lyubenov Yaven, Yanko; Gueorguiev, Boris; Mahadeva, Rao; Shen, Wenquan

    2002-07-01

    There are two categories of requirements: (i) user requirements that need to be met by the designers and manufacturers of innovative reactors and fuel cycles, and (ii) a wide spectrum of requirements that need to be met by countries, willing to successfully deploy innovative nuclear reactors for energy production. This part of the International Project on Innovative Reactors and Fuel Cycles will mainly deal with the second category of requirements. Both categories of requirements will vary depending on the institutional development, infrastructure availability and social attitude in any given country. Out of the need for sustainable development requirements will also more specific in the future. Over a 50-year time frame both categories of requirements will evolve with social and economic development as nuclear technology develops further. For example, the deployment of innovative reactors in countries with marginal or non-existing nuclear infrastructures would be possible only if the reactors are built, owned and operated by an international nuclear utility or if they are inherently safe and can be delivered as a 'black box - nuclear battery'. A number of issues will need to be addressed and conditions and requirements developed if this is going to become a reality. One general requirement for wider utilization of innovative nuclear power will be the public and environmental considerations, which will play a role in the decision making processes. Five main clusters of topics will be handled: - Infra-structural aspects, typology and consequences for nuclear development. - Industrial requirements for the different innovative concepts. - Institutional developments and requirements for future deployment of nuclear energy. (National as well as international) - Socio-political aspects, a.o. public acceptance and role of governments. - Sustainability: requirements following the need for sustainability Analysis will be made of the evolution of national and international

  7. COOP+ project: Promoting the cooperation among international Research Infrastructures to address global environmental challenges.

    NASA Astrophysics Data System (ADS)

    Bonet-García, Francisco; Materia, Paola; Kutsch, Werner; de Lucas, Jesús Marco; Tjulin, Anders

    2016-04-01

    During the Anthropocene, mankind will face several global environmental challenges. One of the first and more successful responses provided by Science to these challenges is the collecting of long-term series of biophysical variables in order to improve our knowledge of natural systems. The huge amount of information gathered during the last decades by Research Infrastructures (RIs) has helped to understand the structure and functioning of natural systems at local and regional scales. But how can we address the global cross-scale and cross-disciplinary challenges posed by the global environment change? We believe that it will be necessary to observe, model better and understand the whole biosphere using long term data generated by international RIs. RIs play a key role on many of the last advances and discoveries in science, from the observation of the Higgs Boson at CERN to the exploration of the Universe by the telescopes of the European Southern Observatory in Chile. The scale of complexity, instrumentation, computing resources, technological advances, and also of the investments, and the size of research collaborations, do not have precedents in Science. RIs in environmental field are developing fast, but the corresponding communities need yet to further reflect the need for a wider global collaboration because the challenges to tackle are in essence of global nature. This contribution describes how COOP+ project (EU Horizon 2020 Coordination and Support Action) will promote the cooperation among RIs at a global scale to address global environmental challenges. Our project evolves from the experience of the sucessful FP7 COOPEUS project (see http://www.coopeus.eu), which explored the use and access to data from RIs in environmental research in Europe and USA. The general goal of COOP+ is to strengthen the links and coordination of the ESFRI RIs related to Marine Science (EMSO), Arctic and Atmospheric Research (EISCAT), Carbon Observation (ICOS) and Biodiversity

  8. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  9. Unsteady aerodynamics modeling for flight dynamics application

    NASA Astrophysics Data System (ADS)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  10. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  11. Evaluation of thermographic phosphor technology for aerodynamic model testing

    SciTech Connect

    Cates, M.R.; Tobin, K.W.; Smith, D.B.

    1990-08-01

    The goal for this project was to perform technology evaluations applicable to the development of higher-precision, higher-temperature aerodynamic model testing at Arnold Engineering Development Center (AEDC) in Tullahmoa, Tennessee. With the advent of new programs for design of aerospace craft that fly at higher speeds and altitudes, requirements for detailed understanding of high-temperature materials become very important. Model testing is a natural and critical part of the development of these new initiatives. The well-established thermographic phosphor techniques of the Applied Technology Division at Oak Ridge National Laboratory are highly desirable for diagnostic evaluation of materials and aerodynamic shapes as studied in model tests. Combining this state-of-the-art thermographic technique with modern, higher-temperature models will greatly improve the practicability of tests for the advanced aerospace vehicles and will provide higher precision diagnostic information for quantitative evaluation of these tests. The wavelength ratio method for measuring surface temperatures of aerodynamic models was demonstrated in measurements made for this project. In particular, it was shown that the appropriate phosphors could be selected for the temperature range up to {approximately}700 {degree}F or higher and emission line ratios of sufficient sensitivity to measure temperature with 1% precision or better. Further, it was demonstrated that two-dimensional image- processing methods, using standard hardware, can be successfully applied to surface thermography of aerodynamic models for AEDC applications.

  12. Sensitivity analysis in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1984-01-01

    Information on sensitivity analysis in computational aerodynamics is given in outline, graphical, and chart form. The prediction accuracy if the MCAERO program, a perturbation analysis method, is discussed. A procedure for calculating perturbation matrix, baseline wing paneling for perturbation analysis test cases and applications of an inviscid sensitivity matrix are among the topics covered.

  13. Semianalytic modeling of aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Adams, M. S.

    1985-01-01

    Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation.

  14. Aerodynamic laboratory at Cuatro Vientos

    NASA Technical Reports Server (NTRS)

    JUBERA

    1922-01-01

    This report presents a listing of the many experiments in aerodynamics taking place at Cuatro Vientos. Some of the studies include: testing spheres, in order to determine coefficients; mechanical and chemical tests of materials; and various tests of propeller strength and flexibility.

  15. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  16. Dynamic Soaring: Aerodynamics for Albatrosses

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

  17. POEMS in Newton's Aerodynamic Frustum

    ERIC Educational Resources Information Center

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  18. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  19. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  20. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  1. Nostril Aerodynamics of Scenting Animals

    NASA Astrophysics Data System (ADS)

    Settles, G. S.

    1997-11-01

    Dogs and other scenting animals detect airborne odors with extraordinary sensitivity. Aerodynamic sampling plays a key role, but the literature on olfaction contains little on the external aerodynamics thereof. To shed some light on this, the airflows generated by a scenting dog were visualized using the schlieren technique. It was seen that the dog stops panting in order to scent, since panting produces a turbulent jet which disturbs scent-bearing air currents. Inspiratory airflow enters the nostrils from straight ahead, while expiration is directed to the sides of the nose and downward, as was found elsewhere in the case of rats and rabbits. The musculature and geometry of the dog's nose thus modulates the airflow during scenting. The aerodynamics of a nostril which must act reversibly as both inlet and outlet is briefly discussed. The eventual practical goal of this preliminary work is to achieve a level of understanding of the aerodynamics of canine olfaction sufficient for the design of a mimicking device. (Research supported by the DARPA Unexploded Ordnance Detection and Neutralization Program.)

  2. Direct Detection Doppler Lidar Wind Measurements Obtained During the 2002 International H2O Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Li, Steven; Chen, Huai-Lin; Comer, Joseph; Mathur, Savyasachee; Bobler, Jeremy

    2005-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system that uses direct detection techniques for profiling winds in the troposphere and lower stratosphere. In May and June of 2002 GLOW was deployed to the Southern Great Plains of the US to participate in the International H2O Project (IHOP). GLOW was located at the Homestead profiling site in the Oklahoma panhandle about 15 km east of the SPOL radar. Several other Goddard lidars, the Scanning Raman Lidar (SRL) and HARLIE, as well as radars and passive instruments were permanently operated from the Homestead site during the IHOP campaign providing a unique cluster of observations. During the IHOP observation period (May 14, 2002 to June 25, 2002) over 240 hours of wind profile measurements were obtained with GLOW. In this paper we will describe the GLOW instrument as it was configured for the IHOP campaign and we will present examples of wind profiles obtained.

  3. University of Wisconsin-Madison Participation in the International Water-Vapor Project (IHOP)

    NASA Technical Reports Server (NTRS)

    Knuteson, Robert; Antonelli, Paolo; Best, Fred; Dutcher, Steve; Feltz, Wayne; Revercomb, Henry

    2003-01-01

    This is the final report for NASA grant NAG-1-02057/University of Wisconsin-Madison/Dr. Henry E Revercomb, PI. This grant supported the University of Wisconsin-Madison participation in the International Water-Vapor Project (IHOP) experiment in May-June 2002. The upwelling thermal infrared emission from the surface and atmosphere over the U. S. Southern Great Plains was obtained from the NASA DC-8 with the Scanning High-resolution Interferometer Sounder (S-HIS) instrument, Analysis of the S-HIS radiances were used to obtain atmospheric temperature profiles below the aircraft. In a complementary manner, the downwelling thermal infrared emission at the surface was obtained by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) instrument from a mobile research vehicle and used to profile the atmospheric boundary layer at the Homestead site. This report summarizes the observations of the S-HIS and AERI instruments during IHOP including validation against in situ observations.

  4. The economics of tobacco control: evidence from the International Tobacco Control (ITC) Policy Evaluation Project.

    PubMed

    Tauras, John A; Chaloupka, Frank J; Quah, Anne Chiew Kin; Fong, Geoffrey T

    2014-03-01

    Over the past few decades, the importance of economic research in advancing tobacco control policies has become increasingly clear. Extensive research has demonstrated that increasing tobacco taxes and prices is the single most cost-effective tobacco control measure. The research contained in this supplement adds to this evidence and provides new insights into how smokers respond to tax and price changes using the rich data on purchase behaviours, brand choices, tax avoidance and evasion, and tobacco use collected systematically and consistently across countries and over time by the International Tobacco Control (ITC) Project. The findings from this research will help inform policymakers, public health professionals, advocates, and others seeking to maximise the public health and economic benefits from higher taxes. PMID:24500268

  5. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  6. International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects

    SciTech Connect

    Bradley, E.; Adelfang, P.; Goldman, I.N.

    2008-07-15

    The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

  7. Experimental Study Of SHEFEX II Hypersonic Aerodynamics And Canard Efficiency In H2K

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Gulhan, A.

    2011-05-01

    One main objective of the DLR SHEFEX programme is to prove that sharp edged vehicles are capable of performing a re-entry into earth atmosphere by using a simple thermal protection system consisting of flat ceramic tiles. In comparison to blunt nose configurations like the Space shuttle, which are normally used for re-entry configurations, the SHEFEX TPS design is able to significantly reduce the costs and complexity of TPS structures and simultaneously increase the aerodynamic performance of the flight vehicle [1], [2]. To study its characteristics and perform several defined in-flight experiments during re-entry, the vehicle’s attitude will be controlled actively by canards [3]. In the framework of the SHEFEX II project an experimental investigation has been conducted in the hypersonic wind tunnel H2K to characterize the aerodynamic performance of the vehicle in hypersonic flow regime. The model has a modular design to enable the study of a variety of different influencing parameters. Its 4 circumferential canards have been made independently adjustable to account for the simulation of different manoeuvre conditions. To study the control behaviour of the vehicle and validate CFD data, a variation of canard deflections, angle of attack and angle of sideslip have been applied. Tests have been carried out at Mach 7 and 8.7 with a Reynolds number sensitivity study at the lower Mach number. The model was equipped with a six component internal balance to realize accurate coefficient measurements. The flow topology has been analyzed using Schlieren images. Beside general aerodynamic performance and canard efficiencies, flow phenomena like shock impingement on the canards could be determined by Schlieren images as well as by the derived coefficients.

  8. International Atomic Energy Agency (IAEA) Coordinated Research Projects on Structural Integrity of Reactor Pressure Vessels

    SciTech Connect

    Server, W. L.; Nanstad, Randy K

    2009-01-01

    The International Atomic Energy Agency (IAEA) has conducted a series of Coordinated Research Projects (CRPs) that have focused on irradiated reactor pressure vessel (RPV) steel fracture toughness properties and approaches for assuring structural integrity of RPVs throughout operating life. A series of nine CRPs have been sponsored by the IAEA, starting in the early 1970s, focused on neutron radiation effects on RPV steels. The purpose of the CRPs was to develop comparisons and correlations to test the uniformity of irradiated results through coordinated international research studies and data sharing. Consideration of dose rate effects, effects of alloying (nickel, manganese, silicon, etc.) and residual elements (eg., copper and phosphorus), and drop in upper shelf toughness are also important for assessing neutron embrittlement effects. The ultimate use of embrittlement understanding is assuring structural integrity of the RPV under current and future operation and accident conditions. Material fracture toughness is the key ingredient needed for this assessment, and many of the CRPs have focused on measurement and application of irradiated fracture toughness. This paper presents an overview of the progress made since the inception of the CRPs in the early 1970s. The chronology and importance of each CRP have been reviewed and put into context for continued and long-term safe operation of RPVs.

  9. Development of derived investigation levels for use in internal dosimetry at the West Valley Demonstration Project

    SciTech Connect

    Johnson, P.

    1991-12-31

    The objective was to determine if the routine intemal dosimetry program at the West Valley Demonstration Project is capable of meeting the performance objective of 1 mSv annual effective dose equivalent due to internal contamination. With the use of the computer code REMedy the annual effective dose equivalent is calculated. Some of the radionuclides of concern result in an annual effective dose equivalent that exceeds the performance objective. Although the results exceed the performance objective, in all but two cases they do not exceed the US DOE regulatory limits. In these instances the Th-232 and Am-241 were determined to exceed the committed dose equivalent limit to their limiting tissue. In order to document the potential missed dose for regulatory compliance, Sr-90 is used as an indicator for Th-232. For Am-241 an investigation as to whether or not the minimum detectable amount can be lowered is performed. The derived investigation levels as a result of this project are 4.9E3 Bq/lung count for Co-60, 2.2E4 Bq/lung count for Cs-137, 1.9 Bq/1 for Sr-90 and for radionuclides other than Sr-90 any value greater than or equal to three standard deviations above their net count is considered to require further investigation.

  10. Resilience and risk competence in schools: theory/knowledge and international application in project rebound.

    PubMed

    Brown, Joel H; Jean-Marie, Gaetane; Beck, Jerome

    2010-01-01

    Despite a 50-year interdisciplinary and longitudinal research legacy--showing that nearly 80% of young people considered most "at risk" thrive by midlife-only recently have practitioners/researchers engaged in the explicit, prospective facilitation of "resilience" in educational settings. Here, theory/knowledge distinguishing and extending risk and resilience from its risk-based social history to resilience's normative occurrence leads to the first known international and prospective application of resilience in school-based drug education, Project REBOUND [resilience-bound]. It will be implemented as a controlled pilot study, first in Germany, then expand to the United States, as well as other parts of Europe. With evaluation occurring throughout, the goal is to enhance the quality of drug decisions among young people, as well as support their overall competence-based learning and development throughout school. With limitations and underlying psychological mechanisms discussed, it is concluded Project REBOUND offers promising potential for supporting positive drug decisions as well as youth learning and development. PMID:21381462

  11. The international Solid Earth Virtual Research Observatory (iSERVO) institute seed project

    NASA Astrophysics Data System (ADS)

    Mora, P.; Donnellan, A.; Fox, G.; Pierce, M.; Matsu'Ura, M.; McLeod, D.; Yin, X.

    2003-12-01

    Numerical simulation models that capture the essential physics and dynamics of the solid earth system provide a critical means to probe the earth's complex system behaviour. The APEC Cooperation for Earthquake Simulation (ACES) was established to develop simulation models for the complete physics of earthquakes and related processes, to foster collaboration between complementary national programs, and to foster development of research infrastructure. Research by ACES participants is summarised in 3 special issues of PAGEOPH (2000, 2002, and in press). Solid earth simulator programs linked via ACES include a new 5 year program to establish a national facility in Australia (Australian Computational Earth Systems Simulator MNRF), USA programs being developed by NASA JPL in collaboration with science centers, and Japan's new Centre of Excellence in predictability of the evolution and variation of the multi-scale earth system. Plans are now commencing to establish the framework for an international institute for computational earth system simulation to maximise benefits of these international efforts. The institute will make extensive use of the World Wide Web, computational Grid technologies, and multi-tiered information architectures to allow simulation models and data to be manipulated by symbolic means in a way not previously possible. A seed iSERVO project is underway to illustrate the approach. It involves development of web based services and portals to enable different numerical simulation models contributed by Australia, Japan and USA to be run using several "standard" crustal fault system models (strike-slip, intraplate, and subduction). The iSERVO Grid is being constructed from Web services enhanced to be consistent with Grid Forum standards. The system uses distributed computing including high performance computers and distributed heterogeneous databases using OGSA interfaces. These are accessed with portals exploiting the new portlet standards. The i

  12. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    NASA Astrophysics Data System (ADS)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  13. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  14. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  15. Dark Skies Awareness Cornerstone Project for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Iya Dark Skies Awareness Working Group

    2010-12-01

    Programs that were part of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness (DSA) Cornerstone Project have been successfully implemented around the world to promote social awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, nightscape aesthetics and especially astronomy. In developing the programs, DSA Cornerstone Project found that to influence cultural change effectively — to make people literally look up and see the light — we must make children a main focus, use approaches that offer involvement on many levels, from cursory to committed, and offer involvement via many venues. We must make the programs and resources as turn-key as possible, especially for educators — and provide ways to visualize the problem with simple, easily grasped demonstrations. The programs spanned a wide range; from new media technology for the younger generation, to an event in the arts, to various types of educational materials, to the promotion of dark skies communities, to national and international events and to global citizen science programs. The DSA Cornerstone Project is continuing most all of these programs beyond IYA2009. The International Dark-Sky Association as well as the Starlight Initiative is endorsing and helping to continue with some of the most successful programs from the DSA. The GLOBE at Night campaign is adding a research component that examines light pollution’s affects on wildlife. Dark Skies Rangers activities are being implemented in Europe through the Galileo Teacher Training Program. The new “One Star at a Time” will engage people to protect the night sky through personal pledges and registration of public stargazing areas or StarParks, like the newest one in Italy. The Starlight Initiative’s World Night in Defence of the Starlight will take place on the Vernal Equinox. DSA will again oversee the Dark Skies portion of Global

  16. Aerodynamic results of a separation effects test conducted in the AEDC 40 by 40 inch tunnel A facility on the Rockwell International launch configuration 3 (model-OTS) integrated vehicle (IA13), volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II

    1975-01-01

    Experimental aerodynamic investigations were conducted from July 5 through July 17, 1973, on a 0.01 scale model. The AEDC captive trajectory system was utilized in conjunction with the tunnel primary sector to obtain grid-type data for external tank abort from the orbiter, and for nominal separation of one solid rocket booster from the orbiter-tank combination. Booster separation was investigated with and without separation motors plume simulation. The plumes were generated by eight M sub j = 2.15 nozzles using a 1500 psia cold air supply. Free stream data were obtained for all models (orbiter, tank, orbiter-tank, and right-hand booster) to provide baselines for evaluation of proximity effects.

  17. Aerodynamic characteristics of the Fiat UNO car

    SciTech Connect

    Costelli, A.F.

    1984-01-01

    The purpose of this article is to describe the work conducted in the aerodynamic field throughout the 4-year development and engineering time span required by the project of the UNO car. A description is given of all the parametric studies carried out. Through these studies two types of cars at present in production were defined and the characteristics of a possible future sports version laid down. A movable device, to be fitted in the back window, was also set up and patented. When actuated it reduces soiling of back window. A description is also provided of the measurements made in the car flow field and some considerations are outlined about the method applied. This method is still in development phase but it already permits some considerations and in-depth investigations to be made on the vehicle wake.

  18. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  19. Orion Aerodynamics for Hypersonic Free Molecular to Continuum Conditions

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Greene, Francis A.; Boyles, Katie A.

    2006-01-01

    Numerical simulations are performed for the Orion Crew Module, previously known as the Crew Exploration Vehicle (CEV) Command Module, to characterize its aerodynamics during the high altitude portion of its reentry into the Earth's atmosphere, that is, from free molecular to continuum hypersonic conditions. The focus is on flow conditions similar to those that the Orion Crew Module would experience during a return from the International Space Station. The bulk of the calculations are performed with two direct simulation Monte Carlo (DSMC) codes, and these data are anchored with results from both free molecular and Navier-Stokes calculations. Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction, that is, for free molecular to continuum conditions (Knudsen numbers of 111 to 0.0003). Also included are aerodynamic data as a function of angle of attack for different levels of rarefaction and results that demonstrate the aerodynamic sensitivity of the Orion CM to a range of reentry velocities (7.6 to 15 km/s).

  20. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  1. Is the Alma Ata vision of comprehensive primary health care viable? Findings from an international project

    PubMed Central

    Labonté, Ronald; Sanders, David; Packer, Corinne; Schaay, Nikki

    2014-01-01

    Background The 4-year (2007–2011) Revitalizing Health for All international research program (http://www.globalhealthequity.ca/projects/proj_revitalizing/index.shtml) supported 20 research teams located in 15 low- and middle-income countries to explore the strengths and weaknesses of comprehensive primary health care (CPHC) initiatives at their local or national levels. Teams were organized in a triad comprised of a senior researcher, a new researcher, and a ‘research user’ from government, health services, or other organizations with the authority or capacity to apply the research findings. Multiple regional and global team capacity-enhancement meetings were organized to refine methods and to discuss and assess cross-case findings. Objective Most research projects used mixed methods, incorporating analyses of qualitative data (interviews and focus groups), secondary data, and key policy and program documents. Some incorporated historical case study analyses, and a few undertook new surveys. The synthesis of findings in this report was derived through qualitative analysis of final project reports undertaken by three different reviewers. Results Evidence of comprehensiveness (defined in this research program as efforts to improve equity in access, community empowerment and participation, social and environmental health determinants, and intersectoral action) was found in many of the cases. Conclusions Despite the important contextual differences amongst the different country studies, the similarity of many of their findings, often generated using mixed methods, attests to certain transferable health systems characteristics to create and sustain CPHC practices. These include:  Well-trained and supported community health workers (CHWs) able to work effectively with marginalized communities Effective mechanisms for community participation, both informal (through participation in projects and programs, and meaningful consultation) and formal (though program

  2. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  3. Computer Simulation of Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Inouye, Mamoru

    1989-01-01

    The role of Ames Research Center in conducting basic aerodynamics research through computer simulations is described. The computer facilities, including supercomputers and peripheral equipment that represent the state of the art, are described. The methodology of computational fluid dynamics is explained briefly. Fundamental studies of turbulence and transition are being pursued to understand these phenomena and to develop models that can be used in the solution of the Reynolds-averaged Navier-Stokes equations. Four applications of computer simulations for aerodynamics problems are described: subsonic flow around a fuselage at high angle of attack, subsonic flow through a turbine stator-rotor stage, transonic flow around a flexible swept wing, and transonic flow around a wing-body configuration that includes an inlet and a tail.

  4. Viking entry aerodynamics and heating

    NASA Technical Reports Server (NTRS)

    Polutchko, R. J.

    1974-01-01

    The characteristics of the Mars entry including the mission sequence of events and associated spacecraft weights are described along with the Viking spacecraft. Test data are presented for the aerodynamic characteristics of the entry vehicle showing trimmed alpha, drag coefficient, and trimmed lift to drag ratio versus Mach number; the damping characteristics of the entry configuration; the angle of attack time history of Viking entries; stagnation heating and pressure time histories; and the aeroshell heating distribution as obtained in tests run in a shock tunnel for various gases. Flight tests which demonstrate the aerodynamic separation of the full-scale aeroshell and the flying qualities of the entry configuration in an uncontrolled mode are documented. Design values selected for the heat protection system based on the test data and analysis performed are presented.

  5. Use of advanced computers for aerodynamic flow simulation

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F.

    1980-01-01

    The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.

  6. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  7. Aerodynamic instability: A case history

    NASA Technical Reports Server (NTRS)

    Eisenmann, R. C.

    1985-01-01

    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  8. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  9. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  10. Development of an International Research Project of Monsoon Asia Integrated Regional Study (MAIRS)

    NASA Astrophysics Data System (ADS)

    Fu, C.

    2006-05-01

    Monson Asia has been recommended as one of the critical regions of integrated study of global change. Among a number of reasons, the most significant features of Monsoon Asia is that this is a region where the major features of landscape, such as vegetation, soil and water system are mainly developed under the most representative monsoon climate. On the other hand, the Monsoon Asia is a region with the most active human development. It has more than 5000 years long history of civilization and highest population density of the world, reaching 57 percent of word population. It also had the most rapid development in last decades and is projected to maintain its high growth rates in the foreseeable future. The human-monsoon system interactions and their linkages with the earth system dynamics could be a challenge issue of global change research and a sustainable Asia . A science plan of MAIRS is under drafting by SSC of MAIRS under the guidance of START and an international project office of MAIRS was formally opened in IAP/Chinese Academy of Sciences under the support of Chinese government. The overall objectives of the MAIRS that will combine field experiments, process studies, and modeling components are: 1) To better understand how human activities in regions are interacting with and altering natural regional variability of the atmospheric, terrestrial, and marine components of the environment; 2) To contribute to the provision of a sound scientific basis for sustainable regional development; 3) To develop a predictive capability of estimating changes in global-regional linkages in the Earth System and to recognize on a sound scientific basis the future consequences of such changes.

  11. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  12. Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.

    2010-01-01

    NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.

  13. The Role of Current Sheets in Solar Eruptive Events: An ISSI International Team Project

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Poletto, Giannina

    2006-01-01

    Current sheets (CSs) are a prerequisite for magnetic reconnection. An International Space Science Institute (ISSI, of Bern, Switzerland) research team will work to empirically define current sheet properties in the solar atmosphere and their signatures in the interplanetary medium, and to understand their role in the development of solar eruptive events. The project was inspired by recently acquired ground and space based observations that reveal CS signatures at the time of flares and Coronal Mass Ejections (CMEs), in the chromosphere, in the corona and in the interplanetary medium. At the same time, theoretical studies predict the formation of CSs in different models and configurations, but theories and observational results have not yet developed an interaction efficient enough to allow us to construct a unified scenario. The team will generate synergy between observers, data analysts, and theoreticians, so as to enable a significant advance in understanding of current sheet behavior and properties. A further motivation for studying CSs is related to the expected electric fields in CSs that may be the source of solar energetic particles (SEPs). The team has 14 members from Europe and the US. The first meeting is in October 2006 and the second is late in 2007.

  14. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  15. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    SciTech Connect

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.

  16. Building international experiences into an engineering curriculum - a design project-based approach

    NASA Astrophysics Data System (ADS)

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-07-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a multicultural setting that they are likely to encounter in their professional careers. In the broader sense, this programme is described as a model that can be duplicated in other engineering disciplines as a first-year experience. In this study, undergraduate students from Rensselaer Polytechnic Institute (RPI) and Universidad del Turabo (UT) in Puerto Rico collaborated on a substantial design project consisting of designing, fabricating, and flight-testing radio-controlled model aircraft as a capstone experience in a semester-long course on Fundamentals of Flight. The two-week long experience in Puerto Rico was organised into academic and cultural components designed with the following objectives: (i) to integrate students in a multicultural team-based academic and social environment, (ii) to practise team-building skills and develop students' critical thinking and analytical skills, and finally (iii) to excite students about their engineering major through practical applications of aeronautics and help them decide if it is a right fit for them.

  17. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    ERIC Educational Resources Information Center

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  18. The GlobalEd Project: Gender Differences in a Problem-Based Learning Environment of International Negotiations.

    ERIC Educational Resources Information Center

    Brown, Scott W.; Boyer, Mark A.; Mayall, Hayley J.; Johnson, Paula R.; Meng, Lin; Butler, Michael J.; Weir, Kimberly; Florea, Natalie; Hernandez, Magnolia; Reis, Sally

    2003-01-01

    Describes the GlobalEd project, which employs a technology-rich environment for high school students to participate in a simulation of international relations and negotiation via the Internet. Reports participants' changes in academic and technology self-efficacy skills and the use of educational technology and discusses results in terms of…

  19. How Project Management Tools Aid in Association to Advance Collegiate Schools of Business (AACSB) International Maintenance of Accreditation

    ERIC Educational Resources Information Center

    Cann, Cynthia W.; Brumagim, Alan L.

    2008-01-01

    The authors present the case of one business college's use of project management techniques as tools for accomplishing Association to Advance Collegiate Schools of Business (AACSB) International maintenance of accreditation. Using these techniques provides an efficient and effective method of organizing maintenance efforts. In addition, using…

  20. Procedural Influence on Internal and External Assessment Scores of Undergraduate Vocational and Technical Education Research Projects in Nigerian Universities

    ERIC Educational Resources Information Center

    A. C., John; Manabete, S. S.

    2015-01-01

    This study sought to determine the procedural influence on internal and external assessment scores of undergraduate research projects in vocational and technical education programmes in the university under study. A survey research design was used for the conduct of this study. The population consisted of 130 lecturers and 1,847 students in the…

  1. Applicability of Standards for Evaluation of Educational Programs Projects and Materials in an International Setting: Qualitative Research.

    ERIC Educational Resources Information Center

    Dockrell, W. B.

    1984-01-01

    This article responds to the "Standards for Evaluation of Educational Programs, Projects and Materials" by addressing three issues in qualitative research: (1) data quality; (2) data verification; and (3) collusion between evaluators and their sponsors. To be of maximum international value, the standards report needs more emphasis on qualitative…

  2. Motivation, description, and summary status of geomechanical andgeochemical modeling studies in Task D of the InternationalDECOVALEX-THMC Project

    SciTech Connect

    Birkholzer, J.T.; Barr, D.; Rutqvist, J.; Sonnenthal, E.

    2005-11-15

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches and different computer codes.Below, we give an overview of the research task and report its currentstatus.

  3. International Project on Technical and Vocational Education (UNEVOC). International Advisory Committee (Third Session, Paris, France, October 2-4, 1995). Final Report = Projet International pour l'Enseignement Technique et Professionnel (UNEVOC). Comite Consultatif International (Troisieme Session, Paris, France, 2-4 octobre 1995). Rapport Final.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    The international advisory committee of the International Project on Technical and Vocational Education (UNEVOC) held its third session in Paris in October 1995. Advisory committee members and observers from the United Nations' specialized, intergovernmental, and nongovernmental organizations reviewed the major UNEVOC project activities undertaken…

  4. Contribution of the North Karelia Project to International Work in CVD and NCD Prevention and Health Promotion.

    PubMed

    Puska, Pekka; Laatikainen, Tiina; Korpelainen, Vesa; Vartiainen, Erkki

    2016-06-01

    During the decades after the start of the North Karelia Project in 1971, cardiovascular diseases and related noncommunicable diseases have emerged as the greatest global public health burden. The prevention and control of these diseases have thus become a major challenge and target for global public health, as emphasized by the Political Declaration of the United Nations (UN) General Assembly in 2011. The experiences and results of the North Karelia Project have accordingly received much international attention and have in many ways contributed to the international work in the area, including the strategies and programs of the World Health Organization. The experience of the Project shows the great potential of population-based prevention of cardiovascular diseases and other noncommunicable diseases and that influencing lifestyles related to heart health with comprehensive health promotion and national policies is the cost-effective and sustainable way to improve contemporary public health. PMID:27242094

  5. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  6. Constellation Program Lessons Learned in the Quantification and Use of Aerodynamic Uncertainty

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Hemsch, Michael J.; Pinier, Jeremy T.; Bibb, Karen L.; Chan, David T.; Hanke, Jeremy L.

    2011-01-01

    The NASA Constellation Program has worked for the past five years to develop a re- placement for the current Space Transportation System. Of the elements that form the Constellation Program, only two require databases that define aerodynamic environments and their respective uncertainty: the Ares launch vehicles and the Orion crew and launch abort vehicles. Teams were established within the Ares and Orion projects to provide repre- sentative aerodynamic models including both baseline values and quantified uncertainties. A technical team was also formed within the Constellation Program to facilitate integra- tion among the project elements. This paper is a summary of the collective experience of the three teams working with the quantification and use of uncertainty in aerodynamic environments: the Ares and Orion project teams as well as the Constellation integration team. Not all of the lessons learned discussed in this paper could be applied during the course of the program, but they are included in the hope of benefiting future projects.

  7. The role of unsteady aerodynamics in aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    1988-01-01

    The role of acoustics and unsteady aerodynamics research in understanding the fundamental physics of time-dependent fluid phenomena is reviewed. The key issues are illustrated by considering the sound radiation of turbulent jets and the aeroacoustics of rotating bodies such as helicopter rotors. The importance of computational methods as a link between aerodynamics and acoustics is also discussed. It is noted that where acoustic analogy techniques are sufficiently accurate, unsteady aerodynamics can be used for acoustic prediction. In supersonic problems where acoustics and aerodynamics are coupled, an integrated nonlinear analysis can provide an accurate problem solution.

  8. Computational aerodynamics applications to transport aircraft design

    NASA Technical Reports Server (NTRS)

    Henne, P. A.

    1983-01-01

    Examples are cited in assessing the effect that computational aerodynamics has had on the design of transport aircraft. The application of computational potential flow methods to wing design and to high-lift system design is discussed. The benefits offered by computational aerodynamics in reducing design cost, time, and risk are shown to be substantial.These aerodynamic methods have proved to be particularly effective in exposing inferior or poor aerodynamic designs. Particular attention is given to wing design, where the results have been dramatic.

  9. Technology Outlook for International Schools in Asia, 2014. An NMC Horizon Project Regional Report

    ERIC Educational Resources Information Center

    Johnson, L.; Adams Becker, S.; Cummins, M.; Estrada, V.

    2014-01-01

    This report is a collaborative research effort between the New Media Consortium (NMC), Concordia International School Shanghai, and NIST International School in Bangkok, Thailand, to help inform international school leaders in Asia about significant developments in technologies supporting teaching, learning, and creative inquiry in primary and…

  10. The Changing Academic Profession in International Comparative and Quantitative Perspectives. Report of the International Conference on the Changing Academic Profession Project, 2008. RIHE International Seminar Reports. No.12

    ERIC Educational Resources Information Center

    Research Institute for Higher Education, Hiroshima University (NJ3), 2008

    2008-01-01

    This year the Research Institute for Higher Education in Hiroshima University hosted an international conference in close collaboration with Hijiyama University. The main purpose of the 2008 conference was to enable the participants to give preliminary country/regional reports based on their national/regional surveys. This publication reports the…

  11. Inner workings of aerodynamic sweep

    SciTech Connect

    Wadia, A.R.; Szucs, P.N.; Crall, D.W.

    1998-10-01

    The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfy identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.

  12. Cigarette tax avoidance and evasion: findings from the International Tobacco Control Policy Evaluation Project

    PubMed Central

    Guindon, G. Emmanuel; Driezen, Pete; Chaloupka, Frank J.; Fong, Geoffrey T.

    2014-01-01

    Background Decades of research have produced overwhelming evidence that tobacco taxes reduce tobacco use and increase government tax revenue. The magnitude and effectiveness of taxes at reducing tobacco use provide an incentive for tobacco users, manufacturers and others, most notably criminal networks, to devise ways to avoid or evade tobacco taxes. Consequently, tobacco tax avoidance and tax evasion can reduce the public health and fiscal benefit of tobacco taxes. Objectives First, this study aims to document, using data from the International Tobacco Control Policy Evaluation Project (ITC), levels and trends in cigarette users’ tax avoidance and tax evasion behaviour in a sample of sixteen low-, middle- and high-income countries. Second, this study explores factors associated with cigarette tax avoidance and evasion. Methods We use data from ITC surveys conducted in 16 countries to estimate the extent and the type of cigarette tax avoidance/evasion between countries and across time. We use self-reported information about the source of a smoker’s last purchase of cigarettes or self-reported packaging information, or similar information gathered by the interviewers during face-to-face interviews to measure tax avoidance/evasion behaviours. We use generalized estimating equations (GEE) to explore individual-level factors that may affect the likelihood of cigarette tax avoidance or evasion in Canada, United States, United Kingdom and France. Findings We find prevalence estimates of cigarette tax avoidance/evasion vary substantially between countries and across time. In Canada, France and the United Kingdom, more than 10% of smokers report last purchasing cigarettes from low or untaxed sources while in Malaysia, some prevalence estimates suggest substantial cigarette tax avoidance/evasion. We also find important associations between household income and education and the likelihood to engage in tax avoidance/evasion. These associations, however, vary both in

  13. Progress in computational unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

  14. Simulation of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Bragg, M. B.; Kwon, O. J.; Sankar, L. N.

    1991-01-01

    The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

  15. The basic aerodynamics of floatation

    SciTech Connect

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  16. Aerodynamic applications of infrared thermography

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Alderfer, David W.

    1989-01-01

    A series of wind tunnel experiments were conducted as part of a systematic study for evaluation of infrared thermography as a viable non-intrusive thermal measurement technique for aerodynamic applications. The experiments consisted of obtaining steady-state surface temperature and convective heat transfer rates for a uniformly heated cylinder in transverse flow with a Reynolds number range of 46,000 to 250,000. The calculated convective heat transfer rates were in general agreement with classical data. Furthermore, IR thermography provided valuable real-time fluid dynamic information such as visualization of flow separation, transition and vortices.

  17. Computers vs. wind tunnels for aerodynamic flow simulations

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.; Mark, H.; Pirtle, M. W.

    1975-01-01

    It is pointed out that in other fields of computational physics, such as ballistics, celestial mechanics, and neutronics, computations have already displaced experiments as the principal means of obtaining dynamic simulations. In the case of aerodynamic investigations, the complexity of the computational work involved in solving the Navier-Stokes equations is the reason that such investigations rely currently mainly on wind-tunnel testing. However, because of inherent limitations of the wind-tunnel approach and economic considerations, it appears that at some time in the future aerodynamic studies will chiefly rely on computational flow data provided by the computer. Taking into account projected development trends, it is estimated that computers with the required capabilities for a solution of the complete viscous, time-dependent Navier-Stokes equations will be available in the mid-1980s.

  18. Community Connections to Enhance Undergraduate International Business Education: An Example of Business Consulting Projects

    ERIC Educational Resources Information Center

    Annavarjula, Madan; Trifts, Jack W.

    2012-01-01

    Practical project experience as a means of augmenting traditional classroom learning has long been viewed as a value adding curricular exercise. While students participating in the projects gain valuable skills that will enhance their personal marketability, successful projects also benefit the client companies involved and help enhance the image…

  19. Use of a virtual world computer environment for international distance education: lessons from a pilot project using Second Life

    PubMed Central

    2014-01-01

    Virtual worlds (VWs), in which participants navigate as avatars through three-dimensional, computer-generated, realistic-looking environments, are emerging as important new technologies for distance health education. However, there is relatively little documented experience using VWs for international healthcare training. The Geneva Foundation for Medical Education and Research (GFMER) conducted a VW training for healthcare professionals enrolled in a GFMER training course. This paper describes the development, delivery, and results of a pilot project undertaken to explore the potential of VWs as an environment for distance healthcare education for an international audience that has generally limited access to conventionally delivered education. PMID:24555833

  20. "In the Middle of Difficulty Lies Opportunity"--Using a Case Study to Identify Critical Success Factors Contributing to the Initiation of International Collaborative Projects

    ERIC Educational Resources Information Center

    Johnson, Ian M.

    2005-01-01

    This paper identifies factors that contribute to the successful initiation of international collaborative projects intended to support the development of education for librarianship and information sciences. It discusses the widespread failure to analyse the Critical Success Factors in international collaborative projects and proposes a case study…

  1. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  2. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  3. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  4. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  5. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  6. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  7. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  8. Future Computer Requirements for Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  9. Aerodynamic seal assemblies for turbo-machinery

    SciTech Connect

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  10. Review of aerodynamic design in the Netherlands

    NASA Technical Reports Server (NTRS)

    Labrujere, Th. E.

    1991-01-01

    Aerodynamic design activities in the Netherlands, which take place mainly at Fokker, the National Aerospace Laboratory (NLR), and Delft University of Technology (TUD), are discussed. The survey concentrates on the development of the Fokker 100 wing, glider design at TUD, and research at NLR in the field of aerodynamic design. Results are shown to illustrate these activities.

  11. September 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    SciTech Connect

    McCallen, R

    2002-09-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center on September 23, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Freightliner, and Portland State University participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. The meeting began with an introduction by the Project Lead Rose McCallen of LLNL, where she emphasized that the world energy consumption is predicted to relatively soon exceed the available resources (i.e., fossil, hydro, non-breeder fission). This short fall is predicted to begin around the year 2050. Minimizing vehicle aerodynamic drag will significantly reduce our Nation's dependence on foreign oil resources and help with our world-wide fuel shortage. Rose also mentioned that educating the populace and researchers as to our world energy issues is important and that our upcoming United Engineering Foundation (UEF) Conference on ''The Aerodynamics of Heavy Vehicles: Trucks, Busses, and Trains'' was one way our DOE Consortium was doing this. Mentioned were the efforts of Fred Browand from USC in organizing and attracting internationally recognized speakers to the Conference. Rose followed with an overview of the DOE project goals, deliverables, and FY03 activities. The viewgraphs are attached at the end of this report. Sid Diamond of DOE

  12. Mid-term evaluation of USAID (US Agency for International Development) Sudan Energy Planning and Management Project (650-0059)

    SciTech Connect

    Jones, D.W.; Stovall, J.P.; Raby, J.G.; Younger, D.R.; Pryor, C.A.

    1988-06-01

    In 1984, the United States Agency for International Development's mission in Sudan implemented the Energy Planning and Management Project to strengthen several key institutions in the energy sector of Sudan. One component of the project focused on improving management, billing and collection, pricing, purchasing and stores, and vehicle operation and maintenance in the National Electricity Corporation. The other major component was devoted to strengthening the capability of the National Energy Administration to conduct national energy planning studies, including the analysis of energy issues and policies and the recommendation of policies. Originally the planned date for the midterm evaluation of this project was early 1986, but because political turmoil and other events impeded implementation of the project, that evaluation was only conducted in January and February 1987. ORNL, at the request of the Sudan Mission and the office of Energy of AID, fielded a team in January 1987 to evaluate the progress of the project to that date and make recommendations for the remainder of the project's implementation. This study reports the findings and recommendations of the evaluation team regarding the Sudan Energy Management and Planning Project. 84 refs., 2 figs., 6 tabs.

  13. New idea of geomagnetic monitoring through ENA detection from the International Space Station: ENAMISS project

    NASA Astrophysics Data System (ADS)

    Milillo, Anna; De Angelis, Elisabetta; Orsini, Stefano; Rubini, Alda; Evangelista, Yuri; Mura, Alessandro; Rispoli, Rosanna; Vertolli, Nello; Carrubba, Elisa; Donati, Alessandro; Di Lellis, Andrea Maria; Plainaki, Christina; Lazzarotto, Francesco

    2016-04-01

    Remote sensing of Energetic Neutral Atoms (ENA) in the Earth's environment has been proven to be a successful technique able to provide detailed information on the ring current plasma population at energies below 100 keV. Indeed, the existing space weather databases usually include a good coverage of Sun and solar wind monitoring. The global imaging of the Earth's magnetosphere/ ionosphere is usually obtained by the high-latitudes monitoring of aurorae, ground magnetic field variations and high-latitude radio emissions. The equatorial magnetic field variations on ground, from which the geomagnetic indices like Dst, Sym-H and Asym-H are derived, include the effects of all current systems (i.e. ring current, Chapman -Ferraro current, tails currents, etc...) providing a kind of global information. Nevertheless, the specific information related to the ring current cannot be easily derived from such indices. Only occasional local plasma data are available by orbiting spacecraft. ENA detection is the only way to globally view the ring current populations. Up-to-now this technique has been used mainly from dedicated high altitude polar orbiting spacecraft, which do not allow a continuous and systematic monitoring, and a discrimination of the particle latitude distribution. The Energetic Neutral Atoms Monitor on the International space Station (ENAMISS) project intends to develop an ENA imager and install it on the ISS for continuous monitoring of the spatially distributed ring current plasma population. ISS is the ideal platform to perform continuous ENA monitoring since its particular low altitude and medium/low latitude orbit allows wide-field ENA images of various magnetospheric regions. The calibrated ENA data, the deconvolved ion distributions and ad-hoc ENA-based new geomagnetic indices will be freely distributed to the space weather community. Furthermore, new services based on plasma circulation models, spacecraft surface charging models and radiation dose models

  14. Aerodynamic effects of flexibility in flapping wings

    PubMed Central

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  15. Evaluation and status report on HYDROCOIN at midway (HYDROCOIN: An international project for studying groundwater hydrology modelling strategies)

    SciTech Connect

    Cole, C.R.

    1986-12-01

    The US Department of Energy (DOE) is participating in the international hydrologic code intercomparison (HYDROCOIN) project organized by the Swedish Nuclear Power Inspectorate (SKI) for the purpose of improving our knowledge about the influence of various strategies for ground-water flow modeling for the safety assessment of final repositories for nuclear waste. The HYDROCOIN project consists of three levels of effort: Level One is concerned with verifying the numerical accuracy of codes, Level Two is involved with validation of models using field experiments, and Level Three is concerned with sensitivity and uncertainty analysis. The need for the HYDROCOIN project emerged from an earlier international study for the intercomparison of computer codes for radionuclide transport (INTRACOIN). The HYDROCOIN project began in May 1984 with a group of fourteen organizations from eleven countries participating; currently twenty organizations are involved. Five teams from DOE's Office of Civilian Radioactive Waste Management (OCRWM) are participating in the HYDROCOIN project, and this document presents the results of a review of this participation and an analysis of the benefits of OCRWM participation in the first 2 years (i.e., through May 1986) of the 3-year HYDROCOIN project. Efforts on the seven Level One cases are nearly complete. Level Two problems have been formulated and are in final draft form, and Level Three problems have been identified and are in first draft form. This report details the motivation, need, and benefits from HYDROCOIN through a chronological synopsis of the project's progress to date, brief description and intercomparison of preliminary Level One results prepared by OCRWM participants, and discussion of OCRWM contributions and plans for HYDROCOIN Level Two and Three efforts.

  16. Promoting Health Behaviors Using Peer Education: A Demonstration Project between International and American College Students

    ERIC Educational Resources Information Center

    Yan, Zi; Finn, Kevin; Cardinal, Bradley J.; Bent, Lauren

    2014-01-01

    Background: Peer education has the potential to promote health behaviors and cultural competence for both international and domestic college students. Purpose: The present study examined a peer education program aimed at promoting cultural competence and health behaviors among international and American students in a university setting. Methods:…

  17. International Trade Curriculum. A Joint Vocational Education Curriculum Project of Alaska, Oregon & Washington.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This document is intended to help instructors and administrators develop secondary and postsecondary instructional programs on international trade that are based on competencies identified as those needed in international business by companies in Alaska, Oregon, and Washington. The first section introduces competency-based curriculum and includes…

  18. A Case Study in Project-Based Learning: An International Partnership

    ERIC Educational Resources Information Center

    Smith, Rachel Korfhage

    2010-01-01

    As our world becomes more integrated, international business students should develop skills that match corporations' needs. Moreover, students need hands-on, problem-solving, team-based, critical-thinking skills that companies demand. Students need international business experience but many of them lack the funds or support to study or intern…

  19. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  20. Aerodynamic investigation of an air-cooled axial-flow turbine. Part 2: Rotor blade tip-clearance effects on overall turbine performance and internal gas flow conditions: Experimental results and prediction methods

    NASA Technical Reports Server (NTRS)

    Yamamoto, A.; Takahara, K.; Nouse, H.; Mimura, F.; Inoue, S.; Usui, H.

    1977-01-01

    Total turbine blade performance was investigated while changing the blade tip clearance in three ways. The internal flow at the moving blade outlet point was measured. Experimental results were compared with various theoretical methods. Increased blade clearance leads to decreased turbine efficiency.

  1. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS: VOLUME 1. TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  2. Aerodynamic design optimization by using a continuous adjoint method

    NASA Astrophysics Data System (ADS)

    Luo, JiaQi; Xiong, JunTao; Liu, Feng

    2014-07-01

    This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows. General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived. With the adjoint method, the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function, regardless of the number of design parameters. An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method. Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil, wing, and wing-body configuration, and the aerodynamic performance improvement of turbine and compressor blade rows. The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.

  3. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  4. Image processing of aerodynamic data

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1985-01-01

    The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.

  5. The basic aerodynamics of floatation

    NASA Astrophysics Data System (ADS)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  6. Rarefaction Effects in Hypersonic Aerodynamics

    NASA Astrophysics Data System (ADS)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  7. Aerodynamic research on tipvane windturbines

    NASA Astrophysics Data System (ADS)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  8. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  9. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  10. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  11. Student- Directed Projects: An International Case Study for Social Work Education

    ERIC Educational Resources Information Center

    Chowa, Gina A.; Ansong, David

    2010-01-01

    Student-directed projects are increasingly becoming a common phenomenon in schools of social work across the United States. Students acquire a great learning experience from these projects, which sharpen their skills in leadership, innovation, and practice. Social work practitioners who go through such a process emerge having acquired knowledge…

  12. An Analysis of Internally Funded Learning and Teaching Project Evaluation in Higher Education

    ERIC Educational Resources Information Center

    Huber, Elaine; Harvey, Marina

    2016-01-01

    Purpose: In the higher education sector, the evaluation of learning and teaching projects is assuming a role as a quality and accountability indicator. The purpose of this paper is to investigate how learning and teaching project evaluation is approached and critiques alignment between evaluation theory and practice. Design/Methodology/Approach:…

  13. Promoting Sustainable Development through Whole School Approaches: An International, Intercultural Teacher Education Research and Development Project

    ERIC Educational Resources Information Center

    Shallcross, Tony; Loubser, Callie; Le Roux, Cheryl; O'Donoghue, Rob; Lupele, Justin

    2006-01-01

    This paper focuses on a British Council funded Higher Education Link project involving three institutions--Manchester Metropolitan University (MMU) in the UK and two South African institutions, the University of South Africa (UNISA) and Rhodes University. The link is a research and development project that has three main research strands:…

  14. Multi Media Systems. International Compendium. Eleven Project Descriptions of Combined Teaching Systems in Eight Countries.

    ERIC Educational Resources Information Center

    Gaudray, Francine, Comp.

    The demands made by modern technological society on the traditional educational system are briefly discussed. The remainder of the compendium describes 11 projects which are using educational technology, principally televised instruction, with success. Projects from Brazil, Canada, West Germany, France, England, Japan, Poland, and the United…

  15. An International Teacher Training Project: Integrating Subject Content, Communicative and Digital Competences in Didactic Materials

    ERIC Educational Resources Information Center

    Sierra, Lina; Martin, Piedad

    2012-01-01

    The European intTT project "An Integral Teacher Training for Developing Digital and Communicative Competences and Subject Content Learning at Schools" deals with initial teacher training in primary and secondary School. The general objective of the project is to train future school teachers in order to improve the development of communicative and…

  16. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  17. Aerodynamic cause of the asymmetric wing deformation of insect wings

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Tian, Fangbao; Song, Jialei; Lu, Xi-Yun

    2012-11-01

    Insect wings typically exhibit significant asymmetric deformation patterns, where the magnitude of deflection during upstroke is greater than during downstroke. Such a feature is beneficial for the aerodynamics since it reduces the projected wing area during upstroke and leads to less negative lift. Previously, this asymmetry has been mainly attributed to the directional bending stiffness in the wing structure, e.g., one-way hinge, or a pre-existing camber in the wing surface. In the present study, we demonstrate that the asymmetric pattern can also be caused by the asymmetric force due to the flow, while the wing structure and kinematics are symmetric. A two-dimensional translating/pitching wing in a free stream is used as the model, and the wing is represented by an elastic sheet with large displacement. The result shows that, interestingly, the wing experiences larger deformation during upstroke even though the aerodynamic force is greater during downstroke. The physical mechanism of the phenomenon can be explained by the modulating effect of the aerodynamic force on the timing of storage/release of the elastic energy in the wing. Supported by NSF (No. CBET-0954381).

  18. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  19. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project

    PubMed Central

    Morton, Lindsay M.; Sampson, Joshua N.; Cerhan, James R.; Turner, Jennifer J.; Vajdic, Claire M.; Wang, Sophia S.; Smedby, Karin E.; de Sanjosé, Silvia; Monnereau, Alain; Benavente, Yolanda; Bracci, Paige M.; Chiu, Brian C. H.; Skibola, Christine F.; Zhang, Yawei; Mbulaiteye, Sam M.; Spriggs, Michael; Robinson, Dennis; Norman, Aaron D.; Kane, Eleanor V.; Spinelli, John J.; Kelly, Jennifer L.; Vecchia, Carlo La; Dal Maso, Luigino; Maynadié, Marc; Kadin, Marshall E.; Cocco, Pierluigi; Costantini, Adele Seniori; Clarke, Christina A.; Roman, Eve; Miligi, Lucia; Colt, Joanne S.; Berndt, Sonja I.; Mannetje, Andrea; de Roos, Anneclaire J.; Kricker, Anne; Nieters, Alexandra; Franceschi, Silvia; Melbye, Mads; Boffetta, Paolo; Clavel, Jacqueline; Linet, Martha S.; Weisenburger, Dennis D.; Slager, Susan L.

    2014-01-01

    Background Non-Hodgkin lymphoma (NHL), the most common hematologic malignancy, consists of numerous subtypes. The etiology of NHL is incompletely understood, and increasing evidence suggests that risk factors may vary by NHL subtype. However, small numbers of cases have made investigation of subtype-specific risks challenging. The International Lymphoma Epidemiology Consortium therefore undertook the NHL Subtypes Project, an international collaborative effort to investigate the etiologies of NHL subtypes. This article describes in detail the project rationale and design. Methods We pooled individual-level data from 20 case-control studies (17471 NHL cases, 23096 controls) from North America, Europe, and Australia. Centralized data harmonization and analysis ensured standardized definitions and approaches, with rigorous quality control. Results The pooled study population included 11 specified NHL subtypes with more than 100 cases: diffuse large B-cell lymphoma (N = 4667), follicular lymphoma (N = 3530), chronic lymphocytic leukemia/small lymphocytic lymphoma (N = 2440), marginal zone lymphoma (N = 1052), peripheral T-cell lymphoma (N = 584), mantle cell lymphoma (N = 557), lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (N = 374), mycosis fungoides/Sézary syndrome (N = 324), Burkitt/Burkitt-like lymphoma/leukemia (N = 295), hairy cell leukemia (N = 154), and acute lymphoblastic leukemia/lymphoma (N = 152). Associations with medical history, family history, lifestyle factors, and occupation for each of these 11 subtypes are presented in separate articles in this issue, with a final article quantitatively comparing risk factor patterns among subtypes. Conclusions The International Lymphoma Epidemiology Consortium NHL Subtypes Project provides the largest and most comprehensive investigation of potential risk factors for a broad range of common and rare NHL subtypes to date. The analyses contribute to our understanding of the multifactorial nature of NHL

  20. Active Control of Aerodynamic Noise Sources

    NASA Technical Reports Server (NTRS)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  1. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  2. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  3. A survey of computational aerodynamics in the United States

    NASA Technical Reports Server (NTRS)

    Gessow, A.; Morris, D. J.

    1977-01-01

    Programs in theoretical and computational aerodynamics in the United States are described. Those aspects of programs that relate to aeronautics are detailed. The role of analysis at various levels of sophistication is discussed as well as the inverse solution techniques that are of primary importance in design methodology. The research is divided into the broad categories of application for boundary layer flow, Navier-Stokes turbulence modeling, internal flows, two-dimensional configurations, subsonic and supersonic aircraft, transonic aircraft, and the space shuttle. A survey of representative work in each area is presented.

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  5. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; Morse, Brian J.; Mulac, Brian D.; Reed, Cheryl L.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  6. Using the HARV simulation aerodynamic model to determine forebody strake aerodynamic coefficients from flight data

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The method described in this report is intended to present an overview of a process developed to extract the forebody aerodynamic increments from flight tests. The process to determine the aerodynamic increments (rolling pitching, and yawing moments, Cl, Cm, Cn, respectively) for the forebody strake controllers added to the F/A - 18 High Alpha Research Vehicle (HARV) aircraft was developed to validate the forebody strake aerodynamic model used in simulation.

  7. Conceptualizing the cross-cultural gaps in managing international aid: HIV/AIDS and TB project delivery in Southern Africa.

    PubMed

    Jackson, Terence

    2011-01-01

    There appears to be a gap between the billions of dollars inputted into fighting HIV/AIDS and TB and outcomes. This in part can be attributed to the lack of attention in International Development to managing programmes and projects within complex levels of cross-cultural interactions. International Development often ignores management issues, yet Management Studies is left wanting through a lack of engagement with development issues including the fight against disease and poverty. This paper attempts to link these two disciplines towards mutual benefit, through a critical cross-cultural approach. It provides contextualization of international development policies/strategies; conceptualization of dominant paradigms; structural analysis of how a programme/project fits into the global governance structure; analysis of complexities and levels of cross-cultural interaction and their consequences and the process and implications of knowledge transfer across cultural distances. It concludes with implications for policy and practice, as well as what is needed from cross-disciplinary research. This includes how feedback loops can be strengthened from local to global, how indigenous knowledge may be better understood and integrated, how power relations within the global governance structure could be managed, how cross-cultural interaction could be better understood, and how knowledge transfer/sharing should be critically managed. PMID:20957771

  8. International Senior Design Service Learning Project: Creating a Water System for Kuna Nega in Panama City, Panama

    NASA Astrophysics Data System (ADS)

    Budny, Dan

    2013-11-01

    International service-learning projects are an effective educational tool for universities striving to meet the ABET engineering criterion, while also providing transformational experiences to their students and a service to needy populations in the world. This student poster discusses the benefits of an international service-learning project in Panama City, Panama. The presentation will discuss the design and installation of a water distribution system including a two pressure system, two ground storage tanks, a pump station and the various control systems to fill the tanks. To meet the water demand with the limited supply additional individual rain water collection systems were also installed at individual houses to provide a gray water system for bathing. The year-long process of development design and construction will be described and how it fits within the Swanson School of Engineering Department of Civil Engineering senior design course. This project was a collaboration between the senior design course, and a local chapter of Engineers Without Borders.

  9. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 1 publication covers configuration aerodynamics.

  10. Aerodynamic Characteristics and Development of the Aerodynamic Database of the X-34 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi , Bandu N.; Brauckmann, Gregory J.

    1999-01-01

    An overview of the aerodynamic characteristics and the process of developing the preflight aerodynamic database of the NASA/ Orbital X-34 reusable launch vehicle is presented in this paper. Wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. The APAS (Aerodynamic Preliminary Analysis System) code was used for engineering level analysis and to fill the gaps in the wind tunnel test data. This aerodynamic database covers the range of Mach numbers, angles of attack, sideslip and control surface deflections anticipated in the complete flight envelope.

  11. HSR Aerodynamic Performance Status and Challenges

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Antani, Tony; Ball, Doug; Calloway, Robert L.; Snyder, Phil

    1999-01-01

    This paper describes HSR (High Speed Research) Aerodynamic Performance Status and Challenges. The topics include: 1) Aero impact on HSR; 2) Goals and Targets; 3) Progress and Status; and 4) Remaining Challenges. This paper is presented in viewgraph form.

  12. Aerodynamic analysis of Pegasus - Computations vs reality

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan

    1993-01-01

    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  13. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro

    2015-11-01

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  14. Switchable and Tunable Aerodynamic Drag on Cylinders

    NASA Astrophysics Data System (ADS)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  15. Aerodynamics and performance testing of the VAWT

    SciTech Connect

    Klimas, P.C.

    1981-01-01

    Early investigations suggest that reductions in cost of energy (COE) and increases in reliability for VAWT systems may be brought about through relatively inexpensive changes to the current aerodynamic design. This design uses blades of symmetrical cross-section mounted such that the radius from the rotating tower centerline is normal to the blade chord at roughly the 40% chord point. The envisioned changes to this existing design are intended to: (1) lower cut-in windspeed; (2) increase maximum efficiency; (3) limit maximum aerodynamic power; and (4) limit peak aerodynamic torques. This paper describes certain experiments designed to both better understand the aerodynamics of a section operating in an unsteady, curvilinear flowfield and achieve some of the desired changes in section properties. The common goal of all of these experiments is to lower VAWT COE and increase system reliability.

  16. Hypervelocity Free-Flight Aerodynamic Facility (HFFAF)

    NASA Video Gallery

    The HFFAF is the only aeroballistic range the nation currently capable of testing in gases other than air and at sub-atmospheric pressures. It is used primarily to study the aerodynamics, Aerotherm...

  17. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  18. Feasibility study for a numerical aerodynamic simulation facility: Summary

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1979-01-01

    The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.

  19. Aerodynamic analysis of the aerospaceplane HyPlane in supersonic rarefied flow

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Savino, Raffaele; Russo, Gennaro; Spano'Cuomo, Luca; Petrosino, Eliano

    2016-06-01

    HyPlane is the Italian aerospaceplane proposal targeting, at the same time, both the space tourism and point-to-point intercontinental hypersonic flights. Unlike other aerospaceplane projects, relying on boosters or mother airplanes that bring the vehicle to high altitude, HyPlane will take off and land horizontally from common runways. According to the current project, HyPlane will fly sub-orbital trajectories under high-supersonic/low-hypersonic continuum flow regimes. It can go beyond the von Karman line at 100 km altitude for a short time, then starting the descending leg of the trajectory. Its aerodynamic behavior up to 70 km have already been studied and the results published in previous works. In the present paper some aspects of the aerodynamic behavior of HyPlane have been analyzed at 80, 90 and 100 km. Computer tests, calculating the aerodynamic parameters, have been carried out by a Direct Simulation Monte Carlo code. The effects of the Knudsen, Mach and Reynolds numbers have been evaluated in clean configuration. The effects of the aerodynamic surfaces on the rolling, pitching and yawing moments, and therefore on the capability to control attitude, have been analyzed at 100 km altitude. The aerodynamic behavior has been compared also with that of another aerospaceplane at 100 km both in clean and flapped configuration.

  20. International Understanding at School: UNESCO Associated School Project. Bulletin No. 50/51 1985/1986.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    One of a series of teaching guides designed to enhance elementary and secondary schools' observances of United Nations' international days, this issue features two guidelines, one for teaching about World Meteorological Day (March 23) and one for teaching about World Post Day (October 9). These observances are encouraged in order to promote…

  1. International Workforce Initiatives: Definitions, Design Options, and Project Profiles. Working Paper Series. No. 1

    ERIC Educational Resources Information Center

    Wright, J.W., Jr.

    2010-01-01

    This publication is intended for three primary audiences: international development professionals who want to define "workforce" for program design purposes, those who seek information about field activities, and those who want to reflect on the implementation of successful, high impact programs--whether they were broad-based or sector-specific…

  2. The Forum BEVI Project: Applications and Implications for International, Multicultural, and Transformative Learning

    ERIC Educational Resources Information Center

    Wandschneider, Elizabeth; Pysarchik, Dawn T.; Sternberger, Lee G.; Ma, Wenjuan; Acheson, Kris; Baltensperger, Brad; Good, R. T.; Brubaker, Brian; Baldwin, Tamara; Nishitani, Hajime; Wang, Felix; Reisweber, Jarrod; Hart, Vesna

    2015-01-01

    In a diverse portfolio of curricular and programmatic options in colleges and universities, global education has become highly prominent over the past 50 years. To take one of any number of indices in this regard, the Institute of International Education (2014) reported that a record number of global students, 886,052, studied at U.S. institutions…

  3. The International Pea Genome Sequencing Project: Sequencing and Assembly Progresses Updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Consortium for the Pea Genome Sequencing (ICPG) includes scientists from six countries around the world. Its aim is to provide a high quality reference of the pea genome to the scientific community as well as to the pea breeder community. The consortium proposed a strategy that int...

  4. ORERP (Off-Site Radiation Exposure Review Project) internal dose estimates for individuals

    SciTech Connect

    Ng, Y.C.; Anspaugh, L.R.; Cederwall, R.T. )

    1990-11-01

    A method was developed to reconstruct the internal radiation dose to off-site individuals who were exposed to fallout from nuclear weapons tests at the Nevada Test Site (NTS). By this method, committed absorbed doses can be estimated for 22 target organs of persons in four age groups and for selected organs of the fetus. Ingestion doses are calculated by combining age-group dose factors and intakes specific for age group, test event, and location as calculated by the PATHWAY food-chain model. Inhalation doses are calculated by combining age-group dose factors and breathing rates, and time-integrated air concentrations that are derived from the ORERP Air-Quality Data Base. Dose estimates are calculated for the radionuclides that contribute significantly to the total dose; these number 20 via the ingestion pathway and 46 via the inhalation pathway. Internal doses to nonspecified individuals and nonspecified fetuses are being reconstructed for each location in the ORERP Town Data Base for which exposure rates and cloud-arrival times are listed. Examples of reconstructing internal dose are presented. This method will also be adapted to reconstruct internal doses from NTS fallout to specific individuals in accordance with the person's age, past residence, life-style, and living pattern.

  5. Cross-Cultural Communication and Collaboration: Case of an International e-Learning Project

    ERIC Educational Resources Information Center

    Toprak, Elif; Genc-Kumtepe, Evrim

    2014-01-01

    Communication is an indispensable part of international cooperation and it requires managing different cultures. Being prepared to see and understand different values, trying to understand contrasting views in a consortium, can decrease the potential of misperception which otherwise may act as a real barrier to cooperation. This is why…

  6. Just Footprints in the Sand? Questioning Sustainability of an IRA International Project

    ERIC Educational Resources Information Center

    Lewis-Spector, Jill; Richardson, Judy S.; Janusheva, Violeta

    2011-01-01

    Volunteers from the International Reading Association (IRA) participated in the teacher education component of Macedonia's Secondary Education Activity, an initiative to reform vocational/technical education (VET), funded from 2004 to 2008 by USAID. Volunteers offered professional development to VET teachers using a trainer-of-trainers model,…

  7. ORERP (Off-Site Radiation Exposure Review Project) internal dose estimates for individuals.

    PubMed

    Ng, Y C; Anspaugh, L R; Cederwall, R T

    1990-11-01

    A method was developed to reconstruct the internal radiation dose to off-site individuals who were exposed to fallout from nuclear weapons tests at the Nevada Test Site (NTS). By this method, committed absorbed doses can be estimated for 22 target organs of persons in four age groups and for selected organs of the fetus. Ingestion doses are calculated by combining age-group dose factors and intakes specific for age group, test event, and location as calculated by the PATHWAY food-chain model. Inhalation doses are calculated by combining age-group dose factors and breathing rates, and time-integrated air concentrations that are derived from the ORERP Air-Quality Data Base. Dose estimates are calculated for the radionuclides that contribute significantly to the total dose; these number 20 via the ingestion pathway and 46 via the inhalation pathway. Internal doses to nonspecified individuals and nonspecified fetuses are being reconstructed for each location in the ORERP Town Data Base for which exposure rates and cloud-arrival times are listed. Examples of reconstructing internal dose are presented. This method will also be adapted to reconstruct internal doses from NTS fallout to specific individuals in accordance with the person's age, past residence, life-style, and living pattern. PMID:2211124

  8. Making a Connection in the International Baccalaureate English Classroom: Using Multimodal Projects to Better Understand Students

    ERIC Educational Resources Information Center

    Cicione, Phillip M.

    2012-01-01

    The main focus of this dissertation is the literacy practices of students in a high school International Baccalaureate (IB) English classroom. The students demonstrated their meaning of texts that were studied as part of the curriculum in order to prepare them for their Formal Oral Commentaries. This was a mandated assessment of the IB English…

  9. Promoting Intercultural Contact on Campus: A Project to Connect and Engage International and Host Students

    ERIC Educational Resources Information Center

    Campbell, Nittaya

    2012-01-01

    International students' adjustment to living in an unfamiliar cultural environment and studying in a different educational system and language has been a topic of much research. Literature has shown that support from the host community could be the difference between a smooth transition and one fraught with problems and difficulties. This article…

  10. The Organizational and the Interpersonal in an International Development Education Project.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    The organizational aspects of the process of innovation diffusion and the planned change and development as applied to an appraisal of international development education (IDE) are examined in this paper. The document begins by describing how effective organizations and institutions should be planned and structured to produce planned change. It…

  11. Building International Experiences into an Engineering Curriculum--A Design Project-Based Approach

    ERIC Educational Resources Information Center

    Maldonado, Victor; Castillo, Luciano; Carbajal, Gerardo; Hajela, Prabhat

    2014-01-01

    This paper is a descriptive account of how short-term international and multicultural experiences can be integrated into early design experiences in an aerospace engineering curriculum. Such approaches are considered as important not only in fostering a student's interest in the engineering curriculum, but also exposing them to a…

  12. NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

  13. Evaluating the Virtual Institution: The Flashlight Project Evaluation of International University. AIR 1998 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Zuniga, Robin Etter; Pease, Pamela

    International University (IU) is an independent, nonprofit, "virtual" institution that offers baccalaureate and master's degrees in business communication via classes conducted entirely on the World Wide Web and Internet. Courses are developed by experts in the field of business communications; IU then compiles the necessary study guides, reading…

  14. The oscillating wing with aerodynamically balanced elevator

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Schwartz, I

    1941-01-01

    The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.

  15. The systems approach to airport security: The FAA (Federal Aviation Administration)/BWI (Baltimore-Washington International) Airport demonstration project

    SciTech Connect

    Caskey, D.L.; Olascoaga, M.T.

    1990-01-01

    Sandia National Laboratories has been involved in designing, installing and evaluating security systems for various applications during the past 15 years. A systems approach to security that evolved from this experience was applied to aviation security for the Federal Aviation Administration. A general systems study of aviation security in the United States was concluded in 1987. One result of the study was a recommendation that an enhanced security system concept designed to meet specified objectives be demonstrated at an operational airport. Baltimore-Washington International Airport was selected as the site for the demonstration project which began in 1988 and will be completed in 1992. This article introduced the systems approach to airport security and discussed its application at Baltimore-Washington International Airport. Examples of design features that could be included in an enhanced security concept also were presented, including details of the proposed Ramps Area Intrusion Detection System (RAIDS).

  16. International H2O Project (IHOP) 2002: Datasets Related to Atmospheric Moisture and Rainfall Prediction

    DOE Data Explorer

    Schanot, Allen [IHOP 2002 PI; Friesen, Dick [IHOP 2002 PI

    IHOP 2002 was a field experiment that took place over the Southern Great Plains of the United States from 13 May to 25 June 2002. The chief aim of IHOP_2002 was improved characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection. The region was an optimal location due to existing experimental and operational facilities, strong variability in moisture, and active convection [copied from http://www.eol.ucar.edu/projects/ihop/]. The project's master list of data identifies 146 publicly accessible datasets.

  17. The international charter for space and major disasters--project manager training

    USGS Publications Warehouse

    Jones, Brenda

    2011-01-01

    Regional Project Managers for the Charter are developed through training courses, which typically last between 3 and 5 days and are held in a central location for participants. These courses have resulted in increased activations and broader use of Charter data and information by local emergency management authorities. Project Managers are nominated according to either their regional affiliation or their specific areas of expertise. A normal activation takes 2 to 3 weeks to complete, with all related expenses the responsibility of the PM's home agency.

  18. Darrieus rotor aerodynamics in turbulent wind

    SciTech Connect

    Brahimi, M.T.; Paraschivoiu, I.

    1995-05-01

    The earlier aerodynamic models for studying vertical axis wind turbines (VAWT`s) are based on constant incident wind conditions and are thus capable of predicting only periodic variations in the loads. The purpose of the present study is to develop a model capable of predicting the aerodynamic loads on the Darrieus rotor in a turbulent wind. This model is based on the double-multiple streamtube method (DMS) and incorporates a stochastic wind model. The method used to simulate turbulent velocity fluctuations is based on the power spectral density. The problem consists in generating a region of turbulent flow with a relevant spectrum and spatial correlation. The first aerodynamic code developed is based on a one-dimensional turbulent wind model. However, since this model ignores the structure of the turbulence in the crossflow plane, an extension to three dimensions has been made. The computer code developed, CARDAAS, has been used to predict aerodynamic loads for the Sandia-17m rotor and compared to CARDAAV results and experimental data. Results have shown that the computed aerodynamic loads have been improved by including stochastic wind into the aerodynamic model.

  19. Fourier functional analysis for unsteady aerodynamic modeling

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Chin, Suei

    1991-01-01

    A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

  20. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Mathur, Savy Asachee; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system hich uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (MOP). During the MOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  1. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, S.; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  2. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  3. International Mussel Watch Project. Initial implementation phase. Final report. Coastal chemical contaminant monitoring using bivalves. Technical memo

    SciTech Connect

    Farrington, J.W.; Tripp, B.W.

    1995-05-01

    The objective International Mussel Watch is to assess the extent of chemical contamination in the equatorial and subequatorial areas of the southern hemisphere with particular attention to coastal areas of developing countries. The First Phase took place in South America, Central America, the Caribbean and Mexico with particular emphasis on PCBs and chlorinated pesticides in mollusks collected at 76 sites in 1991 to 1992. Samples from some sites were also analyzed for polycyclic aromatic hydrocarbons. Results show that concentrations of these organic chemicals in mollusks were generally lower than in similar samples collected in the NOAA Mussel Watch Project in the United States. Relatively high levels found in urban areas were with the ranges of concentrations found in the United States. The Project included a chemical intercomparison exercise that involved analytical chemists from the Host Countries.

  4. Sharp Hypervelocity Aerodynamic Research Probe

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.

  5. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2001-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  6. Parachute Aerodynamics From Video Data

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Cruz, Juan R.

    2005-01-01

    A new data analysis technique for the identification of static and dynamic aerodynamic stability coefficients from wind tunnel test video data is presented. This new technique was applied to video data obtained during a parachute wind tunnel test program conducted in support of the Mars Exploration Rover Mission. Total angle-of-attack data obtained from video images were used to determine the static pitching moment curve of the parachute. During the original wind tunnel test program the static pitching moment curve had been determined by forcing the parachute to a specific total angle-of -attack and measuring the forces generated. It is shown with the new technique that this parachute, when free to rotate, trims at an angle-of-attack two degrees lower than was measured during the forced-angle tests. An attempt was also made to extract pitch damping information from the video data. Results suggest that the parachute is dynamically unstable at the static trim point and tends to become dynamically stable away from the trim point. These trends are in agreement with limit-cycle-like behavior observed in the video. However, the chaotic motion of the parachute produced results with large uncertainty bands.

  7. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  8. Aerodynamics of a hybrid airship

    NASA Astrophysics Data System (ADS)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  9. Aerodynamics of Unsteady Sailing Kinetics

    NASA Astrophysics Data System (ADS)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  10. The aerodynamics of supersonic parachutes

    SciTech Connect

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlations of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.

  11. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR...

  12. An International Collaboration in Engineering Project Design and Curriculum Development: A Case Study.

    ERIC Educational Resources Information Center

    Anwar, Sohail; Favier, Patrick; Ravalitera, Guy

    This paper describes a collaboration in engineering project design and curriculum development between the Institut Universitaire de Technologie (IUT) housed in the Bethune campus of Universite d'Artois in France and the Altoona College of The Pennsylvania State University (Penn State Altoona). This collaboration embraces engineering design…

  13. Applying of interactive methods for astronomy education in a school project "International space colony TANHGRA"

    NASA Astrophysics Data System (ADS)

    Radeva, Veselka S.

    Several interactive methods, applied in the astronomy education during creation of the project about a colony in the Space, are presented. The methods Pyramid, Brainstorm, Snow-slip (Snowball) and Aquarium give the opportunity for schooler to understand and learn well a large packet of astronomical knowledge.

  14. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  15. Power Distance and Group Dynamics of an International Project Team: A Case Study

    ERIC Educational Resources Information Center

    Paulus, Trena M.; Bichelmeyer, Barbara; Malopinsky, Larissa; Pereira, Maura; Rastogi, Polly

    2005-01-01

    Project-based team activities are commonly used in higher education. Teams comprised of members from different national cultures can be faced with unique challenges during the creative process. Hofstede's (1991) cultural dimension of power distance was used to examine one such design team's intra- and inter-group interactions in a graduate-level…

  16. GRIN-Global: An International Project to Develop a Global Plant Genebank Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  17. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world's crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  18. 75 FR 26945 - International Education Programs Service-Fulbright-Hays Group Projects Abroad Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... cultures from around the world. The second priority helps increase the study abroad opportunities for in... and improvement of the study of modern foreign languages and area studies in the United States by providing opportunities for teachers, students, and faculty to study in foreign countries. Projects...

  19. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    SciTech Connect

    Sacuta, Norm; Young, Aleana; Worth, Kyle

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  20. International project on individual monitoring and radiation exposure levels in interventional cardiology.

    PubMed

    Padovani, R; Le Heron, J; Cruz-Suarez, R; Duran, A; Lefaure, C; Miller, D L; Sim, H K; Vano, E; Rehani, M; Czarwinski, R

    2011-03-01

    Within the Information System on Occupational Exposure in Medicine, Industry and Research (ISEMIR), a new International Atomic Energy Agency initiative, a Working Group on interventional cardiology, aims to assess staff radiation protection (RP) levels and to propose an international database of occupational exposures. A survey of regulatory bodies (RBs) has provided information at the country level on RP practice in interventional cardiology (IC). Concerning requirements for wearing personal dosemeters, only 57 % of the RB specifies the number and position of dosemeters for staff monitoring. Less than 40 % of the RBs could provide occupational doses. Reported annual median effective dose values (often <0.5 mSv) were lower than expected considering validated data from facility-specific studies, indicating that compliance with continuous individual monitoring is often not achieved in IC. A true assessment of annual personnel doses in IC will never be realised unless a knowledge of monitoring compliance is incorporated into the analysis. PMID:21051431

  1. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  2. Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Chang, Song; Wang, Z. Jane

    2013-05-01

    Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card.

  3. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  4. Low Speed Aerodynamics of the X-38 CRV

    NASA Technical Reports Server (NTRS)

    Komerath, N. M.; Funk, R.; Ames, R. G.; Mahalingam, R.; Matos, C.

    1998-01-01

    This project was performed in support of the engineering development of the NASA X-38 Crew Return Vehicle (CRV)system. Wind tunnel experiments were used to visualize various aerodynamic phenomena encountered by the CRV during the final stages of descent and landing. Scale models of the CRV were used to visualize vortex structures above and below the vehicle, and in its wake, and to quantify their trajectories. The effect of flaperon deflection on these structures was studied. The structure and dynamics of the CRV's wake during the drag parachute deployment stage were measured. Regions of high vorticity were identified using surveys conducted in several planes using a vortex meter. Periodic shedding of the vortex sheets from the sides of the CRV was observed using laser sheet videography as the CRV reached high angles of attack during the quasi-steady pitch-up prior to parafoil deployment. Using spectral analysis of hot-film anemometer data, the Strouhal number of these wake fluctuations was found to be 0.14 based on the model span. Phenomena encountered in flight test during parafoil operation were captured in scale-model tests, and a video photogrammetry technique was implemented to obtain parafoil surface shapes during flight in the tunnel. Forces on the parafoil were resolved using tension gages on individual lines. The temporal evolution of the phenomenon of leading edge collapse was captured. Laser velocimetry was used to demonstrate measurement of the porosity of the parafoil surface. From these measurements, several physical explanations have been developed for phenomena observed at various stages of the X-38 development program. Quantitative measurement capabilities have also been demonstrated for continued refinement of the aerodynamic technologies employed in the X-38 project. Detailed results from these studies are given in an AIAA Paper, two slide presentations, and other material which are given on a Web-based archival resource. This is the Digital

  5. Study of Internal Dump Stability of Dudhichua Open Cast Project, Northern Coalfields Limited, India

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Roy, I.

    2015-04-01

    Dudhichua Open Cast Project is one of the prestigious projects of Northern Coalfields Limited, India; with total mineable coal reserves of approximately 400 million tonnes and corresponding 1,700 million m3 volume of waste rock i.e. overburden material. Accommodating this waste dump masses in the limited space of the de-coaled portion of the quarry is considered as one of the major challenges to the mine operators. It has been reported that this mine is facing frequent slope failures of waste rock dumps which is of great concern to the mine management in view of unsafe working condition. To tackle the above problem, a detailed investigation was carried out to propose a stable dump profile which will cater to the land economics and safety aspects of the mine. A detailed investigation along with recommendation of optimum design for dragline dump profile along with shovel-dumper-dump profile is presented in this paper.

  6. International SUSMIN-project aims at sustainable gold mining in EU

    NASA Astrophysics Data System (ADS)

    Backnäs, Soile; Neitola, Raisa; Turunen, Kaisa; Lima, Alexandre; Fiúza, António; Szlachta, Malgorzata; Wójtowicz, Patryk; Maftei, Raluca; Munteanu, Marian; Alakangas, Lena; Baciu, Calin; Fernández, Dámaris

    2015-04-01

    Although the gold demand has been constantly increasing in past years, the commodity findings have been decreasing and the extraction of gold has complicated due to increasing complexity and decreasing grade of the ores. Additionally, even gold mining could increase economical development, it has also challenges in eco-efficiency and extraction methods (e.g. cyanide). Thus, the novel energy and resource-efficient methods and technologies for mineral processing should be developed to concentrate selectively different gold bearing minerals. Furthermore, technologies for efficient treatment of mine waters, sustainable management of wastes, and methods to diminish environmental and social impacts of mining are needed. These problems will be addressed by the three year long project SUSMIN. The SUSMIN-project identifies and evaluates environmental impacts and economical challenges of gold mining within EU. The objective of the project is to increase the transnational cooperation and to support environmentally, socially and economically sustainable viable gold production. The focus is to develop and test geophysical techniques for gold exploration, eco-efficient ore beneficiation methods and alternatives for cyanide leaching. Additionally, the research will improve treatment methods for mine waters by the development and testing of advanced adsorbents. The research on socio-economic issues pursues to develop tools for enhancing the mechanisms of the corporate social responsibility as well as community engagement and management of the relations with the stakeholders. Moreover, with the environmental risk assessment and better knowledge of the geochemistry and long-term transformation of the contaminants in mining wastes and mine waters, the mining companies are able to predict and prevent the impacts to the surrounding environment, resulting in an improved environmental management solution. The SUSMIN consortium led by Geological Survey of Finland (GTK) includes seven

  7. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  8. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  9. 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hahne, David E. (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 1/Part 2 publication covers the design optimization and testing sessions.

  10. 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi (Editor)

    1999-01-01

    NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry HighSpeed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of. Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

  11. Priorities in Educational Development in Pakistan: Projects and Training Programs. Report of an International Seminar (Islamabad, Pakistan, September 7-9, 1983).

    ERIC Educational Resources Information Center

    Mellor, Warren L., Ed.; Khan, M. Athar, Ed.

    The Center for International Education and Development (CIED) of the University of Alberta, in its commitment to share--through publication--information about new projects and policies being tried in developing countries, published the proceedings of an international seminar focusing on education in Pakistan. The meeting was the result of…

  12. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  13. Aerodynamic Parameter Identification of a Venus Lander

    NASA Astrophysics Data System (ADS)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  14. Science strategy of the GEWEX Continental-scale International Project (GCIP)

    NASA Astrophysics Data System (ADS)

    Schaake, John C.

    GCIP is a major scientific undertaking with broad international interest. It addresses many issues at the forefront of climate research and water resources management. This ambitious scientific program depends upon the latest developments in atmospheric and hydrologic modeling, on advances in computer technology and on new measurements that will be available as part of the modernization of US meteorological networks and from future improved environmental satellites. This paper discusses the objectives of GCIP, some of the scientific challenges and strategies being considered to meet these challenges.

  15. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  16. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  17. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  18. Aerodynamic heating in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Reddy, C. Subba

    1993-01-01

    Aerodynamic heating in hypersonic space vehicles is an important factor to be considered in their design. Therefore the designers of such vehicles need reliable heat transfer data in this respect for a successful design. Such data is usually produced by testing the models of hypersonic surfaces in wind tunnels. Most of the hypersonic test facilities at present are conventional blow-down tunnels whose run times are of the order of several seconds. The surface temperatures on such models are obtained using standard techniques such as thin-film resistance gages, thin-skin transient calorimeter gages and coaxial thermocouple or video acquisition systems such as phosphor thermography and infrared thermography. The data are usually reduced assuming that the model behaves like a semi-infinite solid (SIS) with constant properties and that heat transfer is by one-dimensional conduction only. This simplifying assumption may be valid in cases where models are thick, run-times short, and thermal diffusivities small. In many instances, however, when these conditions are not met, the assumption may lead to significant errors in the heat transfer results. The purpose of the present paper is to investigate this aspect. Specifically, the objectives are as follows: (1) to determine the limiting conditions under which a model can be considered a semi-infinite body; (2) to estimate the extent of errors involved in the reduction of the data if the models violate the assumption; and (3) to come up with correlation factors which when multiplied by the results obtained under the SIS assumption will provide the results under the actual conditions.

  19. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  20. Gardening as a Learning Environment: A Study of Children's Perceptions and Understanding of School Gardens as Part of an International Project

    ERIC Educational Resources Information Center

    Bowker, Rob; Tearle, Penni

    2007-01-01

    This article considers the impact of the early stages of an international project, Gardens for Life (GfL), on children's perceptions of school gardening and on their learning. The project involved 67 schools in England, Kenya and India and focused on the growing of crops, recognising the importance of both the process and product of this activity…

  1. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLANS) Project.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...

  2. Export Odyssey: An Exposition and Analytical Review of Literature Concerning an Undergraduate Student Project in International Marketing on Key Teaching-Learning Dimensions.

    ERIC Educational Resources Information Center

    Williamson, Nicholas C.

    2001-01-01

    Describes Export Odyssey (EO), a structured, Internet-intensive, team-based undergraduate student project in international marketing. Presents an analytical review of articles in the literature that relate to three key teaching-learning dimensions of student projects (experiential versus non-experiential active learning, team-based versus…

  3. Pontine Reticulospinal Projections in the Neonatal Mouse: Internal Organization and Axon Trajectories

    PubMed Central

    Sivertsen, Magne S.; Perreault, Marie-Claude; Glover, Joel C.

    2016-01-01

    We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628–1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons. PMID:26400815

  4. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.

    PubMed

    Sivertsen, Magne S; Perreault, Marie-Claude; Glover, Joel C

    2016-04-15

    We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628-1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons. PMID:26400815

  5. Space shuttle afterbody aerodynamics/plume simulation data summary

    NASA Technical Reports Server (NTRS)

    Blackwell, K. L.; Hair, L. M.

    1978-01-01

    A series of parametric wind tunnel tests was conducted to provide a base for developing a simulation of afterbody/base aerodynamics for multibody/multibase rocket-powered vehicles (such as Space Shuttle) which use unheated air as the simulant gas in development wind tunnel tests. The tests described were parameterized on external configuration, nozzle internal configuration, base geometry, propulsion gas type, and freestream Mach number (0.5 to 3.5). The tests were conducted over a 4-year period. Presented in this report are the data and pertinent reference information necessary to perform an analysis which would lead to a simulation procedure. The type of data obtained during the tests described herein include model base afterbody, and nozzle internal surface static pressure distributions, model chamber pressure and temperature, and freestream conditions. Also included is a brief description of simulation procedures that were used by the Space Shuttle program.

  6. Missile Aerodynamics for Ascent and Re-entry

    NASA Technical Reports Server (NTRS)

    Watts, Gaines L.; McCarter, James W.

    2012-01-01

    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.

  7. Geometry effects on aerodynamics performance of a low aspect ratio turbine nozzle

    NASA Astrophysics Data System (ADS)

    Chen, Naixing; Zhang, Hongwu; Xu, Yanji; Huang, Weiguang

    2004-11-01

    This paper describes the influence of some geometric parameters on aerodynamics performance of a low-aspect-ratio turbine blading designed by a novel method developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences. This is a part of the study on aerodynamics optimization of turbomachinery. It follows the development of the basic ideas in the turbomachinery aerodynamics research project at the institute. The present paper concentrates mainly on the effects of geometry, such as stagger angle, leading and trailing edge thickness, maximum thickness and its location on adiabatic efficiency, total pressure ratio and mass flow rate. The study was performed and assessed for a low-aspect ratio turbine nozzle using 3D steady Reynolds-averaged N.S. solver. Using the knowledge of the flow physics analysis an optimized turbine nozzle was obtained.

  8. Development of the Orion Crew Module Static Aerodynamic Database. Par 2; Supersonic/Subsonic

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Walker, Eric L.; Brauckmann, Gregory J.; Robinson, Phil

    2011-01-01

    This work describes the process of developing the nominal static aerodynamic coefficients and associated uncertainties for the Orion Crew Module for Mach 8 and below. The database was developed from wind tunnel test data and computational simulations of the smooth Crew Module geometry, with no asymmetries or protuberances. The database covers the full range of Reynolds numbers seen in both entry and ascent abort scenarios. The basic uncertainties were developed as functions of Mach number and total angle of attack from variations in the primary data as well as computations at lower Reynolds numbers, on the baseline geometry, and using different flow solvers. The resulting aerodynamic database represents the Crew Exploration Vehicle Aerosciences Project's best estimate of the nominal aerodynamics for the current Crew Module vehicle.

  9. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899

  10. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  11. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  12. Annual report of the international nuclear research initiative OSMOSE project (FY05).

    SciTech Connect

    Klann, R. T.; Hudelot, J. P.; Perret, G.; Drin, N.; Nuclear Engineering Division; Commissariat a l'Energie Atomique

    2007-10-03

    The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculational models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program -- including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

  13. Community engagement and informed consent in the International HapMap project.

    PubMed

    Rotimi, Charles; Leppert, Mark; Matsuda, Ichiro; Zeng, Changqing; Zhang, Houcan; Adebamowo, Clement; Ajayi, Ike; Aniagwu, Toyin; Dixon, Missy; Fukushima, Yoshimitsu; Macer, Darryl; Marshall, Patricia; Nkwodimmah, Chibuzor; Peiffer, Andy; Royal, Charmaine; Suda, Eiko; Zhao, Hui; Wang, Vivian Ota; McEwen, Jean

    2007-01-01

    The International HapMap Consortium has developed the HapMap, a resource that describes the common patterns of human genetic variation (haplotypes). Processes of community/public consultation and individual informed consent were implemented in each locality where samples were collected to understand and attempt to address both individual and group concerns. Perceptions about the research varied, but we detected no critical opposition to the research. Incorporating community input and responding to concerns raised was challenging. However, the experience suggests that approaching genetic variation research in a spirit of openness can help investigators better appreciate the views of the communities whose samples they seek to study and help communities become more engaged in the science. PMID:17575464

  14. Integrating ethics and science in the International HapMap Project

    PubMed Central

    2008-01-01

    Genomics resources that use samples from identified populations raise scientific, social and ethical issues that are, in many ways, inextricably linked. Scientific decisions about which populations to sample to produce the HapMap, an international genetic variation resource, have raised questions about the relationships between the social identities used to recruit participants and the biological findings of studies that will use the HapMap. The sometimes problematic implications of those complex relationships have led to questions about how to conduct genetic variation research that uses identified populations in an ethical way, including how to involve members of a population in evaluating the risks and benefits posed for everyone who shares that identity. The ways in which these issues are linked is increasingly drawing the scientific and ethical spheres of genomics research closer together. PMID:15153999

  15. Annual report of the international nuclear energy research initiative OSMOSE project (FY06).

    SciTech Connect

    Klann, R. T.; Hudelot, J. P.; Drin, N.; Zhong, Z.; Nuclear Engineering Division; Commissariat a l Energie Atomique

    2007-08-29

    The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculation models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program--including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

  16. Development of multifilamentary niobium titanium and niobium tin strands for the International Thermonuclear Experimental Reactor project

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Zhang, P. X.; Tang, X. D.; Liu, X. H.; Lu, Y. F.; Weng, P. D.; Grunblatt, G.; Hoang, Gia K.; Verwaerde, C.

    2007-05-01

    The International Thermonuclear Experimental Reactor(ITER) device should demonstrate the scientific and technological possibility of commercial fusion energy production in large scale in order to solve the worldwide energy problem in the future. The superconducting magnet system is the key part of the ITER device to supply high magnetic fields for confining the deuterium-tritium plasma. The multifilament NbTi and Nb3Sn strands with high quality have been studied to meet the specifications of superconducting strands for fabricating poloidal field coils (PF) and toroidal field coils (TF). For NbTi strands with 8306 filaments, Jc of 2910 A mm-2 (4.2 K, 5 T, 0.1 μV cm-1) has been obtained by a conventional process. The proposed process could be used for fabrication of long strands with a unit length more than 5000 m. By an internal tin process the multifilamentary Nb3Sn strands with a diameter of 0.79 mm and a unit length longer than 5000 m have been successfully fabricated. The highest non-Cu Jcn (12 T, 4.2 K, 0.1 μV cm-1) value of 1249 A mm-2 has been obtained. The n-value of Nb3Sn strands is larger than 20 and the residual resistance ratio (RRR) value lies between 150 and 220. The formation of the Nb3Sn superconducting phase together with the evolution of microstructure has been investigated by neutron diffraction and scanning electron microscopy. The results indicate that the properties of NbTi and Nb3Sn strands have already met basically the specifications proposed by the ITER program.

  17. Strengthening district health service management and delivery through internal contracting: lessons from pilot projects in Cambodia.

    PubMed

    Khim, Keovathanak; Annear, Peter Leslie

    2013-11-01

    Following a decade of piloting different models of contracting, in mid-2009 the Cambodian Ministry of Health began to test a form of 'internal contracting' for health care delivery in selected health districts (including hospitals and health centers) contracted by the provincial health department as Special Operating Agencies (SOAs) and provided with greater management autonomy. This study assesses the internal contracting approach as a means for improving the management of district health services and strengthening service delivery. While the study may contribute to the emerging field now known as performance-based financing, the lessons deal more broadly with the impact of management reform and increased autonomy in contrast to traditional public sector line-management and budgeting. Carried out during 2011, the study was based on: (i) a review of the literature and of operational documents; (ii) primary data from semi-structured key informant interviews with 20 health officials in two provinces involved in four SOA pilot districts; and (iii) routine data from the 2011 SOA performance monitoring report. Five prerequisites were identified for effective contract management and improved service delivery: a clear understanding of roles and responsibilities by the contracting parties; implementation of clear rules and procedures; effective management of performance; effective monitoring of the contract; and adequate and timely provision of resources. Both the level and allocation of incentives and management bottlenecks at various levels continue to impede implementation. We conclude that, in contracted arrangements like these, the clear separation of contracting functions (purchasing, commissioning, monitoring and regulating), management autonomy where responsibilities are genuinely devolved and accepted, and the provision of resources adequate to meet contract demands are necessary conditions for success. PMID:23489889

  18. Freedom is an international partnership. [foreign contributions to NASA Space Station project

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.

    1990-01-01

    The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.

  19. The Economics of Tobacco Control: Evidence from the International Tobacco Control (ITC) Policy Evaluation Project

    PubMed Central

    Tauras, John A.; Chaloupka, Frank J.; Quah, Anne Chiew Kin; Fong, Geoffrey T.

    2015-01-01

    Over the past few decades, the importance of economic research in advancing tobacco control policies has become increasingly clear. Extensive research has demonstrated that increasing tobacco taxes and prices is the single most cost-effective tobacco control measure. The research contained in this supplement adds to this evidence and provides new insights into how smokers respond to tax and price changes using the rich data on purchase behaviors, brand choices, tax avoidance and evasion, and tobacco use collected systematically and consistently across countries and over time by the ITC Project. The findings from this research will help inform policymakers, public health professionals, advocates, and others seeking to maximize the public health and economic benefits from higher taxes. PMID:24500268

  20. Measuring the speed of light using Jupiter's moons: a global citizen science project for International Year of Light 2015

    NASA Astrophysics Data System (ADS)

    Hendry, Martin A.; Hammond, Giles; Simmons, Mike

    2015-08-01

    2015 represents both the centenary of General Relativity and International Year of Light - the latter marking the 150th anniversary of James Clerk Maxwell's ground-breaking paper on "A dynamical theory of the electromagnetic field". These landmark dates provide an exciting opportunity to set up a global citizen science project that re-enacts the seminal 1675 experiment of Ole Romer: to measure the speed of light by observing the time eclipses of the satellites of Jupiter. This project - which has been set up by astronomers at the University of Glasgow, UK in partnership with Astronomers without Borders - is an ideal platform for engaging the amateur astronomy community, schools and the wider public across the globe. It requires only simple observations, with a small spotting scope or telescope, and can be carried out straightforwardly in both cities and dark-sky locations. It highlights a fascinating chapter in astronomical history, as well as the ongoing importance of accurate astrometry, orbital motion, the concept of longitude and knowing one's position on the Earth. In the context of the GR centenary, it also links strongly to the science behind GPS satellites and a range of important topics in the high school curriculum - from the electromagnetic spectrum to the more general principles of the scientific method.In this presentation we present an overview of our global citizen science project for IYL2015: its scope and motivation, the total number and global distribution of its participants to date and how astronomers around the world can get involved. We also describe the intended legacy of the project: a extensive database of observations that can provide future astronomy educators with an accessible and historically important context in which to explore key principles for analysing large astronomical datasets.

  1. Turbine disk cavity aerodynamics and heat transfer

    NASA Astrophysics Data System (ADS)

    Johnson, B. V.; Daniels, W. A.

    1992-07-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  2. Summary analysis of the Gemini entry aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  3. Aerodynamics of magnetic levitation (MAGLEV) trains

    NASA Technical Reports Server (NTRS)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  4. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  5. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  6. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  7. History of the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Ballhaus, William F., Jr.

    1987-01-01

    The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.

  8. Wind turbine aerodynamics research needs assessment

    NASA Astrophysics Data System (ADS)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  9. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  10. Identification of aerodynamic models for maneuvering aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Hu, C. C.

    1992-01-01

    A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.

  11. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  12. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    NASA Technical Reports Server (NTRS)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  13. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  14. Scientists as Correspondents: Exploratorium "Ice Stories" for International Polar Year Project Educational Outreach

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.

    2008-12-01

    As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.

  15. Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1999-01-01

    This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

  16. Method of reducing drag in aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Hrach, Frank J. (Inventor)

    1993-01-01

    In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

  17. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1975-01-01

    After leasing a cab-over tractor-trailer from a Southern California firm, Dryden researchers added sheet metal modifications like those shown here. They rounded the front corners and edges, and placed a smooth fairing on the cab's roofs and sides extending back to the trailer. During the investigation of truck aerodynamics, the techniques honed in flight research proved highly applicable. By closing the gap between the cab and the trailer, for example, researchers discovered a significant reduction in aerodynamic drag, one resulting in 20 to 25 percent less fuel consumption than the standard design. Many truck manufacturers subsequently incorporated similar modifications on their products.

  18. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  19. A case study of the Thunderstorm Research International Project storm of July 11, 1978. I - Analysis of the data base

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.; Barnard, Theresa A.; Forbes, Gregory S.; Krider, E. Philip; Lhermitte, Roger

    1990-01-01

    The data obtained at the time of the Thunderstorm Research International Project storm at the Kennedy Space Center on July 11, 1978 are analyzed in a model-independent manner. The data base included data from three Doppler radars, a lightning detection and ranging system and a network of 25 electric field mills, and rain gages. Electric field measurements were used to analyze the charge moments transferred by lightning flashes, and the data were fitted to Weibull distributions; these were used to estimate statistical parameters of the lightning for both intracloud and cloud-to-ground flashes and to estimate the fraction of the flashes which were below the observation threshold. The displacement and the conduction current densities were calculated from electric field measurements between flashes. These values were used to derive the magnitudes and the locations of dipole and monopole generators by least squares fitting the measured Maxwell current densities to the displacement-dominated equations.

  20. [The Bilbao declaration: international meeting on the law concerning the human genome project].

    PubMed

    1994-06-01

    The Bilbao statement was the result of a work meeting, held the day before the closing session by a group of representative experts, formed by general chairmen and meeting organizers. The compelled and necessary consent gave rise to the document that was read and communicated to the world's public opinion during the closing act on may 26, 1993. Notwithstanding, the working group considered that the divulged version was provisory and committed to continue the task of re-elaborating the statement. The aim was to complete and improve it, taking the greatest advantage of the important meeting achievements. The document that is next reproduced is the definitive integral version of the Bilbao Statement. The expert group that takes the responsibility of this Statement is Jean Dausset, Nobel Prize of Medicine (1980); Carleton Gajdusek, Nobel Prize of Medicine (1976); Santiago Grisolía president of UNESCO committee for the Genome Project; Michael Kirby, President of the Court of Appeal of the Supreme Court of New South Wales, Australia; Aaron Klug, member of the Constitutional Council, Paris, France; Rafael Mendizábal, Judge of the Constitutional Court, Madrid, Spain; Juan Bautista Pardo, President of the Superior Court of Justice of the Basque Country and Carlos María Romeo Casabona, Director of the Chair of Law and Human Genome of the University of Deusto (Bilbao). PMID:7732218

  1. The Unification of Space Qualified Integrated Circuits by Example of International Space Project GAMMA-400

    NASA Astrophysics Data System (ADS)

    Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.

    The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.

  2. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    SciTech Connect

    Bass, B.R.; Pugh, C.E.; Keeney, J.; Schulz, H.; Sievers, J.

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA`s Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method.

  3. International collaborative project to compare and track the nutritional composition of fast foods

    PubMed Central

    2012-01-01

    Background Chronic diseases are the leading cause of premature death and disability in the world with over-nutrition a primary cause of diet-related ill health. Excess quantities of energy, saturated fat, sugar and salt derived from fast foods contribute importantly to this disease burden. Our objective is to collate and compare nutrient composition data for fast foods as a means of supporting improvements in product formulation. Methods/design Surveys of fast foods will be done in each participating country each year. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from fast food companies, in-store materials or from company websites. Foods will be categorized into major groups for the primary analyses which will compare mean levels of saturated fat, sugar, sodium, energy and serving size at baseline and over time. Countries currently involved include Australia, New Zealand, France, UK, USA, India, Spain, China and Canada, with more anticipated to follow. Discussion This collaborative approach to the collation and sharing of data will enable low-cost tracking of fast food composition around the world. This project represents a significant step forward in the objective and transparent monitoring of industry and government commitments to improve the quality of fast foods. PMID:22838731

  4. Aerodynamic Modeling for Aircraft in Unsteady Flight Conditions

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    2000-01-01

    This report summarizes the activities in unsteady aerodynamic modeling and application of unsteady aerodynamic models to flight dynamics. A public on briefing was presented on July 21, 1999 at Langley Research Center.

  5. Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

    NASA Technical Reports Server (NTRS)

    Hoyniak, D.; Fleeter, S.

    1985-01-01

    An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

  6. The TROJAN Project: Creating a Customized International Orthopedic Training Program for Junior Doctors

    PubMed Central

    Kalraiya, Ashish; Buddhdev, Pranai

    2015-01-01

    Musculoskeletal problems account for a vast proportion of presentations encountered by doctors globally, with figures ranging from 15-36%. However, the time medical schools allocate to learning orthopedics is by no means proportional to this. This study aims to bridge this gap by developing an international orthopedic teaching program tailored to the specific knowledge and skills required by junior doctors in different countries. This prospective study asked fifty junior doctors, who had recently completed an orthopedics job, what three orthopedic teaching topics taught retrospectively would have benefitted their clinical practice. The most requested topics were used to design educational workshops for junior doctors and these consequently comprised the TROJAN (Teaching Requested by Orthopaedic Juniors And Novices) training program. Data was collected from twenty-five junior doctors in KwaZulu-Natale State, South Africa, and twenty-five in London, UK. It is therefore in these two countries that the TROJAN program was subsequently made available. Participants who selected topics were within two years of graduating medical school and had worked an orthopedic or Accident and Emergency job within the last year. 49% of topics chosen by SA doctors were practical skills such as wrist and ankle fracture reduction techniques, and management of open fractures. The most requested topic by UK doctors (11 out of 25) was management of neck of femur fractures. This is rationalized by the fact South African doctors require more hands-on responsibility in their daily practice whereas in the UK greater emphasis is placed on optimizing patients for theatre and making sound management plans. TROJAN currently develops orthopedic skills and knowledge in junior doctors in South Africa and United Kingdom with teaching customized based upon location. Feedback has been exceptionally positive with every candidate thus far rating the usefulness of TROJAN as the highest option, very useful

  7. Results from the OECD report on international projections of electricity generating costs

    SciTech Connect

    Paffenbarger, J.A.; Bertel, E.

    1998-07-01

    The International Energy Agency and Nuclear Energy Agency of the OECD have periodically undertaken a joint study on electricity generating costs in OECD Member countries and selected non-Member countries. This paper presents key results from the 1998 update of this study. Experts from 19 countries drawn from electric utility companies and government provided data on capital costs, operating and maintenance costs, and fuel costs from which levelized electricity generating costs (US cents/kWh) for baseload power plants were estimated in each country using a common set of economic assumptions. Light water nuclear power plants, pulverized coal plants, and natural gas-fired combined cycle gas turbines were the principal options evaluated. five and 10% discount rates, 40-year operating lifetime, and 75% annual load factor were the base assumptions, with sensitivity analyses on operating lifetime and load factor. Fuel costs and fuel escalation were provided individually by country, with a sensitivity case to evaluate costs assuming no real fuel price escalation over plant lifetimes. Of the three principal fuel/technology options, none is predominantly the cheapest option for all economic assumptions. However, fossil-fueled options are generally estimated to be the least expensive option. The study confirms that gas-fired combined cycles have improved their economic performance in most countries in recent years and are strong competitors to nuclear and coal-fired plants. Eleven out of the 18 countries with two or more options show gas-fired plants to be the cheapest option at 10% discount rate. Coal remains a strong competitor to gas when lower discount rates are used. Nuclear is the least expensive at both 5 and 10% discount rate in only two countries. Generally, with gas prices above 5 US$/GJ, nuclear plants constructed at overnight capital costs below 1 650 $/kWe have the potential to be competitive only at lower discount rates.

  8. Nonlinear problems in flight dynamics involving aerodynamic bifurcations

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.

    1985-01-01

    Aerodynamic bifurcation is defined as the replacement of an unstable equilibrium flow by a new stable equilibrium flow at a critical value of a parameter. A mathematical model of the aerodynamic contribution to the aircraft's equations of motion is amended to accommodate aerodynamic bifurcations. Important bifurcations such as, the onset of large-scale vortex-shedding are defined. The amended mathematical model is capable of incorporating various forms of aerodynamic responses, including those associated with dynamic stall of airfoils.

  9. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  10. Wing Warping and Its Impact on Aerodynamic Efficiency

    NASA Astrophysics Data System (ADS)

    Loh, Ben; Jacob, Jamey

    2007-11-01

    Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.

  11. Tracking and coordinating an international curation effort for the CCDS Project

    PubMed Central

    Harte, Rachel A.; Farrell, Catherine M.; Loveland, Jane E.; Suner, Marie-Marthe; Wilming, Laurens; Aken, Bronwen; Barrell, Daniel; Frankish, Adam; Wallin, Craig; Searle, Steve; Diekhans, Mark; Harrow, Jennifer; Pruitt, Kim D.

    2012-01-01

    The Consensus Coding Sequence (CCDS) collaboration involves curators at multiple centers with a goal of producing a conservative set of high quality, protein-coding region annotations for the human and mouse reference genome assemblies. The CCDS data set reflects a ‘gold standard’ definition of best supported protein annotations, and corresponding genes, which pass a standard series of quality assurance checks and are supported by manual curation. This data set supports use of genome annotation information by human and mouse researchers for effective experimental design, analysis and interpretation. The CCDS project consists of analysis of automated whole-genome annotation builds to identify identical CDS annotations, quality assurance testing and manual curation support. Identical CDS annotations are tracked with a CCDS identifier (ID) and any future change to the annotated CDS structure must be agreed upon by the collaborating members. CCDS curation guidelines were developed to address some aspects of curation in order to improve initial annotation consistency and to reduce time spent in discussing proposed annotation updates. Here, we present the current status of the CCDS database and details on our procedures to track and coordinate our efforts. We also present the relevant background and reasoning behind the curation standards that we have developed for CCDS database treatment of transcripts that are nonsense-mediated decay (NMD) candidates, for transcripts containing upstream open reading frames, for identifying the most likely translation start codons and for the annotation of readthrough transcripts. Examples are provided to illustrate the application of these guidelines. Database URL: http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi PMID:22434842

  12. Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    Wygnanski, I.

    2010-01-01

    Exploiting instabilities rather than forcing the flow is advantageous. Simple 2D concepts may not always work. Nonlinear effects may result in first order effect. Interaction between spanwise and streamwise vortices may have a paramount effect on the mean flow, but this interaction may not always be beneficial.

  13. Index for aerodynamic data from the Bumblebee program

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Barnes, G. A.

    1978-01-01

    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

  14. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary aerodynamic surfaces. 25.445... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence...

  15. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary aerodynamic surfaces. 25.445... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.445 Auxiliary aerodynamic surfaces. (a) When significant, the aerodynamic influence...

  16. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  17. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor. PMID:22617112

  18. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  19. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (1) Outline of the project

    NASA Astrophysics Data System (ADS)

    Miura, S.; Sato, T.; Fujimoto, H.; Sun, W.; Freymueller, J. T.; Kaufman, A. M.; Cross, R.

    2006-12-01

    Glaciers at high latitudes are considered to be extremely sensitive to climate change and thus monitoring of glaciers is a clue to evaluate the future effect of global warming and the related phenomena. Ice mass changes also produce a time-variable surface load and give us useful data to investigate subsurface structure of the earth, especially to constrain the flow characteristics of the mantle. Larsen et al. (JGR03, GJI04, EPSL05) have extensively studied on vertical crustal movement in SE Alaska by means of raised shorelines, tide gauge measurements, and GPS to reveal the world's fastest glacial isostatic uplifting, which can be attributed to the response associated with glacier retreat. Displacement data, however, can only be used to constrain the sum of the elastic response to present-day ice melting (PDIM) and the viscoelastic one to past changes in ice. Wahr et al. (GRL95) proposed a method to distinguish the one from the other by combining surface displacement and absolute gravity measurements, though the approach may have limited spatial resolution. A Japan-US joint research project, ISEA (International geodetic research project in SouthEast Alaska), was initiated in 2005 to add new geodetic data sets and to refine the viscoelastic model derived by the previous studies. In June, 2006 three kinds of field work were carried out. Absolute gravity (AG) surveys (Sun et al., this meeting) were performed at five sites in and around Glacier Bay. Gravity tide (GT) observation using Scintrex's CG3M gravimeter was started in the campus of University of Alaska, Southeast (Sato et al., this meeting) to give precise corrections for the effect of ocean tide loading, which are the keys to increase the observation accuracy of AG and GPS,. Finally, new continuous GPS (CGPS) sites were established (Kaufman et al., this meeting) to examine not only the secular uplifting but the possible seasonal variation due to snow loading in the winter and ice loss in the summer. This

  20. AERODYNAMIC CLASSIFICATION OF FIBERS WITH AEROSOL CENTRIFUGES

    EPA Science Inventory

    The constituent particles of many ambient and workplace aerosols of health effects concerns are of fibrous and aggregate geometric shapes. he sites of deposition in the human respiratory system are primarily related to the mass median aerodynamic diameters of inhaled particle siz...