Science.gov

Sample records for aeroelastic stability analysis

  1. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  2. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  3. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    NASA Astrophysics Data System (ADS)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  4. Rotorcraft aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

  5. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  6. Aeroelastic Stability Computations for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2001-01-01

    This paper describes an aeroelastic analysis program for turbomachines. Unsteady Navier-Stokes equations are solved on dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics. Blade structural response is modeled using a modal representation of the blade and the work-per-cycle method is used to evaluate the stability characteristics. Nonzero interblade phase angle is modeled using phase-lagged boundary conditions. Results obtained showed good correlation with existing experimental, analytical, and numerical results. Numerical analysis also showed that given the computational resources available today, engineering solutions with good accuracy are possible using higher fidelity analyses.

  7. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  8. Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Sivaneri, N.

    1982-01-01

    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.

  9. ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Lucero, John M.

    1996-01-01

    This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.

  10. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  11. Analysis of structures with rotating, flexible substructures applied to rotorcraft aeroelasticity in GRASP. [General Rotorcraft Aeromechanical Stability Program

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.

    1987-01-01

    Application to the General Rotorcraft Aeromechanical Stability Program (GRASP) of new methodology for structural dynamic analysis, including substructuring, frames of reference, nodes, finite elements, and constraints, is discussed. The structure is decomposed into a hierarchy of substructures, and discrete relative motion between substructures is analyzed exactly. The finite element method is used to treat deformation of continua, and the library of finite elements includes a nonlinear beam element incorporating aeroelastic effects. Analytical bases for the aeroelastic beam element and the screw constraint are considered, and the important role of geometric stiffness in the formulation is shown.

  12. An improved CAMRAD model for aeroelastic stability analysis of the XV-15 with advanced technology blades

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1993-01-01

    In pursuit of higher performance, the XV-15 Tiltrotor Research Aircraft was modified by the installation of new composite rotor blades. Initial flights with the Advanced Technology Blades (ATB's) revealed excessive rotor control loads that were traced to a dynamic mismatch between the blades and the aircraft control system. The analytical models of both the blades and the mechanical controls were extensively revised for use by the CAMRAD computer program to better predict aeroelastic stability and loads. This report documents the most important revisions and discusses their effects on aeroelastic stability predictions for airplane-mode flight. The ATB's may be flown in several different configurations for research, including changes in blade sweep and tip twist. The effects on stability of 1 deg and 0 deg sweep are illustrated, as are those of twisted and zero-twist tips. This report also discusses the effects of stiffening the rotor control system, which was done by locking out lateral cyclic swashplate motion with shims.

  13. An analysis of the effects of aeroelasticity on static longitudinal stability and control of a swept-back-wing airplane

    NASA Technical Reports Server (NTRS)

    Skoog, Richard B

    1951-01-01

    A theoretical analysis of the effects of aeroelasticity on the stick-fixed static longitudinal stability and elevator angle required for balance of an airplane is presented together with calculated effects for a swept-wing bomber of relatively high flexibility. Although large changes in stability due to certain parameters are indicated for the example airplane, the over-all stability change after considering all parameters was quite small, compared to the individual effects, due to the counterbalancing of wing and tail contributions. The effect of flexibility on longitudinal control for the example airplane was found to be of little real importance.

  14. Helicopter aeroelastic stability and response - Current topics and future trends

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.

  15. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aeroelastic stability requirements. 25.629... Aeroelastic stability requirements. (a) General. The aeroelastic stability evaluations required under this section include flutter, divergence, control reversal and any undue loss of stability and control as...

  16. Aeroelastic analysis of sounding rocket vehicles.

    NASA Technical Reports Server (NTRS)

    Meyers, S. C.

    1973-01-01

    Rigid-body stability analysis can be extended to treat aeroelastic effects by allowing the structure to deflect under airloads as a simple beam. Linear aerodynamics and the bent shape then define the airloads. The resulting equations are indeterminant but can be manipulated to show the basic aeroelastic effects of flexibility, dynamic pressure, and angle of attack. The FLMD quasi-static program can solve these equations by iteration and compute stability for a specific vehicle/payload combination. Given the proper distributed inputs for the instant of time investigated, the FLMD predicts the center of pressure and related parameters, such as static margin.

  17. Aeroelastic Stability of Idling Wind Turbines

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Riziotis, Vasilis A.; Voutsinas, Spyros G.

    2016-09-01

    Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analysis. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic analysis. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. Finally the results of the eigenvalue analysis are evaluated through computations of the work of the aerodynamic forces by imposing harmonic vibrations following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the time domain analysis.

  18. Aeroelastic analysis of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Friedmann, P. P.; McNamara, J. J.; Thuruthimattam, B. J.; Nydick, I.

    2004-06-01

    This paper presents a fundamental study of the aeroelastic behavior of hypersonic vehicles. Two separate configurations are examined. First, a typical cross-section analysis of a double-wedge airfoil in hypersonic flow is performed using three different types of unsteady airloads: piston theory and complete Euler and Navier-Stokes solutions based on computational fluid dynamics. The analysis of the double-wedge airfoil is used to justify the usage of the simple aerodynamics for a reusable launch vehicle (RLV). Subsequently, the aeroelastic problem for a complete vehicle that resembles an RLV in trimmed flight is considered, using approximate first-order piston theory aerodynamics. The results provided for these configurations provide guidelines for approximate aeroelastic modelling of hypersonic vehicles.

  19. Effect of follower forces on aeroelastic stability of flexible structures

    NASA Astrophysics Data System (ADS)

    Chae, Seungmook

    Missile bodies and wings are typical examples of structures that can be represented by beam models. Such structures, loaded by follower forces along with aerodynamics, exhibit the vehicle's aeroelastic instabilities. The current research integrates a nonlinear beam dynamics and unsteady aerodynamics to conduct aeroelastic studies of missile bodies and wings subjected to follower forces. The structural formulations are based on a geometrically-exact, mixed finite element method. Slender-body theory and thin-airfoil theory are used for the missile aerodynamics, and two-dimensional finite-state unsteady aerodynamics is used for wing aerodynamics. The aeroelastic analyses are performed using time-marching scheme for the missile body stability, and eigenvalue analysis for the wing flutter, respectively. Results from the time-marching formulation agree with published results for dynamic stability and show the development of limit cycle oscillations for disturbed flight near and above the critical thrust. Parametric studies of the aeroelastic behavior of specific flexible missile configurations are presented, including effects of flexibility on stability, limit-cycle amplitudes, and missile loads. The results do yield a significant interaction between the thrust, which is a follower force, and the aeroelastic stability. Parametric studies based on the eigenvalue analysis for the wing flutter, show that the predicted stability boundaries are very sensitive to the ratio of bending stiffness to torsional stiffness. The effect of thrust can be either stabilizing or destabilizing, depending on the value of this parameter. An assessment whether or not the magnitude of thrust needed to influence the flutter speed is practical is made for one configuration. The flutter speed is shown to change by 11% for this specific wing configuration.

  20. Aeroelastic Analysis of Modern Complex Wings

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  1. Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Chwalowski, Pawel; Massey, Steven J.; Vatsa, Veer N.; Heeg, Jennifer; Wieseman, Carol D.; Mineck, Raymond E.

    2010-01-01

    This paper presents the static and dynamic computational aeroelastic (CAE) analyses of the Ares crew launch vehicle (CLV) during atmospheric ascent. The influence of launch vehicle flexibility on the static aerodynamic loading and integrated aerodynamic force and moment coefficients is discussed. The ultimate purpose of this analysis is to assess the aeroelastic stability of the launch vehicle along the ascent trajectory. A comparison of analysis results for several versions of the Ares CLV will be made. Flexible static and dynamic analyses based on rigid computational fluid dynamic (CFD) data are compared with a fully coupled aeroelastic time marching CFD analysis of the launch vehicle.

  2. Aeroelastic analysis of wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1978-01-01

    An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.

  3. Rotor aeroelastic stability coupled with helicopter body motion

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Huber, H. B.

    1974-01-01

    A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested.

  4. Aeroelastic Analysis for Aeropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2002-01-01

    Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.

  5. Aeroelastic stability of forward swept composite winged aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1983-01-01

    This paper reviews the author's past and present aeroelastic stability and performance studies related to forward swept, composite wing aircraft. The influence of laminate elastic bend/twist coupling upon wing divergence, lateral control, and lift effectiveness will be illustrated by means of closed-form solutions, numerical analysis and simple wind-tunnel experiments. In addition, results of analyses of a freely flying flexible FSW aircraft are discussed to indicate the possible effects of the flexible forward swept wing on aircraft dynamic stability. These studies show, both theoretically and experimentally, that, if the aircraft is not carefully designed, a phenomenon referred to as body freedom flutter may appear.

  6. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  7. Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternil, Raymond G.

    2006-01-01

    Proprotor Aeroelastic Stability Analysis, now at version 4.5 (PASTA 4.5), is a FORTRAN computer program for analyzing the aeroelastic stability of a tiltrotor aircraft in the airplane mode of flight. The program employs a 10-degree- of-freedom (DOF), discrete-coordinate, linear mathematical model of a rotor with three or more blades and its drive system coupled to a 10-DOF modal model of an airframe. The user can select which DOFs are included in the analysis. Quasi-steady strip-theory aerodynamics is employed for the aerodynamic loads on the blades, a quasi-steady representation is employed for the aerodynamic loads acting on the vibrational modes of the airframe, and a stability-derivative approach is used for the aerodynamics associated with the rigid-body DOFs of the airframe. Blade parameters that vary with the blade collective pitch can be obtained by interpolation from a user-defined table. Stability is determined by examining the eigenvalues that are obtained by solving the coupled equations of motions as a matrix eigenvalue problem. Notwithstanding the relative simplicity of its mathematical foundation, PASTA 4.5 and its predecessors have played key roles in a number of engineering investigations over the years.

  8. Aeroelastic Analysis of Modern Complex Wings Using ENSAERO and NASTRAN

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj

    1995-01-01

    A process is presented by which static aeroelastic analysis is performed using Euler flow equations in conjunction with an advanced structural analysis tool, NASTRAN. The process deals with the interfacing of two separate codes in the fields of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The process is demonstrated successfully on an F/A-18 Stabilator (horizontal tail).

  9. Survey of Army/NASA rotorcraft aeroelastic stability research

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  10. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  11. Nonlinear and chaotic vibration and stability analysis of an aero-elastic piezoelectric FG plate under parametric and primary excitations

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Jahangiri, Reza

    2015-05-01

    In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.

  12. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.

  13. Aeroelastic Stability & Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    2001-01-01

    A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.

  14. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  15. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1978-01-01

    The coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine blade are formulated. Quasi-steady blade-element strip theory was applied to derive the aerodynamic operator which includes boundary layer type gradient winds. The final equations which have periodic coefficients were solved in order to obtain the aeroelastic response and stability of large horizontal axis wind turbine blade. A new method of generating an appropriate time-dependent equilibrium position (required for the stability analysis) has been implemented. Representative steady-state responses and stability boundaries, applicable mainly to an existing blade design (NASA/-ERDA MOD-0), are presented. The results indicate that the MOD-0 configuration is a basically stable design and that blade stability is not sensitive to offsets between blade elastic axis and aerodynamic center. Blade stability appears to be sensitive to precone. The tower shadow (or wake) has a considerable effect on the flap response but leaves blade stability unchanged. Finally, it was found that non linear terms in the equations of motion can significantly affect the linearized stability boundaries, however, these terms have a negligible effect on blade response at operating conditions.

  16. Hammerhead and nose-cylinder-flare aeroelastic stability revisited

    NASA Astrophysics Data System (ADS)

    Reding, J. Peter; Ericsson, Lars E.

    1995-01-01

    The flow mechanism responsible for the recently discovered buffet-producing critical cylinder length for hammerheads is discussed. For short cylinder lengths, the upstream effects of the hammerhead wake are able to affect the terminal shock location, driving flow separation to the nose-cylinder shoulder. This has the potential to cause aeroelastic instability leading to structural failure. A similar critical-cylinder-length effect exists for cone-cylinder-flare configurations. This too involves an upstream flow effect. In this case the flare-induced pressure rise drives the shock-induced flow separation to the cone-cylinder shoulder. Neither of these effects is recognized in the existing NASA guidelines for elastic vehicle design. Some currently proposed designs for heavy lift launch vehicles incorporate dangerously blunt noses, in violation of the NASA aeroelastic design criterion. A reexamination of these nose effects indicates the possibility of aeroelastic instability and structural failure. It is the conclusion of this study that it is imperative to consider aeroelastic stability effects early in the design process in order to avoid the possibility of a flight failure or a costly redesign later in the development cycle if the presence of an aeroelastic stability problem is discovered.

  17. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Chad

    2006-01-01

    This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.

  18. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  19. Aeroelastic stability predictions for a MW-sized blade

    NASA Astrophysics Data System (ADS)

    Lobitz, Don W.

    2004-07-01

    Classical aeroelastic flutter instability historically has not been a driving issue in wind turbine design. In fact, rarely has this issue even been addressed in the past. Commensurately, among the wind turbines that have been built, rarely has classical flutter ever been observed. However, with the advent of larger turbines fitted with relatively softer blades, classical flutter may become a more important design consideration. In addition, innovative blade designs involving the use of aeroelastic tailoring, wherein the blade twists as it bends under the action of aerodynamic loads to shed load resulting from wind turbulence, may increase the blade's proclivity for flutter. With these considerations in mind it is prudent to revisit aeroelastic stability issues for a MW-sized blade with and without aeroelastic tailoring. Focusing on aeroelastic stability associated with the shed wake from an individual blade turning in still air, the frequency domain technique developed by Theodorsen for predicting classical flutter in fixed wing aircraft has been adapted for use with a rotor blade. Results indicate that the predicted flutter speed of a MW-sized blade is slightly greater than twice the operational speed of the rotor. When a moderate amount of aeroelastic tailoring is added to the blade, a modest decrease (12%) in the flutter speed is predicted. By comparison, for a smaller rotor with relatively stiff blades the predicted flutter speed is approximately six times the operating speed. When frequently used approximations to Theodorsen's method are implemented, drastic underpredictions result, which, while conservative, may adversely impact blade design. These underpredictions are also evident when this MW-sized blade is analysed using time domain methods. Published in 2004 by John Wiley & Sons, Ltd.

  20. An Aeroelastic Analysis of a Thin Flexible Membrane

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.

    2007-01-01

    Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.

  1. Flutter and Divergence Analysis using the Generalized Aeroelastic Analysis Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Wieseman, Carol D.

    2003-01-01

    The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis of three well-studied checkcases: restrained and unrestrained airfoil models, and a wing model. An eigenvalue iteration procedure is used for converging upon roots of the complex stability matrix. For the airfoil models, exact root loci are given which clearly illustrate the nature of the flutter and divergence instabilities. The singularities involved are enumerated, including an additional pole at the origin for the unrestrained airfoil case and the emergence of an additional pole on the positive real axis at the divergence speed for the restrained airfoil case. Inconsistencies and differences among published aeroelastic root loci and the new, exact results are discussed and resolved. The generalization of a Doublet Lattice Method computer code is described and the code is applied to the calculation of root loci for the wing model for incompressible and for subsonic flow conditions. The error introduced in the reduction of the singular integral equation underlying the unsteady lifting surface theory to a linear algebraic equation is discussed. Acknowledging this inherent error, the solutions of the algebraic equation by GAAM are termed 'exact.' The singularities of the problem are discussed and exponential series approximations used in the evaluation of the kernel function shown to introduce a dense collection of poles and zeroes on the negative real axis. Again, inconsistencies and differences among published aeroelastic root loci and the new 'exact' results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and frequencies are in good agreement with published results. The GAAM solution procedure allows complete control over Mach number, velocity, density, and complex frequency. Thus all points on the computed root loci can be matched-point, consistent solutions without recourse to complex mode tracking logic or dataset interpolation, as in the k and p

  2. Probabilistic Aeroelastic Analysis of Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.

    2004-01-01

    A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.

  3. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Prazenica, Chad

    2005-01-01

    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.

  4. Static aeroelastic analysis for generic configuration wing

    NASA Technical Reports Server (NTRS)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1991-01-01

    A static aeroelastic analysis capability that calculates flexible air loads for generic configuration wings was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used, and the aerodynamic influence coefficient matrix was computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible air loads of an oblique wing configuration including asymmetric wings can be calculated reliably by this code both in subsonic and supersonic speeds.

  5. An improved stability characterization for aeroelastic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Javed, U.; Abdelkefi, A.; Akhtar, I.

    2016-07-01

    An enhanced stability characterization for aeroelastic energy harvesters is introduced by using both the normal form of the Hopf bifurcation and shooting method. Considering a triangular cylinder subjected to transverse galloping oscillations and a piezoelectric transducer to convert mechanical vibrations to electrical power, it is demonstrated that the nonlinear normal form is very beneficial to characterize the type of instability near bifurcation and determine the influence of structural and/or aerodynamic nonlinearities on the performance of the harvester. It is also shown that this tool is strong in terms of designing reliable aeroelastic energy harvesters. The results show that this technique can accurately predict the harvester's response only near bifurcation, however, cannot predict the stable solutions of the harvester when subcritical Hopf bifurcation takes place. To cover these drawbacks, the shooting method is employed. It turns out that this approach is beneficial in determining the stable and unstable solutions of the system and associated turning points. The results also show that the Floquet multipliers, obtained as the by-product of this method, can be used to characterize the response's type of the harvester. Thus, the normal form of the Hopf bifurcation and shooting method predictions can supplement each other to design stable and reliable aeroelastic energy harvesters.

  6. Aeroelastic stability of wind turbine blade/aileron systems

    NASA Technical Reports Server (NTRS)

    Strain, J. C.; Mirandy, L.

    1995-01-01

    Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  7. APPLE - An aeroelastic analysis system for turbomachines and propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral

    1992-01-01

    This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).

  8. Static aeroelastic analysis of composite wing

    NASA Technical Reports Server (NTRS)

    Lee, IN; Hong, Chang Sun; Miura, Hirokazu; Kim, Seung KO

    1990-01-01

    A static aeroelastic analysis capability that can predict aerodynamic loads for the deformed shape of the composite wing has been developed. The finite element method (FEM) was used for composite plate structural analysis, and the linear vortex lattice method (VLM) was used for steady aerodynamic analysis. The final deformed shape of the wing due to applied forces is determined by iterative manner using FEM and VLM. FEM and VLM analysis are related by a surface spline interpolation procedure. The wing with Gr/Ep composite material has been investigated to see the wing deformation effect. Aerodynamic load change due to wing flexibility has been investigated. Also, the effect of fiber orientation and sweep angle on the deformation pattern and aerodynamic coefficients are examined. For a certain fiber orientation, the deflection and aerodynamic loading of the composite wing is very much reduced. The swept forward wing has more significant effect of wing flexibility on aerodynamic coefficient than the swept back wing does.

  9. Static aeroelastic analysis for generic configuration aircraft

    NASA Technical Reports Server (NTRS)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  10. Sensitivity analysis of a wing aeroelastic response

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.

    1991-01-01

    A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.

  11. Optimal mistuning for enhanced aeroelastic stability of transonic fans

    NASA Technical Reports Server (NTRS)

    Hall, K. C.; Crawley, E. F.

    1983-01-01

    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.

  12. Advanced Models for Aeroelastic Analysis of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Mahajan, Aparajit

    1996-01-01

    This report describes an integrated, multidisciplinary simulation capability for aeroelastic analysis and optimization of advanced propulsion systems. This research is intended to improve engine development, acquisition, and maintenance costs. One of the proposed simulations is aeroelasticity of blades, cowls, and struts in an ultra-high bypass fan. These ducted fans are expected to have significant performance, fuel, and noise improvements over existing engines. An interface program was written to use modal information from COBSTAN and NASTRAN blade models in aeroelastic analysis with a single rotation ducted fan aerodynamic code.

  13. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  14. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  15. Dynamic response and aeroelastic analysis of a propeller blade of a prop-fan engine

    NASA Astrophysics Data System (ADS)

    Joo, Gene; Lee, Hae-Kyung

    Blades are modeled as cantilevered sandwich plates with Gr/Ep composite faces and orthotropic cores and also as curved twisted beams for the aeroelastic analysis. A free vibration analysis for the cantilevered sandwich plate model is performed using Rayleigh-Ritz method. Calculated results are compared with FEM codes and free vibration test results. A free vibration equation for the aeroelastic analysis is obtained by small linear perturbation about the nonlinear static equilibrium position of the curved and twisted beam model. An aeroelastic stability is analyzed along with unsteady aerodynamic analysis results with 2-D cascade effects. For analyzing dynamic response of the real prop-fan blade mode, F.E.M. codes are used. In order to verify computed results, SR-3 composite prop-fan blades with various stacking sequencies are manufactured. Natural frequencies of prop-fan specimen are obtained by modal testing method using impact hammer and FFT analyzer.

  16. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    The highly flexible HALE (High Altitude Long Endurance) aircraft analysis methodology is of interest because early studies indicated that HALE aircraft might have different vibration and aeroelastic characteristics from those of conventional aircraft. Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft (NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration. Further analysis improvements for NATASHA were required to extend its capability to the ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of HALE aircraft with other configurations. First, the analysis methodology, based on geometrically exact fully intrinsic beam theory, was extended to treat other aircraft cofigurations. Conventional aircraft with flexible fuselage and tail can now be modeled by treating the aircraft as an assembly of beam elements. NATASHA is now applicable to any aircraft cofiguration that can be modeled this way. The intrinsic beam formulation, which is a fundamental structural modeling approach, is now capable of being applying to a structure consisting of multiple beams by relating the virtual displacements and rotations at points where two or more beam elements are connected to each other. Additional aspects are also considered in the analysis such as auxiliary elevator input in the horizontal tail and fuselage aerodynamics. Second, the modeling approach was extended to treat the GVT environment for HALE aircraft, which have highly flexible wings. GVT has its main purpose to provide modal characteristics for model validation. A bungee formulation was developed by the augmented Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling. After the coupling procedure, the whole formulation cannot be fully intrinsic because the geometric constraint by bungee cords makes the system statically

  17. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  18. Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.

  19. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  20. Propulsion Aeroelastic Analysis Developed for Flutter and Forced Response

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is

  1. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  2. Computational aeroelastic analysis of aircraft wings including geometry nonlinearity

    NASA Astrophysics Data System (ADS)

    Tian, Binyu

    The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen

  3. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 2: Launch vehicle aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1976-01-01

    An exploratory analysis has been made of the aeroelastic stability of the Space Shuttle Launch Configuration, with the objective of defining critical flow phenomena with adverse aeroelastic effects and developing simple analytic means of describing the time-dependent flow-interference effects so that they can be incorporated into a computer program to predict the aeroelastic stability of all free-free modes of the shuttle launch configuration. Three critical flow phenomana have been identified: (1) discontinuous jump of orbiter wing shock, (2) inlet flow between orbiter and booster, and (3) H.O. tank base flow. All involve highly nonlinear and often discontinuous aerodynamics which cause limit cycle oscillations of certain critical modes. Given the appropriate static data, the dynamic effects of the wing shock jump and the HO tank bulbous base effect can be analyzed using the developed quasi-steady techniques. However, further analytic and experimental efforts are required before the dynamic effects of the inlet flow phenomenon can be predicted for the shuttle launch configuration.

  4. Static aeroelastic analysis of a three-dimensional generic wing

    NASA Technical Reports Server (NTRS)

    Green, John A.; Lee, IN; Miura, Hirokazu

    1990-01-01

    A continuation of research on the static aeroelastic analysis of a generic wing configuration is presented. Results of the study of the asymmetric oblique wing model developed by Rockwell International, in conjunction with the NASA Oblique Wing Research Aircraft Program, are reported. The capability to perform static aeroelastic analyses of an oblique wing at arbitrary skew positions is demonstrated by applying the MSC/NASTRAN static analysis scheme modified by the aerodynamic influence coefficient matrix created by the NASA Ames aerodynamic panel codes. The oblique wing is studied at two skew angles, and in particular, the capability to calculate 3-D thickness effects on the aerodynamic properties of the wing is investigated. The ability to model asymmetric wings in both subsonic and supersonic Mach numbers is shown. The aerodynamic influence coefficient matrix computed by the external programs is inserted in MSC/NASTRAN static aeroelasticity analysis run stream to compute the aeroelastic deformation and internal forces. Various aerodynamic coefficients of the oblique wing were computed for two Mach numbers, 0.7 and 1.4, and the angle of attach -5 through 15 deg.

  5. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  6. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  7. Aeroelastic Analysis of a Trimmed Generic Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Nydick, I.; Friedmann, P. P.

    1999-01-01

    The aeroelastic equations of motion governing a hypersonic vehicle in free flight are derived. The equations of motion for a translating and rotating flexible body using Lagrange's equations in terms of quasi-coordinates are presented. These equations are simplified for the case of a vehicle with pitch and plunge rigid body degrees of freedom and small elastic displacements. The displacements are approximated by a truncated series of the unrestrained mode shapes, which are obtained using equivalent plate theory. Subsequently, the nonlinear equations of motion are linearized about the trim state, which is obtained using a rigid body trim model and steady hypersonic aerodynamics. The appropriate flutter derivatives are calculated from piston theory. Results describing mode shapes, trim behavior, and aeroelastic stability of a generic hypersonic vehicle are presented.

  8. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Lorence, Christopher B.; Hall, Kenneth C.

    1995-01-01

    A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide

  9. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  10. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter

    2001-01-01

    Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.

  11. Transonic aeroelasticity analysis for rotor blades

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Chang, I-Chung; Gea, Lie-Mine

    1989-01-01

    A numerical method is presented for calculating the unsteady transonic rotor flow with aeroelasticity effects. The blade structural dynamic equations based on beam theory were formulated by FEM and were solved in the time domain, instead of the frequency domain. For different combinations of precone, droop, and pitch, the correlations are very good in the first three flapping modes and the first twisting mode. However, the predicted frequencies are too high for the first lagging mode at high rotational speeds. This new structure code has been coupled into a transonic rotor flow code, TFAR2, to demonstrate the capability of treating elastic blades in transonic rotor flow calculations. The flow fields for a model-scale rotor in both hover and forward flight are calculated. Results show that the blade elasticity significantly affects the flow characteristics in forward flight.

  12. Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.

    1983-01-01

    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.

  13. Aeroelastic effects in multirotor vehicles. Part 2: Methods of solution and results illustrating coupled rotor/body aeromechanical stability

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1987-01-01

    This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.

  14. Static Aeroelastic Analysis with an Inviscid Cartesian Method

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.

    2014-01-01

    An embedded-boundary, Cartesian-mesh flow solver is coupled with a three degree-of-freedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves a nonlinear, aerostructural system of equations using a loosely-coupled strategy. An open-source, 3-D discrete-geometry engine is utilized to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The coupling interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. After verifying the structural model with comparisons to Euler beam theory, two applications of the analysis method are presented as validation. The first is a relatively stiff, transport wing model which was a subject of a recent workshop on aeroelasticity. The second is a very flexible model recently tested in a low speed wind tunnel. Both cases show that the aeroelastic analysis method produces results in excellent agreement with experimental data.

  15. CFD and Aeroelastic Analysis of the MEXICO Wind Turbine

    NASA Astrophysics Data System (ADS)

    Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.

    2014-12-01

    This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.

  16. An aeroelastic analysis with a generalized dynamic wake

    NASA Technical Reports Server (NTRS)

    He, Cheng J.; Peters, David A.

    1991-01-01

    An aeroelastic model with generalized dynamic wake is developed for application in the integration of aerodynamic, dynamic, and structural optimization of a rotor blade. The investigation is carried out with special attention to efficiency and accuracy of aeroelastic modeling. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections. The nonuniform blade is discretized into finite beam elements, each of which consists of twelve degrees of freedom. Such important blade design variables as pretwist, and chordwise offsets of the blade center of gravity and of the aerodynamic center from the elastic axis have been included in the analysis. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is modeled using a generalized dynamic wake theory. The noncirculatory loads based on unsteady thin airfoil theory are also included.

  17. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  18. Rotation in vibration, optimization, and aeroelastic stability problems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1974-01-01

    The effects of rotation in the areas of vibrations, dynamic stability, optimization, and aeroelasticity were studied. The governing equations of motion for the study of vibration and dynamic stability of a rapidly rotating deformable body were developed starting from the nonlinear theory of elasticity. Some common features such as the limitations of the classical theory of elasticity, the choice of axis system, the property of self-adjointness, the phenomenon of frequency splitting, shortcomings of stability methods as applied to gyroscopic systems, and the effect of internal and external damping on stability in gyroscopic systems are identified and discussed, and are then applied to three specific problems.

  19. The SRB heat shield: Aeroelastic stability during reentry

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Dowell, E. H.

    1977-01-01

    Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.

  20. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  1. Aeroelastic Analysis of Aircraft: Wing and Wing/Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Chen, H. H.; Chang, K. C.; Tzong, T.; Cebeci, T.

    1997-01-01

    A previously developed interface method for coupling aerodynamics and structures is used to evaluate the aeroelastic effects for an advanced transport wing at cruise and under-cruise conditions. The calculated results are compared with wind tunnel test data. The capability of the interface method is also investigated for an MD-90 wing/fuselage configuration. In addition, an aircraft trim analysis is described and applied to wing configurations. The accuracy of turbulence models based on the algebraic eddy viscosity formulation of Cebeci and Smith is studied for airfoil flows at low Mach numbers by using methods based on the solutions of the boundary-layer and Navier-Stokes equations.

  2. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  3. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  4. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  5. A review of recent aeroelastic analysis methods for propulsion at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-09-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  6. Sensitivity analysis of aeroelastic response of a wing using piecewise pressure representation

    NASA Astrophysics Data System (ADS)

    Eldred, Lloyd B.; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1993-04-01

    A sensitivity analysis scheme of the static aeroelastic response of a wing is developed, by incorporating a piecewise panel-based pressure representation into an existing wing aeroelastic model to improve the model's fidelity, including the sensitivity of the wing static aeroelastic response with respect to various shape parameters. The new formulation is quite general and accepts any aerodynamics and structural analysis capability. A program is developed which combines the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives.

  7. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conditions, all combinations of altitudes and speeds encompassed by the VD/MD versus altitude envelope... constant altitude. In addition, a proper margin of stability must exist at all speeds up to VD/MD and... may be limited to Mach 1.0 when MD is less than 1.0 at all design altitudes, and (2) For...

  8. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditions, all combinations of altitudes and speeds encompassed by the VD/MD versus altitude envelope... constant altitude. In addition, a proper margin of stability must exist at all speeds up to VD/MD and... may be limited to Mach 1.0 when MD is less than 1.0 at all design altitudes, and (2) For...

  9. Aeroelastic stability of periodic systems with application to rotor blade flutter

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    The dynamics of a helicopter blade in forward flight are described by a system of linear differential equations with periodic coefficients. The stability of this periodic aeroelastic system is determined, using multivariable Floquet-Liapunov theory. The transition matrix at the end of the period is evaluated by: (1) direct numerical integration, and (2) a new, approximate method, which consists in approximating a periodic function by a series of step functions. The numerical accuracy and efficiency of the methods is compared, and the second method is shown to be superior by far. Results illustrating the effect of the periodic coefficients and various blade parameters are presented.

  10. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  11. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  12. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  13. Static Aeroelastic Analysis with an Inviscid Cartesian Method

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.

    2014-01-01

    An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.

  14. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  15. Sensitivity Analysis of the Static Aeroelastic Response of a Wing

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    1993-01-01

    A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.

  16. Vibration and aeroelasticity of advanced aircraft wings modeled as thin-walled beams: Dynamics, stability and control

    NASA Astrophysics Data System (ADS)

    Qin, Zhanming

    Based on a refined analytical anisotropic thin-walled beam model, aeroelastic instability, dynamic aeroelastic response, active/passive aeroelastic control of advanced aircraft wings modeled as thin-walled beams are systematically addressed. The refined thin-walled beam model is based on an existing framework of the thin-walled beam model and a couple of non-classical effects that are usually also important are incorporated and the model herein developed is validated against the available experimental, Finite Element Analysis (FEA), Dynamic Finite Element (DFE), and other analytical predictions. The concept of indicial functions is used to develop unsteady aerodynamic model, which broadly encompasses the cases of incompressible, compressible subsonic, compressible supersonic and hypersonic flows. State-space conversion of the indicial function based unsteady aerodynamic model is also developed. Based on the piezoelectric material technology, a worst case control strategy based on the minimax theory towards the control of aeroelastic systems is further developed. Shunt damping within the aeroelastic tailoring environment is also investigated. The major part of this dissertation is organized in the form of self-contained chapters, each of which corresponds to a paper that has been or will be submitted to a journal for publication. In order to fullfil the requirement of having a continuous presentation of the topics, each chapter starts with the purely structural models and is gradually integrated with the involved interactive field disciplines.

  17. Aeroelastic analysis of a troposkien-type wind turbine blade

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1981-01-01

    The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.

  18. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    NASA Technical Reports Server (NTRS)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  19. Efficient computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1991-01-01

    Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.

  20. Transonic aeroelastic analysis of the B-1 wing

    NASA Technical Reports Server (NTRS)

    Guruswamy, G. P.; Goorjian, P. M.; Ide, H.; Miller, G. D.

    1986-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low- and high-sweep cases, at 25.0 and 67.5 deg, respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low-sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher-sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading-edge separation vortices and not to shock wave motion, as was previously proposed.

  1. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  2. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  3. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  4. Application of unsteady aeroelastic analysis techniques on the national aerospace plane

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Spain, Charles V.; Soistmann, David L.; Noll, Thomas E.

    1988-01-01

    A presentation provided at the Fourth National Aerospace Plane Technology Symposium held in Monterey, California, in February 1988 is discussed. The objective is to provide current results of ongoing investigations to develop a methodology for predicting the aerothermoelastic characteristics of NASP-type (hypersonic) flight vehicles. Several existing subsonic and supersonic unsteady aerodynamic codes applicable to the hypersonic class of flight vehicles that are generally available to the aerospace industry are described. These codes were evaluated by comparing calculated results with measured wind-tunnel aeroelastic data. The agreement was quite good in the subsonic speed range but showed mixed agreement in the supersonic range. In addition, a future endeavor to extend the aeroelastic analysis capability to hypersonic speeds is outlined. An investigation to identify the critical parameters affecting the aeroelastic characteristics of a hypersonic vehicle, to define and understand the various flutter mechanisms, and to develop trends for the important parameters using a simplified finite element model of the vehicle is summarized. This study showed the value of performing inexpensive and timely aeroelastic wind-tunnel tests to expand the experimental data base required for code validation using simple to complex models that are representative of the NASP configurations and root boundary conditions are discussed.

  5. Bayesian analysis of the flutter margin method in aeroelasticity

    DOE PAGES

    Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit

    2016-08-27

    A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis–Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the fluttermore » speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. In conclusion, it will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.« less

  6. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  7. Shape sensitivity analysis of wing static aeroelastic characteristics

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Bergen, Fred D.

    1988-01-01

    A method is presented to calculate analytically the sensitivity derivatives of wing static aeroelastic characteristics with respect to wing shape parameters. The wing aerodynamic response under fixed total load is predicted with Weissinger's L-method; its structural response is obtained with Giles' equivalent plate method. The characteristics of interest include the spanwise distribution of lift, trim angle of attack, rolling and pitching moments, wind induced drag, as well as the divergence dynamic pressure. The shape parameters considered are the wing area, aspect ratio, taper ratio, sweep angle, and tip twist angle. Results of sensitivity studies indicate that: (1) approximations based on analytical sensitivity derivatives can be used over wide ranges of variations of the shape parameters considered, and (2) the analytical calculation of sensitivity derivatives is significantly less expensive than the conventional finite-difference alternative.

  8. Nonlinear Aeroelastic Analysis of UAVs: Deterministic and Stochastic Approaches

    NASA Astrophysics Data System (ADS)

    Sukut, Thomas Woodrow

    Aeroelastic aspects of unmanned aerial vehicles (UAVs) is analyzed by treatment of a typical section containing geometrical nonlinearities. Equations of motion are derived and numerical integration of these equations subject to quasi-steady aerodynamic forcing is performed. Model properties are tailored to a high-altitude long-endurance unmanned aircraft. Harmonic balance approximation is employed based on the steady-state oscillatory response of the aerodynamic forcing. Comparisons are made between time integration results and harmonic balance approximation. Close agreement between forcing and displacement oscillatory frequencies is found. Amplitude agreement is off by a considerable margin. Additionally, stochastic forcing effects are examined. Turbulent flow velocities generated from the von Karman spectrum are applied to the same nonlinear structural model. Similar qualitative behavior is found between quasi-steady and stochastic forcing models illustrating the importance of considering the non-steady nature of atmospheric turbulence when operating near critical flutter velocity.

  9. Aeroelastic analysis and ground vibration survey of the NASA, Grumman American Yankee modified for spin testing

    NASA Technical Reports Server (NTRS)

    Kroeger, R. A.

    1977-01-01

    A complete ground vibration and aeroelastic analysis was made of a modified version of the Grumman American Yankee. The aircraft had been modified for four empennage configurations, a wing boom was added, a spin chute installed and provisions included for large masses in the wing tip to vary the lateral and directional inertia. Other minor changes were made which have much less influence on the flutter and vibrations. Neither static divergence nor aileron reversal was considered since the wing structure was not sufficiently changed to affect its static aeroelastic qualities. The aircraft was found to be free from flutter in all of the normal modes explored in the ground shake test. The analysis demonstrated freedom from flutter up to 214 miles per hour.

  10. Aeroelastic Analysis of the NASA/ARMY/MIT Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Wilbur, Matthew L.; Mirick, Paul H.; Cesnik, Carlos E. S.; Shin, Sangloon

    1999-01-01

    Aeroelastic modeling procedures used in the design of a piezoelectric controllable twist helicopter rotor wind tunnel model are described. Two aeroelastic analysis methods developed for active twist rotor studies, and used in the design of the model blade, are described in this paper. The first procedure uses a simple flap-torsion dynamic representation of the active twist blade, and is intended for rapid and efficient control law and design optimization studies. The second technique employs a commercially available comprehensive rotor analysis package, and is used for more detailed analytical studies. Analytical predictions of hovering flight twist actuation frequency responses are presented for both techniques. Forward flight fixed system nP vibration suppression capabilities of the model active twist rotor system are also presented. Frequency responses predicted using both analytical procedures agree qualitatively for all design cases considered, with best correlation for cases where uniform blade properties are assumed.

  11. Parallel computation of aerodynamic influence coefficients for aeroelastic analysis on a transputer network

    NASA Technical Reports Server (NTRS)

    Janetzke, D. C.; Murthy, D. V.

    1991-01-01

    Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.

  12. User's manual for the coupled mode version of the normal modes rotor aeroelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Bergquist, R. R.; Carlson, R. G.; Landgrebe, A. J.; Egolf, T. A.

    1974-01-01

    This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow).

  13. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  14. Aeroelastic Calculations Based on Three-Dimensional Euler Analysis

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.

    1998-01-01

    This paper presents representative results from an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic code (TURBO). Unsteady pressure, lift, and moment distributions are presented for a helical fan test configuration which is used to verify the code by comparison to two-dimensional linear potential (flat plate) theory. The results are for pitching and plunging motions over a range of phase angles, Good agreement with linear theory is seen for all phase angles except those near acoustic resonances. The agreement is better for pitching motions than for plunging motions. The reason for this difference is not understood at present. Numerical checks have been performed to ensure that solutions are independent of time step, converged to periodicity, and linearly dependent on amplitude of blade motion. The paper concludes with an evaluation of the current state of development of the TURBO-AE code and presents some plans for further development and validation of the TURBO-AE code.

  15. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  16. Aerodynamic and Aeroelastic Insights using Eigenanalysis

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Dowell, Earl H.

    1999-01-01

    This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

  17. Turbomachinery aeroelasticity at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kaza, Krishna Rao V.

    1989-01-01

    The turbomachinery aeroelastic effort is focused on unstalled and stalled flutter, forced response, and whirl flutter of both single rotation and counter rotation propfans. It also includes forced response of the Space Shuttle Main Engine (SSME) turbopump blades. Because of certain unique features of propfans and the SSME turbopump blades, it is not possible to directly use the existing aeroelastic technology of conventional propellers, turbofans or helicopters. Therefore, reliable aeroelastic stability and response analysis methods for these propulsion systems must be developed. The development of these methods for propfans requires specific basic technology disciplines, such as 2-D and 3-D steady and unsteady aerodynamic theories in subsonic, transonic and supersonic flow regimes; modeling of composite blades; geometric nonlinear effects; and passive and active control of flutter and response. These methods are incorporated in a computer program, ASTROP. The program has flexibility such that new and future models in basic disciplines can be easily implemented.

  18. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  19. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  20. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    NASA Astrophysics Data System (ADS)

    Sabri, Farhad

    circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and

  1. Hover test of a full-scale hingeless helicopter rotor: Aeroelastic stability, performance and loads data. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Warmbrodt, W.

    1984-01-01

    A hover test of a full-scale, hingeless rotor system was conducted in the NASA Ames 40- by 80-foot wind tunnel. The rotor was tested on the Ames rotor test apparatus. Rotor aeroelastic stability, performance, and loads at various rotational speeds and thrust coefficients were investigated. The primary objective was to determine the inplane stability characteristics of the rotor system. Rotor inplane damping data were obtained for operation between 350 and 425 rpm (design speed), and for thurst coefficients between 0.0 and 0.12. The rotor was stable for all conditions tested. At constant rotor rotational speed, a minimum inplane dampling level was obtained at a thrust coefficient approximately = 0.02. At constant rotor lift, a minimum in rotor inplane damping was measured at 400 rpm.

  2. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    . Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.

  3. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  4. Aeroelastic tailoring - Theory, practice, and promise

    NASA Technical Reports Server (NTRS)

    Shirk, M. H.; Hertz, T. J.; Weisshaar, T. A.

    1986-01-01

    Aeroelastic tailoring technology is reviewed with reference to the historical background, the underlying theory, current trends, and specific applications. The specific application discussed include the Transonic Aircraft Technology program, an Advanced Design Composite Aircraft, the Wing/Inlet Advanced Development program, and the forward-swept wing. Finally, the future of aeroelastic tailoring and the development of an aeroelastic tailoring analysis and design tool under the Automated Strength-Aeroelastic Design program are examined.

  5. Nonlinear Aeroelastic Analysis Using a Time-Accurate Navier-Stokes Equations Solver

    NASA Technical Reports Server (NTRS)

    Kuruvila, Geojoe; Bartels, Robert E.; Hong, Moeljo S.; Bhatia, G.

    2007-01-01

    A method to simulate limit cycle oscillation (LCO) due to control surface freeplay using a modified CFL3D, a time-accurate Navier-Stokes computational fluid dynamics (CFD) analysis code with structural modeling capability, is presented. This approach can be used to analyze aeroelastic response of aircraft with structural behavior characterized by nonlinearity in the force verses displacement curve. A limited validation of the method, using very low Mach number experimental data for a three-degrees-of-freedom (pitch/plunge/flap deflection) airfoil model with flap freeplay, is also presented.

  6. An integrated airloads-inflow model for use in rotor aeroelasticity and control analysis

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Su, AY

    1991-01-01

    The airloads-inflow model presented is ideally suited for rotor aeroelasticity and control analysis, especially where eigenvalues are sought. The model, which is derived from thin-airfoil theory with an extension that allows for other airfoil effects, is of hierarchical-lift type and may be simplified to any degree desired; the inflow is also expanded in shape functions which may be truncated to any desired texture. Both models are written in closed-form, state-variable equations without hidden states and without integrals over the wake.

  7. NASTRAN/FLEXSTAB procedure for static aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Schuster, L. S.

    1984-01-01

    Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique.

  8. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  9. An aeroelastic analysis of a flexible flapping wing using modified strip theory

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Lee, Jun-Seong; Lee, Jin-Young; Han, Jae-Hung

    2008-03-01

    The present study proposed a coupling method for the fluid-structural interaction analysis of a flexible flapping wing. An efficient numerical aerodynamic model was suggested, which was based on the modified strip theory and further improved to take into account a high relative angle of attack and dynamic stall effects induced by pitching and plunging motions. The aerodynamic model was verified with experimental data of rigid wings. A reduced structural model of a rectangular flapping wing was also established by using flexible multibody dynamics and a modal approach technique, so as to consider large flapping motions and local elastic deformations. Then, the aeroelastic analysis method was developed by coupling these aerodynamic and structural modules. To measure the aerodynamic forces of the rectangular flapping wing, static and dynamic tests were performed in a low speed wind-tunnel for various flapping pitch angles, flapping frequencies and the airspeeds. Finally, the aerodynamic forces predicted by the aeroelastic analysis method showed good agreement with the experimental data of the rectangular flapping wing.

  10. Studies in hypersonic aeroelasticity

    NASA Astrophysics Data System (ADS)

    Nydick, Ira Harvey

    2000-11-01

    This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle, focusing on two specific problems: (1) hypersonic panel flutter, and (2) aeroelastic behavior of a complete unrestrained generic hypersonic vehicle operating at very high Mach numbers. The panels are modeled as shallow shells using Marguerre nonlinear shallow shell theory for orthotropic panels and the aerodynamic loads are obtained from third order piston theory. Two models of curvature, several applied temperature distributions, and the presence of a shock are also included in the model. Results indicate that the flutter speed of the panel is significantly reduced by temperature variations comparable to the buckling temperature and by the presence of a shock. A panel with initial curvature can be more stable than the flat panel but the increase in stability depends in a complex way on the material properties of the panel and the amount of curvature. At values of dynamic pressure above critical, aperiodic motion was observed. The value of dynamic pressure for which this occurs in both heated panels and curved panels is much closer to the critical dynamic pressure than for the flat, unheated panel. A comparison of piston theory aerodynamics and Euler and Navier-Stokes aerodynamics was performed for a two dimensional panel with prescribed motion and the results indicate that while 2nd or higher order piston theory agrees very well with the Euler solution for the frequencies seen in hypersonic panel flutter, it differs substantially from the Navier-Stokes solution. The aeroelastic behavior of the complete vehicle was simulated using the unrestrained equations of motion, utilizing the method of quasi-coordinates. The unrestrained mode shapes of the vehicle were obtained from an equivalent plate analysis using an available code (ELAPS). The effects of flexible trim and rigid body degrees of freedom are carefully incorporated in the mathematical model. This model was applied to a

  11. User's Manual for DuctE3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic Analysis of Ducted Fans

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1997-01-01

    The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

  12. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.

  13. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  14. Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.

  15. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  16. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos

    NASA Astrophysics Data System (ADS)

    Lee, B. H. K.; Price, S. J.; Wong, Y. S.

    1999-04-01

    Different types of structural and aerodynamic nonlinearities commonly encountered in aeronautical engineering are discussed. The equations of motion of a two-dimensional airfoil oscillating in pitch and plunge are derived for a structural nonlinearity using subsonic aerodynamics theory. Three classical nonlinearities, namely, cubic, freeplay and hysteresis are investigated in some detail. The governing equations are reduced to a set of ordinary differential equations suitable for numerical simulations and analytical investigation of the system stability. The onset of Hopf-bifurcation, and amplitudes and frequencies of limit cycle oscillations are investigated, with examples given for a cubic hardening spring. For various geometries of the freeplay, bifurcations and chaos are discussed via the phase plane, Poincaré maps, and Lyapunov spectrum. The route to chaos is investigated from bifurcation diagrams, and for the freeplay nonlinearity it is shown that frequency doubling is the most commonly observed route. Examples of aerodynamic nonlinearities arising from transonic flow and dynamic stall are discussed, and special attention is paid to numerical simulation results for dynamic stall using a time-synthesized method for the unsteady aerodynamics. The assumption of uniform flow is usually not met in practice since perturbations in velocities are encountered in flight. Longitudinal atmospheric turbulence is introduced to show its effect on both the flutter boundary and the onset of Hopf-bifurcation for a cubic restoring force.

  17. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  18. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  19. A modal aeroelastic analysis scheme for turbomachinery blading. M.S. Thesis - Case Western Reserve Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1991-01-01

    An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.

  20. Active Control Analysis for Aeroelastic Instabilities in Turbomachines

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in

  1. Aeroelastic analysis of advanced propellers using an efficient Euler solver

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.; Mehmed, O.

    1992-01-01

    A 3D Euler solver is coupled with a 3D structural dynamics model to investigate flutter of propfans. A hybrid scheme is used to reduce computational time for the Euler equations and a normal mode analysis is used for flutter calculations. Experimental and calculated flutter results are compared for an advanced propeller propfan which experienced flutter at transonic tip relative velocities. The predicted flutter calculations are in close agreement with the experimental data. A structural damping value of 0.5 percent was required to predict the behavior observed in the experiment. Computations show that the flutter behavior is dominated by the second mode, but coupling with the first mode is required. The addition of other modes to the calculations did not affect the flutter behavior.

  2. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  3. An integrated analytical aeropropulsive/aeroelastic model for the dynamic analysis of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Chavez, Frank R.; Schmidt, David K.

    1992-01-01

    The development of an approach to the determination of the dynamic characteristics of hypersonic vehicles which is intentionally generic and basic is given. The approach involves a 2D hypersonic aerodynamic analysis utilizing Newtonian theory, coupled with a 1D aero/thermoanalysis of the flow in a scramjet-type propulsion system. In addition, the airframe is considered to be elastic, and the structural dynamics are characterized in terms of a simple lumped-mass model of the invacuo vibration modes. The vibration modes are coupled to the rigid-body modes through the aero/propulsive forces acting on the structure. The control effectors considered on a generic study configuration include aerodynamic pitch-control surfaces, as well as engine fuel flow and diffuser area ratio. The study configuration is shown to be highly statically unstable in pitch, and to exhibit strong airframe/engine/elastic coupling in the aeroelastic and attitude dynamics, as well as the engine responses.

  4. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    NASA Technical Reports Server (NTRS)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  5. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    NASA Astrophysics Data System (ADS)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  6. Nastran level 16 theoretical manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1980-01-01

    A computer program based on state of the art compressor and structural technologies applied to bladed shrouded disc was developed and made operational in NASTRAN Level 16. Aeroelastic analyses, modes and flutter. Theoretical manual updates are included.

  7. Aeroelastic behavior of composite helicopter rotor blades with advanced geometry tips

    SciTech Connect

    Friedmann, P.P.; Yuan, K.A.

    1995-12-31

    A new structural and aeroelastic model capable of representing the aeroelastic stability and response of composite helicopter rotor blades with advanced geometry tips is presented. Where it is understood that advanced geometry tips are blade tips having sweep, anhedral and taper in the outboard 10% segment of the blade. The blade is modeled by beam finite elements. A single element is used to represent the swept tip. The nonlinear equations of motion are derived using the Hamilton`s principle and are based on moderate deflection theory. Thus, the nonlinearities are of the geometric type. The important structural blade attributes captured by the model are arbitrary cross-sectional shape, general anisotropic material behavior, transverse shear and out-of-plane warping. The aerodynamic loads are based on quasi-steady Greenberg theory with reverse flow effects, using an implicit formulation. The nonlinear aeroelastic response of the blade is obtained from a fully coupled propulsive trim/aeroelastic response analysis. Aeroelastic stability is obtained from linearizing the equations of motion about the steady state response of the blade and using Floquet theory. Numerical results for the aeroelastic stability and response of a hingeless composite blade with two cell type cross section are presented, together with vibratory hub shears and moments. The influence of ply orientation and tip sweep is clearly illustrated by the results.

  8. Computational Aeroelasticity: Success, Progress, Challenge

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Liu, Danny D.; Huttsell, Lawrence J.

    2003-01-01

    The formal term Computational Aeroelasticity (CAE) has only been recently adopted to describe aeroelastic analysis methods coupling high-level computational fluid dynamics codes with structural dynamics techniques. However, the general field of aeroelastic computations has enjoyed a rich history of development and application since the first hand-calculations performed in the mid 1930 s. This paper portrays a much broader definition of Computational Aeroelasticity; one that encompasses all levels of aeroelastic computation from the simplest linear aerodynamic modeling to the highest levels of viscous unsteady aerodynamics, from the most basic linear beam structural models to state-of-the-art Finite Element Model (FEM) structural analysis. This paper is not written as a comprehensive history of CAE, but rather serves to review the development and application of aeroelastic analysis methods. It describes techniques and example applications that are viewed as relatively mature and accepted, the "successes" of CAE. Cases where CAE has been successfully applied to unique or emerging problems, but the resulting techniques have proven to be one-of-a-kind analyses or areas where the techniques have yet to evolve into a routinely applied methodology are covered as "progress" in CAE. Finally the true value of this paper is rooted in the description of problems where CAE falls short in its ability to provide relevant tools for industry, the so-called "challenges" to CAE.

  9. Fundamental studies in hypersonic aeroelasticity using computational methods

    NASA Astrophysics Data System (ADS)

    Thuruthimattam, Biju James

    This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle using methods in computational aeroelasticity. This objective is achieved by first considering the behavior of a representative configuration, namely a two degree-of-freedom typical cross-section, followed by that of a three-dimensional model of the generic vehicle, operating at very high Mach numbers. The typical cross-section of a hypersonic vehicle is represented by a double-wedge cross-section, having pitch and plunge degrees of freedom. The flutter boundaries of the typical cross-section are first generated using third-order piston theory, to serve as a basis for comparison with the refined calculations. Prior to the refined calculations, the time-step requirements for the reliable computation of the unsteady airloads using Euler and Navier-Stokes aerodynamics are identified. Computational aeroelastic response results are used to obtain frequency and damping characteristics, and compared with those from piston theory solutions for a variety of flight conditions. A parametric study of offsets, wedge angles; and static angle of attack is conducted. All the solutions are fairly close below the flutter boundary, and differences between the various models increase when the flutter boundary is approached. For this geometry, differences between viscous and inviscid aeroelastic behavior are not substantial. The effects of aerodynamic heating on the aeroelastic behavior of the typical cross-section are incorporated in an approximate manner, by considering the response of a heated wing. Results indicate that aerodynamic heating reduces aeroelastic stability. This analysis was extended to a generic hypersonic vehicle, restrained such that the rigid-body degrees of freedom are absent. The aeroelastic stability boundaries of the canted fin alone were calculated using third-order piston theory. The stability boundaries for the generic vehicle were calculated at different altitudes using

  10. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  11. Including Aeroelastic Effects in the Calculation of X-33 Loads and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.

    1998-01-01

    Up until now, loads analyses of the X-33 RLV have been done at Marshall Space Flight Center (MSFC) using aerodynamic loads derived from CFD and wind tunnel models of a rigid vehicle. Control forces and moments are determined using a rigid vehicle trajectory analysis and the detailed control load distributions for achieving the desired control forces and moments, again on the rigid vehicle, are determined by Lockheed Martin Skunk Works. However, static aeroelastic effects upon the load distributions are not known. The static aeroelastic effects will generally redistribute external loads thereby affecting both the internal structural loads as well as the forces and moments generated by aerodynamic control surfaces. Therefore, predicted structural sizes as well as maneuvering requirements can be altered by consideration of static aeroelastic effects. The objective of the present work is the development of models and solutions for including static aeroelasticity in the calculation of X-33 loads and in the determination of stability and control derivatives.

  12. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  13. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  14. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  15. New generation aircraft design problems relative to turbulence stability, aeroelastic loads and gust alleviation

    NASA Technical Reports Server (NTRS)

    Heimbaugh, Richard M.

    1987-01-01

    Past history, present status, and future of discrete gusts are schematically presented. It is shown that there are two approaches to the gust analysis: discrete and spectral density. The role of these two approaches to gust analysis are discussed. The idea of using power spectral density (PSD) in the analysis of gusts is especially detailed.

  16. Aeroelastic Stability of A Soft-Inplane Gimballed Tiltrotor Model In Hover

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2001-01-01

    Soft-inplane rotor systems can significantly reduce the inplane rotor loads generated during the maneuvers of large tiltrotors, thereby reducing the strength requirements and the associated structural weight of the hub. Soft-inplane rotor systems. however, are subject to instabilities associated with ground resonance, and for tiltrotors this instability has increased complexity as compared to a conventional helicopter. Researchers at Langley Research Center and Bell Helicopter-Textron, Inc. have completed ail initial study of a soft-inplane gimballed tiltrotor model subject to ground resonance conditions in hover. Parametric variations of the rotor collective pitch and blade root damping, and their associated effects oil the model stability were examined. Also considered in the study was the effectiveness of ail active swash-plate and a generalized predictive control (GPC) algorithm for stability augmentation of the ground resonance conditions. Results of this study show that the ground resonance behavior of a gimballed soft-inplane tiltrotor can be significantly different from that of a classical soft-inplane helicopter rotor. The GPC-based active swash-plate was successfully implemented, and served to significantly augment damping of the critical modes to an acceptable value.

  17. Loads and aeroelasticity division research and technology accomplishments for FY 1982 and plans for FY 1983

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.

    1983-01-01

    Accomplishments of the past year and plans for the coming year are highlighted as they relate to five year plans and the objectives of the following technical areas: aerothermal loads; multidisciplinary analysis and optimization; unsteady aerodynamics; and configuration aeroelasticity. Areas of interest include thermal protection system concepts, active control, nonlinear aeroelastic analysis, aircraft aeroelasticity, and rotorcraft aeroelasticity and vibrations.

  18. Aeroelastic stability of coupled flap-lag motion of hingeless helicopter blades at arbitrary advance ratios

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    Equations for large amplitude coupled flap-lag motion of a hingeless elastic helicopter blade in forward flight are derived. Only a torsionally rigid blade excited by quasi-steady aerodynamic loads is considered. The effects of reversed flow together with some new terms due to radial flow are included. Using Galerkin's method the spatial dependence is eliminated and the equations are linearized about a suitable equilibrium position. The resulting system of homogeneous periodic equations is solved using multivariable Floquet-Liapunov theory, and the transition matrix at the end of the period is evaluated by two separate methods. Computational efficiency of the two numerical methods is compared. Results illustrating the effects of forward flight and various important blade parameters on the stability boundaries are presented.

  19. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  20. Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2013-01-01

    This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop.

  1. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  2. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  3. Aeroelasticity Analysis of AN Industrial Gas Turbine Combustor Using a Simplified Combustion Model

    NASA Astrophysics Data System (ADS)

    Bréard, C.; Sayma, A. I.; Vahdati, M.; Imregun, M.

    2002-12-01

    Lean premixed industrial gas turbine combustors are susceptible to flame instabilities, resulting in large unsteady pressure waves that may cause the discharge nozzle to experience excessive vibration levels. A detailed aeroelasticity analysis, aimed at investigating possible structural failure mechanisms, was undertaken using a time-accurate unsteady flow representation, a simplified combustion disturbance and a structural model of the discharge nozzle. The computational domain included the lower part of the combustor geometry as well as the nozzle guide vanes (NGVs) at the HP turbine inlet. A pressure perturbation, representing the unsteadiness due to the combustion process, was applied below the tertiary fuel inlet and its frequency was set to each structural natural frequency in turn. The propagation of the pressure perturbation through the combustor nozzle, its reflection from the NGVs and further reflections were monitored using two different models. The first one, the so-called ``open'' system, ignored the reflections from the upper part of the combustion chamber while the second one, the ``closed'' system, assumed full reflection with an appropriate time shift. The calculations have shown that the imposed excitation could generate unsteady pressure shapes that were correlated with the ``flap'' modes of the discharge nozzle. In addition, an acoustic resonance condition was observed when the forcing pressure wave had a frequency close to 550 Hz, the experimentally observed failure frequency of the nozzle. The co-existence of these two factors, i.e., excitation/structural-mode match and the possibility of acoustic resonance, was thought to have the potential of producing very high vibration response.

  4. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  5. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  6. An investigation of aeroelastic phenomena associated with an oblique winged aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1976-01-01

    Oblique wing aeroelasticity studies are reviewed. The static aeroelastic stability characteristics of oblique wing aircraft, lateral trim requirements for 1-g flight, and the dynamic aeroelastic stability behavior of oblique winged aircraft, primarily flutter, are among the topics studied. The similarities and differences between oblique winged aircraft and conventional, bilaterally symmetric, swept wing aircraft are emphasized.

  7. Analytical aeroelastic stability considerations and conversion loads for an XV-15 tilt-rotor in a wind tunnel simulation

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Meza, Victor

    1992-01-01

    A rotorcraft analysis is conducted to assess tilt-rotor stability and conversion loads for the XV-15 rotor with metal blades within its specified test envelope. A 38-DOF flutter analysis based on the code by Johnson (1988) is developed to simulate a wind-tunnel test in which the rotor torque is constant and thereby study stability. The same analytical model provides the simulated loads including hub loads, blade loads, and oscillatory pitch-link loads with attention given to the nonuniform inflow through the proprotor in the presence of the wing. Tilt-rotor stability during the cruise mode is found to be sensitive to coupling effects in the control system stiffness, and a stability problem is identified in the XV-15 Advanced Technology Blades. The present analysis demonstrates that the tilt-rotor is stable within the specified test envelope of the NASA 40 x 80-ft wind tunnel.

  8. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  9. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Ricketts, Rodney H.; Doggett, Robert V., Jr.

    1991-01-01

    Structural dynamic and aeroelastic considerations applicable to hypersonic vehicles are discussed. Emphasis is given to aerospace plane configurations. The definition of aerothermoelasticity and the operational flight environment are reviewed, and structural dynamic and aeroelastic areas of concern are individually discussed, including vibration, landing and taxiing, propellant dynamics, acoustics, lifting surface flutter, panel flutter, control surface buzz, buffeting, gust response, and static aeroelasticity. Recent research results from all-moveable delta-wing aerolastic studies, engine inlet lip aeroelastic analysis, and studies of thermal effects on vibration frequencies, aerodynamic heating effects on flutter, and active control of aeroelastic response are reviewed.

  10. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  11. Aero-elastic Parameter Estimation of a 2.5 MW Wind Turbine Through Dynamic Analysis of In-Operation Vibration Data

    NASA Astrophysics Data System (ADS)

    Ozbek, Muammer; Rixen, Daniel J.

    Aero-elastic parameters of a 2.5 MW—80 m diameter—wind turbine were extracted by using the in-operation vibration data recorded for various wind speeds and operating conditions. The data acquired by 8 strain gauges (2 sensors on each blade and 2 sensors on the tower) installed on the turbine was analyzed by using OMA (Operational Modal Analysis) methods while several turbine parameters (eigenfrequencies and damping ratios) were extracted. The obtained system parameters were then qualitatively compared with the results presented in a study from literature, which includes both aeroelastic simulations and in-field measurements performed on a similar size and capacity wind turbine.

  12. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  13. Aeroelastic analysis of rotor blades using three dimensional multibody dynamic analysis

    NASA Astrophysics Data System (ADS)

    Das, Manabendra

    This study presents an approach based on the floating frame of reference method to model complex three-dimensional bodies in a multibody system. Unlike most of the formulations based on the floating frame of reference method, which assume small or moderate deformations, the present formulation allows large elastic deformations within each frame by using the co-rotational form of the updated Lagrangian description of motion. The implicit integration scheme is based on the Generalized-alpha method, and kinematic joints are invoked in the formulation through the coordinate partitioning method. The resulting numerical scheme permits the usage of relatively large time steps even though the flexible bodies may experience large elastic deformations. A triangular element, based on the first order shear deformable theory, has been developed specifically for folded plate and shell structures. The plate element does not suffer from either shear or aspect-ratio locking under transverse and membrane bending, respectively. A stiffened plate element has been developed that combines a shear deformable plate with a Timoshenko beam. A solid element, that utilized the isoparametric formulation along with incompatible modes, and one-dimensional elements are also included in the element library. The tools developed in the present work are then utilized for detailed rotorcraft applications. As opposed to the conventional approach of using beam elements to represent the rotor blade, the current approach focuses on detailed modeling of the blade using plate and solid elements. A quasi-steady model based on lifting line theory is utilized to compute the aerodynamic loads on the rotor blade in order to demonstrate the capabilities of the proposed tool to model rotorcraft aeroelasticity.

  14. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  15. Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert

    2005-01-01

    The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.

  16. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  17. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential

  18. Computer program for definition of transonic axial-flow compressor blade rows. [computer program for fabrication and aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1974-01-01

    A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.

  19. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  20. Aeroelastic Analysis Of Joined Wing Of High Altitude Long Endurance (HALE) Aircraft Based On The Sensor-Craft Configuration

    NASA Astrophysics Data System (ADS)

    Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti

    2002-11-01

    Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.

  1. STARS: An integrated general-purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Gupta, Kajal K.

    1991-01-01

    The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.

  2. Global and local dynamics of an aeroelastic system with a control surface freeplay nonlinearity

    NASA Astrophysics Data System (ADS)

    Trickey, Stephen T.

    2000-11-01

    The effects of a freeplay structural nonlinearity on an aeroelastic system comprised of a 2D typical section with an approximation of Theodorsen theory aerodynamics is presented. Particular attention is paid to the stability of a nonlinear aeroelastic response or limit cycle oscillation (LCO). The principal contribution of this work to the field of aeroelasticity lies in the migration of experimental testing and analysis methods from the fields of system identification and nonlinear dynamics to the arena of a nonlinear aeroelastic stability problem. Innovations from the field of nonlinear dynamics include the use of time delay embedded coordinates to reconstruct system dynamics, the use of a Poincare section to prescribe an operating point about which a linear description of the dynamics can be approximated, and the use of a basin of attraction measure to assess initial condition dependence. Two different system identification approaches are taken to generate a linear approximation of the experimental system dynamics about the limit cycle oscillation. A large scale perturbation method using a rotating slotted cylinder gust generator and using a least squares fit of the resulting transient dynamics was shown to be a viable method to ascertain stability information to within the limitations of the experimental setup. A small scale stochastic stability measurement technique using the natural turbulence in a low speed wind tunnel as the stochastic input and a subspace system identification method to estimate the dynamics of the system provided more repeatable and consistent results. Also in this work is a derivation of the analytical model and a description of the experimental model. Typical global dynamic features of the aeroelastic system are presented from both numerical simulation and experiments including periodic limit cycle oscillations (LCO), quasi-periodic responses and chaotic responses.

  3. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  4. Practical considerations in aeroelastic design

    NASA Technical Reports Server (NTRS)

    Rommel, B. A.; Dodd, A. J.

    1984-01-01

    The structural design process for large transport aircraft is described. Critical loads must be determined from a large number of load cases within the flight maneuver envelope. The structural design is also constrained by considerations of producibility, reliability, maintainability, durability, and damage tolerance, as well as impact dynamics and multiple constraints due to flutter and aeroelasticity. Aircraft aeroelastic design considerations in three distinct areas of product development (preliminary design, advanced design, and detailed design) are presented and contrasted. The present state of the art is challenged to solve the practical difficulties associated with design, analysis, and redesign within cost and schedule constraints. The current practice consists of largely independent engineering disciplines operating with unorganized data interfaces. The need is then demonstrated for a well-planned computerized aeroelastic structural design optimization system operating with a common interdisciplinary data base. This system must incorporate automated interfaces between modular programs. In each phase of the design process, a common finite-element model for static and dynamic optimization is required to reduce errors due to modeling discrepancies. As the design proceeds from the simple models in preliminary design to the more complex models in advanced and detailed design, a means of retrieving design data from the previous models must be established.

  5. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  6. Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1988-01-01

    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist.

  7. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  8. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Bir, Gunjit; Jonkman, Jason

    2007-07-01

    Offshore turbines are gaining attention as means to capture the immense and relatively calm wind resources available over deep waters. This paper examines the aeroelastic stability of a three-bladed 5MW conceptual wind turbine mounted atop a floating barge with catenary moorings. The barge platform was chosen from the possible floating platform concepts, because it is simple in design and easy to deploy. Aeroelastic instabilities are distinct from resonances and vibrations and are potentially more destructive. Future turbine designs will likely be stability-driven in contrast to the current loads-driven designs. Reasons include more flexible designs, especially the torsionally-flexible rotor blades, material and geometric couplings associated with smart structures, and hydrodynamic interactions brought on by the ocean currents and surface waves. Following a brief description of the stability concept and stability analysis approach, this paper presents results for both onshore and offshore configurations over a range of operating conditions. Results show that, unless special attention is paid, parked (idling) conditions can lead to instabilities involving side-to-side motion of the tower, edgewise motion of the rotor blades, and yawing of the platform.

  9. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  10. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  11. Loads and aeroelasticity division research and technology accomplishments for FY 1983 and plans for FY 1984

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1984-01-01

    Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.

  12. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  13. Transonic-Small-Disturbance and Linear Analyses for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Wiesman, Carol D.; Silva, Walter A.; Spain, Charles V.; Heeg, Jennifer

    2005-01-01

    Analysis serves many roles in the Active Aeroelastic Wing (AAW) program. It has been employed to ensure safe testing of both a flight vehicle and wind tunnel model, has formulated models for control law design, has provided comparison data for validation of experimental methods and has addressed several analytical research topics. Aeroelastic analyses using mathematical models of both the flight vehicle and the wind tunnel model configurations have been conducted. Static aeroelastic characterizations of the flight vehicle and wind tunnel model have been produced in the transonic regime and at low supersonic Mach numbers. The flight vehicle has been analyzed using linear aerodynamic theory and transonic small disturbance theory. Analyses of the wind-tunnel model were performed using only linear methods. Research efforts conducted through these analyses include defining regions of the test space where transonic effects play an important role and investigating transonic similarity. A comparison of these aeroelastic analyses for the AAW flight vehicle is presented in this paper. Results from a study of transonic similarity are also presented. Data sets from these analyses include pressure distributions, stability and control derivatives, control surface effectiveness, and vehicle deflections.

  14. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  15. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of vertical takeoff and landing aircraft with high forward flight speed capability is that of the X-Wing. The X-Wing is a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept wings and two aft-swept wings. Because of the unusual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic 'washin' of the forward-swept blades and 'washout' of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  16. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of VTOL aircraft with high forward flight speed capability is that of the X-Wing, a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept and two aft-swept wings. Because of the usual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic washin of the forward-swept blades and washout of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  17. An overview of aeroelasticity studies for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Huttsell, Lawrence J.; Hutsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  18. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  19. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  20. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Wendell, J. H.

    1982-09-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  1. Advanced Aeroelastic Technologies for Turbomachinery Application

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.

    2004-01-01

    A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented

  2. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  3. Experimental aeroelasticity history, status and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1990-01-01

    NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  4. Aeroelastic optimization of a composite tilt rotor

    NASA Astrophysics Data System (ADS)

    Soykasap, Omer

    Composite tilt rotor aeroelastic optimization is performed by using a published formulation of mixed variational exact intrinsic equations of motion for dynamics of beams along with a finite-state dynamic inflow theory for rotors. A composite box beam model is used to represent the principal load carrying member of the rotor blade. The blade is discretized using finite elements. Each wall used to model the box beam is made of laminated composite plies. For the optimization, design variables are blade twist, box width and height, horizontal and vertical wall thicknesses, the ply angles of the laminated walls and nonstructural masses. The rotor is optimized for the figure of merit in hover and the axial efficiency in forward flight while keeping the same thrust levels in both flight modes. Blade weight, autorotational inertia, geometry, and aeroelastic stability are considered as constraints. The feasible direction technique is used for optimization. The results are validated by earlier test results. A trim calculation procedure is added to the analysis to keep the desired values of the thrust. Sensitivities of the rotor performance to design variables are studied. The effect of structural couplings on rotor performance is studied. Of all the couplings extension-torsion is found to be the most effective parameter to improve the performance. The ply angles of the laminates are assumed to be the same over the span and through the thickness of walls. Such a model can be built by the filament winding technique and offers manufacturing ease. Isolated rotor stability is investigated for both flight regimes. Some values of elastic coupling result in isolated rotor instability. However, the optimized configuration was free of instability. Optimization results are presented for effects such as extension-torsion coupling, choice of layups, twist distribution, and cross-sectional geometry of the blade. Optimum designs are compared with XV-15 tilt rotor performance, which is

  5. Predicting Unsteady Aeroelastic Behavior

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Mook, Dean T.

    1990-01-01

    New method for predicting subsonic flutter, static deflections, and aeroelastic divergence developed. Unsteady aerodynamic loads determined by unsteady-vortex-lattice method. Accounts for aspect ratio and angle of attack. Equations for motion of wing and flow field solved iteratively and simultaneously. Used to predict transient responses to initial disturbances, and to predict steady-state static and oscillatory responses. Potential application for research in such unsteady structural/flow interactions as those in windmills, turbines, and compressors.

  6. Aeroelastic tailoring and structural optimization of joined-wing configurations

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hwan

    2002-08-01

    Methodology for integrated aero-structural design was developed using formal optimization. ASTROS (Automated STRuctural Optimization System) was used as an analyzer and an optimizer for performing joined-wing weight optimization with stress, displacement, cantilever or body-freedom flutter constraints. As a pre/post processor, MATLAB was used for generating input file of ASTROS and for displaying the results of the ASTROS. The effects of the aeroelastic constraints on the isotropic and composite joined-wing weight were examined using this developed methodology. The aeroelastic features of a joined-wing aircraft were examined using both the Rayleigh-Ritz method and a finite element based aeroelastic stability and weight optimization procedure. Aircraft rigid-body modes are included to analyze of body-freedom flutter of the joined-wing aircraft. Several parametric studies were performed to determine the most important parameters that affect the aeroelastic behavior of a joined-wing aircraft. The special feature of a joined-wing aircraft is body-freedom flutter involving frequency interaction of the first elastic mode and the aircraft short period mode. In most parametric study cases, the body-freedom flutter speed was less than the cantilever flutter speed that is independent of fuselage inertia. As fuselage pitching moment of inertia was increased, the body-freedom flutter speed increased. When the pitching moment of inertia reaches a critical value, transition from body-freedom flutter to cantilever flutter occurred. The effects of composite laminate orientation on the front and rear wings of a joined-wing configuration were studied. An aircraft pitch divergence mode, which occurred because of forward movement of center of pressure due to wing deformation, was found. Body-freedom flutter and cantilever-like flutter were also found depending on combination of front and rear wing ply orientations. Optimized wing weight behaviors of the planar and non

  7. Aeroelastic analysis for helicopter rotor blades with time-variable, non-linear structural twist and multiple structural redundancy: Mathematical derivation and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    The differential equations of motion for the lateral and torsional deformations of a nonlinearly twisted rotor blade in steady flight conditions together with those additional aeroelastic features germane to composite bearingless rotors are derived. The differential equations are formulated in terms of uncoupled (zero pitch and twist) vibratory modes with exact coupling effects due to finite, time variable blade pitch and, to second order, twist. Also presented are derivations of the fully coupled inertia and aerodynamic load distributions, automatic pitch change coupling effects, structural redundancy characteristics of the composite bearingless rotor flexbeam - torque tube system in bending and torsion, and a description of the linearized equations appropriate for eigensolution analyses. Three appendixes are included presenting material appropriate to the digital computer program implementation of the analysis, program G400.

  8. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  9. Aeroelasticity - Frontiers and beyond /von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Garrick, I. E.

    1976-01-01

    The lecture aims at giving a broad survey of the current reaches of aeroelasticity with some narrower views for the specialist. After a short historical review of concepts for orientation, several topics are briefly presented. These touch on current flight vehicles having special points of aeroelastic interest; recent developments in the active control of aeroelastic response including control of flutter; remarks on the unsteady aerodynamics of arbitrary configurations; problems of the space shuttle related to aeroelasticity; and aeroelastic response in flight.

  10. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shu

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  11. Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Rui; Abdelkefi, Abdessattar

    2015-01-01

    The effects of a multi-segmented nonlinearity in the pitch degree of freedom on the behavior of a two-degree of freedom aeroelastic system are investigated. The aeroelastic system is free to plunge and pitch and is supported by linear translational and nonlinear torsional springs and is subjected to an incoming flow. The unsteady representation based on the Duhamel formulation is used to model the aerodynamic loads. Using modern method of nonlinear dynamics, a nonlinear characterization is performed to identify the system's response when increasing the wind speed. It is demonstrated that four sudden transitions take place with a change in the system's response. It is shown that, in the first transition, the system's response changes from simply periodic (only main oscillating frequency) to two periods (having the main oscillating frequency and its superharmonic of order 2). In the second transition, the response of the system changes from two periods (having the main oscillating frequency and its superharmonic of order 2) to a period-1. The results also show that the third transition is accompanied by a change in the system's response from simply periodic to two periods (having the main oscillating frequency and its superharmonic of order 3). After this transition, chaotic responses take place and then the fourth transition is accompanied by a sudden change in the system's response from chaotic to two periods (having the main oscillating frequency and its superharmonic of order 3). The results show that these transitions are caused by the tangential contact between the trajectory and the multi-segmented nonlinearity boundaries and with a zero-pitch speed incidence. This observation is associated with the definition of grazing bifurcation.

  12. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  13. Aeroelastic tailoring in wind-turbine blade applications

    SciTech Connect

    Veers, P.; Lobitz, D.; Bir, G.

    1998-04-01

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  14. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  15. SR-7A aeroelastic model design report

    NASA Technical Reports Server (NTRS)

    Nagle, D.; Auyeung, S.; Turnberg, J.

    1986-01-01

    A scale model was designed to simulate the aeroelastic characteristics and performance of the 2.74 meter (9 ft.) diameter SR-7L blade. The procedures used in this model blade design are discussed. Included in this synopsis is background information concerning scaling parameters and an explanation of manufacturing limitations. A description of the final composite model blade, made of titanium, fiberglass, and graphite, is provided. Analytical methods for determining the blade stresses, natural frequencies and mode shapes, and stability are discussed at length.

  16. Calculations in bridge aeroelasticity via CFD

    SciTech Connect

    Brar, P.S.; Raul, R.; Scanlan, R.H.

    1996-12-31

    The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.

  17. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  18. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  19. Analysis of Dynamic Stability of Space Launch Vehicles under Aerodynamic Forces Using CFD Derived Data

    NASA Astrophysics Data System (ADS)

    Trikha, M.; Gopalakrishnan, S.; Mahapatra, D. Roy

    2011-09-01

    A computational framework is developed to investigate the dynamic stability of space launch vehicles subjected to aerodynamic forces. A detailed mechanics based mathematical model of a moving flexible vehicle is used. The aerodynamic forces on the vehicle are obtained from simulation using Computational Fluid Dynamics (CFD) package. The objective behind this investigation is to analyze the problem of aeroelastic instability in blunt/conical nose slender space launch vehicles. Coupling among the rigid-body modes, the longitudinal vibration modes, and the transverse vibrational modes are considered. The effect of propulsive thrust as a follower force is also considered. A one-dimensional finite element model is developed to investigate the occurrence of aeroelastic instabilities of various types. Eigenvalues of the vehicle are determined in order to analyze the stable regimes. As a special case, we show numerical simulations by considering a typical vehicle configuration, for a vehicle Mach number of 0.8. Phenomenon of flutter is observed at this Mach number. The proposed analysis is suitable for different launch events such as vehicle take-off, maximum dynamic pressure regime, thrust transients, stage separation etc. The approach developed in this paper can be utilized for preliminary design of launch vehicles and establishing the stability boundaries for different trajectory parameters.

  20. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  1. Wing Weight Optimization Under Aeroelastic Loads Subject to Stress Constraints

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Issac, J.; Macmurdy, D.; Guruswamy, Guru P.

    1997-01-01

    A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.

  2. Efficient sensitivity analysis and optimization of a helicopter rotor

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  3. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  4. Plans for Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; Mani, Mori; Marvriplis, Dimitri; Perry, Boyd, III; Ritter, Markus; Schuster, David M.; Smith, Marilyn; Taylor, Paul; Whiting, Brent; Wieseman, Carol C.

    2011-01-01

    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies

  5. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  6. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  7. An overview of aeroelasticity studies for the National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  8. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  9. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  10. Aeroelastic and dynamic finite element analyses of a bladder shrouded disk

    NASA Technical Reports Server (NTRS)

    Smith, G. C. C.; Elchuri, V.

    1980-01-01

    The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.

  11. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  12. Stability analysis of ecomorphodynamic equations

    NASA Astrophysics Data System (ADS)

    Bärenbold, F.; Crouzy, B.; Perona, P.

    2016-02-01

    In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.

  13. Numerical validation of a stability model for a flexible over-expanded rocket nozzle

    NASA Astrophysics Data System (ADS)

    Lefrançois, E.

    2005-10-01

    A numerical approach for the aeroelastical stability of an over-expanded rocket engine is proposed in this paper. The main idea is to offer a better understanding of the repercussions likely to appear from the aeroelastic coupling in terms of side loads that may be responsible for damage effects on the engine. After a brief description of the stability model issued from previous works (Pekkari's team) and details upon a numerical fluid-structure coupling code, comparative calculations are conducted. The stability model is then called into question and a finer analysis is proposed to explain its major tendency to over-predict the aeroelastic frequency shift in comparison with numerical coupling results.

  14. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    NASA Technical Reports Server (NTRS)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  15. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  16. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  17. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  18. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  19. Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.

    2004-01-01

    The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.

  20. An experimental investigation of the flap-lag-torsion aeroelastic stability of a small-scale hingeless helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Sharpe, David L.

    1986-01-01

    A small scale, 1.92 m diam, torsionally soft, hingeless helicopter rotor was investigated in hover to determine isolated rotor stability characteristics. The two-bladed, untwisted rotor was tested on a rigid test stand at tip speeds up to 101 m/sec. The rotor mode of interest is the lightly damped lead-lag mode. The dimensionless lead-lag frequency of the mode is approximately 1.5 at the highest tip speed. The hub was designed to allow variation in precone, blade droop, pitch control stiffness, and blade pitch angle. Measurements of modal frequency and damping were obtained for several combinations of these hub parameters at several values of rotor speed. Steady blade bending moments were also measured. The lead-lag damping measurements were found to agree well with theoretical predictions for low values of blade pitch angle. The test data confirmed the predicted effects of precone, droop, and pitch control stiffness parameters on lead-lag damping. The correlation between theory and experiment was found to be poor for the mid-to-high range of pitch angles where the theory substantially overpredicted the experimental lead-lag damping. The poor correlation in the mid-to-high blade pitch angle range is attributed to low Reynolds number nonlinear aerodynamics effects not included in the theory. The experimental results also revealed an asymmetry in lead-lag damping between positive and negative thrust conditions.

  1. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  2. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  3. The Influence of Feedback on the Aeroelastic Behavior of Tilt Proprotor Aircraft Including the Effects of Fuselage Motion

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Komatsuzaki, T.; Traybar, J. J.

    1979-01-01

    The influence of single loop feedbacks to improve the stability of the system are considered. Reduced order dynamic models are employed where appropriate to promote physical insight. The influence of fuselage freedom on the aeroelastic stability, and the influence of the airframe flexibility on the low frequency modes of motion relevant to the stability and control characteristics of the vehicle were examined.

  4. Development of a Rotor-Body Coupled Analysis for an Active Mount Aeroelastic Rotor Testbed. Degree awarded by George Washington Univ., May 1996

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.

    1998-01-01

    At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.

  5. Optimal aeroelastic vehicle sensor placement for root migration flight control applications

    NASA Astrophysics Data System (ADS)

    Al-Shehabi, Abdul Ghafoor

    2001-09-01

    An important step in control design for elastic systems is the determination of the number and location of control system components, namely sensors. The number and placement of sensors can be critical to the robust functioning of active control systems, especially when the system of interest is a large high-speed aeroelastic vehicle. The position of the sensors affects not only system stability, but also the performance of the closed-loop system. In this dissertation, a new approach for sensor placement in the integrated rigid and vibrational control of flexible aircraft structures is developed. Traditional rigid-body augmentation objectives are addressed indirectly through input-output pair and compensation selection. Aeroelastic control suppression objectives are addressed directly through sensor placement. A nonlinear programming problem is posed to minimize a cost function with specified constraints, where the cost function terms are multiplied by appropriate weighting factors. Cost function criteria are based on complex frequency domain geometric pole-zero structures in order to gain stabilize or phase stabilize the aeroelastic modes. Specifically, these criteria are based on dipole magnitude and complementary departure angle. In turn, the control design approach utilizes one of the classical methods known as Evans root migration to exploit the pole-zero structures resulting from sensor placement. Desirable complementary departure angles can lead to significant aeroelastic damping improvement as loop gain is increased, while favorable dipole magnitudes can virtually eliminate the effects of aeroelastics in a feedback loop. Appropriate constraints include minimum phase aeroelastic zeros to avoid common problems associated with right-half plane zeros. To achieve desirable flight control system characteristics via optimal sensor locations, different kinds of blending filters for multiple sensors are investigated. Static filters, as well as dynamic filters with

  6. Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight

  7. Stability Analysis of ISS Medications

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.

    2014-01-01

    the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.

  8. Experimental aeroelasticity - History, status and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) conducts wind-tunnel experiments to determine and understand the aerolastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing, and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  9. An Overview of Recent Developments in Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Edwards, John W.

    2004-01-01

    The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.

  10. Aeroelastic Optimization Study Based on X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Pak, Chan-Gi

    2014-01-01

    A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.

  11. Effect of thrust on the aeroelastic instability of a composite swept wing with two engines in subsonic compressible flow

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Askarian, A. R.; Zarifian, P.

    2013-01-01

    This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.

  12. Application of the finite element method to rotary-wing aeroelasticity. [in helicopter hovering flight

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Straub, F.

    1978-01-01

    Recent research in rotary-wing aeroelasticity has indicated that all fundamental problems in this area are inherently nonlinear. The non-linearities in this problem are due to the inclusion of finite slopes, due to moderate deflections, in the structural, inertia and aerodynamic operators associated with this aeroelastic problem. In this paper the equations of motion, which are both time and space dependent, for the aeroelastic problem are first formulated in P.D.E. form. Next the equations are linearized about a suitable equilibrium position. The spatial dependence in these equations is discretized using a local Galerkin method of weighted residuals resulting in a finite element formulation of the aeroelastic problem. As an illustration the method is applied to the coupled flap-lag problem of a helicopter rotor blade in hover. Comparison of the solutions with previously published solutions establishes the convergence properties of the method. It is concluded that this formulation is a practical tool for solving rotary-wing aeroelastic stability or response problems.

  13. Optical design and aeroelastic investigation of segmented windmill rotor blades

    NASA Astrophysics Data System (ADS)

    Chao, C. C.; Wanh, L.

    An aeroelastic model is developed for optimizing the aerodynamic design and aeroelastic structural analysis of segmented wind turbine rotor blades. The treatment is limited to the aerodynamics of the segmented blade as a whole using the Box method, with attention given to rotor response with an appropriate aeroelastic feedback for optimizing the pitch response to aerodynamic moments which occur. Vibration and flutter are also accounted for, including the natural frequencies and the mode shapes. The rotor blades are segmented, each segment being a foam-filled core shell with two end bearings for rotating around the spar. Compensation springs restrict the rotation. An energy balance and the equations of motion are formulated in the aerodynamic analysis, and calculations are presented for a 60 ft blade on a machine with an 8 m/sec design speed. A large diameter rotor is found to be preferable to many smaller machines for large power generation. A large rotor will not encounter structural resonance, and the segmented blade will be suitably damped in flapping, inplane lagging, and segment twist.

  14. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Malone, John B.

    1992-01-01

    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  15. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    NASA Astrophysics Data System (ADS)

    Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.

    2014-06-01

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.

  16. Prediction of wing aeroelastic effects on aircraft life and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1987-01-01

    The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.

  17. Wing-Body Aeroelasticity on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup

    1996-01-01

    This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.

  18. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  19. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  20. Efficient Cfd/csd Coupling Methods for Aeroelastic Applications

    NASA Astrophysics Data System (ADS)

    Chen, Long; Xu, Tianhao; Xie, Jing

    2016-06-01

    A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.

  1. Aeroelastic airfoil smart spar

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Skott; Pastore, Christopher M.; Garfinkle, Moishe

    1993-01-01

    Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady aerodynamic forces during high speed flight, abrupt maneuvers, or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction 'smart' laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0, 17, 30, 45 and 60 deg fiber angle lay-ups. Symmetric fiber lay-ups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.

  2. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently

  3. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats

    2013-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.

  4. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined

  5. Snoring: Linear Stability Analysis and In-Vitroexperiments

    NASA Astrophysics Data System (ADS)

    Aurégan, Y.; Depollier, C.

    1995-11-01

    A theoretical and experimental study is presented of the aeroelastic instability of the human soft palate, which can explain the occurrence of snoring. The soft palate is modelled by a beam clamped at its leading edge and free at its trailing edge. The continuous and discrete cases are investigated. Only the two first modes of vibration of the soft palate are taken into account. The flow is incompressible, inviscid and one dimensional. Structural damping and flow nonstationarities can be considered. Theory shows that the soft palate loses its stability by flutter and that this instability is mainly controlled by a single dimensionless parameter which can be easily interpreted from a medical point of view. An experimental apparatus which produces sounds very close to human snoring is described. Agreement between theory and experiments is good.

  6. Biacore analysis with stabilized GPCRs

    PubMed Central

    Rich, Rebecca L.; Errey, James; Marshall, Fiona; Myszka, David G.

    2010-01-01

    Using stabilized forms of β1 adrenergic and A2A adenosine G-protein-coupled receptors, we applied Biacore to monitor receptor activity and characterize binding constants of small-molecule antagonists spanning >20,000 fold in affinity. We also illustrate an improved method for tethering His-tagged receptors on NTA chips to yield stable, high-capacity, high-activity surfaces, as well as a novel approach to regenerate receptor-binding sites. Based on our success with this approach, we expect that the combination of stabilized receptors with biosensor technology will become a common method for characterizing members of this receptor family. PMID:20969829

  7. Non-linear aeroelastic prediction for aircraft applications

    NASA Astrophysics Data System (ADS)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  8. Stability analysis of dynamic thin shells

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Crawford, Paulo

    2005-11-01

    We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

  9. The computer in shell stability analysis

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Starnes, J. H., Jr.

    1975-01-01

    Some examples in which the high-speed computer has been used to improve the static stability analysis capability for general shells are examined. The fundamental concepts of static stability are reviewed with emphasis on the differences between linear bifurcation buckling and nonlinear collapse. The analysis is limited to the stability of conservative systems. Three examples are considered. The problem of cylinders subjected to bending loads is used as an example to illustrate that a simple structure can have a sufficiently complicated nonlinear behavior to require a computer analysis for accurate results. An analysis of the problems involved in the modeling of stiffening elements in plate and shell structures illustrates the necessity that the analyst recognizes all important deformation modes. The stability analysis of the Skylab structure indicates the size of problems that can be solved with current state-of-the-art capability.

  10. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 2

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Brenner, martin J.

    2006-01-01

    This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable

  11. Jacobi stability analysis of Rikitake system

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Yadav, C. K.

    2016-06-01

    We study the Rikitake system through the method of differential geometry, i.e. Kosambi-Cartan-Chern (KCC) theory for Jacobi stability analysis. For applying KCC theory we reformulate the Rikitake system as two second-order nonlinear differential equations. The five KCC invariants are obtained which express the intrinsic properties of nonlinear dynamical system. The deviation curvature tensor and its eigenvalues are obtained which determine the stability of the system. Jacobi stability of the equilibrium points is studied and obtain the conditions for stability. We study the dynamics of Rikitake system which shows the chaotic behaviour near the equilibrium points.

  12. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  13. Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.; Sayma, A. I.

    2006-01-01

    Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.

  14. Stability analysis of cylindrical Vlasov equilibria

    SciTech Connect

    Short, R W

    1980-02-01

    A method is presented for the fully kinetic, nonlocal stability analysis of cylindrically symmetric equilibria. Applications to the lower hybrid drift instability and the modes associated with a finite-width relativistic E-layer are discussed.

  15. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  16. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  17. FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer

    2016-01-01

    This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.

  18. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  19. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  20. Stability analysis of zigzag boron nitride nanoribbons

    SciTech Connect

    Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  1. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P. )

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  2. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  3. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  4. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-11-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.

  5. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  6. Method of performing computational aeroelastic analyses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A. (Inventor)

    2011-01-01

    Computational aeroelastic analyses typically use a mathematical model for the structural modes of a flexible structure and a nonlinear aerodynamic model that can generate a plurality of unsteady aerodynamic responses based on the structural modes for conditions defining an aerodynamic condition of the flexible structure. In the present invention, a linear state-space model is generated using a single execution of the nonlinear aerodynamic model for all of the structural modes where a family of orthogonal functions is used as the inputs. Then, static and dynamic aeroelastic solutions are generated using computational interaction between the mathematical model and the linear state-space model for a plurality of periodic points in time.

  7. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  8. Renaissance of Aeroelasticity and Its Future

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1999-01-01

    The primary objective of this paper is to demonstrate that the field of aeroelasticity continues to play a critical role in the design of modern aerospace vehicles, and several important problems are still far from being well understood. Furthermore, the emergence of new technologies, such as the use of adaptive materials (sometimes denoted as smart structures technology), providing new actuator and sensor capabilities, has invigorated aeroelasticity, and generated a host of new and challenging research topics that can have a major impact on the design of a new generation of aerospace vehicles.

  9. On the optimization of discrete structures with aeroelastic constraints

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Ashley, H.

    1978-01-01

    The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.

  10. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.

    2015-01-01

    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  11. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  12. ISAC: A tool for aeroservoelastic modeling and analysis

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood Tiffany

    1993-01-01

    The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  13. Stock market stability: Diffusion entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  14. Stability Analysis of the Impoundment of Ash

    NASA Astrophysics Data System (ADS)

    Slávik, Ivan

    2013-03-01

    An impoundment is an engineering construction used for the safe deposition of unexploitable waste from industrial and mining facilities. In terms of the legislative requirements of the Slovak Republic, a "Measurements Project" must be developed for each impoundment. In this document the prerequisites for the safe operation of an impoundment, the limit and critical values of the monitored phenomena and the facts influencing the safety of the impoundment and the area endangered by such a site are also defined. The safety and stability of an impoundment are verified according to a "Measurements Project" by considering stability at regular time intervals. This contribution presents, in the form of a parametric study, a stability analysis of an ash impoundment. The stability analysis provides an example of the utilization of an information database of the results of the regular monitoring of the geotechnical properties of the materials forming the impoundment's body and the surrounding rock mass. The stability of the impoundment is expressed for a recent state - without a continuous water level in its body and, at the same time, for a hypothetical limit and critical water level according to the valid "Handling Regulations".

  15. Aeroelastic model helicopter rotor testing in the Langley TDT

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.; Hamouda, M. N.; Cramer, R. G., Jr.; Langston, C. W.

    1985-01-01

    Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated.

  16. High beta and second stability region transport and stability analysis

    SciTech Connect

    Not Available

    1991-09-05

    This document describes ideal and resistive MHD studies of high-beta plasmas and of the second stability region. Significant progress is reported on the resistive stability properties of high beta poloidal supershot'' discharges. For these studies initial profiles were taken from the TRANSP code which is used extensively to analyze experimental data. When an ad hoc method of removing the finite pressure stabilization of tearing modes is implemented it is shown that there is substantial agreement between MHD stability computation and experiment. In particular, the mode structures observed experimentally are consistent with the predictions of the resistive MHD model. We also report on resistive stability near the transition to the second region in TFTR. Tearing modes associated with a nearby infernal mode may explain the increase in MHD activity seen in high beta supershots and which impede the realization of Q{approximately}1. We also report on a collaborative study with PPPL involving sawtooth stabilization with ICRF.

  17. A study of aeroelastic and structural dynamic effects in multi-rotor systems with application to hybrid heavy lift vehicles

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1984-01-01

    An aeroelastic model suitable for the study of aeroelastic and structural dynamic effects in multirotor vehicles simulating a hybrid heavy lift vehicle was developed and applied to the study of a number of diverse problems. The analytical model developed proved capable of modeling a number of aeroelastic problems, namely: (1) isolated blade aeroelastic stability in hover and forward flight, (2) coupled rotor/fuselage aeromechanical problem in air or ground resonance, (3) tandem rotor coupled rotor/fuselage problems, and (4) the aeromechanical stability of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA). The model was used to simulate the ground resonance boundaries of a three bladed hingeless rotor model, including the effect of aerodynamic loads, and the theoretical predictions compared well with experimental results. Subsequently the model was used to study the aeromechanical stability of a vehicle representing a hybrid heavy lift airship, and potential instabilities which could occur for this type of vehicle were identified. The coupling between various blade, supporting structure and rigid body modes was identified.

  18. Concurrent processing adaptation of aeroplastic analysis of propfans

    NASA Technical Reports Server (NTRS)

    Janetzke, David C.; Murthy, Durbha V.

    1990-01-01

    Discussed here is a study involving the adaptation of an advanced aeroelastic analysis program to run concurrently on a shared memory multiple processor computer. The program uses a three-dimensional compressible unsteady aerodynamic model and blade normal modes to calculate aeroelastic stability and response of propfan blades. The identification of the computational parallelism within the sequential code and the scheduling of the concurrent subtasks to minimize processor idle time are discussed. Processor idle time in the calculation of the unsteady aerodynamic coefficients was reduced by the simple strategy of appropriately ordering the computations. Speedup and efficiency results are presented for the calculation of the matched flutter point of an experimental propfan model. The results show that efficiencies above 70 percent can be obtained using the present implementation with 7 processors. The parallel computational strategy described here is also applicable to other aeroelastic analysis procedures based on panel methods.

  19. An analytical study of effects of aeroelasticity on control effectiveness

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.

    1975-01-01

    Structural influence coefficients were calculated for various wing planforms using the KU Aeroelastic and NASTRAN programs. The resulting matrices are compared with experimental results. Conclusions are given.

  20. A Taguchi study of the aeroelastic tailoring design process

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Scott, Robert C.

    1991-01-01

    A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.

  1. Stability Analysis of Flow Past a Wingtip

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2015-11-01

    Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  2. In-flight gust monitoring and aeroelasticity studies

    NASA Astrophysics Data System (ADS)

    Alvarez-Salazar, Oscar Salvador

    accuracy of various aeroelastic modeling techniques for estimating the stability boundary of a flexible wing in flight (i.e., flutter).

  3. Finite state aeroelastic model for use in rotor design optimization

    NASA Technical Reports Server (NTRS)

    He, Chengjian; Peters, David A.

    1993-01-01

    In this article, a rotor aeroelastic model based on a newly developed finite state dynamic wake, coupled with blade finite element analysis, is described. The analysis is intended for application in rotor blade design optimization. A coupled simultaneous system of differential equations combining blade structural dynamics and aerodynamics is established in a formulation well-suited for design sensitivity computation. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist, and axial deflections. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is described by a generalized dynamic wake model. Correlation of results obtained from the analysis with flight test data is provided to assess model accuracy.

  4. Aeroelastic instability stoppers for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  5. Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Manan, A.; Cooper, J. E.

    2012-10-01

    The effect of uncertain material properties and severity of damage on the aeroelastic behavior of a finite element composite wing model are predicted by applying the Polynomial Chaos Expansion method (PCE). Different damage modes, including the transverse matrix cracking and broken fibers, are induced into pre-defined locations in the laminates and the aeroelastic stability and dynamic response of the wing due to "1-cosine" vertical gusts are evaluated. For this purpose, PCE models that predict the variation due to uncertainty of the flutter speed and an "Interesting Quantity" (root shear force) of the wing box are developed based upon a small sample of observations, exploiting the efficient Latin Hypercube sampling technique. The uncertainty propagation on the output responses, in the form of probability density functions, is evaluated at low computational cost, implementing the PCE models and verified successfully against the actual results.

  6. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first-step toward solving the three-dimensional canard-wing interaction problem. These calculations are performed by extending the XTRAN2L two-dimensional unsteady transonic small-disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two-dimensional canard and wing are presented. Results for a variety of canard-wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  7. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first step toward solving the three dimensional canard wing interaction problem. These calculations are performed by extending the XTRAN2L two dimensional unsteady transonic small disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two dimensional canard and wing are presented. Results for a variety of canard wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  8. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.

  9. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  10. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  11. Stability analysis of a polymer coating process

    NASA Astrophysics Data System (ADS)

    Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.

    2015-05-01

    A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.

  12. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  13. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  14. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research aircraft was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW aircraft and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  15. Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chawlowski, Pawel

    2014-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.

  16. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.

  17. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  18. Optimal design application on the advanced aeroelastic rotor blade

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Jones, R.

    1985-01-01

    The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort.

  19. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  20. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  1. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-10-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  2. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  3. Truck Roll Stability Data Collection and Analysis

    SciTech Connect

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  4. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  5. BWR stability analysis at Brookhaven National Laboratory

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-12-31

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  6. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  7. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  8. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  9. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  10. Power System Transient Stability Analysis through a Homotopy Analysis Method

    SciTech Connect

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  11. Determining XV-15 aeroelastic modes from flight data with frequency-domain methods

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1993-01-01

    The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.

  12. Automated structural design with aeroelastic constraints - A review and assessment of the state of the art

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.

    1974-01-01

    A review and assessment of the state of the art in automated aeroelastic design is presented. Most of the aeroelastic design studies appearing in the literature deal with flutter, and, therefore, this paper also concentrates on flutter. The flutter design problem is divided into three cases: as isolated flutter mode, neighboring flutter modes, and a hump mode which can rise and cause a sudden, discontinuous change in the flutter velocity. Synthesis procedures are presented in terms of techniques that are appropriate for problems of various levels of difficulty. Current trends, which should result in more efficient, powerful and versatile design codes, are discussed. Approximate analysis procedures and the need for simultaneous consideration of multiple design requirements are emphasized.

  13. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  14. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  15. Transonic aeroelastic numerical simulation in aeronautical engineering

    NASA Astrophysics Data System (ADS)

    Yang, Guowei

    2006-06-01

    A lower upper symmetric Gauss Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten Lax van Leer Einfeldt Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.

  16. Computational Aeroelastic Analyses of a Low-Boom Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph

    2015-01-01

    An overview of NASA's Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) element is provided with a focus on recent computational aeroelastic analyses of a low-boom supersonic configuration developed by Lockheed-Martin and referred to as the N+2 configuration. The overview includes details of the computational models developed to date including a linear finite element model (FEM), linear unsteady aerodynamic models, unstructured CFD grids, and CFD-based aeroelastic analyses. In addition, a summary of the work involving the development of aeroelastic reduced-order models (ROMs) and the development of an aero-propulso-servo-elastic (APSE) model is provided.

  17. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  18. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  19. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatures. Appendix B: Method for computing the strucutral influence coefficient matrix of nonplanar wing body tail configurations

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Smith, H.; Gibson, G.

    1972-01-01

    The method used in computing the structural influence coefficient matrix of the computer program of Reference 1 (appendix A of the Summary Report) is reported. This matrix is computed for complete wing-body-tail configurations by assuming that all major airplane components can be structurally represented by a slender beam called the elastic axis. A structural influence coefficient is defined as the rotation about the Y-stability axis at panel j induced by a unit load on panel k. A description of how a structural breakdown is performed in detail is included.

  20. Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers

    NASA Astrophysics Data System (ADS)

    Nikbay, M.; Fakkusoglu, N.; Kuru, M. N.

    2010-06-01

    We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.

  1. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  2. Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  3. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  4. Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni

    2001-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  5. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  6. FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.

    2013-01-01

    This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.

  7. Activities in Aeroelasticity at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.

    1997-01-01

    This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

  8. 2005 PathfinderPlus Aero-Elastic Research Flight

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2005-01-01

    This viewgraph presentation describes the 2005 Pathfinder along with an investigation of its aeroelastic responses. The contents include: 1) HALE Class of Vehicles; 2) Aero-elastic Research Flights Overall Objective; 3) General Arrangement; 4) Sensor Locations; 5) NASA Ramp Operations; 6) Lakebed Operations; 7) 1st Flight Data Set; 8) Tool development / data usage; 9) HALE Tool Development & Validation; 10) Building a HALE Foundation; 11) Compelling Needs Drive HALE Efforts; and 12) Team Photo

  9. AEROELASTIC DIVERGENCE CHARACTERISTICS OF UNGUIDED, SLENDER BODY, MULTISTAGE LAUNCH VEHICLES

    NASA Technical Reports Server (NTRS)

    Young, C. P.

    1994-01-01

    The primary function of this computer program is the calculation of the divergence dynamic pressure and associated divergence modal characteristics of unguided, slender-body, multistage launch vehicles. The divergence dynamic pressure is obtained as the non-trivial solution to a homogenous stability equation using matrix recurrence techniques. Provision is made for modulating the distributed lift curve coefficient slope function and the stiffness function. The program also includes an option for calculating a generalized static margin which approximates the degeneration in rigid-body static margin due to aeroelasticity effects. Evaluated equations are also programmed to allow for the exclusion of the effect of aerodynamic crossflow resulting from vehicle angular velocities if desired. Other physical and aerodynamic properties calculated include total mass, center of mass, moments of inertia in pitch about the reference station, total aerodynamic lift curve slope, static aerodynamic center of pressure, rigid body static margin, and short period frequency. Input to the program is via the Fortran NAMELIST option with output printed. The program is written in CDC Fortran IV (Version 2.3) and has been implemented on a CDC 6600 computer under the SCOPE 3.2 monitor in central memory field lengths less than 57K octal 60 bit words.

  10. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  11. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  12. Milling Stability Analysis Based on Chebyshev Segmentation

    NASA Astrophysics Data System (ADS)

    HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun

    2016-09-01

    Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.

  13. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  14. Stability Analysis for HIFiRE Experiments

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.

    2012-01-01

    The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the

  15. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit

  16. Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.

    1995-01-01

    Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.

  17. Stability analysis of spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1990-01-01

    The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.

  18. Stability analysis of automobile driver steering control

    NASA Technical Reports Server (NTRS)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  19. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  20. Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.

    2005-01-01

    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.

  1. Mathematical modelling and linear stability analysis of laser fusion cutting

    NASA Astrophysics Data System (ADS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-06-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process' amount of dynamic behavior.

  2. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  3. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  4. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  5. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be shown by analyses, wind tunnel tests, ground vibration tests, flight tests, or other means found..., large auxiliary power unit, or large externally mounted aerodynamic body (such as an external fuel...

  6. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... correlation of the flight test data with other test data or analyses, that the airplane is free from any... be shown by analyses, wind tunnel tests, ground vibration tests, flight tests, or other means...

  7. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Shultz, Louis A.

    1994-01-01

    The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.

  8. Full potential unsteady computations including aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Ide, Hiroshi

    1989-01-01

    A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.

  9. An inverse method for computation of structural stiffness distributions of aeroelastically optimized wings

    NASA Astrophysics Data System (ADS)

    Schuster, David M.

    1993-04-01

    An inverse method has been developed to compute the structural stiffness properties of wings given a specified wing loading and aeroelastic twist distribution. The method directly solves for the bending and torsional stiffness distribution of the wing using a modal representation of these properties. An aeroelastic design problem involving the use of a computational aerodynamics method to optimize the aeroelastic twist distribution of a tighter wing operating at maneuver flight conditions is used to demonstrate the application of the method. This exercise verifies the ability of the inverse scheme to accurately compute the structural stiffness distribution required to generate a specific aeroelastic twist under a specified aeroelastic load.

  10. Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2016-01-01

    This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.

  11. Optimization of rotor blades for combined structural, performance, and aeroelastic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Cheng, Y. P.

    1989-01-01

    The strategies whereby helicopter rotor blades can be optimized for combined structural, inertial, dynamic, aeroelastic, and aerodynamic performance characteristics are outlined. There are three key ingredients in the successful execution of such an interdisciplinary optimization. The first is the definition of a satisfactory performance index that combines all aspects of the problem without too many constraints. The second element is the judicious choice of computationally efficient analysis tools for the various quantitative components in both the cost functional and constraints. The third element is an effective strategy for combining the various disciplines either in parallel or sequential optimizations.

  12. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  13. Voltage stability analysis in the new deregulated environment

    NASA Astrophysics Data System (ADS)

    Zhu, Tong

    Nowadays, a significant portion of the power industry is under deregulation. Under this new circumstance, network security analysis is more critical and more difficult. One of the most important issues in network security analysis is voltage stability analysis. Due to the expected higher utilization of equipment induced by competition in a power market that covers bigger power systems, this issue is increasingly acute after deregulation. In this dissertation, some selected topics of voltage stability analysis are covered. In the first part, after a brief review of general concepts of continuation power flow (CPF), investigations on various matrix analysis techniques to improve the speed of CPF calculation for large systems are reported. Based on these improvements, a new CPF algorithm is proposed. This new method is then tested by an inter-area transaction in a large inter-connected power system. In the second part, the Arnoldi algorithm, the best method to find a few minimum singular values for a large sparse matrix, is introduced into the modal analysis for the first time. This new modal analysis is applied to the estimation of the point of voltage collapse and contingency evaluation in voltage security assessment. Simulations show that the new method is very efficient. In the third part, after transient voltage stability component models are investigated systematically, a novel system model for transient voltage stability analysis, which is a logical-algebraic-differential-difference equation (LADDE), is offered. As an example, TCSC (Thyristor controlled series capacitors) is addressed as a transient voltage stabilizing controller. After a TCSC transient voltage stability model is outlined, a new TCSC controller is proposed to enhance both fault related and load increasing related transient voltage stability. Its ability is proven by the simulation.

  14. Hurwitz stability analysis of an ADPCM system

    NASA Astrophysics Data System (ADS)

    Dimolitsas, S.; Bhaskar, U.

    The behavior of adaptive recursive filters in adaptive differential pusle-code modulation (ADPCM) applications is affected by the possibility of filter instability when the filter coefficients are adapted. Thus, in-parallel condition monitoring may be necessary to ensure that the system function poles remain bounded by the unit circle in the z-plane. These poles can be either directly monitored by reference to their z-plane geometry, or indirectly checked by satisfaction of some other condition. A method is described in which the modeled all-pole part of the decoder transfer function is approximated by a Chebyshev polynomial, which in turn is decomposed into two suitably chosen functions that satisfy the Hurwitz polynomial stability constraints. The system poles can be indirectly but simply monitored and controlled so that the resulting system function remains stable.

  15. Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft

    NASA Astrophysics Data System (ADS)

    Shearer, Christopher M.

    Flight dynamics and control of rigid aircraft motion coupled with linearized structural dynamics has been studied for several decades. However, new requirements for very flexible aircraft are challenging the validity of most rigid body coupled linearized structural motion formulations, due to the presence of large elastic motions. This dissertation presents, the flight dynamics, integration, and control of the six degree-of-freedom equations of motion of a reference point on a very flexible aircraft coupled with the aeroelastic equations which govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady finite-state potential flow aerodynamics form the basis for the aeroelastic formulation. The nonlinear beam structural model is based upon the finite strain approach. Kinematic differential equations are used to provide orientation and position of the fixed reference point. The resulting governing differential equations are non-linear, first- and second-order differential algebraic equations and provide a low-order complete nonlinear aircraft formulation. The resulting equations are integrated using an implicit Modified Newmark Method. The method incorporates both first- and second-order nonlinear equations without the necessity of transforming second-order equations to first-order form. The method also incorporates a Newton-Raphson sub-iteration scheme to reduce residual error. Due to the inherent flexibility of these aircraft, the low order structural modes couple directly with the rigid body modes. This creates a system which cannot be separated as in traditional control schemes. Trajectory control techniques are developed based upon a combination of linear and nonlinear inner-loop tracking and an outer-loop nonlinear transformation from desired trajectories to reference frame velocities. Numerical simulations are presented validating the proposed integration scheme and the

  16. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  17. Kinematic analysis of rope skipper's stability

    NASA Astrophysics Data System (ADS)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  18. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  19. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  20. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  1. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  2. Stability over time: Is behavior analysis a trait psychology?

    PubMed Central

    Vyse, Stuart

    2004-01-01

    Historically, behavior analysis and trait psychology have had little in common; however, recent developments in behavior analysis bring it closer to one of the core assumptions of the trait approach: the stability of behavior over time and, to a lesser extent, environments. The introduction of the concept of behavioral momentum and, in particular, the development of molar theories have produced some common features and concerns. Behavior-analytic theories of stability provide improved explanations of many everyday phenomena and make possible the expansion of behavior analysis into areas that have been inadequately addressed. ImagesFigure 1 PMID:22478416

  3. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 1

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Brenner, Martin J.

    2006-01-01

    This viewgraph presentation reviews the applicability of NARMAX structure detection to aeroelastic systems. In conclusion, the simulation results demonstrate bootstrap approach for structure computation of aircraft structural stiffness provided a high rate of true model selection: 1. T-test and stepwise regression methods had difficulty providing accurate results 2. Work contributes to understanding of the use of structure detection for modelling and identification of aerospace systems. 3. Limitation of model complexity that can be studied with these structure computation techniques 4. Result of the large number of candidate terms, for a given model order, and the data length required to guarantee convergence 5. Another approach to structure computation problem uses a least absolute shrinkage and selection operator (LASSO)

  4. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    NASA Astrophysics Data System (ADS)

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-09-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models.

  5. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  6. Status of NASA full-scale engine aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1980-01-01

    Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena.

  7. Transonic unsteady aerodynamic and aeroelastic calculations about airfoils and wings

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Guruswamy, Guru P.

    1988-01-01

    Recent advances in the numerical simulation of unsteady transonic flow around airfoils and wings are surveyed, with an emphasis on the treatment of aeroelastic effects. The fundamental physical principles involved are discussed, and the numerical implementation of the methods is considered. Typical results are presented in extensive graphs and diagrams and briefly characterized, with reference to experimental data.

  8. Effects of nonlinear aerodynamics and static aeroelasticity on mission performance calculations for a fighter aircraft

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.; Tatum, Kenneth E.; Foss, Willard E., Jr.

    1989-01-01

    During conceptual design studies of advanced aircraft, the usual practice is to use linear theory to calculate the aerodynamic characteristics of candidate rigid (nonflexible) geometric external shapes. Recent developments and improvements in computational methods, especially computational fluid dynamics (CFD), provide significantly improved capability to generate detailed analysis data for the use of all disciplines involved in the evaluation of a proposed aircraft design. A multidisciplinary application of such analysis methods to calculate the effects of nonlinear aerodynamics and static aeroelasticity on the mission performance of a fighter aircraft concept is described. The aircraft configuration selected for study was defined in a previous study using linear aerodynamics and rigid geometry. The results from the previous study are used as a basis of comparison for the data generated herein. Aerodynamic characteristics are calculated using two different nonlinear theories, potential flow and rotational (Euler) flow. The aerodynamic calculations are performed in an iterative procedure with an equivalent plate structural analysis method to obtain lift and drag data for a flexible (nonrigid) aircraft. These static aeroelastic data are then used in calculating the combat and mission performance characteristics of the aircraft.

  9. Linear stability analysis of swirling turbulent flows with turbulence models

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Juniper, Matthew

    2013-11-01

    In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.

  10. Aeroelastic Calculations of Quiet High- Speed Fan Performed

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.

    2002-01-01

    An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during

  11. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  12. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  13. Analysis of Human Body Bipedal Stability for Neuromotor Disabilities

    NASA Astrophysics Data System (ADS)

    Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela

    2009-04-01

    The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.

  14. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  15. Linear Stability Analysis of Couette Flow with a Porous Wall

    NASA Astrophysics Data System (ADS)

    Tilton, Nils; Cortelezzi, Luca

    2006-11-01

    It is well known that plane Couette flow in a channel with perfectly smooth, impermeable walls is linearly stable for all Reynolds numbers. Little attention has been given in literature to the stability of plane Couette flow when at least one of the walls is porous. In this study, we consider a channel delimited by an impermeable moving wall, which drives the flow, and a stationary, rigid, homogeneous, isotropic, porous block. We perform a three-dimensional linear stability analysis of the fully developed laminar flow in both the channel and the porous block. We restrict the study to sufficiently small permeabilities in order to neglect inertial effects in the porous flow. We solve the coupled linear stability problem, arising from the adjacent channel and porous flows, using a spectral collocation technique. The linear stability analysis takes account of the coupling between the two disturbance fields through boundary conditions recently derived by Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer, 38, 1995). We find that Couette flow over a permeable wall is no longer absolutely stable. While the critical Reynolds number tends to infinity as the permeability tends to zero, it decreases drastically for higher permeabilities. We also find a new channel mode and new class of modes in the porous region. We compare and discuss these results in terms of the recently published results of a three-dimensional linear stability analysis of a channel flow with porous walls (Tilton and Cortelezzi, Phys. Fluids 18, 051702, 2006).

  16. Black tea: chemical analysis and stability.

    PubMed

    Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2013-01-01

    Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food.

  17. Highly flexible flight vehicle aeroelastic and aero-viscoelastic flutter issues

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.; Hilton, Harry H.

    2012-11-01

    Aeroelastic and aero-viscoelastic phenomena arising from the high flexibility of modern flight vehicles are examined, and governing relations are formulated and solved. In particular, the time dependent flight velocities associated with maneuvers and with in-plane bending are considered, which necessitate new derivations of the Theodorsen function, unsteady aerodynamic relations and equations of motion. Under these conditions, simple harmonic motion (SHM) is no longer achievable and different flutter criteria based directly on motion stability are presented. The viscoelastic problem is formulated in terms of integral partial differential equations with variable nonlinear coefficients. Their solutions and evaluations are discussed in detail. One interesting departure from linear responses emerged, which indicates flutter in one bending while the other bending mode and the torsional are both stable. A detailed and extended treatment of these subjects may be found in [1].

  18. On longitudinal control of high speed aircraft in the presence of aeroelastic modes

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1996-01-01

    Longitudinal control system design is considered for a linearized dynamic model of a supersonic transport aircraft concept characterized by relaxed static stability and significant aeroelastic interactions. Two LQG-type controllers are designed using the frequency-domain additive uncertainty formulation to ensure robustness to unmodeled flexible modes. The first controller is based on a 4th-order model containing only the rigid-body modes, while the second controller is based on an 8th-order model that additionally includes the two most prominent flexible modes. The performance obtainable from the 4th-order controller is not adequate, while the 8th-order controller is found to provide better performance. Frequency-domain and time-domain (Lyapunov) methods are subsequently used to assess the robustness of the 8th-order controller to parametric uncertainties in the design model.

  19. Aeroelastic modeling for the FIT team F/A-18 simulation

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Wieseman, Carol D.

    1989-01-01

    Some details of the aeroelastic modeling of the F/A-18 aircraft done for the Functional Integration Technology (FIT) team's research in integrated dynamics modeling and how these are combined with the FIT team's integrated dynamics model are described. Also described are mean axis corrections to elastic modes, the addition of nonlinear inertial coupling terms into the equations of motion, and the calculation of internal loads time histories using the integrated dynamics model in a batch simulation program. A video tape made of a loads time history animation was included as a part of the oral presentation. Also discussed is work done in one of the areas of unsteady aerodynamic modeling identified as needing improvement, specifically, in correction factor methodologies for improving the accuracy of stability derivatives calculated with a doublet lattice code.

  20. Stability analysis of free piston Stirling engine power generation system

    NASA Astrophysics Data System (ADS)

    Fu, Z. X.; Nasar, S. A.; Rosswurm, Mark

    This paper presents a stability analysis of the free-piston Stirling engine and linear alternator power generation system. Such a system operates under sustained mechanical oscillators, stability of the system is important for proper operation, and as a criterion in selecting the tuning capacitor. The stability criterion of the system is that the rate of change in power dissipation and electric power output is always faster than the rate of the power generated by the engine. The dynamic equations and model of the system are developed in this paper. Frequency domain analysis and Bode plot techniques are utilized in the study. The stable operating frequency region corresponding to different levels of power output are then determined.

  1. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  2. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.

    PubMed

    Sesia, Ilaria; Cantoni, Elena; Cernigliaro, Alice; Signorile, Giovanna; Fantino, Gianluca; Tavella, Patrizia

    2016-04-01

    The Allan variance (AVAR) is widely used to measure the stability of experimental time series. Specifically, AVAR is commonly used in space applications such as monitoring the clocks of the global navigation satellite systems (GNSSs). In these applications, the experimental data present some peculiar aspects which are not generally encountered when the measurements are carried out in a laboratory. Space clocks' data can in fact present outliers, jumps, and missing values, which corrupt the clock characterization. Therefore, an efficient preprocessing is fundamental to ensure a proper data analysis and improve the stability estimation performed with the AVAR or other similar variances. In this work, we propose a preprocessing algorithm and its implementation in a robust software code (in MATLAB language) able to deal with time series of experimental data affected by nonstationarities and missing data; our method is properly detecting and removing anomalous behaviors, hence making the subsequent stability analysis more reliable. PMID:26540679

  3. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.

    PubMed

    Sesia, Ilaria; Cantoni, Elena; Cernigliaro, Alice; Signorile, Giovanna; Fantino, Gianluca; Tavella, Patrizia

    2016-04-01

    The Allan variance (AVAR) is widely used to measure the stability of experimental time series. Specifically, AVAR is commonly used in space applications such as monitoring the clocks of the global navigation satellite systems (GNSSs). In these applications, the experimental data present some peculiar aspects which are not generally encountered when the measurements are carried out in a laboratory. Space clocks' data can in fact present outliers, jumps, and missing values, which corrupt the clock characterization. Therefore, an efficient preprocessing is fundamental to ensure a proper data analysis and improve the stability estimation performed with the AVAR or other similar variances. In this work, we propose a preprocessing algorithm and its implementation in a robust software code (in MATLAB language) able to deal with time series of experimental data affected by nonstationarities and missing data; our method is properly detecting and removing anomalous behaviors, hence making the subsequent stability analysis more reliable.

  4. Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.

  5. Time-accurate unsteady aerodynamic and aeroelastic calculations for wings using Euler equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1988-01-01

    A time-accurate approach to simultaneously solve the Euler flow equations and modal structural equations of motion is presented for computing aeroelastic responses of wings. The Euler flow eauations are solved by a time-accurate finite difference scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear acceleration method. The aeroelastic configuration adaptive dynamic grids are time accurately generated using the aeroelastically deformed shape of the wing. The unsteady flow calculations are validated wih experiment, both for a semi-infinite wing and a wall-mounted cantilever rectangular wings. Aeroelastic responses are computed for a rectangular wing using the modal data generated by the finite-element method. The robustness of the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of earlier approaches using the potential equations are demonstrated.

  6. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  7. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  8. High beta and second stability region transport and stability analysis. Final report

    SciTech Connect

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  9. Analysis of energy stabilization inside the hydrophobic core of rubredoxin.

    PubMed

    Berka, Karel; Hobza, Pavel; Vondrásek, Jirí

    2009-02-23

    The hydrophobic core of globular proteins is responsible for major stabilization of the protein tertiary structure. The prevailing amino-acid residues in the core are of aliphatic or aromatic character, and therefore, the core in a folded protein structure is mostly stabilized by noncovalent interactions of van der Waals origin between the amino-acid side chains. Herein, we present a theoretical analysis of the interaction energy between the amino acids of the hydrophobic core of the small globular protein rubredoxin (Rd) based on the symmetry-adapted perturbation theory (SAPT) method. The results show uniform proportions between the second-order dispersion and first-order electrostatic energy terms in favor of dispersion interaction, which plays a major role in the stabilization of this important structural element. To demonstrate the contrast between systems stabilized by different mechanisms, we perform a SAPT analysis of the typical hydrogen bonds involved in the formation of protein secondary structure elements in Rd, where dispersion still plays a non-negligible role but electrostatic energy is the major stabilizing factor.

  10. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  11. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  12. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  13. Flutter Stability Verified for the Trailing Edge Blowing Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2005-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the trailing edge blowing (TEB) fan, which is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Air can be blown out of slots near the trailing edges of the TEB fan blades to fill in the wakes downstream of the rotating blades, which reduces the rotor-stator interaction (tone) noise caused by the interaction of wakes with the downstream stators. The TEB fan will demonstrate a 1.6-EPNdB reduction in tone noise through wake filling. Furthermore, the reduced blade-row interaction will decrease the possibility of forced-response vibrations and enable closer spacing of blade rows, thus reducing engine length and weight. The detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBO-AE code was used to check the TEB fan rotor blades for flutter stability. Flutter calculations were first performed with no TEB flow; then select calculations were repeated with TEB flow turned on.

  14. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  15. Stability analysis for delta operator systems subject to state saturation

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; Geng, Qing; Xia, Yuanqing; Li, Li

    2016-11-01

    In this paper, we investigate the problem of stability analysis for linear delta operator systems subject to state saturation. Both full state saturation and partial state saturation are investigated for the delta operator systems. Two equivalent necessary and sufficient conditions are identified such that the system with full state saturation is globally asymptotically stable. Based on the sufficient conditions, an iterative algorithm is proposed for testing global asymptotic stability of the system with full state saturation. A new globally asymptotically stable condition is also proposed for the partial state saturation system. Two numerical examples on a ball and beam model are given to show the effectiveness of the proposed method.

  16. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  17. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Floros, Matthew W.

    2004-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  18. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne

    2007-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  19. Linear stability analysis of three-dimensional compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Orszag, Steven A.

    1987-01-01

    A compressible stability analysis computer code is developed. The code uses a matrix finite-difference method for local eigenvale solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used inital-value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed that may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black-box stability code. Sample stability calculations are presented for the boundary layer profiles of an LFC swept wing.

  20. Unsteady transonic aerodynamic and aeroelastic calculations about airfoils and wings

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.

    1985-01-01

    The development and application of transonic small disturbance codes for computing two dimensional flows, using the code ATRAN2, and for computing three dimensional flows, using the code ATRAN3S, are described. Calculated and experimental results are compared for unsteady flows about airfoils and wings, including several of the cases from the AGARD Standard Aeroelastic Configurations. In two dimensions, the results include AGARD priority cases for the NACA 54A006, NACA 64A010, NACA 0012, and MBB-A3 airfoils. In three dimensions, the results include flow about the F-5 wing, a typical wing, and the AGARD rectangular wings. Viscous corrections are included in some calculations, including those for the AGARD rectangular wing. For several cases, the aerodynamic and aeroelastic calculations are compared with experimental results.

  1. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  2. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    NASA Astrophysics Data System (ADS)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  3. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  4. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  5. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  6. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  7. Using FUN3D for Aeroelastic, Sonic Boom, and AeroPropulsoServoElastic (APSE) Analyses of a Supersonic Configuration

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George

    2016-01-01

    An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.

  8. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  9. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    SciTech Connect

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  10. Dynamic response and stability analysis of flexible, multibody systems. [spacecraft

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Park, A. C.; Devers, A. D.; Frisch, H. P.

    1977-01-01

    A general version of Lagrange's equations, including auxiliary nonholonomic, rheonomic conditions of constraint, is used in the dynamic simulation and stability analysis of interconnected flexible bodies. Modeling of the nonlinear flexible/rigid dynamic coupling effects, the interaction forces/torques, and the elastic deformation effects is discussed. A digital computer program is developed to obtain time-domain solution for the nonlinear response of systems represented as a collection of individual bodies, numerical linearization of system-governing equations, time-domain solution for the perturbation response about a nominal state, and a frequency-domain stability analysis corresponding to the linearization. The digital simulation code is employed to study the dynamic behavior of a typical satellite and a spacecraft with deployable experiment booms.

  11. Linear stability analysis of magnetized jets: the rotating case

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A.

    2016-11-01

    We perform a linear stability analysis of magnetized rotating cylindrical jet flows in the approximation of zero thermal pressure. We focus our analysis on the effect of rotation on the current driven mode and on the unstable modes introduced by rotation. We find that rotation has a stabilizing effect on the current driven mode only for rotation velocities of the order of the Alfvén velocity. Rotation introduces also a new unstable centrifugal buoyancy mode and the `cold' magnetorotational instability. The first mode is analogous to the Parker instability with the centrifugal force playing the role of effective gravity. The magnetorotational instability can be present, but only in a very limited region of the parameter space and is never dominant. The current driven mode is characterized by large wavelengths and is dominant at small values of the rotational velocity, while the buoyancy mode becomes dominant as rotation is increased and is characterized by small wavelengths.

  12. Stability analysis of fixed points via chaos control.

    PubMed

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics. PMID:12779684

  13. High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.

  14. Experimental aeroelasticity in wind tunnels - History, status, and future in brief

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.

    1993-01-01

    The state of the art of experimental aeroelasticity in the United States is assessed. A brief history of the development of ground test facilities, apparatus, and testing methods is presented. Several experimental programs are described that were previously conducted and helped to improve the state of the art. Some specific future directions for improving and enhancing experimental aeroelasticity are suggested.

  15. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  16. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they

  17. Progress Toward the Analysis of the Kinetic Stabilizer Concept

    SciTech Connect

    Post, R F; Byers, J A; Cohen, R H; Fowler, T K; Ryutov, D D; Tung, L S

    2005-02-08

    The Kinetic Stabilizer (K-S) concept [1] represents a means for stabilizing axisymmetric mirror and tandem-mirror (T-M) magnetic fusion systems against MHD interchange instability modes. Magnetic fusion research has given us examples of axisymmetric mirror confinement devices in which radial transport rates approach the classical ''Spitzer'' level, i.e. situations in which turbulence if present at all, is at too low a level to adversely affect the radial transport [2,3,4]. If such a low-turbulence condition could be achieved in a T-M system it could lead to a fusion power system that would be simpler, smaller, and easier to develop than one based on closed-field confinement, e.g., the tokamak, where the transport is known to be dominated by turbulence. However, since conventional axisymmetric mirror systems suffer from the MHD interchange instability, the key to exploiting this new opportunity is to find a practical way to stabilize this mode. The K-S represents one avenue to achieving this goal. The starting point for the K-S concept is a theoretical analysis by Ryutov [5]. He showed that a MHD-unstable plasma contained in an axisymmetric mirror cell can be MHD-stabilized by the presence of a low-density plasma on the expanding field lines outside the mirrors. If this plasma communicates well electrically with the plasma in the then this exterior plasma can stabilize the interior, confined, plasma. This stabilization technique was conclusively demonstrated in the Gas Dynamic Trap (GDT) experiment [6] at Novosibirsk, Russia, at mirror-cell plasma beta values of 40 percent. The GDT operates in a high collisionality regime. Thus the effluent plasma leaking through the mirrors, though much lower in density than that of the confined plasma, is still high enough to satisfy the stabilization criterion. This would not, however, be the case in a fusion T-M with axisymmetric plug and central cell fields. In such a case the effluent plasma would be far too low in density to

  18. Accident Analysis for the Plutonium Finishing Plant Polycube Stabilization Process

    SciTech Connect

    NELSON-MAKI, B.B.

    2001-05-14

    The Polycube Stabilization Project involves low temperature oxidation, without combustion, of polystyrene cubes using the production muffle furnaces in Glovebox HC-21C located in the Remote Mechanical ''C'' (RMC) Line in Room 230A in the 234-52 Facility. Polycubes are polystyrene cubes containing various concentrations of plutonium and uranium oxides. Hundreds of these cubes were manufactured for criticality experiments, and currently exist as unstabilized storage forms at the Plutonium Finishing Plant (PFP). This project is designed to stabilize and prepare the polycube material for stable storage using a process very similar to the earlier processing of sludges in these furnaces. The significant difference is the quantity of hydrogenous material present, and the need to place additional controls on the heating rate of the material. This calculation note documents the analyses of the Representative Accidents identified in Section 2.4.4 of Hazards Analysis for the Plutonium Finishing Plant Polycube Stabilization Process, HNF-7278 (HNF 2000). These two accidents, ''Deflagration in Glovebox HC-21C due to Loss of Power'' and ''Seismic Failure of Glovebox HC-21C'', will be further assessed in this accident analysis.

  19. Calibration and Stability Analysis of the VLP-16 Laser Scanner

    NASA Astrophysics Data System (ADS)

    Glennie, C. L.; Kusari, A.; Facchin, A.

    2016-03-01

    We report on a calibration and stability analysis of the Velodyne VLP-16 LiDAR scanner. The sensor is evaluated for long-term stability, geometric calibration and the effect of temperature variations. To generalize the results, three separate VLP-16 sensors were examined. The results and conclusions from the analysis of each of the individual sensors was similar. We found that the VLP-16 showed a consistent level of performance, in terms of range bias and noise level over the tested temperature range from 0-40 °C. A geometric calibration was able to marginally improve the accuracy of the VLP-16 point cloud (by approximately 20%) for a single collection, however the temporal stability of the geometric calibration negated this accuracy improvement. Overall, it was found that there is some long-term walk in the ranging observations from individual lasers within the VLP-16, which likely causes the instability in the determination of geometric calibration parameters. However, despite this range walk, the point cloud delivered from the VLP-16 sensors tested showed an accuracy level within the manufacturer specifications of 3 cm RMSE, with an overall estimated RMSE of range residuals between 22 mm and 27 mm.

  20. Linear stability analysis for hydrothermal alteration of kimberlitic rocks

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Belyaeva, Ekaterina

    2016-06-01

    The influx of groundwater into hot kimberlite deposits results in the reaction of water with olivine-rich rocks. The products of the reaction are serpentine and release of latent heat. The rise of temperature due to the heat release increases the rate of the reaction. Under certain conditions, this self-speeding up of the reaction can result in instabilities associated with a significantly higher final serpentinization in slightly warmer regions of the kimberlite deposit. We conduct linear stability analysis of serpentinization in an isolated volume of porous kimberlitic rocks saturated with water and an inert gas. There is a counteracting interplay between the heat release tending to destabilize the uniform distribution of parameters and the heat conduction tending to stabilize it by smoothing out temperature perturbations. We determine the critical spatial scale separating the parameters where one phenomenon dominates over another. The perturbations of longer-than-critical length grow, whereas the perturbations of shorter-than-critical length fade. The analytical results of the linear stability analysis are supported by direct numerical simulations using a full nonlinear model.

  1. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2016-06-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  2. A consistent orbital stability analysis for the GJ 581 system

    SciTech Connect

    Joiner, David A.; Sul, Cesar; Kress, Monika E.; Dragomir, Diana; Kane, Stephen R.

    2014-06-20

    We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced χ{sup 2} values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.

  3. Vibration and flutter analysis of the SR-7L large-scale propfan

    NASA Technical Reports Server (NTRS)

    August, Richard

    1988-01-01

    A structural and aeroelastic analysis of the SR-7L advanced turboprop is presented. Analyses were conducted for several cases at different blade pitch angles, blade support conditions, rotational speeds, free-stream Mach numbers, and number of blades. A finite element model of the final blade design was used to determine the blade's vibration behavior and its sensitivity to support stiffness. A computer code which was based on three-dimensional, subsonic, unsteady lifting surface aerodynamic theory, was used for the aeroelastic analysis to examine the blade's stability at a cruise condition of Mach 0.8 at 1700 rpm. The results showed that the calculated frequencies and mode shapes obtained agreed well with the published experimental data and that the blade is stable for that operating point.

  4. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  5. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  6. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  7. Flight stability analysis under changes in insect morphology

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Z. Jane

    2015-11-01

    Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.

  8. Rotorcraft aeromechanical stability-methodology assessment. Phase 2: Workshop

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1990-01-01

    Helicopter rotor aeroelastic and aeromechanical stability predictions for four data sets were made using industry and government stability analyses and compared with data at a workshop held at Ames Research Center, August 2-3, 1988. The present report contains the workshop comparisons.

  9. Impact of magnetic suspension stiffness on aeroelastic compressor rotor vibrations of gas pumping units

    NASA Astrophysics Data System (ADS)

    Mekhonoshina, E. V.; Modorskii, V. Ya.

    2016-10-01

    This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.

  10. Quantification of epistemic uncertainty in re-usable launch vehicle aero-elastic design

    NASA Astrophysics Data System (ADS)

    King, Jason M.; Grandhi, Ramana V.; Benanzer, Todd W.

    2012-04-01

    Due to the inherent natural variability of parameters with re-usable launch vehicles, design without consideration of reliability measures may be unreliable and vulnerable to failure. Generally, in preliminary air vehicle design little information is known regarding design variable uncertainties, therefore requiring a technique that can quantify epistemic uncertainties. Evidence theory is employed to accomplish this task resulting in a reliability bound of belief and plausibility. Due to the discontinuous nature of the belief and plausibility function it is necessary to implement a continuous function known as plausibility decision to be used to calculate sensitivities that can be implemented in a gradient-based reliability-based design optimization algorithm. This research develops a new plausibility decision approximation that calculates sensitivities with respect to uncertain variables without introducing extra computational cost or numerical integration. This new metric was demonstrated in a sensitivity analysis of the aero-elastic flutter reliability of a re-usable launch vehicle's wing.

  11. Analysis of Brace Stiffness Influence on Stability of the Truss

    NASA Astrophysics Data System (ADS)

    Krajewski, M.; Iwicki, P.

    2015-02-01

    The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor 1/4. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.

  12. CG-DAMS: Concrete gravity dam stability analysis software

    SciTech Connect

    Not Available

    1993-01-01

    CG-DAMS is a finite element based program written specifically for the stability analysis of concrete gravity dams. The code automates the prediction and evaluation of cracking in the dam, along the dam-rock interface, and in the foundation using incremental nonlinear analysis techniques based on the smeared crack'' approach. Its primary application is in the computation of dam-rock interface sliding stability factors of safety. The automated procedure for crack propagation analysis replaces the trial-and-error cracked-base analysis method commonly used in gravity dam safety analyses. This Application manual of CG-DAMS illustrates, through sample problems, the many features of the software. Example problems illustrate the capabilities of both CG-DAMS-PC and CG-DAMS-ABAQUS. CG-DAMS-PC is a menu driven program that runs on 386/486 PCs under the DOS operating system (4 Megabytes RAM, 25 Megabytes of hard disk space). CG-DAMS-ABAQUS is a pre- and post-processor along with a concrete constitutive model and distributed load module that interfaces with the ABAQUS general purpose finite element program. The PC program contains thermal analysis capabilities, a rough crack constitutive model, and an interface to the CRFLOOD software not available with the ABAQUS version. The CG-DAMS-ABAQUS program contains time marching dynamic analysis capabilities not available with the PC program. Example analyses presented include static, pseudo dynamic, and time marching dynamic analyses. The manual also presents sensitivity evaluations on mesh size and foundation material strength. Comparisons are presented between CG-DAMS and gravity method calculations. Comparisons with other finite element software are included for the dynamic time history analyses.

  13. Visual optimality and stability analysis of 3DCT scan positions.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Gröller, Eduard

    2010-01-01

    Industrial cone-beam X-Ray computed tomography (CT) systems often face problems due to artifacts caused by a bad placement of the specimen on the rotary plate. This paper presents a visual-analysis tool for CT systems, which provides a simulation-based preview and estimates artifacts and deviations of a specimen's placement using the corresponding 3D geometrical surface model as input. The presented tool identifies potentially good or bad placements of a specimen and regions of a specimen, which cause the major portion of artefacts. The tool can be used for a preliminary analysis of the specimen before CT scanning, in order to determine the optimal way of placing the object. The analysis includes: penetration lengths, placement stability and an investigation in Radon space. Novel visualization techniques are applied to the simulation data. A stability widget is presented for determining the placement parameters' robustness. The performance and the comparison of results provided by the tool compared with real world data is demonstrated using two specimens.

  14. Global stability analysis of turbulent 3D wakes

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew

    2015-11-01

    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  15. Linear Stability Analysis of a Channel Flow with Porous Walls

    NASA Astrophysics Data System (ADS)

    Tilton, Nils

    2005-11-01

    This study is motivated by the extensive use of wall-transpiration in numerical studies related to inhibition and control of wall-turbulence. In general, wall-transpiration has been implemented by providing the wall-normal velocity and imposing a no-slip condition on the wall-tangential velocity. Physically, however, the pores cannot be infinitesimally small and, consequently, it is important to address how the presence of the pores affects the slip velocity at the wall and the stability of the boundary layer. Moreover, our work is motivated by the existence of only few studies on the linear stability of channels with porous walls. Our study considers a parallel-plate channel with porous walls such that a longitudinal pressure gradient induces a laminar flow in both the open channel region and the porous walls. Simplified counterparts to the Orr-Sommerfeld and Squire equations are derived for the porous regions that are valid for small permeablities. The linear stability analysis takes account of the coupling between the three disturbance fields through boundary conditions recently derived by Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer, Vol. 38, 1995, pp 2635-2646). The resulting Orr-Sommerfeld spectrum and eigenfunctions reduce to those for Poiseuille flow as the permeability of the walls tends to zero, but are altered for greater values. We discuss symmetrical flows where parameters at both porous walls are identical as well as skewed flows where parameters at the two walls differ.

  16. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  17. Thermal Stability Analysis for Superconducting Coupling Coil in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Pan, Heng; Guo, XingLong; Green, M.A.

    2010-06-28

    The superconducting coupling coil to be used in the Muon Ionization Cooling Experiment (MICE) with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm will be cooled by a pair of 1.5 W at 4.2 K cryo-coolers. When the coupling coil is powered to 210 A, it will produce about 7.3 T peak magnetic field at the conductor and it will have a stored energy of 13 MJ. A key issue for safe operation of the coupling coil is the thermal stability of the coil during a charge and discharge. The magnet and its cooling system are designed for a rapid discharge where the magnet is to be discharged in 5400 seconds. The numerical simulation for the thermal stability of the MICE coupling coil has been done using ANSYS. The analysis results show that the superconducting coupling coil has a good stability and can be charged and discharged safely.

  18. Stability analysis of implicit multi-fluid schemes

    SciTech Connect

    Kunz, R.F.; Cope, W.K.; Venkateswaran, S.

    1997-06-01

    A new implicit method has been developed for solving the viscous full multi-fluid equations, which incorporate transport and generation of mass and momentum for each component present in a system. This work presents stability analysis and application of the important full multi-fluid system in a fully implicit algorithm. The stability analyses presented demonstrate the performance of several iterative schemes applied to the solution of the linearized systems which arise in the formulation. These include block Jacobi and symmetric block Gauss-Siedel schemes with various preconditioners applied. A hierarchy of increasing physical complexity is pursued, starting with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and no mass transfer. These analyses are extended to systems employing physically important inter-field forces (drag, turbulence dispersion, virtual mass). The effects of mass transfer, multiple fields (i.e., n{phi} > 2) and multiple dimensions are also considered. A two-fluid Navier-Stokes code has been developed based on this new scheme. Results are presented which verify the validity of the stability analyses presented for the coupled scheme. Multi-phase flows which require full multi-fluid modeling arise in a wide class of engineering problems, where non-equilibrium dynamics and thermodynamics of the interfaces between constituents play important roles in the evolution of the ensemble averaged mean flow. Examples include cyclone separators, two-phase flow in jets and curved ducts and boiling flow in heat exchangers.

  19. Stability analysis of restricted non-static axial symmetry

    SciTech Connect

    Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com

    2013-11-01

    This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.

  20. Analytical Hopf Bifurcation and Stability Analysis of T System

    NASA Astrophysics Data System (ADS)

    Robert, A. Van Gorder; Roy Choudhury, S.

    2011-04-01

    Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes.

  1. Aeroelastically deflecting flaps for shock/boundary-layer interaction control

    NASA Astrophysics Data System (ADS)

    Gefroh, D.; Loth, E.; Dutton, C.; Hafenrichter, E.

    2003-06-01

    An aeroelastic mesoflap system has been developed to improve the downstream flow properties of an oblique shock/boundary-layer interaction. The mesoflap system employs a set of small flaps over a cavity, whereby the flaps downstream of the interaction bend downward aeroelastically to bleed the flow and the upstream flaps bend upward to re-inject this same mass flow upstream. This recirculating system requires no net mass bleed and therefore has advantages for boundary layer control in external or mixed-compression supersonic aircraft inlets. In addition, the system may be applicable in other aerospace applications where boundary-layer control can help remedy the adverse effects of shock interactions. Several mesoflap systems have been fabricated and examined experimentally to investigate their aerodynamic and structural performance. Each mesoflap is rigidly attached to a spar on its upstream end while the remainder of the flap is free to deflect aeroelastically. The flap length is nominally a few boundary-layer thicknesses in dimension, while the flap thickness is small enough to allow tip deflections that are of the order of the boundary-layer momentum thickness. Experiments were conducted for a Mach 2.41 impinging oblique shock wave interaction with a turbulent boundary layer. Spanwise-centered laser Doppler velocimeter measurements indicate that certain mesoflap designs can show significant flow improvement as compared to the solid-wall case, including increased stagnation pressure recovery and a 7% reduction in boundary layer thickness and sonic thickness. However, one drawback of the mesoflap system is the potential for fatigue, which in some cases led to microcracking followed by flap failure. Structural design improvements to alleviate and avoid this problem included a lower profile spar design, substitution of Nitinol for aluminum as the flap material, and use of stress-relieving holes at the ends of the flap cut-outs.

  2. High Reynolds Number Effects on HSCT Stability and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Elzey, Michael B.; Owens, Lewis R., Jr.; Wahls, Richard A.; Wilson, Douglas L.

    1999-01-01

    Two wind tunnel tests during 1995 in the National Transonic Facility (NTF 070 and 073) served to define Reynolds number effects on longitudinal and lateral-directional stability and control. Testing was completed at both high lift and transonic conditions. The effect of Reynolds number on the total airplane configuration, horizontal and vertical tail effectiveness, forebody chine performance, rudder control and model aeroelastics was investigated. This paper will present pertinent stability and control results from these two test entries. Note that while model aeroelastic effects are examined in this presentation, no corrections for these effects have been made to the data.

  3. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  4. Some experiences with active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.

    1981-01-01

    Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.

  5. Aeroelastic Wing Shaping Control Subject to Actuation Constraints.

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Nguyen, Nhan

    2014-01-01

    This paper considers the control of coupled aeroelastic aircraft model which is configured with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative deflection between two adjacent flaps is constrained and this actuation constraint is accounted for when designing an effective control law for suppressing the wing vibration. A simple tuned-mass damper mechanism with two attached masses is used as an example to demonstrate the effectiveness of vibration suppression with confined motion of tuned masses. In this paper, a dynamic inversion based pseudo-control hedging (PCH) and bounded control approach is investigated, and for illustration, it is applied to the NASA Generic Transport Model (GTM) configured with VCCTEF system.

  6. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  7. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  8. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  9. Physics-based stability analysis of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Steeneken, P. G.; Boksteen, B. K.; Heringa, A.; Scholten, A. J.; Schmitz, J.; Hueting, R. J. E.

    2015-11-01

    In this work, a physics-based model is derived based on a linearization procedure for investigating the electrical, thermal and electro-thermal instability of power metal-oxide-semiconductor (MOS) transistors. The proposed model can be easily interfaced with a circuit or device simulator to perform a failure analysis, making it particularly useful for power transistors. Furthermore, it allows mapping the failure points on a three-dimensional (3D) space defined by the gate-width normalized drain current, drain voltage and junction temperature. This leads to the definition of the Safe Operating Volume (SOV), a powerful frame work for making failure predictions and determining the main root of instability (electrical, thermal or electro-thermal) in different bias and operating conditions. A comparison between the modeled and the measured SOV of silicon-on-insulator (SOI) LDMOS transistors is reported to support the validity of the proposed stability analysis.

  10. Application of constrained optimization to active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1981-01-01

    Active control of aeroelastic response is a complex in which the designer usually tries to satisfy many criteria which are often conflicting. To further complicate the design problem, the state space equations describing this type of control problem are usually of high order, involving a large number of states to represent the flexible structure and unsteady aerodynamics. Control laws based on the standard Linear-Quadratic-Gaussian (LQG) method are of the same high order as the aeroelastic plant. To overcome this disadvantage of the LQG mode, an approach developed for designing low order optimal control laws which uses a nonlinear programming algorithm to search for the values of the control law variables that minimize a composite performance index, was extended to the constrained optimization problem. The method involves searching for the values of the control law variables that minimize a basic performance index while satisfying several inequality constraints that describe the design criteria. The method is applied to gust load alleviation of a drone aircraft.

  11. Aeroelastic behavior of twist-coupled HAWT blades

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.

    1998-12-31

    As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

  12. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    -trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  13. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  14. Soap Bubble Elasticity: Analysis and Correlation with Foam Stability

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Manev, E. D.; Nguyen, A. V.

    2010-05-01

    A correlation between the elastic modulus of soap bubble and the foam stability was found. A model system was chosen: a soap bubble stabilized by simple nonionic surfactant tetraethylene glycol octyl ether (C8E4) and 10^-5 M NaCl. The Elastic moduli were determined by periodical expansion and shrinking of foam bubbles with frequency of 0.1 Hz and volumetric amplitude of 2 mm 3. The film tension was monitored via commercial profile analysis tensiometer (Sinterface Technologies, GmbH). The elastic moduli of foam bubbles versus surfactant concentration in the range of 2x10^-3 - 10^-2 M were obtained. In addition, the theory of Lucassen and van den Tempel for the elastic modulus of single liquid/air interface at given frequency was exploited as well. The bulk diffusion coefficient of the surfactant molecules is unknown parameter through the adsorption frequency in this theory. Hence, a fitting procedure (with one free parameter) was conducted matching experimental and theoretical data. The value of the bulk diffusion coefficient of C8E4 obtained was 5.1x10^-11 m^2/s, which is an order of magnitude lower value than what is expected for. The foam was generated by shaking method and left to decay. A correlation between the elastic modulus and foam life time upon surfactant concentration was found.

  15. Bifurcation analysis of aircraft pitching motions near the stability boundary

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1984-01-01

    Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

  16. Earthquake Stability Analysis of Rock Slopes: a Case Study

    NASA Astrophysics Data System (ADS)

    Pal, Shilpa; Kaynia, Amir M.; Bhasin, Rajinder K.; Paul, D. K.

    2012-03-01

    Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July-August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.

  17. Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Yuan, Jun-Liang; Deng, Jin-Gen; Tan, Qiang; Yu, Bao-Hua; Jin, Xiao-Chun

    2013-09-01

    Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in situ stresses is not suitable for wellbore stability analysis in laminated shale gas formations because of the inhomogeneous mechanical properties of shale. In this study, a new prediction method is developed to calculate the in situ stresses in shale formations. The pore pressure near the borehole is heterogeneous along both the radial and tangential directions due to the inhomogeneity in the mechanical properties and permeability. Therefore, the stress state around the wellbore will vary with time after the formation is drained. Besides, based on the experimental results, a failure criterion is verified and applied to determine the strength of Silurian shale in the Sichuan Basin, including the long-term strength of gas shale. Based on this work, horizontal well borehole stability is analyzed by the new in situ stress prediction model. Finally, the results show that the collapse pressure will be underestimated if the conventional model is used in shale gas reservoirs improperly. The collapse pressure of a horizontal well is maximum at dip angle of 45°. The critical mud weight should be increased constantly to prevent borehole collapse if the borehole is exposed for some time.

  18. Analysis of Faint Glints from Stabilized GEO Satellites

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2013-09-01

    Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.

  19. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  20. Models and Stability Analysis of Boiling Water Reactors

    SciTech Connect

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  1. Global stability analysis of the steady and periodic cylinder wake

    SciTech Connect

    Noack, B.R.; Eckelmann, H.

    1994-07-01

    A global, three-dimensional stability analysis of the steady and the periodic cylinder wake is carried out employing a low-dimensional Galerkin method. The steady flow is found to be asymptotically stable with respect to all perturbations for Re less than 54. The onset of periodicity is confirmed to be a supercritical Hopf bifurcation which can be modeled by the Landau equations. The periodic solution is observed to be only neutrally stable for 54 less than Re less than 170. While two-dimensional perturbations of the vortex street rapidly decay, three-dimensional perturbations with long spanwise wavelengths neither grow nor decay. The periodic solution becomes unstable at Re = 170 by a perturbation with the spanwise wavelength of 1.8 diameters. This instability is shown to be a supercritical Hopf bifurcation in the spanwise coordinate and leads to a three-dimensional periodic flow. Finally the transition scenario for higher Reynolds numbers is discussed.

  2. Hilbert-Huang transformation: application to postural stability analysis.

    PubMed

    Amoud, Hassan; Snoussi, Hichem; Hewson, David J; Duchêne, Jacques

    2007-01-01

    The aim objective of this paper is the analysis of the Centre Of Pressure (COP) time series by the means of the Hilbert Huang Transformation (HHT). The HHT consists of extracting the Intrinsic Mode Functions (IMFs) from an Empirical Mode Decomposition (EMD), and then applying the Hilbert Transformation on the IMFs. The trace of the HHT in the complex plane has a circular form, with each IMF having its own rotation frequency. The area of the circle represents a possible indicator of the postural stability status of the subjects. Experimental results show the effectiveness of the area of this circle in order to identify the post-vibratory effects on standing posture in healthy adult subjects.

  3. Stability analysis and numerical simulation of simplified solid rocket motors

    NASA Astrophysics Data System (ADS)

    Boyer, G.; Casalis, G.; Estivalèzes, J.-L.

    2013-08-01

    This paper investigates the Parietal Vortex Shedding (PVS) instability that significantly influences the Pressure Oscillations of the long and segmented solid rocket motors. The eigenmodes resulting from the stability analysis of a simplified configuration, namely, a cylindrical duct with sidewall injection, are presented. They are computed taking into account the presence of a wall injection defect, which is shown to induce hydrodynamic instabilities at discrete frequencies. These instabilities exhibit eigenfunctions in good agreement with the measured PVS vortical structures. They are successfully compared in terms of temporal evolution and frequencies to the unsteady hydrodynamic fluctuations computed by numerical simulations. In addition, this study has shown that the hydrodynamic instabilities associated with the PVS are the driving force of the flow dynamics, since they are responsible for the emergence of pressure waves propagating at the same frequency.

  4. Symplectic maps for the n-body problem - Stability analysis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1992-01-01

    The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.

  5. Ageostrophic linear stability analysis of the Labrador Current

    NASA Astrophysics Data System (ADS)

    Thomsen, S.; Eden, C.

    2012-12-01

    The water mass transformation process in the Labrador Sea during winter plays an important role for the Atlantic meridional overturning circulation and the global climate system. The Labrador Sea Water (LSW) is exported within the deep Labrador Current (LC) after the convection process. LSW takes up large amounts of atmospheric tracer gases as CO2 and oxygen, and is thus one of the major agent for ventilation of the abyssal ocean. It is shown that enhanced eddy kinetic energy (EKE) along the LC shows up in a 1/12° ocean model simulation during the transformation process. Moored in-situ measurements within the LC also show enhanced EKE levels during winter. This instability processes within the LC is important as it might alter the water mass properties of the (LSW) by frontal mixing processes during the water mass transformation and export within the LC. The frontal instability process, which lead to enhanced EKE along the LC during winter is investigated using ageostrophic linear stability analysis. Dense and weakly stratified water masses produced during the wintertime transformation process lead to weaker stratification and a strengthening of the lateral density gradients within the LC. Weak stratification and enhanced vertical shear result in low Richardson numbers and the growth rate of baroclinic waves increases significantly within the shelf break LC during winter. Rapid frontogenesis along the whole LC sets in resulting in enhance EKE. During the rest of the year strong stratification and weak vertical shear leads to larger Richardson numbers and smaller growth rates. Ageostrophic linear stability analysis shows that a geostrophic interior mode has similar wavelengths as the first wavelike disturbances in the model simulations. A shallow mode with lateral scales O (1 km) is also predicted, which can be associated with mixed layer instabilities and submesoscale variability but remains unresolved by the model simulation.

  6. Computation of aeroelastic characteristics and stress-strained state of parachutes

    NASA Astrophysics Data System (ADS)

    Dneprov, Igor'v.

    The paper presents computation results of the stress-strained state and aeroelastic characteristics of different types of parachutes in the process of their interaction with a flow. Simulation of the aerodynamic part of the aeroelastic problem is based on the discrete vortex method, while the elastic part of the problem is solved by employing either the finite element method, or the finite difference method. The research covers the following problems of the axisymmetric parachutes dynamic aeroelasticity: parachute inflation, forebody influence on the aerodynamic characteristics of the object-parachute system, parachute disreefing, parachute inflation in the presence of the engagement parachute. The paper also presents the solution of the spatial problem of static aeroelasticity for a single-envelope ram-air parachute. Some practical recommendations are suggested.

  7. A Summary of Data and Findings from the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Chwalowski, Pawel.; Heeg, Jennifer; Wieseman, Carol D.

    2012-01-01

    This paper summarizes data and findings from the first Aeroelastic Prediction Workshop (AePW) held in April, 2012. The workshop has been designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems, and to identify computational and experimental areas needing additional research and development. For this initial workshop, three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations and results from all of these computations were compared at the workshop. Keywords: Unsteady Aerodynamics, Aeroelasticity, Computational Fluid Dynamics, Transonic Flow, Separated Flow.

  8. Studies in tilt-rotor VTOL aircraft aeroelasticity, volume 1. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1973-01-01

    Aeroelastic and dynamic studies which complement and extend various aspects of technology applicable to tilt-rotor VTOL aircraft are discussed. Particular attention is given to proprotor/pylon whirl instability, a precession-type instability akin to propeller/nacelle whirl flutter. The blade flapping and pitch-change freedoms of a proprotor are shown to lead to a fundamentally different situation as regards the manner in which the precession-generated aerodynamic forces and moments act on the pylon and induce whirl flutter relative to that of a propeller. The implication of these forces and moments with regard to their capacity for instigating a whirl instability is examined, demonstrating why a proprotor can exhibit whirl flutter in either the backward or forward directions in contrast to a propeller which is found to always whirl in the backward direction. Analytical trend studies delineating the effect of several system design parameters on proprotor/pylon stability and response are shown.

  9. Stability Analysis of Non-Steady MHD-Equilibria

    NASA Astrophysics Data System (ADS)

    Schmitt, D.

    1995-03-01

    Following the work of Bernsteinet al. (1958), Frieman and Rotenberg (1960) and Unno (1968) a formalism is developed which allows to examine the adiabatic stability of a perfectly conducting, rotating and self-gravitating plasma in non-steady equilibrium. Using this method the stability of a plasma in a dynamical phase of its evolution can be predicted. Global stability investigations are carried out which are based on a variation of the total energy of the system and, in general, lead to sufficient conditions for stability. The formalism is applied to the stability of a horizontal magnetic field in a medium stratified by a gravitational field.

  10. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 1

    NASA Technical Reports Server (NTRS)

    Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)

    1999-01-01

    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  11. Stability and failure analysis of steering tie-rod

    NASA Astrophysics Data System (ADS)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  12. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  13. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)

    1994-01-01

    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  14. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  15. Aeroelasticity-based fluid agitation for lab-on-chips.

    PubMed

    Xia, H M; Wang, Z P; Wang, W; Fan, W; Wijaya, A; Wang, Z F

    2013-04-21

    In this study, we report a robust agitation method for small-volume liquids. It utilizes an elastic diaphragm as the bottom of a liquid chamber, upon which an initial tension is also applied to enhance the aeroelasticity effects at small/micro scales. As a result, spontaneous vibration of the diaphragm can be induced by an external air flow, which further provides fluid agitations. The device structure is simple and can be easily fabricated at low cost. More importantly, the vibration amplitude is controllable and varies widely from several tens to several hundred micrometers depending on the applied air pressure. The resulting agitation is effective and applicable at high viscosities of up to 900 cSt. The influences of air pressure and liquid viscosity on the vibration frequency are discussed. Potential applications of this technique for solid particle agitation, focusing and fluid mixing are also demonstrated.

  16. Aeroelasticity-based fluid agitation for lab-on-chips.

    PubMed

    Xia, H M; Wang, Z P; Wang, W; Fan, W; Wijaya, A; Wang, Z F

    2013-04-21

    In this study, we report a robust agitation method for small-volume liquids. It utilizes an elastic diaphragm as the bottom of a liquid chamber, upon which an initial tension is also applied to enhance the aeroelasticity effects at small/micro scales. As a result, spontaneous vibration of the diaphragm can be induced by an external air flow, which further provides fluid agitations. The device structure is simple and can be easily fabricated at low cost. More importantly, the vibration amplitude is controllable and varies widely from several tens to several hundred micrometers depending on the applied air pressure. The resulting agitation is effective and applicable at high viscosities of up to 900 cSt. The influences of air pressure and liquid viscosity on the vibration frequency are discussed. Potential applications of this technique for solid particle agitation, focusing and fluid mixing are also demonstrated. PMID:23455690

  17. Design of an Aeroelastically Tailored 10 MW Wind Turbine Rotor

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian; McWilliam, Michael K.; Blasques, Jose P. A. A.; Hansen, Morten H.

    2016-09-01

    This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and strutural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP of 8.7%, without increasing blade mass and without significant increases in ultimate and fatigue loads on the hub and tower.

  18. Recent progress in flapping wing aerodynamics and aeroelasticity

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Aono, H.; Chimakurthi, S. K.; Trizila, P.; Kang, C.-K.; Cesnik, C. E. S.; Liu, H.

    2010-10-01

    Micro air vehicles (MAVs) have the potential to revolutionize our sensing and information gathering capabilities in areas such as environmental monitoring and homeland security. Flapping wings with suitable wing kinematics, wing shapes, and flexible structures can enhance lift as well as thrust by exploiting large-scale vortical flow structures under various conditions. However, the scaling invariance of both fluid dynamics and structural dynamics as the size changes is fundamentally difficult. The focus of this review is to assess the recent progress in flapping wing aerodynamics and aeroelasticity. It is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation. While in classical stationary wing theory, the tip vortices (TiVs) are seen as wasted energy, in flapping flight, they can interact with the LEV to enhance lift without increasing the power requirements. Surrogate modeling techniques can assess the aerodynamic outcomes between two- and three-dimensional wing. The combined effect of the TiVs, the LEV, and jet can improve the aerodynamics of a flapping wing. Regarding aeroelasticity, chordwise flexibility in the forward flight can substantially adjust the projected area normal to the flight trajectory via shape deformation, hence redistributing thrust and lift. Spanwise flexibility in the forward flight creates shape deformation from the wing root to the wing tip resulting in varied phase shift and effective angle of attack distribution along the wing span. Numerous open issues in flapping wing aerodynamics are highlighted.

  19. Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    NASA Technical Reports Server (NTRS)

    Eick, Chris D.; Liu, Jong-Shang

    1998-01-01

    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.

  20. General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

    1990-01-01

    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.