Science.gov

Sample records for aeroelastic stability flutter

  1. Mach number effects on transonic aeroelastic forces and flutter characteristics

    NASA Technical Reports Server (NTRS)

    Mohr, Ross W.; Batina, John T.; Yang, Henry T. Y.

    1988-01-01

    Transonic aeroelastic stability analysis and flutter calculations are presented for a generic transport-type wing based on the use of the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) finite-difference code. The CAP-TSD code was recently developed for transonic unsteady aerodynamic and aeroelastic analysis of complete aircraft configurations. A binary aeroelastic system consisting of simple bending and torsion modes was used to study aeroelastic behavior at transonic speeds. Generalized aerodynamic forces are presented for a wide range of Mach number and reduced frequency. Aeroelastic characteristics are presented for variations in freestream Mach number, mass ratio, and bending-torsion frequency ratio. Flutter boundaries are presented which have two transonic dips in flutter speed. The first dip is the usual transonic dip involving a bending-dominated flutter mode. The second dip is characterized by a single degree-of-freedom torsion oscillation. These aeroelastic results are physically interpreted and shown to be related to the steady state shock location and changes in generalized aerodynamic forces due to freestream Mach number.

  2. Parametric design study of an aeroelastic flutter energy harvester

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Wolff, Eric; Garcia, Ephrahim

    2011-03-01

    This paper investigates a novel mechanism for powering wireless sensors or low power electronics by extracting energy from an ambient fluid flow using a piezoelectric energy harvester driven by aeroelastic flutter vibrations. The energy harvester makes use of a modal convergence flutter instability to generate limit cycle bending oscillations of a cantilevered piezoelectric beam with a small flap connected to its free end by a revolute joint. The critical flow speed at which destabilizing aerodynamic effects cause self-excited vibrations of the structure to emerge is essential to the design of the energy harvester. This value sets the lower bound on the operating wind speed and frequency range of the system. A system of coupled equations that describe the structural, aerodynamic, and electromechanical aspects of the system are used to model the system dynamics. The model uses unsteady aerodynamic modeling to predict the aerodynamic forces and moments acting on the structure and to account for the effects of vortices shed by the flapping wing, while a modal summation technique is used to model the flexible piezoelectric structure. This model is applied to examine the effects on the cut-in wind speed of the system when several design parameters are tuned and the size and mass of the system is held fixed. The effects on the aeroelastic system dynamics and relative sensitivity of the flutter stability boundary are presented and discussed. Experimental wind tunnel results are included to validate the model predictions.

  3. Flutter and Divergence Analysis using the Generalized Aeroelastic Analysis Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Wieseman, Carol D.

    2003-01-01

    The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis of three well-studied checkcases: restrained and unrestrained airfoil models, and a wing model. An eigenvalue iteration procedure is used for converging upon roots of the complex stability matrix. For the airfoil models, exact root loci are given which clearly illustrate the nature of the flutter and divergence instabilities. The singularities involved are enumerated, including an additional pole at the origin for the unrestrained airfoil case and the emergence of an additional pole on the positive real axis at the divergence speed for the restrained airfoil case. Inconsistencies and differences among published aeroelastic root loci and the new, exact results are discussed and resolved. The generalization of a Doublet Lattice Method computer code is described and the code is applied to the calculation of root loci for the wing model for incompressible and for subsonic flow conditions. The error introduced in the reduction of the singular integral equation underlying the unsteady lifting surface theory to a linear algebraic equation is discussed. Acknowledging this inherent error, the solutions of the algebraic equation by GAAM are termed 'exact.' The singularities of the problem are discussed and exponential series approximations used in the evaluation of the kernel function shown to introduce a dense collection of poles and zeroes on the negative real axis. Again, inconsistencies and differences among published aeroelastic root loci and the new 'exact' results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and frequencies are in good agreement with published results. The GAAM solution procedure allows complete control over Mach number, velocity, density, and complex frequency. Thus all points on the computed root loci can be matched-point, consistent solutions without recourse to complex mode tracking logic or dataset interpolation, as in the k and p

  4. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

  5. Propulsion Aeroelastic Analysis Developed for Flutter and Forced Response

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is

  6. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  7. Rotorcraft aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed.

  8. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  9. Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Wolff, Eric; Garcia, Ephrahim

    2011-12-01

    This study examines the design parameters affecting the stability characteristics of a novel fluid flow energy harvesting device powered by aeroelastic flutter vibrations. The energy harvester makes use of a modal convergence flutter instability to generate limit cycle bending oscillations of a cantilevered piezoelectric beam with a small flap connected to its free end by a revolute joint. The critical flow speed at which destabilizing aerodynamic effects cause self-excited vibrations of the structure to emerge is essential to the design of the energy harvester because it sets the lower bound on the operating wind speed and frequency range of the system. A linearized analytic model of the device that accounts for the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system is used to examine tuning several design parameters while the size of the system is held fixed. The effects on the aeroelastic system dynamics and relative sensitivity of the flutter stability boundary are presented and discussed. A wind tunnel experiment is performed to validate the model predictions for the most significant system parameters.

  10. Highly flexible flight vehicle aeroelastic and aero-viscoelastic flutter issues

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.; Hilton, Harry H.

    2012-11-01

    Aeroelastic and aero-viscoelastic phenomena arising from the high flexibility of modern flight vehicles are examined, and governing relations are formulated and solved. In particular, the time dependent flight velocities associated with maneuvers and with in-plane bending are considered, which necessitate new derivations of the Theodorsen function, unsteady aerodynamic relations and equations of motion. Under these conditions, simple harmonic motion (SHM) is no longer achievable and different flutter criteria based directly on motion stability are presented. The viscoelastic problem is formulated in terms of integral partial differential equations with variable nonlinear coefficients. Their solutions and evaluations are discussed in detail. One interesting departure from linear responses emerged, which indicates flutter in one bending while the other bending mode and the torsional are both stable. A detailed and extended treatment of these subjects may be found in [1].

  11. Effect of follower forces on aeroelastic stability of flexible structures

    NASA Astrophysics Data System (ADS)

    Chae, Seungmook

    Missile bodies and wings are typical examples of structures that can be represented by beam models. Such structures, loaded by follower forces along with aerodynamics, exhibit the vehicle's aeroelastic instabilities. The current research integrates a nonlinear beam dynamics and unsteady aerodynamics to conduct aeroelastic studies of missile bodies and wings subjected to follower forces. The structural formulations are based on a geometrically-exact, mixed finite element method. Slender-body theory and thin-airfoil theory are used for the missile aerodynamics, and two-dimensional finite-state unsteady aerodynamics is used for wing aerodynamics. The aeroelastic analyses are performed using time-marching scheme for the missile body stability, and eigenvalue analysis for the wing flutter, respectively. Results from the time-marching formulation agree with published results for dynamic stability and show the development of limit cycle oscillations for disturbed flight near and above the critical thrust. Parametric studies of the aeroelastic behavior of specific flexible missile configurations are presented, including effects of flexibility on stability, limit-cycle amplitudes, and missile loads. The results do yield a significant interaction between the thrust, which is a follower force, and the aeroelastic stability. Parametric studies based on the eigenvalue analysis for the wing flutter, show that the predicted stability boundaries are very sensitive to the ratio of bending stiffness to torsional stiffness. The effect of thrust can be either stabilizing or destabilizing, depending on the value of this parameter. An assessment whether or not the magnitude of thrust needed to influence the flutter speed is practical is made for one configuration. The flutter speed is shown to change by 11% for this specific wing configuration.

  12. New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Jutte, Christine V.

    2009-01-01

    This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

  13. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  14. The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

    SciTech Connect

    Smith, T.E. ); Kadambi, J.R. )

    1993-01-01

    An aeroelastic analysis is presented that accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two-degree-of-freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of (1) airfoil thickness and camber and (2) steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of the steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber, or incidence could result in nonconservative estimates of flutter behavior.

  15. The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.; Kadambi, Jaikrishnan R.

    1990-01-01

    An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior.

  16. The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.; Kadambi, Jaikrishnan R.

    1991-01-01

    An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior.

  17. Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration.

    PubMed

    Clark, Christopher J; Elias, Damian O; Prum, Richard O

    2013-09-15

    Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results. PMID:23737562

  18. Flutter Stability of the Efficient Low Noise Fan Calculated

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2004-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the Efficient Low Noise Fan (ELNF), which is also referred to as the trailing-edge blowing fan. The ELNF is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn's 9-by-15-Foot Low-Speed Wind Tunnel. In the ELNF, air can be blown out of slots near the trailing edges of the fan blades to fill in the wakes downstream of the rotating blades. This filling of the wakes leads to a reduction of the rotor-stator interaction (tone) noise that results from the interaction of wakes with the downstream stators. The ELNF will demonstrate a 1.6-EPNdB1 reduction in tone noise through wake filling, without increasing the broadband noise. Furthermore, the reduced blade row interaction will decrease the possibility of forced response and enable closer spacing of blade rows, thus reducing engine length and weight. During the design of the ELNF, the rotor blades were checked for flutter stability using the detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBOAE code. The aeroelastic calculations were preceded by steady calculations in which the blades were not allowed to vibrate. For each rotational speed, as the back-pressure was increased, the mass flow rate decreased, and the operating point moved along the constant speed characteristic (speed-line) from choke to stall as shown on the fan map. The TURBO-AE aeroelastic analyses were performed separately for the first two vibration modes (bending and torsion) and covered the complete range of interblade phase angles or nodal diameters at which flutter can occur. The results indicated that the ELNF blades would not encounter flutter at takeoff conditions. The calculations were then repeated for a part-speed condition (70-percent rotational speed), and the results again showed no flutter in the operating region. On the fan map (shown), the predicted flutter point

  19. Aeroelastic Stability and Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    1998-01-01

    A summary of the work performed from 1996 to 1997 is presented. More details can be found in the cited references. This grant led to the development of aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational

  20. Aeroelastic Stability & Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, T. S. R.

    2001-01-01

    A summary of the work performed under NASA grant NCC3-605 is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analyses methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods.

  1. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    PubMed

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight. PMID:26385327

  2. Flutter Stability Verified for the Trailing Edge Blowing Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh

    2005-01-01

    The TURBO-AE aeroelastic code has been used to verify the flutter stability of the trailing edge blowing (TEB) fan, which is a unique technology demonstrator being designed and fabricated at the NASA Glenn Research Center for testing in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Air can be blown out of slots near the trailing edges of the TEB fan blades to fill in the wakes downstream of the rotating blades, which reduces the rotor-stator interaction (tone) noise caused by the interaction of wakes with the downstream stators. The TEB fan will demonstrate a 1.6-EPNdB reduction in tone noise through wake filling. Furthermore, the reduced blade-row interaction will decrease the possibility of forced-response vibrations and enable closer spacing of blade rows, thus reducing engine length and weight. The detailed aeroelastic analysis capability of the three-dimensional Navier-Stokes TURBO-AE code was used to check the TEB fan rotor blades for flutter stability. Flutter calculations were first performed with no TEB flow; then select calculations were repeated with TEB flow turned on.

  3. Aeroelastic Stability and Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, Tondapu

    2004-01-01

    A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.

  4. Aeroelastic stability of forward swept composite winged aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1983-01-01

    This paper reviews the author's past and present aeroelastic stability and performance studies related to forward swept, composite wing aircraft. The influence of laminate elastic bend/twist coupling upon wing divergence, lateral control, and lift effectiveness will be illustrated by means of closed-form solutions, numerical analysis and simple wind-tunnel experiments. In addition, results of analyses of a freely flying flexible FSW aircraft are discussed to indicate the possible effects of the flexible forward swept wing on aircraft dynamic stability. These studies show, both theoretically and experimentally, that, if the aircraft is not carefully designed, a phenomenon referred to as body freedom flutter may appear.

  5. Aeroelastic control of flutter using trailing edge control surfaces powered by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ardelean, Emil Valentin

    Flutter is a rather spectacular phenomenon of aeroelastic instability that affects lifting and control surfaces, yet can also lead to catastrophic consequences for the aircraft. The idea of controlling flutter by using the same energy that causes it, namely airflow energy, through changing the aerodynamics in a controlled manner is not new. In the case of fixed wings, the use of trailing edge control surfaces (flaps) is an extremely effective method to alter the aerodynamics. This research presents the development of an actuation system for trailing edge control surfaces (flaps) used for aeroelastic flutter control of a typical section wing model. In order to be effective for aeroelastic control of flutter, flap deflection of +/-5-6° with adequate bandwidth (up to 25--30 Hz) is required. Classical solutions for flap actuation do not have the capabilities required for this task. Therefore actuation systems using active materials became the focus of this investigation. A new piezoelectric actuator (V-Stack Piezoelectric Actuator) was developed. This actuator meets the requirements for trailing edge flap actuation in both stroke and force over the bandwidth of interest. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties, while displaying linearity over a wide range of stroke. Integration of the actuator inside an existing structure requires minimal modifications of the structure. The shape of the actuator makes it very suitable for trailing edge flap actuation, eliminating the need for a push rod. The actuation solution presented here stands out because of its simplicity, compactness, small mass (compared to that of the actuated structure) and high reliability. Although the actuator was designed for flap actuation, other applications can also benefit from its capabilities. In order to demonstrate the actuation concept, a typical section prototype was constructed and tested experimentally in the wind tunnel at Duke

  6. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

  7. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.

  8. An electret-based aeroelastic flutter energy harvester

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Reboud, J. L.

    2015-03-01

    This paper presents a new airflow energy harvester exploiting fluttering effects coupled to an electret-based conversion to turn the flow-induced movements of a membrane into electricity. The proposed device is made of a polymer membrane placed between two parallel flat electrodes coated with 25 μm thick Teflon PTFE electret layers; a bluff body is placed at the inlet of the device to induce vortex shedding. When the wind or airstream of any kind flows through the harvester, the membrane enters in oscillation due to fluttering and successively comes into contact with the two Teflon-coated fixed electrodes. This periodic motion is directly converted into electricity thanks to the electret-based conversion process. Various geometries have been tested and have highlighted a 2.7 cm3 device, with an output power of 481 μW (178 μW cm-3) at 15 m s-1 and 2.1 mW (782 μW cm-3) at 30 m s-1 with an electret charged at -650 V. The power coefficient Cp of the device reaches 0.54% at 15 m s-1 which is low, but compares favorably with the other small-scale airflow energy harvesters.

  9. Worst-Case Flutter Margins from F/A-18 Aircraft Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty

    1997-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, micron, computes a stability margin which directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The micron margins are robust margins which indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 SRA using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  10. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  11. Aeroelastic stability of wind turbine blade/aileron systems

    NASA Technical Reports Server (NTRS)

    Strain, J. C.; Mirandy, L.

    1995-01-01

    Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  12. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  13. ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Lucero, John M.

    1996-01-01

    This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.

  14. A study of aeroelastic stability for the model support system of the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.

    1988-01-01

    Oscillations of wind-tunnel models have been observed during testing in the National Transonic Facility. These oscillations have been the subject of an extensive investigation. As a part of this effort, a study of the aeroelastic stability of the model support structure has been performed. This structure is mathematically modelled as a wing and conventional flutter analysis is performed. The math model implemented both experimentally and numerically obtained modal characteristics. A technique for illustrating the flutter boundary for wind tunnels is demonstrated. Results indicate that the classical flutter boundary is well above the operating envelope of the facility. However, the analysis indicates a damping-dependent instability is present which is inherent in the design. One possible modification in the design has been evaluated which eliminates the predicted instability.

  15. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  16. Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.

    1992-01-01

    Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.

  17. Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations

    NASA Technical Reports Server (NTRS)

    Reddy, Tondapu S.; Bakhle, Milind A.

    2004-01-01

    A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF

  18. Vibration, performance, flutter and forced response characteristics of a large-scale propfan and its aeroelastic model

    NASA Technical Reports Server (NTRS)

    August, Richard; Kaza, Krishna Rao V.

    1988-01-01

    An investigation of the vibration, performance, flutter, and forced response of the large-scale propfan, SR7L, and its aeroelastic model, SR7A, has been performed by applying available structural and aeroelastic analytical codes and then correlating measured and calculated results. Finite element models of the blades were used to obtain modal frequencies, displacements, stresses and strains. These values were then used in conjunction with a 3-D, unsteady, lifting surface aerodynamic theory for the subsequent aeroelastic analyses of the blades. The agreement between measured and calculated frequencies and mode shapes for both models is very good. Calculated power coefficients correlate well with those measured for low advance ratios. Flutter results show that both propfans are stable at their respective design points. There is also good agreement between calculated and measured blade vibratory strains due to excitation resulting from yawed flow for the SR7A propfan. The similarity of structural and aeroelastic results show that the SR7A propfan simulates the SR7L characteristics.

  19. An efficient procedure for cascade aeroelastic stability determination using nonlinear, time-marching aerodynamic solvers

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Bakhle, Milind A.; Dowell, Earl H.

    1993-01-01

    A numerical eigenvalue problem formulation and a practical calculation procedure for exact eigenvalues and corresponding eigenvectors are developed and applied to a nonlinear, two-dimensional, time-marching full potential solver for cascade aeroelastic stability analysis. This procedure is based on the Lanczos recursive method and it directly calculates stability information about a nonlinear steady state. It is compared to conventional approaches in the frequency and time domains developed earlier and is found to be 100-10.000 times more computationally efficient. Eigenvalue constellations and the flutter results for flow through a cascade SR5 propfan airfoil are presented.

  20. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Aeroelastic stability requirements. 25.629 Section 25.629 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.629 Aeroelastic stability requirements. (a)...

  1. Smithornis broadbills produce loud wing song by aeroelastic flutter of medial primary wing feathers.

    PubMed

    Clark, Christopher J; Kirschel, Alexander N G; Hadjioannou, Louis; Prum, Richard O

    2016-04-01

    Broadbills in the genus Smithornis produce a loud brreeeeet during a distinctive flight display. It has been posited that this klaxon-like sound is generated non-vocally with the outer wing feathers (P9, P10), but no scientific studies have previously addressed this hypothesis. Although most birds that make non-vocal communication sounds have feathers with a shape distinctively modified for sound production, Smithornis broadbills do not. We investigated whether this song is produced vocally or with the wings in rufous-sided broadbill (S. rufolateralis) and African broad bill (S. capensis). In support of the wing song hypothesis, synchronized high-speed video and sound recordings of displays demonstrated that sound pulses were produced during the downstroke, subtle gaps sometimes appeared between the outer primary feathers P6-P10, and wing tip speed reached 16 m s(-1) Tests of a spread wing in a wind tunnel demonstrated that at a specific orientation, P6 and P7 flutter and produce sound. Wind tunnel tests on individual feathers P5-P10 from a male of each species revealed that while all of these feathers can produce sound via aeroelastic flutter, P6 and P7 produce the loudest sounds, which are similar in frequency to the wing song, at airspeeds achievable by the wing tip during display flight. Consistent with the wind tunnel experiments, field manipulations of P6, P7 and P8 changed the timbre of the wing song, and reduced its tonality, demonstrating that P6 and P7 are together the sound source, and not P9 or P10. The resultant wing song appears to have functionally replaced vocal song. PMID:27030781

  2. Investigation of the aeroelastic stability of the AFW wind-tunnel model using CAP-TSD

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD) code is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions and a full span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic flutter analyses are then performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity, and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores are also presented and compared with experimental flutter results.

  3. Investigation of the aeroelastic stability of the AFW wind-tunnel model using CAP-TSD

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1991-01-01

    The Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions and a full span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores are also presented and compared with experimental flutter results.

  4. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  5. Interactive aircraft flight control and aeroelastic stabilization

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.

    1985-01-01

    Aeroservoelastic optimization techniques were studied to determine a methodology for maximization of the stable flight envelope of an idealized, actively controlled, flexible airfoil. The equations of motion for the airfoil were developed in state-space form to include time-domain representations of aerodynamic forces and active control. The development of an optimization scheme to stabilize the aeroelastic system over a range of airspeeds, including the design airspeed is outlined. The solution approach was divided in two levels: (1) the airfoil structure, with a design variable represented by the shear center position; and (2) the control system. An objective was stated in mathematical form and a search was conducted with the restriction that each subsystem be constrained to be optimal in some sense. Analytical expressions are developed to compute the changes in the eigenvalues of the closed-loop, actively controlled system. A stability index is constructed to ensure that stability is present at the design speed and at other airspeeds away from the design speed.

  6. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  7. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.

  8. Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft

    NASA Astrophysics Data System (ADS)

    Mardanpour, Pezhman; Richards, Phillip W.; Nabipour, Omid; Hodges, Dewey H.

    2014-01-01

    Effects of multiple engine placement on flutter characteristics of a backswept flying wing resembling the HORTEN IV are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Four identical engines with defined mass, inertia, and angular momentum are placed in different locations along the span with different offsets from the elastic axis while fixing the location of the aircraft c.g. The aircraft experiences body freedom flutter along with non-oscillatory instabilities that originate from flight dynamics. Multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60-70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed if engines are placed forward of the elastic axis at these regions.

  9. A Wind-Tunnel Parametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Kvaternik, Raymond G.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A wind-tunnel investigation of tiltrotor whirl-flutter stability boundaries has been conducted on a 1/5-size semispan tiltrotor model known as the Wing and Rotor Aeroelastic Test System (WRATS) in the NASA-Langley Transonic Dynamics Tunnel as part of a joint NASA/Army/Bell Helicopter Textron, Inc. (BHTI) research program. The model was first developed by BHTI as part of the JVX (V-22) research and development program in the 1980's and was recently modified to incorporate a hydraulically-actuated swashplate control system for use in active controls research. The modifications have changed the model's pylon mass properties sufficiently to warrant testing to re-establish its baseline stability boundaries. A parametric investigation of the effect of rotor design variables on stability was also conducted. The model was tested in both the on-downstop and off-downstop configurations, at cruise flight and hover rotor rotational speeds, and in both air and heavy gas (R-134a) test mediums. Heavy gas testing was conducted to quantify Mach number compressibility effects on tiltrotor stability. Experimental baseline stability boundaries in air are presented with comparisons to results from parametric variations of rotor pitch-flap coupling and control system stiffness. Increasing the rotor pitch-flap coupling (delta(sub 3) more negative) was found to have a destabilizing effect on stability, while a reduction in control system stiffness was found to have little effect on whirl-flutter stability. Results indicate that testing in R-134a, and thus matching full-scale tip Mach number, has a destabilizing effect, which demonstrates that whirl-flutter stability boundaries in air are unconservative.

  10. Survey of Army/NASA rotorcraft aeroelastic stability research

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  11. Refined methods of aeroelastic analysis and optimization. [swept wings, propeller theory, and subsonic flutter

    NASA Technical Reports Server (NTRS)

    Ashley, H.

    1984-01-01

    Graduate research activity in the following areas is reported: the divergence of laminated composite lifting surfaces, subsonic propeller theory and aeroelastic analysis, and cross sectional resonances in wind tunnels.

  12. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.

  13. Time-domain modeling and control of a wing-section stall flutter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Haghighat, Sohrab; Liu, Hugh H. T.; Bai, Junqiang

    2015-03-01

    In this paper a nonlinear time-domain aeroservoelastic model is developed to study stall flutter and design flutter suppression control systems. A novel state-space model description enables for both aeroelastic analysis and control design. As a case study, limit cycle oscillations and bifurcation behavior of a NACA 0012 airfoil undergoing stall flutter are investigated. The results agree well with experimental results reported in the literature. Further, to demonstrate the model capability for control design, an output feedback controller is employed to suppress stall flutter and to stabilize the system at different incoming flow speeds to expand the flutter envelope. Closed-loop simulations confirm the improvement of the flutter envelope.

  14. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  15. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  16. Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Application

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    The work presented in this paper include: 'Coupled and Uncoupled Bending-Torsion Responses of Twin-Tail Buffet'; 'Fluid/Structure Twin Tail Buffet Response Over a Wide Range of Angles of Attack'; 'Resent Advances in Multidisciplinary Aeronautical Problems of Fluids/Structures/Dynamics Interaction'; and'Development of a Coupled Fluid/Structure Aeroelastic Solver with Applications to Vortex Breakdown induced Twin Tail Buffeting.

  17. Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.

  18. Small-Scale Vortical Motions induced by Aeroelastically Fluttering Reed for Enhanced Heat Transfer in a Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Jha, Sourabh; Hidalgo, Pablo; Glezer, Ari

    2015-11-01

    Small-scale vortical motions effected by an aeroelastically fluttering thin reed cantilevered across the span of a rectangular channel are exploited for heat transfer enhancement at transitional Reynolds numbers. The reed's concave/convex surface undulations lead to the time-periodic formation, advection, and shedding of vorticity concentrations that scale with the motion amplitude. The reed motion is captured using phase-locked imaging and its interactions with the core flow and surface boundary layers are investigated using high-resolution PIV. Phase-averaged distributions of the reed's mechanical energy demonstrate variations of the vibration modes across the channel. The reed's impact on the surface is accompanied by transitory vorticity shedding coupled with a local increase in the turbulent kinetic energy that results in a strong increase in heat transfer. The reciprocal interactions between the reed dynamics and the channel flow are captured using cross stream velocity distributions along the channel (L/ W = 50) that link the kinetic energy shape factor to the rise in heat transfer (e.g., Nu) relative to the base flow. It is shown that the reed-induced heat transfer increases with Re and results in significant improvement in the global coefficient of performance. Supported by AFOSR.

  19. Application of TURBO-AE to Flutter Prediction: Aeroelastic Code Development

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Simons, Todd A.; Stefko, George (Technical Monitor)

    2001-01-01

    The TURBO-AE program has been evaluated by comparing the obtained results to cascade rig data and to prediction made from various in-house programs. A high-speed fan cascade, a turbine cascade, a turbine cascade and a fan geometry that shower flutter in torsion mode were analyzed. The steady predictions for the high-speed fan cascade showed the TURBO-AE predictions to match in-house codes. However, the predictions did not match the measured blade surface data. Other researchers also reported similar disagreement with these data set. Unsteady runs for the fan configuration were not successful using TURBO-AE .

  20. Rotor aeroelastic stability coupled with helicopter body motion

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Huber, H. B.

    1974-01-01

    A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested.

  1. Calculations in bridge aeroelasticity via CFD

    SciTech Connect

    Brar, P.S.; Raul, R.; Scanlan, R.H.

    1996-12-31

    The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.

  2. An improved stability characterization for aeroelastic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Javed, U.; Abdelkefi, A.; Akhtar, I.

    2016-07-01

    An enhanced stability characterization for aeroelastic energy harvesters is introduced by using both the normal form of the Hopf bifurcation and shooting method. Considering a triangular cylinder subjected to transverse galloping oscillations and a piezoelectric transducer to convert mechanical vibrations to electrical power, it is demonstrated that the nonlinear normal form is very beneficial to characterize the type of instability near bifurcation and determine the influence of structural and/or aerodynamic nonlinearities on the performance of the harvester. It is also shown that this tool is strong in terms of designing reliable aeroelastic energy harvesters. The results show that this technique can accurately predict the harvester's response only near bifurcation, however, cannot predict the stable solutions of the harvester when subcritical Hopf bifurcation takes place. To cover these drawbacks, the shooting method is employed. It turns out that this approach is beneficial in determining the stable and unstable solutions of the system and associated turning points. The results also show that the Floquet multipliers, obtained as the by-product of this method, can be used to characterize the response's type of the harvester. Thus, the normal form of the Hopf bifurcation and shooting method predictions can supplement each other to design stable and reliable aeroelastic energy harvesters.

  3. Whirl Flutter Stability of Two-Bladed Proprotor/Pylon Systems In High Speed Flight

    NASA Technical Reports Server (NTRS)

    Singh, Beerinder; Chopra, Inderjit; Pototzky, A. (Technical Monitor)

    2002-01-01

    The lack of polar symmetry in two-bladed rotors leads to equations of motion with periodic coefficients in axial flight, which is contrary to three or more bladed rotors that result in constant coefficient equations. With periodic coefficients, the analysis becomes involved, as a result very few studies have been directed towards the analysis of two-bladed rotors. In this paper, the aeroelastic stability of two-bladed proprotor/pylon/wing combinations is examined in high speed axial flight. Several parametric studies are carried out to illustrate the special nature of two-bladed proprotors and to better understand the mechanism of whirl-flutter in such rotors. The wing beam bending mode for two-bladed rotors is found to be stable over the range of parameters examined, a behaviour very different from three-bladed rotors. Also, the wing torsion mode exhibits a new type of instability similar to a wing torsional divergence scouring at I/rev frequency. This type of behaviour is not seen in three and more bladed rotors. The interaction between wing chordwise bending and torsion modes is found to be much greater in the case of two-bladed rotors and, over the range of parameters considered, these two modes govern the stability of the system.

  4. Interactive aircraft flight control and aeroelastic stabilization

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Schmidt, D. K.

    1984-01-01

    The potential benefits and costs of optimizing both the structural stiffness and the active control of aircraft in a rational manner are investigated. The ultimate goal is to arrive at a unified treatment of structural and active control design for the stability augmentation of flexible aircraft. An exhaustive literature evaluation in the area of passive tailoring for aircraft performance is undertaken. A mathematical technique to be used for aeroservoelastic tailoring studies is described. Two analytical models, one elementary, the other sophisticated, are developed to illustrate the potential for aeroservoelastic tailoring. Both models have essential features of real world hardware, yet the physical understanding is not buried in a myriad of detail. These models are also described.

  5. Studies in hypersonic aeroelasticity

    NASA Astrophysics Data System (ADS)

    Nydick, Ira Harvey

    2000-11-01

    This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle, focusing on two specific problems: (1) hypersonic panel flutter, and (2) aeroelastic behavior of a complete unrestrained generic hypersonic vehicle operating at very high Mach numbers. The panels are modeled as shallow shells using Marguerre nonlinear shallow shell theory for orthotropic panels and the aerodynamic loads are obtained from third order piston theory. Two models of curvature, several applied temperature distributions, and the presence of a shock are also included in the model. Results indicate that the flutter speed of the panel is significantly reduced by temperature variations comparable to the buckling temperature and by the presence of a shock. A panel with initial curvature can be more stable than the flat panel but the increase in stability depends in a complex way on the material properties of the panel and the amount of curvature. At values of dynamic pressure above critical, aperiodic motion was observed. The value of dynamic pressure for which this occurs in both heated panels and curved panels is much closer to the critical dynamic pressure than for the flat, unheated panel. A comparison of piston theory aerodynamics and Euler and Navier-Stokes aerodynamics was performed for a two dimensional panel with prescribed motion and the results indicate that while 2nd or higher order piston theory agrees very well with the Euler solution for the frequencies seen in hypersonic panel flutter, it differs substantially from the Navier-Stokes solution. The aeroelastic behavior of the complete vehicle was simulated using the unrestrained equations of motion, utilizing the method of quasi-coordinates. The unrestrained mode shapes of the vehicle were obtained from an equivalent plate analysis using an available code (ELAPS). The effects of flexible trim and rigid body degrees of freedom are carefully incorporated in the mathematical model. This model was applied to a

  6. Optimal mistuning for enhanced aeroelastic stability of transonic fans

    NASA Technical Reports Server (NTRS)

    Hall, K. C.; Crawley, E. F.

    1983-01-01

    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom.

  7. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    NASA Technical Reports Server (NTRS)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  8. Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Sivaneri, N.

    1982-01-01

    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.

  9. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1978-01-01

    The coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine blade are formulated. Quasi-steady blade-element strip theory was applied to derive the aerodynamic operator which includes boundary layer type gradient winds. The final equations which have periodic coefficients were solved in order to obtain the aeroelastic response and stability of large horizontal axis wind turbine blade. A new method of generating an appropriate time-dependent equilibrium position (required for the stability analysis) has been implemented. Representative steady-state responses and stability boundaries, applicable mainly to an existing blade design (NASA/-ERDA MOD-0), are presented. The results indicate that the MOD-0 configuration is a basically stable design and that blade stability is not sensitive to offsets between blade elastic axis and aerodynamic center. Blade stability appears to be sensitive to precone. The tower shadow (or wake) has a considerable effect on the flap response but leaves blade stability unchanged. Finally, it was found that non linear terms in the equations of motion can significantly affect the linearized stability boundaries, however, these terms have a negligible effect on blade response at operating conditions.

  10. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  11. Aeroelastic Tailoring for Stability Augmentation and Performance Enhancements of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Piatak, David J.; Corso, Lawrence M.; Popelka, David A.

    1999-01-01

    The requirements for increased speed and productivity for tiltrotors has spawned several investigations associated with proprotor aeroelastic stability augmentation and aerodynamic performance enhancements. Included among these investigations is a focus on passive aeroelastic tailoring concepts which exploit the anisotropic capabilities of fiber composite materials. Researchers at Langley Research Center and Bell Helicopter have devoted considerable effort to assess the potential for using these materials to obtain aeroelastic responses which are beneficial to the important stability and performance considerations of tiltrotors. Both experimental and analytical studies have been completed to examine aeroelastic tailoring concepts for the tiltrotor, applied either to the wing or to the rotor blades. This paper reviews some of the results obtained in these aeroelastic tailoring investigations and discusses the relative merits associated with these approaches.

  12. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  13. Parametric study of the aeroelastic stability of a bearingless rotor

    NASA Technical Reports Server (NTRS)

    Hooper, W. E.

    1985-01-01

    A trade study was conducted to illustrate the sensitivity of the aeroelastic stability of a bearingless main rotor to the rotor hub coupling parameters that are available for the designer. The results are presented over the complete range of rotor speed and collective pitch available and the effects on air resonance of the 6 beam installation angles are compared together with the results of offsetting the cuff snubber attachment. The major part of the study was conducted using the FLAIR analysis which incorporates a uniform representation of the flexbeam. Results are also shown for a modified version of FLAIR in which the uniform beam is replaced by a member having the geometric tailoring resulting from structural optimization.

  14. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully)embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a loosely-coupled approach, is modified to include a tightly-coupled aeroelastic simulation capability, and then loosely-coupled and tightly-coupled methods arecompared in their evaluation of flutter stability in distorted in-flows.

  15. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in cleaninlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled time-marching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  16. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  17. Flutter Analysis of a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.

    2002-01-01

    This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.

  18. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  19. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  20. TURBO-AE: An Aeroelastic Code for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1997-01-01

    NASA's Advanced Subsonic Technology (AST) program is developing new technologies to increase the fuel efficiency of commercial aircraft engines, improve the safety of engine operation, and reduce engine emissions and noise. With the development of new designs for ducted fans, compressors, and turbines to achieve these goals, a basic aeroelastic requirement is that there should be no flutter or high resonant blade stresses in the operating regime. To verify the aeroelastic soundness of these designs, we need an accurate prediction and analysis code. Such a two-dimensional viscous propulsion aeroelastic code, named TURBO-AE, is being developed at the NASA Lewis Research Center. The TURBO-AE aeroelastic code is based on a three-dimensional unsteady aerodynamic Euler/Navier-Stokes turbomachinery code TURBO, developed under a grant from NASA Lewis. TURBO-AE can model viscous flow effects that play an important role in certain aeroelastic problems, such as flutter with flow separation (or stall flutter) and flutter in the presence of shock and boundary-layer interaction. The structural dynamics representation of the blade in the TURBO-AE code is based on a normal mode representation. A finite element analysis code, such as NASTRAN, is used to calculate in-vacuum vibration modes and the associated natural frequency. A work-per-cycle approach is used to determine aeroelastic (flutter) stability. With this approach, the motion of the blade is prescribed to be a harmonic vibration in a specified in vacuum normal mode. The aerodynamic forces acting on the vibrating blade and the work done by these forces on the vibrating blade during a cycle of vibration are calculated. If positive work is being done on the blade by the aerodynamic forces, the blade is dynamically unstable, since it will extract energy from the flow, leading to an increase in the amplitude of the blade's oscillation. Initial calculations have been done for a configuration representative of the Energy

  1. Panel flutter

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1972-01-01

    Criteria are presented for the prediction of panel flutter, determination of its occurrence, design for its prevention, and evaluation of its severity. Theoretical analyses recommended for the prediction of flutter stability boundaries, vibration amplitudes, and frequencies for several types of panels are described. Vibration tests and wind tunnel tests are recommended for certain panels and environmental flow conditions to provide information for design of verification analysis. Appropriate design margins on flutter stability boundaries are given and general criteria are presented for evaluating the severity of possible short-duration, limited-amplitude panel flutter on nonreusable vehicles.

  2. Aeroelastic Stability of Modern Bearingless Rotors: A Parametric Investigation

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    The University of Maryland Advanced Rotorcraft Code (UMARC) is utilized to study the effects of blade design parameters on the aeroelastic stability of an isolated modern bearingless rotor blade in hover. The McDonnell Douglas Advanced Rotor Technology (MDART) Rotor is the baseline rotor investigated. Results indicate that kinematic pitch-lag coupling introduced through the control system geometry and the damping levels of the shear lag dampers strongly affect the hover inplane damping of the baseline rotor blade. Hub precone, pitchcase chordwise stiffness, and blade fundamental torsion frequency have small to moderate influence on the inplane damping, while blade pre-twist and placements of blade fundamental flapwise and chord-wise frequencies have negligible effects. A damperless configuration with a leading edge pitch-link, 15 deg of pitch-link cant angle, and reduced pitch-link stiffness is shown to be stable with an inplane damping level in excess of 2.7 percent critical at the full hover tip speed.

  3. Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) project is part of NASA Langley Research Center s Benchmark Models Program for studying transonic aeroelastic phenomena. In January of 1996 the BACT wind-tunnel model was used to successfully demonstrate the application of robust multivariable control design methods (H and -synthesis) to flutter suppression. This paper addresses the design and experimental evaluation of robust multivariable flutter suppression control laws with particular attention paid to the degree to which stability and performance robustness was achieved.

  4. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  5. Aeroelasticity - Frontiers and beyond /von Karman Lecture/

    NASA Technical Reports Server (NTRS)

    Garrick, I. E.

    1976-01-01

    The lecture aims at giving a broad survey of the current reaches of aeroelasticity with some narrower views for the specialist. After a short historical review of concepts for orientation, several topics are briefly presented. These touch on current flight vehicles having special points of aeroelastic interest; recent developments in the active control of aeroelastic response including control of flutter; remarks on the unsteady aerodynamics of arbitrary configurations; problems of the space shuttle related to aeroelasticity; and aeroelastic response in flight.

  6. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  7. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  8. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... result of structural deformation. The aeroelastic evaluation must include whirl modes associated with any... condition, required or selected for investigation by § 25.571. The single structural failures described in... if; (i) The structural element could not fail due to discrete source damage resulting from...

  9. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... result of structural deformation. The aeroelastic evaluation must include whirl modes associated with any... condition, required or selected for investigation by § 25.571. The single structural failures described in... if; (i) The structural element could not fail due to discrete source damage resulting from...

  10. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... result of structural deformation. The aeroelastic evaluation must include whirl modes associated with any... condition, required or selected for investigation by § 25.571. The single structural failures described in... if; (i) The structural element could not fail due to discrete source damage resulting from...

  11. 14 CFR 25.629 - Aeroelastic stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... result of structural deformation. The aeroelastic evaluation must include whirl modes associated with any... condition, required or selected for investigation by § 25.571. The single structural failures described in... if; (i) The structural element could not fail due to discrete source damage resulting from...

  12. Aeroelastic effects in the structural dynamic analysis of vertical axis wind turbines

    SciTech Connect

    Lobitz, D.W.; Ashwill, T.D.

    1985-01-01

    Aeroelastic effects impact the structural dynamic behavior of vertical axis wind turbines (VAWTs) in two major ways. First the stability phenomena of flutter and divergence are direct results of the aeroelasticity of the structure. Secondly, aerodynamic damping can be important for predicting response levels particularly near resonance but also for off resonance conditions. The inclusion of the aeroelasticity is carried out by modifying the damping and stiffness matrices in the NASTRAN finite element code. Through the use of a specially designed preprocessor which reads the usual NASTRAN input deck and adds appropriate cards to it the incorporation of the aeroelastic effects has been made relatively transparent to the user NASTRAN flutter predictions are validated using field measurements and the effect of aerodynamic damping is demonstrated through an application to the Test Bed VAWT being designed at Sandia.

  13. Aeroelastic effects in the structural dynamic analysis of vertical axis wind turbines

    SciTech Connect

    Lobitz, D.W.; Ashwill, T.D.

    1986-04-01

    Aeroelastic effects impact the structural dynamic behavior of vertical axis wind turbines (VAWRs) in two major ways. First, the stability phenomena of flutter and divergence are direct results of the aeroelasticity of the structure. Secondly, aerodynamic damping can be important for predicting response levels, particularly near resonance, but also for off-resonance conditions. The inclusion of the aeroelasticity is carried out by modifying the damping and stiffness matrices in the NASTRAN finite element code. Through the use of a specially designed preprocessor, which reads the usual NASTRAN input deck and adds appropriate cards to it, the incorporation of the aeroelastic effects has been made relatively transparent to the user. NASTRAN flutter predictions are validated using field measurements and the effect of aerodynamic damping is demonstrated through an application to the Test Bed VAWT being designed at Sandia.

  14. Theoretical and experimental research in aeroelastic stability of an advanced bearingless rotor for future helicopters

    NASA Technical Reports Server (NTRS)

    Wang, James M.

    1991-01-01

    The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.

  15. Flutter Calculations for an Experimental Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Panovsky, Josef; Keith, Theo G., Jr.; Stefko, George L.

    2003-01-01

    During testing, an experimental forward-swept fan encountered flutter at part-speed conditions. A three-dimensional propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This paper describes the flutter calculations and compares the results to the experimental measurements. Results of sensitivity studies are also presented that show the relative importance of different aspects of aeroelastic modeling.

  16. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Jenkins, Luther N.; Ifju, Peter

    2001-01-01

    Micro aerial vehicles have been the subject of considerable interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing concept has also been developed that has exhibited desired characteristics in flight test demonstrations and competition. This paper presents results from a wind tunnel investigation that sought to quantify stability and control properties for a family of vehicles using the aeroelastic design. The results indicate that the membrane wing does exhibit potential benefits that could be exploited to enhance the design of future flight vehicles.

  17. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  18. Aeroelastic problems in turbomachines

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1990-01-01

    A review of the field of turbomachinery aeroelasticity is presented. Developments over the past decade are emphasized, and an assessment of possible future directions of research is offered. The paper reviews the areas of unsteady cascade flows, structural modeling, and flutter prediction methods. Representative results for unsteady flow calculations and flutter boundary predictions in subsonic, transonic, and supersonic flows are discussed, including recent calculations based on the methods of computational fluid mechanics. Results from current attempts to correlate experimental data with theoretical predictions are discussed briefly. It is recommended that future research include investigations of novel approaches to flutter calculations that can take full advantage of parallel processing supercomputers. The feasibility of using mistuning and aeroelastic tailoring as passive flutter suppression techniques should also be pursued.

  19. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  20. Overview of Recent Flight Flutter Testing Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Lind, Richard C.; Voracek, David F.

    1997-01-01

    In response to the concerns of the aeroelastic community, NASA Dryden Flight Research Center, Edwards, California, is conducting research into improving the flight flutter (including aeroservoelasticity) test process with more accurate and automated techniques for stability boundary prediction. The important elements of this effort so far include the following: (1) excitation mechanisms for enhanced vibration data to reduce uncertainty levels in stability estimates; (2) investigation of a variety of frequency, time, and wavelet analysis techniques for signal processing, stability estimation, and nonlinear identification; and (3) robust flutter boundary prediction to substantially reduce the test matrix for flutter clearance. These are critical research topics addressing the concerns of a recent AGARD Specialists' Meeting on Advanced Aeroservoelastic Testing and Data Analysis. This paper addresses these items using flight test data from the F/A-18 Systems Research Aircraft and the F/A-18 High Alpha Research Vehicle.

  1. Analyzing Aeroelasticity in Turbomachines

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  2. An improved CAMRAD model for aeroelastic stability analysis of the XV-15 with advanced technology blades

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1993-01-01

    In pursuit of higher performance, the XV-15 Tiltrotor Research Aircraft was modified by the installation of new composite rotor blades. Initial flights with the Advanced Technology Blades (ATB's) revealed excessive rotor control loads that were traced to a dynamic mismatch between the blades and the aircraft control system. The analytical models of both the blades and the mechanical controls were extensively revised for use by the CAMRAD computer program to better predict aeroelastic stability and loads. This report documents the most important revisions and discusses their effects on aeroelastic stability predictions for airplane-mode flight. The ATB's may be flown in several different configurations for research, including changes in blade sweep and tip twist. The effects on stability of 1 deg and 0 deg sweep are illustrated, as are those of twisted and zero-twist tips. This report also discusses the effects of stiffening the rotor control system, which was done by locking out lateral cyclic swashplate motion with shims.

  3. Parametric studies for tiltrotor aeroelastic stability in high-speed flight

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1992-01-01

    The influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed (axial) flight mode. Coupling of the rotor flapping modes with the wing elastic modes produces a whirl motion, typical of tiltrotors, that can become unstable at high speeds. The sensitivity of this instability with respect to rotor frequencies, wing stiffness, forward wing sweep, and rotor thrust level is examined. Some important new trends are identified regarding the role of blade lag dynamics and forward wing sweep in tiltrotor aeroelastic stability. The blade lag frequency may be tuned to improve tiltrotor stability, and forward wing sweep is destabilizing because of changes in rotor force components associated with the sweep.

  4. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  5. Evaluation of Aeroservoelastic Effects on Flutter

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, raymond; Felt, Larry

    1998-01-01

    The HSCT Flight Controls Group is developing a longitudinal control law, known as Gamma-dot / V, for the NASA HSR program. Currently, this control law is based on a quasi-steady aeroelastic (QSAE) model of the vehicle. This control law was implemented into the p-k flutter analysis process for closed loop aeroservoelastic analysis. The available flexible models, developed for the TCA aeroelastic analysis, were used to assess the effect of control laws on flutter at several different Mach numbers and mass conditions. Significant structures and flight control system interaction was observed during the initial assessment. Figures 1 and 2 present a summary of the effect of total closed loop gain and phase on flutter mechanisms, based on ideal sensors and real sensors, for Mach 0.95 and mass M02 condition. Control laws based on ideal sensors gave rise to increased coupling between the rigid body short period mode and the first symmetric elastic mode. This reduced the stability margins for the first elastic mode and does not meet the required 6 dB gain margin requirement. The effect of "real" sensors significantly increased the structures and control system interactions. This caused the elastic,modes to be highly unstable throughout most of the flight envelope. State-space models were developed for several conditions and then MATLAB program was used for the aeroservoelastic stability analysis. These results provided an independent verification of the p-k flutter analysis findings. Good overall agreement was observed between the p-k flutter analysis and state-space model results for both damping and frequency comparisons. These results are also included in this document.

  6. The Wing-Body Aeroelastic Analyses Using the Inverse Design Method

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Im, Dong-Kyun; Lee, In; Kwon, Jang-Hyuk

    Flutter phenomenon is one of the most dangerous problems in aeroelasticity. When it occurs, the aircraft structure can fail in a few second. In recent aeroelastic research, computational fluid dynamics (CFD) techniques become important means to predict the aeroelastic unstable responses accurately. Among various flow equations like Navier-Stokes, Euler, full potential and so forth, the transonic small disturbance (TSD) theory is widely recognized as one of the most efficient theories. However, the small disturbance assumption limits the applicable range of the TSD theory to the thin wings. For a missile which usually has small aspect ratio wings, the influence of body aerodynamics on the wing surface may be significant. Thus, the flutter stability including the body effect should be verified. In this research an inverse design method is used to complement the aerodynamic deficiency derived from the fuselage. MGM (modified Garabedian-McFadden) inverse design method is used to optimize the aerodynamic field of a full aircraft model. Furthermore, the present TSD aeroelastic analyses do not require the grid regeneration process. The MGM inverse design method converges faster than other conventional aerodynamic theories. Consequently, the inverse designed aeroelastic analyses show that the flutter stability has been lowered by the body effect.

  7. Effect of steady state coning angle and damping on whirl flutter stability

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1973-01-01

    The main object of this investigation is to find the effect of the steady state coning angle and the damping at the flapping hinge of the blades on the whirl flutter stability boundary and thus to determine the role they can play in narrowing down the gap between theory and experiment. The governing equations of motion, with these two parameters included are derived by the classical Lagrangian approach using quasi-steady blade element theory for aerodynamic forces. A linearized analysis of these equations is applied to two of the wind tunnel models of the previous investigations. The results indicate that these parameters have a marked effect on stability boundary and they may even change the mode of flutter from backward whirl to forward whirl.

  8. Rotation in vibration, optimization, and aeroelastic stability problems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1974-01-01

    The effects of rotation in the areas of vibrations, dynamic stability, optimization, and aeroelasticity were studied. The governing equations of motion for the study of vibration and dynamic stability of a rapidly rotating deformable body were developed starting from the nonlinear theory of elasticity. Some common features such as the limitations of the classical theory of elasticity, the choice of axis system, the property of self-adjointness, the phenomenon of frequency splitting, shortcomings of stability methods as applied to gyroscopic systems, and the effect of internal and external damping on stability in gyroscopic systems are identified and discussed, and are then applied to three specific problems.

  9. Analysis of stall flutter of a helicopter radar blade

    NASA Technical Reports Server (NTRS)

    Crimi, P.

    1973-01-01

    A study of rotor blade aeroelastic stability was carried out, using an analytic model of a two-dimensional airfoil undergoing dynamic stall and an elastomechanical representation including flapping, flapwise bending and torsional degrees of freedom. Results for a hovering rotor demonstrated that the models used are capable of reproducing both classical and stall flutter. The minimum rotor speed for the occurrence of stall flutter in hover, was found to be determined from coupling between torsion and flapping. Instabilities analogous to both classical and stall flutter were found to occur in forward flight. However, the large stall-related torsional oscillations which commonly limit aircraft forward speed appear to be the response to rapid changes in aerodynamic moment which accompany stall and unstall, rather than the result of an aeroelastic instability. The severity of stall-related instabilities and response was found to depend to some extent on linear stability. Increasing linear stability lessens the susceptibility to stall flutter and reduced the magnitude of the torsional response to stall and unstall.

  10. The SRB heat shield: Aeroelastic stability during reentry

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Dowell, E. H.

    1977-01-01

    Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.

  11. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Malone, John B.

    1992-01-01

    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  12. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Malone, John B.

    1992-01-01

    The status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications is discussed in terms of the flowfield state - low angle high speed flows and high angle vortex dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  13. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Malone, J. B.

    1992-01-01

    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Application of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  14. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  15. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  16. Wind-tunnel Measurement of Propeller Whirl-flutter Speeds and Static-stability Derivatives and Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.; Bennett, Robert M.

    1963-01-01

    Results of an experimental investigation of propeller whirl flutter are presented for a model consisting of an isolated, rigid system of propeller and simulated power plant mounted with flexibility in pitch and yaw on a rigid sting. A range of propeller blade angles, restraint stiffnesses, and restraint damping coefficients was investigated for a system symmetrical i n pitch and yaw with a windmilling propeller. Measurements of the static-stability derivatives were also made by using a simple balance and were compared with two sets of theoretical derivatives. Whirl-flutter calculations were made with the theoretical and measured derivatives. Some limited results were obtained for the whirl flutter of the model mounted on a cantilever semispan wing. The measured whirl-flutter speeds and frequencies of the isolated model were in very good agreement with those predicted by calculations in which measured derivatives and viscous damping were used. This agreement was better than that obtained by using structural damping. Predicted whirl-flutter speeds for the isolated model were lower when theoretical stability derivatives were used than when measured derivatives were used. The theoretical and experimental static-stability derivatives exhibited the same trends, but in certain instances differed appreciably in magnitude. the measured whirl-flutter boundary for the one configuration considered.

  17. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  18. Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne

    2004-01-01

    Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.

  19. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  20. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  1. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  2. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  3. Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.

    2003-01-01

    Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle

  4. Flutter stability investigation of low-pressure steam turbine bladed disks

    SciTech Connect

    Omprakash, V.; Sarlashkar, A.V.; Lam, T.C.T.; Shuster, L.H.; McCloskey, T.H.

    1994-12-31

    This paper presents a numerical method to analyze flutter stability of low-pressure steam turbine blading. Any bladed disk normal vibration mode as well as the stage operating condition may be considered. The stability considerations are based on a quasi-steady power-per-vibration-cycle approach. The aerodynamic work per cycle of vibration of a bladed disk mode is calculated form the time integral of the product of the periodic time varying force and the specified harmonic vibration amplitude. The aerodynamic forces are obtained from the pressure distribution database generated from a separate 2-D cascade analysis for compressible inviscid flow for a wide range of flow angles. The method accounts for the kinematic corrections of instantaneous relative flow angle due to the vibratory motion. The non-linear material damping energy of the bladed disk as a function of the vibration amplitude is calculated using Lazan`s power law. The flutter stability is determined by the net power flow to the bladed disk at various amplitudes of vibration. Some results for the last stage of a low pressure steam turbine are presented.

  5. A comparison of theory and experiment for aeroelastic stability of a hingeless rotor model in hover

    NASA Technical Reports Server (NTRS)

    Sharpe, David L.

    1988-01-01

    Theoretical predictions of aeroelastic stability are compared with experimental, isolated, hingeless-rotor data. The six cases selected represent a torsionally soft rotor having either a stiff or soft pitch-control system in combination with zero precone and droop, 5 degree precone, or -5 degree droop. Analyses from Bell Helicopter Textron, Boeing Vertol, Hughes Helicopters, Sikorsky Aircraft, the National Aeronautics and Space Administration, and the U.S. Army Aeromechanics Laboratory were compared with the experimental data. The correlation ranged from poor to fair.

  6. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for online controller performance evaluation.

  7. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood T.; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for on-line controller performance evaluation.

  8. Flap-lag-torsion aeroelastic stability of a circulation control rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Chopra, Inderjit; Hong, Chang-Ho

    1987-01-01

    The aeroelastic stability of a circulation control rotor blade undergoing three degrees of motion (flap, lag, and torsion) is investigated in forward flight. Quasi-steady strip theory is used to evaluate the aerodynamics forces; and the airfoil characteristics are from data tables. The propulsive and the auxiliary power trims are calculated from vehicle and rotor equilibrium equations through the numerical integration of element forces in azimuth as well as in radial directions. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory. The effects of several parameters on blade stability are examined, including advance ratio, collective pitch, thrust level, shaft tilt, structural stiffnesses variation, and propulsive and auxiliary power trims.

  9. Suppression of bending-torsion wing flutter using self-straining controllers

    NASA Astrophysics Data System (ADS)

    Lin, Jensen Cheng-Sheng

    Flutter is an instability endemic to aircraft that occurs at high enough air speed. Suppression of flutter is in the interest of safety and economy. In this study, we propose a purely analytical approach to the problem flutter suppression. Counter to the commercially available numerical schemes, mathematical precisions are provided to gain a better understanding of the flutter phenomenon and the controller performance. We model the wing structure and aerodynamics with a pair of time-invariant linear partial differential equations. The control action of the self-straining material is easily incorporated into the structural model as boundary control. This model faithfully captures the flutter phenomenon as well as the control action. A State Space representation is carefully chosen for the aeroelastic model. The problem of flutter analysis is reduced to evaluating the resolvent of the aeroelastic operator. We also present a Laplace-Fourier Transform version of the Possio equation in the theory of Unsteady Subsonic Aerodynamics. This new version enables us to obtain explicit formulas for the lift and moment, which in turn afford us to analyze the flutter problem more readily. Analyses reveal the torsion controllers are effective in extending the flutter boundary while the bending controllers are not. A series of experiments were designed to validate our theoretical models for flutter analysis and to test the performance of self-straining actuators. An aeroelastic wing with self-straining sensors and actuators were designed to flutter within the speed limit of the vehicle as well as the assumptions of our theoretical model. The NASA Ground Research Vehicle, the "Roadrunner" served as the platform for these experiments. The processed data from the field tests showed the theoretical prediction of flutter speed is accurate. Theoretical calculations for both of the frequencies and damping as function of air speed were also found to be within the experimental error. However

  10. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  11. Aeroelasticity and mechanical stability report, 0.27 Mach scale model of the YAH-64 advanced attack helicopter

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Johnston, R. A.

    1987-01-01

    A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.

  12. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  13. Vibration and flutter characteristics of the SR7L large-scale propfan

    NASA Technical Reports Server (NTRS)

    August, Richard; Kaza, Krishna Rao V.

    1988-01-01

    An investigation of the vibration characteristics and aeroelastic stability of the SR7L Large-Scale Advanced Propfan was performed using a finite element blade model and an improved aeroelasticity code. Analyses were conducted for different blade pitch angles, blade support conditions, number of blades, rotational speeds, and freestream Mach numbers. A finite element model of the blade was used to determine the blade's vibration behavior and sensitivity to support stiffness. The calculated frequencies and mode shape obtained with this model agreed well with the published experimental data. A computer code recently developed at NASA Lewis Research Center and based on three-dimensional, unsteady, lifting surface aerodynamic theory was used for the aeroelastic analysis to examine the blade's stability at a cruise condition of Mach 0.8 at 1700 rpm. The results showed that the blade is stable for that operating point. However, a flutter condition was predicted if the cruise Mach number was increased to 0.9.

  14. An application of eigenspace methods to symmetric flutter suppression

    NASA Technical Reports Server (NTRS)

    Fennell, Robert E.

    1988-01-01

    An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure.

  15. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  16. Coupled bending-bending-torsion flutter of a mistuned cascade with nonuniform blades

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1982-01-01

    A set of aeroelastic equations describing the motion of an arbitrarily mistuned cascade with flexible, pretwisted, nonuniform blades is developed using an extended Hamilton's principle. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. A general expression for foreshortening of a blade is derived and is explicity used in the formulation. The blade aerodynamic loading in the subsonic and supersonic flow regimes is obtained from two dimensional, unsteady, cascade theories. The aerodynamic, inertial and structural coupling between the bending (in two planes) and torsional motions of the blade is included. The equations are used to investigate the aeroelastic stability and to quantify the effect of frequency mistuning on flutter in turbofans. Results indicate that a moderate amount of intentional mistuning has enough potential to alleviate flutter problems in unshrouded, high aspect ratio turbofans.

  17. Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1976-01-01

    A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise, the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However, significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.

  18. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first-step toward solving the three-dimensional canard-wing interaction problem. These calculations are performed by extending the XTRAN2L two-dimensional unsteady transonic small-disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two-dimensional canard and wing are presented. Results for a variety of canard-wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  19. Unsteady transonic flow calculations for two-dimensional canard-wing configurations with aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations for aerodynamically interfering airfoil configurations are performed as a first step toward solving the three dimensional canard wing interaction problem. These calculations are performed by extending the XTRAN2L two dimensional unsteady transonic small disturbance code to include an additional airfoil. Unsteady transonic forces due to plunge and pitch motions of a two dimensional canard and wing are presented. Results for a variety of canard wing separation distances reveal the effects of aerodynamic interference on unsteady transonic airloads. Aeroelastic analyses employing these unsteady airloads demonstrate the effects of aerodynamic interference on aeroelastic stability and flutter. For the configurations studied, increases in wing flutter speed result with the inclusion of the aerodynamically interfering canard.

  20. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential

  1. Theoretical and experimental investigation of the aeroelastic stability of an advanced bearingless rotor in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Chopra, Inderjit; Samak, D. K.; Green, Michael; Graham, Todd

    1989-01-01

    The aeroelastic stability of a shaft-fixed, 1/8th Froude scaled bearingless rotor was investigated in a series of wind tunnel experiments simulating a wide range of operating conditions. A finite element formulation was used to perform a parallel theoretical analysis, with the goal of determining whether a bearingless rotor system could be made aeroelastically stable without the incorporation of auxilliary dampers. A quick estimate of lag mode damping was provided by a refined moving-block analysis implemented in real time which predicted similar damping values. Model rotor and blade properties were also determined, and these properties were used as inputs for a newly refined bearingless rotor analysis. Predicted results were compared with experimental results in hover and forward flight. Results indicated that soft pitch link stiffness increases pitch-lag coupling and stabilizes lag mode stability in hover and at low advance ratios, but destabilizes at higher advance ratios.

  2. Robust Kalman filter design for active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.; Mahesh, J. K.; Stone, C. R.; Dunn, H. J.

    1982-01-01

    Additional insight is provided into the use of the Doyle-Stein (1979, 1981) technique in aeroelastic control problems by examining the application of the method to a flutter control problem. The system to be controlled consists of a full-size wind tunnel model of a wing, plus an aileron, an actuator, and an accelerometer used to sense the motion of the wing. A full-state feedback controller was designed using linear optimal control theory, and a Kalman filter was used in the feedback loop for state estimation. The filter design procedure is explained along with that to improve closed-loop properties of the system. The locus of the poles of the filter is examined as a scalar design parameter is varied. The Doyle-Stein design procedure is shown to substantially improve the stability properties of an active flutter controller designed using the linear quadratic Gaussian control theory.

  3. Effects of leading-edge tubercles on wing flutter speeds.

    PubMed

    Ng, B F; New, T H; Palacios, R

    2016-06-01

    The dynamic aeroelastic effects on wings modified with bio-inspired leading-edge (LE) tubercles are examined in this study. We adopt a state-space aeroelastic model via the coupling of unsteady vortex-lattice method and a composite beam to evaluate stability margins as a result of LE tubercles on a generic wing. The unsteady aerodynamics and spanwise mass variations due to LE tubercles have counteracting effects on stability margins with the former having dominant influence. When coupled, flutter speed is observed to be 5% higher, and this is accompanied by close to 6% decrease in reduced frequencies as an indication of lower structural stiffness requirements for wings with LE tubercles. Both tubercle amplitude and wavelength have similar influences over the change in flutter speeds, and such modifications to the LE would have minimal effect on stability margins when concentrated inboard of the wing. Lastly, when used in sweptback wings, LE tubercles are observed to have smaller impacts on stability margins as the sweep angle is increased. PMID:27070824

  4. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  5. Flutter Boundary Identification From Simulation Time Histories

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Goggin, P. J.

    1997-01-01

    While there has been much recent progress in simulating nonlinear aeroelastic systems, and in predicting many of the aeroelastic phenomena of concern in transport aircraft design (i.e. transonic flutter buckets), the utility of a simulation in generating an understanding of the flutter behavior is limited. This is due in part to the high cost of generating these simulations; and the implied limitation on the number of conditions that can be analyzed, but there are also some difficulties introduced by the very nature of a simulation. Flutter engineers have traditionally worked in the frequency domain, and are accustomed to describing the flutter behavior of an airplane in terms of its V-G and V-F (or Q-G and Q-F) plots and flutter mode shapes. While the V-G and V-F plots give information about how the dynamic response of an airplane changes as the airspeed is increased, the simulation only gives information about one isolated condition (Mach, airspeed, altitude, etc.). Therefore, where a traditional flutter analysis can let the engineer determine an airspeed at which an airplane becomes unstable, while a simulation only serves as a binary check: either the airplane is fluttering at this condition, or it is not. In this document, a new technique is described in which system identification is used to easily extract modal frequencies and damping ratios from simulation time histories, and shows how the identified parameters can be used to determine the variation in frequency and dampin,o ratio as the airspeed is changed. This technique not only provides the flutter engineer with added insight into the aeroelastic behavior of the airplane, but it allows calculation of flutter mode shapes, and allows estimation of flutter boundaries while minimizing the number of simulations required.

  6. Forced vibration and flutter design methodology

    SciTech Connect

    Snyder, L.E.; Burns, D.W.

    1988-06-01

    The aeroelastic principles and considerations of designing blades, disks, and vanes to avoid high cycle fatigue failure is covered. Two types of vibration that can cause high cycle fatigue, flutter, and forced vibration, will first be defined and the basic governing equations discussed. Next, under forced vibration design the areas of source definition, types of components, vibratory mode shape definitions, and basic steps in design for adequate high cycle fatigue life will be presented. For clarification a forced vibration design example will be shown using a high performance turbine blade/disk component. Finally, types of flutter, dominant flutter parameters, and flutter procedures and design parameters will be discussed. The overall emphasis is on application to initial design of blades, disks, and vanes of aeroelastic criteria to prevent high cycle fatigue failures.

  7. Stability analysis of nonlinear autonomous systems - General theory and application to flutter

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Morino, L.

    1975-01-01

    The analysis makes use of a singular perturbation method, the multiple time scaling. Concepts of stable and unstable limit cycles are introduced. The solution is obtained in the form of an asymptotic expansion. Numerical results are presented for the nonlinear flutter of panels and airfoils in supersonic flow. The approach used is an extension of a method for analyzing nonlinear panel flutter reported by Morino (1969).

  8. On-Line Mu Method for Robust Flutter Prediction in Expanding a Safe Flight Envelope for an Aircraft Model Under Flight Test

    NASA Technical Reports Server (NTRS)

    Lind, Richard C. (Inventor); Brenner, Martin J.

    2001-01-01

    A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.

  9. Geared-elevator flutter study. [transonic flutter characteristics of empennage

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    The paper describes an experimental and analytical study of the transonic flutter characteristics of an empennage flutter model having an all-movable horizontal tail with a geared elevator. Two configurations were flutter tested: one with a geared elevator and one with a locked elevator with the model cantilever-mounted on a sting in the wind tunnel. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter boundary was nearly flat at transonic speeds for both configurations. It was found that an analysis which treated the elevator as a discrete surface predicted flutter dynamic pressure levels better than analyses which treated the stabilizer and elevator as a warped surface. Warped-surface methods, however, predicted more closely the experimental flutter frequencies and Mach number trends.

  10. Aircraft T-tail flutter predictions using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Attorni, A.; Cavagna, L.; Quaranta, G.

    2011-02-01

    The paper presents the application of computational aeroelasticity (CA) methods to the analysis of a T-tail stability in transonic regime. For this flow condition unsteady aerodynamics show a significant dependency from the aircraft equilibrium flight configuration, which rules both the position of shock waves in the flow field and the load distribution on the horizontal tail plane. Both these elements have an influence on the aerodynamic forces, and so on the aeroelastic stability of the system. The numerical procedure proposed allows to investigate flutter stability for a free-flying aircraft, iterating until convergence the following sequence of sub-problems: search for the trimmed condition for the deformable aircraft; linearize the system about the stated equilibrium point; predict the aeroelastic stability boundaries using the inferred linear model. An innovative approach based on sliding meshes allows to represent the changes of the computational fluid domain due to the motion of control surfaces used to trim the aircraft. To highlight the importance of keeping the linear model always aligned to the trim condition, and at the same time the capabilities of the computational fluid dynamics approach, the method is applied to a real aircraft with a T-tail configuration: the P180.

  11. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.

    PubMed

    Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A

    2007-10-01

    In an investigation of phonation onset, a linear stability analysis was performed on a two-dimensional, aeroelastic, continuum model of phonation. The model consisted of a vocal fold-shaped constriction situated in a rigid pipe coupled to a potential flow which separated at the superior edge of the vocal fold. The vocal fold constriction was modeled as a plane-strain linear elastic layer. The dominant eigenvalues and eigenmodes of the fluid-structure-interaction system were investigated as a function of glottal airflow. To investigate specific aerodynamic mechanisms of phonation onset, individual components of the glottal airflow (e.g., flow-induced stiffness, inertia, and damping) were systematically added to the driving force. The investigations suggested that flow-induced stiffness was the primary mechanism of phonation onset, involving the synchronization of two structural eigenmodes. Only under conditions of negligible structural damping and a restricted set of vocal fold geometries did flow-induced damping become the primary mechanism of phonation onset. However, for moderate to high structural damping and a more generalized set of vocal fold geometries, flow-induced stiffness remained the primary mechanism of phonation onset. PMID:17902864

  12. Status of NASA full-scale engine aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1980-01-01

    Data relevant to several types of aeroelastic instabilities were obtained using several types of turbojet and turbofan engines. In particular, data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities are presented. The unique characteristics of these instabilities are discussed, and a number of correlations are presented that help identify the nature of the phenomena.

  13. Status of NASA full-scale engine aeroelasticity research

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1980-01-01

    The paper presents data relevant to several types of aeroelastic instabilities which have been obtained using several types of turbojet and turbofan engines. Special attention is given to data relative to separated flow (stall) flutter, choke flutter, and system mode instabilities. The discussion covers the characteristics of these instabilities, and a number of correlations are presented that help identify the nature of the phenomena.

  14. Aeroelastic effects in multirotor vehicles. Part 2: Methods of solution and results illustrating coupled rotor/body aeromechanical stability

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1987-01-01

    This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.

  15. Fan Flutter Computations Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.

    2009-01-01

    An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.

  16. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs

    NASA Technical Reports Server (NTRS)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh

    2003-01-01

    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive

  17. Studies in tilt-rotor VTOL aircraft aeroelasticity, volume 1. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1973-01-01

    Aeroelastic and dynamic studies which complement and extend various aspects of technology applicable to tilt-rotor VTOL aircraft are discussed. Particular attention is given to proprotor/pylon whirl instability, a precession-type instability akin to propeller/nacelle whirl flutter. The blade flapping and pitch-change freedoms of a proprotor are shown to lead to a fundamentally different situation as regards the manner in which the precession-generated aerodynamic forces and moments act on the pylon and induce whirl flutter relative to that of a propeller. The implication of these forces and moments with regard to their capacity for instigating a whirl instability is examined, demonstrating why a proprotor can exhibit whirl flutter in either the backward or forward directions in contrast to a propeller which is found to always whirl in the backward direction. Analytical trend studies delineating the effect of several system design parameters on proprotor/pylon stability and response are shown.

  18. T-tail flutter: Potential-flow modelling, experimental validation and flight tests

    NASA Astrophysics Data System (ADS)

    Murua, Joseba; Martínez, Pablo; Climent, Héctor; van Zyl, Louw; Palacios, Rafael

    2014-11-01

    Flutter of T-tail configurations is caused by the aeroelastic coupling between the vertical fin and the horizontal stabiliser. The latter is mounted on the fin instead of the fuselage, and hence the arrangement presents distinct characteristics compared to other typical empennage setups; specifically, T-tail aeroelasticity is governed by inplane dynamics and steady aerodynamic loading, which are typically not included in flutter clearance methodologies based on the doublet lattice method. As the number of new aircraft featuring this tail configuration increases, there is a need for precise understanding of the phenomenon, appropriate tools for its prediction, and reliable benchmarking data. This paper addresses this triple challenge by providing a detailed explanation of T-tail flutter physics, describing potential-flow modelling alternatives, and presenting detailed numerical and experimental results to compensate for the shortage of reproducible data in the literature. A historical account of the main milestones in T-tail aircraft development is included, followed by a T-tail flutter research review that emphasises the latest contributions from industry as well as academia. The physical problem is dissected next, highlighting the individual and combined effects that drive the phenomenon. Three different methodologies, all based on potential-flow aerodynamics, are considered for T-tail subsonic flutter prediction: (i) direct incorporation of supplementary T-tail effects as additional terms in the flutter equations; (ii) a generalisation of the boundary conditions and air loads calculation on the double lattice; and (iii) a linearisation of the unsteady vortex lattice method with arbitrary kinematics. Comparison with wind-tunnel experimental results evidences that all three approaches are consistent and capture the key characteristics in the T-tail dynamics. The validated numerical models are then exercised in easy-to-duplicate canonical test cases. These

  19. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  20. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, M. A.; Mahajan, A. J.; Keith, T. G., Jr.; Stefko, G. L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  1. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time-marching Full-Potential cascade solver are developed and verified. In the first method, the Influence Coefficient method, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response method, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers using both flat plates and actual airfoils.

  2. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  3. On the optimization of discrete structures with aeroelastic constraints

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Ashley, H.

    1978-01-01

    The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.

  4. Multi-fidelity construction of explicit boundaries: Application to aeroelasticity

    NASA Astrophysics Data System (ADS)

    Dribusch, Christoph

    Wings, control surfaces and rotor blades subject to aerodynamic forces may exhibit aeroelastic instabilities such as flutter, divergence and limit cycle oscillations which generally reduce their life and functionality. This possibility of instability must be taken into account during the design process and numerical simulation models may be used to predict aeroelastic stability. Aeroelastic stability is a design requirement that encompasses several difficulties also found in other areas of design. For instance, the large computational time associated with stability analysis is also found in computational fluid dynamics (CFD) models. It is a major hurdle in numerical optimization and reliability analysis, which generally require large numbers of call to the simulation code. Similarly, the presence of bifurcations and discontinuities is also encountered in structural impact analysis based on nonlinear dynamic simulations and renders traditional approximation techniques such as Kriging ineffective. Finally, for a given component or system, aeroelastic instability is only one of multiple failure modes which must be accounted for during design and reliability studies. To address the above challenges, this dissertation proposes a novel algorithm to predict, over a range of parameters, the qualitative outcomes (pass/fail) of simulations based on relatively few, classified (pass/fail) simulation results. This is different from traditional approximation techniques that seek to predict simulation outcomes quantitatively, for example by fitting a response surface. The predictions of the proposed algorithm are based on the theory of support vector machines (SVM), a machine learning method originated in the field of pattern recognition. This process yields an analytical function that explicitly defines the boundary between feasible and infeasible regions of the parameter space and has the ability to reproduce nonlinear, disjoint boundaries in n dimensions. Since training the

  5. An Aeroelastic Analysis of a Thin Flexible Membrane

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.

    2007-01-01

    Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.

  6. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Lung, Shu

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  7. Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A.; Florance, James R.

    2000-01-01

    The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.

  8. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  9. Recent advances in transonic computational aeroelasticity

    NASA Technical Reports Server (NTRS)

    Batina, John T.; Bennett, Robert M.; Seidel, David A.; Cunningham, Herbert J.; Bland, Samuel R.

    1988-01-01

    A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.

  10. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  11. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, M.; Wieseman, C. D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few a priori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  12. Aeroelastic stability and control of an oblique wing - Wind tunnel experiments

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Results are presented for wind tunnel tests of an elastic wing model to verify the theoretical predictions for the aeroelastic instability of an oblique wing. The model wing has an elliptic planform of 10 to 1 axis ratio and a symmetrical airfoil section of 7-1/2% thickness/chord ratio. The wing is of wood and as may be seen in the photographs presented, slack wires are used to limit the amplitude of unstable motions. The fuselage is mounted on bearings permitting freedom of roll, but provision is made to clamp the fuselage for some of the tests. It is found that freedom in roll increases the dynamic pressure at which aeroelastic instability first appears. With the model free in roll, the effectiveness of the ailerons in maintaining trim is not noticeably affected by passage through the speed at which the wing would become unstable if clamped.

  13. Suppression of flutter

    NASA Technical Reports Server (NTRS)

    Nissim, E. (Inventor)

    1973-01-01

    An active aerodynamic control system to control flutter over a large range of oscillatory frequencies is described. The system is not affected by mass, stiffness, elastic axis, or center of gravity location of the system, mode of vibration, or Mach number. The system consists of one or more pairs of leading edge and trailing edge hinged or deformable control surfaces, each pair operated in concert by a stability augmentation system. Torsion and bending motions are sensed and converted by the stability augmentation system into leading and trailing edge control surface deflections which produce lift forces and pitching moments to suppress flutter.

  14. Body-freedom flutter of a 1/2-scale forward-swept-wing model, an experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Chipman, R.; Rauch, F.; Rimer, M.; Muniz, B.

    1984-01-01

    The aeroelastic phenomenon known as body-freedom flutter (BFF), a dynamic instability involving aircraft-pitch and wing-bending motions which, though rarely experienced on conventional vehicles, is characteristic of forward swept wing (FSW) aircraft was investigated. Testing was conducted in the Langley transonic dynamics tunnel on a flying, cable-mounted, 1/2-scale model of a FSW configuration with and without relaxed static stability (RSS). The BFF instability boundaries were found to occur at significantly lower airspeeds than those associated with aeroelastic wing divergence on the same model. For those cases with RSS, a canard-based stability augmentation system (SAS) was incorporated in the model. This SAS was designed using aerodynamic data measured during a preliminary tunnel test in which the model was attached to a force balance. Data from the subsequent flutter test indicated that BFF speed was not dependent on open-loop static margin but, rather, on the equivalent closed-loop dynamics provided by the SAS. Servo-aeroelastic stability analyses of the flying model were performed using a computer code known as SEAL and predicted the onset of BFF reasonably well.

  15. Aeroelastic stability analysis of a high-energy turbine blade. [for SSME High Pressure Oxidizer TurboPump first stage

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1990-01-01

    The dynamic analysis for the SSME HPOTP first stage turbine blade is presented wherein the rotor aeroelastic stability is assessed. The method employs normal modes analysis to simulate the coupled blade/fluid system. A three-dimensional finite element model of the blade is used in conjunction with a two-dimensional linearized unsteady aerodynamic theory which accounts for steady aerodynamic loading effects. This unsteady aerodynamic model is applied in stacked axisymmetric strips along the airfoil span. The blade dynamic and aerodynamic behaviors are coupled within modal space by expressing the unsteady aerodynamic forces in the frequency domain. A complex eigenvalue problem is solved to determine the stability of the rotor assuming tuned blades. The present analysis indicates that the HPOTP rotor experiences very low aerodynamic damping in the first four vibrational modes. The edgewise mode was found to be dynamically unstable. This mode of the blade became stable when the effect of mechanical damping was considered.

  16. Structural resonance and mode of flutter of hummingbird tail feathers.

    PubMed

    Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O

    2013-09-15

    Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string. PMID:23737565

  17. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit

  18. Effects of mistuning on bending-torsion flutter and response of a cascade in incompressible flow

    SciTech Connect

    Kaza, K.R.V.; Kielb, R.E.

    1981-01-01

    An investigation of the effects of blade mistuning on the aeroelastic stability and response of a cascade in incompressible flow is reported. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades are included in the formulation. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending-torsion and uncoupled torsion flutter. The effect of mistuning on forced response, however, may be either beneficial or adverse, depending on the engine order of the forcing function. Additionally, the results illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.

  19. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  20. NASTRAN level 16 programmer's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Gallo, A. M.; Dale, B.

    1980-01-01

    The programming routines for the NASTRAN Level 16program are presented. Particular emphasis is placed on its application to aeroelastic analyses, mode development, and flutter analysis for turbomachine blades.

  1. Nastran level 16 theoretical manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1980-01-01

    A computer program based on state of the art compressor and structural technologies applied to bladed shrouded disc was developed and made operational in NASTRAN Level 16. Aeroelastic analyses, modes and flutter. Theoretical manual updates are included.

  2. Aeroelastic and dynamic finite element analyses of a bladder shrouded disk

    NASA Technical Reports Server (NTRS)

    Smith, G. C. C.; Elchuri, V.

    1980-01-01

    The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.

  3. Flutter analysis of composite box beams

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Greenman, Matthew

    1995-01-01

    The dynamic aeroelastic instability of flutter is an important factor in the design of modern high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay flutter. To obtain an optimum design, we need an accurate as well as efficient model. As a first step towards this goal, flutter analysis is carried out for an unswept composite box beam using a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration analysis is carried out. These fundamental modes are used to get the flutter solution using the V-g method. Future work is intended to build on this foundation.

  4. Improved Flight Test Procedures for Flutter Clearance

    NASA Technical Reports Server (NTRS)

    Lind, Rick C.; Brenner, Martin J.; Freudinger, Lawrence C.

    1997-01-01

    Flight flutter testing is an integral part of flight envelope clearance. This paper discusses advancements in several areas that are being investigated to improve efficiency and safety of flight test programs. Results are presented from recent flight testing of the F/A-18 Systems Research Aircraft. A wingtip excitation system was used to generate aeroelastic response data. This system worked well for many flight conditions but still displayed some anomalies. Wavelet processing is used to analyze the flight data. Filtered transfer functions are generated that greatly improve system identification. A flutter margin is formulated that accounts for errors between a model and flight data. Worst-case flutter margins are computed to demonstrate the flutter boundary may lie closer to the flight envelope than previously estimated. This paper concludes with developments for a distributed flight analysis environment and on-line health monitoring.

  5. Flutter Analysis for Turbomachinery Using Volterra Series

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2014-01-01

    The objective of this paper is to describe an accurate and efficient reduced order modeling method for aeroelastic (AE) analysis and for determining the flutter boundary. Without losing accuracy, we develop a reduced order model based on the Volterra series to achieve significant savings in computational cost. The aerodynamic force is provided by a high-fidelity solution from the Reynolds-averaged Navier-Stokes (RANS) equations; the structural mode shapes are determined from the finite element analysis. The fluid-structure coupling is then modeled by the state-space formulation with the structural displacement as input and the aerodynamic force as output, which in turn acts as an external force to the aeroelastic displacement equation for providing the structural deformation. NASA's rotor 67 blade is used to study its aeroelastic characteristics under the designated operating condition. First, the CFD results are validated against measured data available for the steady state condition. Then, the accuracy of the developed reduced order model is compared with the full-order solutions. Finally the aeroelastic solutions of the blade are computed and a flutter boundary is identified, suggesting that the rotor, with the material property chosen for the study, is structurally stable at the operating condition, free of encountering flutter.

  6. Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald

    2005-01-01

    Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  7. Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.

  8. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  9. A comparison of theory and experiment for the aeroelastic stability of a bearingless model rotor in hover

    NASA Technical Reports Server (NTRS)

    Dawson, Seth

    1988-01-01

    Three cases were selected for correlation from an experiment that examined the aeroelastic stability of a small-scale bearingless motor rotor in hover. The 1.8 m diameter model rotor included flap, lead-lag, and torsional degrees of freedom, but no body degrees of freedom. The first case looked at a configuration with a single pitch link on the leading edge, the second case examined a configuration with a single pitch link on the trailing edge, and the third case examined a configuration with pitch links on the leading and trailing edges to simulate a pitch link with shear restraint. Analyses from Bell Helicopter Textron, Boeing Vertol, Hughes Helicopters, Sikorsky Aircraft, and the U.S. Army Aeromechanics Laboratory were compared with the data, and the correlation ranged from poor to fair.

  10. Aeroelastic Analysis of Counter Rotation Fans

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Murthy, Durbha V.

    1997-01-01

    Aeroelastic problems in turbomachinery and propfans can be static or dynamic in nature. The analysis of static aeroelastic problems is involved primarily with determination: (a) of the shape of the blades and the steady aerodynamic loads on the blades (which are inter-dependent), (b) of the resultant steady stresses and (c) of the static instability (divergence) margin, if applicable. In this project, we were concerned exclusively with dynamic aeroelastic behavior. The analysis of dynamic aeroelastic problems is involved with the determination: (a) of the unsteady aerodynamic loads on blades and the dynamic motion of the blades (which are again inter-dependent), (b) of the resultant dynamic stresses and their effect on fatigue life and (c) of the dynamic instability (flutter), if applicable. There are two primary dynamic aeroelastic phenomena of interest to designers of turbomachinery and propfans: flutter and forced response. Flutter generally refers to the occurrence of rapidly growing self-excited oscillations leading to catastrophic failure of the blade. When certain nonlinear phenomena are present, flutter response may lead to a potentially dangerous limit cycle oscillation rather than an immediate catastrophic failure. Forced response generally refers to the steady-state oscillations that occur as a consequence of excitations external to the rotor in question. These excitations typically result from the presence of upstream obstructions, inflow distortions, downstream obstructions, or mechanical sources such as tip-casing contact or shaft and gear meshing. Significant forced response leads to blade fatigue, and at design conditions, generally contributes to a degradation of blade life. At other operating conditions, forced response may lead to catastrophic failure due to severe blade fatigue in a short duration of time.

  11. Modern wing flutter analysis by computational fluid dynamics methods

    NASA Technical Reports Server (NTRS)

    Cunningham, Herbert J.; Batina, John T.; Bennett, Robert M.

    1988-01-01

    The application and assessment of the recently developed CAP-TSD transonic small-disturbance code for flutter prediction is described. The CAP-TSD code has been developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures with favorable results. Generalized aerodynamic forces and flutter characteristics are calculated and compared with linear theory results and with experimental data for a 45 deg sweptback wing. These results are in good agreement with the experimental flutter data which is the first step toward validating CAP-TSD for general transonic aeroelastic applications. The paper presents these results and comparisons along with general remarks regarding modern wing flutter analysis by computational fluid dynamics methods.

  12. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    NASA Astrophysics Data System (ADS)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  13. Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1996-01-01

    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.

  14. Comparisons of Flutter Analyses for an Experimental Fan

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.; Stefko, George L.

    2010-01-01

    Two propulsion aeroelasticity codes were used to model the aeroelastic characteristics of an experimental forward-swept fan that encountered flutter during wind tunnel testing. Both of these three-dimensional codes model the unsteady flowfield due to blade vibrations using the Navier-Stokes equations. In the first approach, the unsteady flow equations are solved using an implicit time-marching approach. In the second approach, the unsteady flow equations are converted to a harmonic balance form and solved using a pseudo-time marching method. This paper describes the flutter calculations and compares the results to experimental measurements.

  15. Fan Flutter Analysis Capability Enhanced

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Stefko, George L.

    2001-01-01

    The trend in the design of advanced transonic fans for aircraft engines has been toward the use of complex high-aspect-ratio blade geometries with a larger number of blades and higher loading. In addition, integrally bladed disks or blisks are being considered in fan designs for their potential to reduce manufacturing costs, weight, and complexity by eliminating attachments. With such design trends, there is an increased possibility within the operating region of part-speed stall flutter (self-excited vibrations) that is exacerbated by the reduced structural damping of blisk fans. To verify the aeroelastic soundness of the design, the NASA Glenn Research Center is developing and validating an accurate aeroelastic prediction and analysis capability. Recently, this capability was enhanced significantly as described here.

  16. A computational transonic flutter boundary tracking procedure. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gallman, J. W.; Batina, J. T.; Yang, T. Y.

    1986-01-01

    An automated flutter boundary tracking procedure for the efficient calculation of transonic flutter boundaries is presented. The procedure uses aeroelastic responses to march along the boundary by taking steps in speed and Mach number, thereby reducing the number of response calculations previously required to determine a transonic flutter boundary. Flutter boundary results are presented for a typical airfoil section oscillating with pitch and plunge degrees of freedom. These transonic flutter boundaries are in good agreement with exact boundaries calculated using the conventional time-marching method. The tracking procedure is extended to include static aeroelastic twist as a simulation of the static deformation of a wing and contains all of the essential features that are required to apply it to practical three-dimensional cases. The procedure is also applied to flutter boundaries as a function of structural parameters.

  17. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  18. NASTRAN level 16 user's manual updates for aeroelastic analysis of bladed discs

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.

    1980-01-01

    The NASTRAN aeroelastic and flutter capability was extended to solve a class of problems associated with axial flow turbomachines. The capabilities of the program are briefly discussed. The aerodynamic data pertaining to the bladed disc sector, the associated aerodynamic modeling, the steady aerothermoelastic 'design/analysis' formulations, and the modal, flutter, and subcritical roots analyses are described. Sample problems and their solutions are included.

  19. Aero-servo-viscoelasticity theory: Lifting surfaces, plates, velocity transients, flutter, and instability

    NASA Astrophysics Data System (ADS)

    Merrett, Craig G.

    -partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition

  20. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    DOE PAGESBeta

    Li, Nailu; Balas, Mark J.; Nikoueeyan, Pourya; Yang, Hua; Naughton, Jonathan W.

    2016-01-01

    Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. Although the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs) in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulatedmore » and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. The improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.« less

  1. Stochastic Characterization of Flutter using Historical Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2007-01-01

    Methods for predicting the onset of flutter during an experiment are traditionally applied treating the data as deterministic values. Uncertainty and variation in the data is often glossed over by using best-fit curves to represent the information. This paper applies stochastic treatments to wind tunnel data obtained for the Piezoelectric Aeroelastic Response Tailoring Investigation model. These methods include modal amplitude tracking, modal frequency tracking and several applications of the flutter margin method. The flutter margin method was developed by Zimmerman and Weissenburger, and extended by Poirel, Dunn and Porter to incorporate uncertainty. Much of the current work follows the future work recommendations of Poirel, Dunn and Porter.

  2. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of VTOL aircraft with high forward flight speed capability is that of the X-Wing, a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept and two aft-swept wings. Because of the usual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic washin of the forward-swept blades and washout of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  3. The effects of aeroelastic deformation on the unaugmented stopped-rotor dynamics of an X-Wing aircraft

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Silva, Walter A.

    1987-01-01

    A new design concept in the development of vertical takeoff and landing aircraft with high forward flight speed capability is that of the X-Wing. The X-Wing is a stiff, bearingless helicopter rotor system which can be stopped in flight and the blades used as two forward-swept wings and two aft-swept wings. Because of the unusual configuration in the fixed-wing mode, there is a high potential for aeroelastic divergence or flutter and coupling of blade vibration modes with rigid-body modes. An aeroelastic stability analysis of an X-Wing configuration aircraft was undertaken to determine if these problems could exist. This paper reports on the results of dynamic stability analyses in the lateral and longitudinal directions including the vehicle rigid-body and flexible modes. A static aeroelastic analysis using the normal vibration mode equations of motion was performed to determine the cause of a loss of longitudinal static margin with increasing airspeed. This loss of static margin was found to be due to aeroelastic 'washin' of the forward-swept blades and 'washout' of the aft-swept blades moving the aircraft aerodynamic center forward of the center of gravity. This phenomenon is likely to be generic to X-Wing aircraft.

  4. Further investigations of the aeroelastic behavior of the AFW wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA Langley Research Center, is applied to the Active Flexible Wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses then are performed as perturbations about the static aeroelastic deformations and presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motions and sensitivity to the modeling of the wing tip ballast stores also are presented and compared with experimental flutter results.

  5. Effects of mistuning on bending-torsion flutter and response of a cascade in incompressible flow. [turbofan engines

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1981-01-01

    The effect of small differences between the individual blades (mistuning) on the aeroelastic stability and response of a cascade were studied. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades was considered. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending torsion and uncoupled torsion flutter. On forced response, however, the effect may be either beneficial or adverse, depending on the engine order of the forcing function. The results also illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.

  6. Comparison of supercritical and conventional wing flutter characteristics

    NASA Technical Reports Server (NTRS)

    Farmer, M. G.; Hanson, P. W.

    1976-01-01

    A wind-tunnel study is described in which it was attempted to compare the measured flutter boundaries of two dynamically similar aeroelastic models with identical planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, but with one wing having a supercritical airfoil and the other a conventional one. At subsonic Mach numbers, the flutter boundary for the supercritical wing was above that of the conventional wing, as predicted by flutter calculations using subsonic lifting theory. In the transonic region, however, the supercritical wing boundary decreases more rapidly and the minimum flutter point occurs at a dynamic pressure below the conventional wing boundary. Airfoil shape effects may account for some of the difference in the flutter boundaries of the two airfoils.

  7. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  8. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  9. Aeroelastic Tailoring via Tow Steered Composites

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    The use of tow steered composites, where fibers follow prescribed curvilinear paths within a laminate, can improve upon existing capabilities related to aeroelastic tailoring of wing structures, though this tailoring method has received relatively little attention in the literature. This paper demonstrates the technique for both a simple cantilevered plate in low-speed flow, as well as the wing box of a full-scale high aspect ratio transport configuration. Static aeroelastic stresses and dynamic flutter boundaries are obtained for both cases. The impact of various tailoring choices upon the aeroelastic performance is quantified: curvilinear fiber steering versus straight fiber steering, certifiable versus noncertifiable stacking sequences, a single uniform laminate per wing skin versus multiple laminates, and identical upper and lower wing skins structures versus individual tailoring.

  10. Flutter suppression using eigenspace freedoms to meet requirements

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Fennell, Robert E.; Christhilf, David M.

    1989-01-01

    A constrained optimization methodology has been developed which allows specific use of eigensystem freedoms to meet design requirements. A subset of the available eigenvector freedoms was employed. The eigenvector freedoms associated with a particular closed-loop eigenvalue are coefficients of basis vectors which span the subspace in which that closed-loop vector must lie. Design requirements are included as a vector of inequality constraints. The procedure was successfully applied to develop an unscheduled controller which stabilizes symmetric flutter of an aeroelastic vehicle to a dynamic pressure 44 percent above the open-loop flutter point. The design process proceeded from full-state feedback to the inclusion of a full-order observer to the selection of an eighth-order controller which preserved the full-state sensitivity characteristics. Only a subset of the design freedoms was utilized (i.e., assuming full-state feedback only four out of 26 eigenvectors were used, and no variations were made in the closed-loop eigenvalues). Utilization of additional eigensystem freedoms could further improve the controller.

  11. Transonic aeroelastic analysis of launch vehicle configurations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Filgueirasdeazevedo, Joao Luiz

    1988-01-01

    A numerical study of the aeroelastic stability of typical launch vehicle configurations in transonic flight is performed. Recent computational fluid dynamics techniques are used to simulate the transonic aerodynamic flow fields, as opposed to relying on experimental data for the unsteady aerodynamic pressures. The flow solver is coupled to an appropriate structural representation of the vehicle. The aerodynamic formulation is based on the thin layer approximation to the Reynolds-Averaged Navier-Stokes equations, where the account for turbulent mixing is done by the two-layer Baldwin and Lomax algebraic eddy viscosity model. The structural-dynamic equations are developed considering free-free flexural vibration of an elongated beam with variable properties and are cast in modal form. Aeroelastic analyses are performed by integrating simultaneously in the two sets of equations. By tracing the growth or decay of a perturbed oscillation, the aeroelastic stability of a given constant configuration can be ascertained. The method is described in detail, and results that indicate its application are presented. Applications include some validation cases for the algorithm developed, as well as the study of configurations known to have presented flutter programs in the past.

  12. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  13. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni

    2001-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  14. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  15. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  16. NASA Aeroelasticity Handbook Volume 2: Design Guides Part 2

    NASA Technical Reports Server (NTRS)

    Ramsey, John K. (Editor)

    2006-01-01

    The NASA Aeroelasticity Handbook comprises a database (in three formats) of NACA and NASA aeroelasticity flutter data through 1998 and a collection of aeroelasticity design guides. The Microsoft Access format provides the capability to search for specific data, retrieve it, and present it in a tabular or graphical form unique to the application. The full-text NACA and NASA documents from which the data originated are provided in portable document format (PDF), and these are hyperlinked to their respective data records. This provides full access to all available information from the data source. Two other electronic formats, one delimited by commas and the other by spaces, are provided for use with other software capable of reading text files. To the best of the author s knowledge, this database represents the most extensive collection of NACA and NASA flutter data in electronic form compiled to date by NASA. Volume 2 of the handbook contains a convenient collection of aeroelastic design guides covering fixed wings, turbomachinery, propellers and rotors, panels, and model scaling. This handbook provides an interactive database and design guides for use in the preliminary aeroelastic design of aerospace systems and can also be used in validating or calibrating flutter-prediction software.

  17. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  18. Nonlinear and chaotic vibration and stability analysis of an aero-elastic piezoelectric FG plate under parametric and primary excitations

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Jahangiri, Reza

    2015-05-01

    In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.

  19. Aeroelastic Optimization Study Based on X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Pak, Chan-Gi

    2014-01-01

    A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.

  20. Aeroelastic analysis of wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1978-01-01

    An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.

  1. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  2. Application of a flight test and data analysis technique to flutter of a drone aircraft

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.

    1981-01-01

    Modal identification results presented were obtained from recent flight flutter tests of a drone vehicle with a research wing (DAST ARW-1 for Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing-1). This vehicle is equipped with an active flutter suppression system (FSS). Frequency and damping of several modes are determined by a time domain modal analysis of the impulse response function obtained by Fourier transformations of data from fast swept sine wave excitation by the FSS control surface on the wing. Flutter points are determined for two different altitudes with the FSS off. Data are given for near the flutter boundary with the FSS on.

  3. Flutter suppression digital control law design and testing for the AFW wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1992-01-01

    Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  4. Flutter suppression digital control law design and testing for the AFW wind tunnel model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1994-01-01

    The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.

  5. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  6. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  7. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  8. Investigation of aeroelastic stability phenomena of a helicopter by in-flight shake test

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Edwards, T.; Brandt, D. E.

    1976-01-01

    The analytical capability of the helicopter stability program is discussed. The parameters which are found to be critical to the air resonance characteristics of the soft in-plane hingeless rotor systems are detailed. A summary of two model test programs, a 1/13.8 Froude-scaled BO-105 model and a 1.67 meter (5.5 foot) diameter Froude-scaled YUH-61A model, are presented with emphasis on the selection of the final parameters which were incorporated in the full scale YUH-61A helicopter. Model test data for this configuration are shown. The actual test results of the YUH-61A air resonance in-flight shake test stability are presented. Included are a concise description of the test setup, which employs the Grumman Automated Telemetry System (ATS), the test technique for recording in-flight stability, and the test procedure used to demonstrate favorable stability characteristics with no in-plane damping augmentation (lag damper removed). The data illustrating the stability trend of air resonance with forward speed and the stability trend of ground resonance for percent airborne are presented.

  9. Wing flutter boundary prediction using unsteady Euler aerodynamic method

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

  10. Wing flutter boundary prediction using an unsteady Euler aerodynamic method

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

  11. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  12. Aeroelastic Calculations of Quiet High- Speed Fan Performed

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.

    2002-01-01

    An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during

  13. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  14. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.

  15. Computational aeroelastic analysis of aircraft wings including geometry nonlinearity

    NASA Astrophysics Data System (ADS)

    Tian, Binyu

    The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen

  16. Aeroelastic Stability of a Soft-Inplane Gimballed Tiltrotor Model in Hover

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2001-01-01

    Soft-inplane rotor systems can significantly reduce the inplane rotor loads generated during the maneuvers of large tiltrotors, thereby reducing the strength requirements and the associated structural weight of the hub. Soft-inplane rotor systems, however, are subject to instabilities associated with ground resonance, and for tiltrotors this instability has increased complexity as compared to a conventional helicopter. Researchers at Langley Research Center and Bell Helicopter-Textron, Inc. have completed an initial study of a soft-inplane gimballed tiltrotor model subject to ground resonance conditions in hover. Parametric variations of the rotor collective pitch and blade root damping., and their associated effects on the model stability were examined. Also considered in the study was the effectiveness of an active swashplate and a generalized predictive control (GPC) algorithm for stability augmentation of the ground resonance conditions. Results of this study show that the ground resonance behavior of a gimballed soft-inplane tiltrotor can be significantly different from that of a classical soft-inplane helicopter rotor. The GPC-based active swashplate was successfully implemented, and served to significantly augment damping of the critical modes to an acceptable value.

  17. Aeroelastic Stability of A Soft-Inplane Gimballed Tiltrotor Model In Hover

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2001-01-01

    Soft-inplane rotor systems can significantly reduce the inplane rotor loads generated during the maneuvers of large tiltrotors, thereby reducing the strength requirements and the associated structural weight of the hub. Soft-inplane rotor systems. however, are subject to instabilities associated with ground resonance, and for tiltrotors this instability has increased complexity as compared to a conventional helicopter. Researchers at Langley Research Center and Bell Helicopter-Textron, Inc. have completed ail initial study of a soft-inplane gimballed tiltrotor model subject to ground resonance conditions in hover. Parametric variations of the rotor collective pitch and blade root damping, and their associated effects oil the model stability were examined. Also considered in the study was the effectiveness of ail active swash-plate and a generalized predictive control (GPC) algorithm for stability augmentation of the ground resonance conditions. Results of this study show that the ground resonance behavior of a gimballed soft-inplane tiltrotor can be significantly different from that of a classical soft-inplane helicopter rotor. The GPC-based active swash-plate was successfully implemented, and served to significantly augment damping of the critical modes to an acceptable value.

  18. Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  19. Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni

    2001-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  20. Aeroelastic stability of coupled flap-lag motion of hingeless helicopter blades at arbitrary advance ratios

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    Equations for large amplitude coupled flap-lag motion of a hingeless elastic helicopter blade in forward flight are derived. Only a torsionally rigid blade excited by quasi-steady aerodynamic loads is considered. The effects of reversed flow together with some new terms due to radial flow are included. Using Galerkin's method the spatial dependence is eliminated and the equations are linearized about a suitable equilibrium position. The resulting system of homogeneous periodic equations is solved using multivariable Floquet-Liapunov theory, and the transition matrix at the end of the period is evaluated by two separate methods. Computational efficiency of the two numerical methods is compared. Results illustrating the effects of forward flight and various important blade parameters on the stability boundaries are presented.

  1. Stall flutter analysis of propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1988-01-01

    Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.

  2. Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.

  3. Investigation of the Flutter Suppression by Fuzzy Logic Control for Hypersonic Wing

    NASA Astrophysics Data System (ADS)

    Li, Dongxu; Luo, Qing; Xu, Rui

    This paper presents a fundamental study of flutter characteristics and control performance of an aeroelastic system based on a two-dimensional double wedge wing in the hypersonic regime. Dynamic equations were established based on the modified third order nonlinear piston theory and some nonlinear structural effects are also included. A set of important parameters are observed. And then aeroelastic control law is designed to suppress the amplitude of the LCOs for the system in the sub/supercritical speed range by applying fuzzy logic control on the input of the deflection of the flap. The overall effects of the parameters on the aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and closed-loop system are obtained through numerical methods. The simulations show fuzzy logic control methods are effective in suppressing flutter and provide a smart approach for this complicated system.

  4. Wing flutter calculations with the CAP-TSD unsteady transonic small disturbance program

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Batina, John T.; Cunningham, Herbert J.

    1988-01-01

    The application and assessment is described of CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code for flutter prediction. The CAP-TSD program was developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures. Flutter calculations are presented for two thin, swept-and-tapered wing planforms with well defined modal properties. The calculations are for Mach numbers from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental flutter data. The CAP-TSD flutter results are generally in good agreement with the experimental values and are in good agreement with subsonic linear theory when wing thickness is neglected.

  5. Analytical and experimental investigation of flutter suppression by piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1993-01-01

    The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  6. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

  7. Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2011-01-01

    A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

  8. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q-stability derivatives

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.

    1973-01-01

    Summarized are the aerodynamic center, alpha and q- aeroelastic effects on fighter-type aircraft in the 18,700 N gross range. The results indicate that with proper tailoring of planform (fixed or variable sweep), stiffner and elastic axis location it is possible to minimize trim requirements between selected extreme conditions. The inertial effects were found to be small for this class of aircraft.

  9. Comparison of supercritical and conventional wing flutter characteristics

    NASA Technical Reports Server (NTRS)

    Farmer, M. G.; Hanson, P. W.; Wynne, E. C.

    1976-01-01

    A wind-tunnel study was undertaken to directly compare the measured flutter boundaries of two dynamically similar aeroelastic models which had the same planform, maximum thickness-to-chord ratio, and as nearly identical stiffness and mass distributions as possible, with one wing having a supercritical airfoil and the other a conventional airfoil. The considerations and problems associated with flutter testing supercritical wing models at or near design lift coefficients are discussed, and the measured transonic boundaries of the two wings are compared with boundaries calculated with a subsonic lifting surface theory.

  10. Delta wing flutter based on doublet lattice method in NASTRAN

    NASA Technical Reports Server (NTRS)

    Jew, H.

    1975-01-01

    The subsonic doublet-lattice method (DLM) aeroelastic analysis in NASTRAN was successfully applied to produce subsonic flutter boundary data in parameter space for a large delta wing configuration. Computed flow velocity and flutter frequency values as functions of air density ratio, flow Mach number, and reduced frequency are tabulated. The relevance and the meaning of the calculated results are discussed. Several input-deck problems encountered and overcome are cited with the hope that they may be helpful to NASTRAN Rigid Format 45 users.

  11. Flight testing air-to-air missiles for flutter

    NASA Technical Reports Server (NTRS)

    Kutschinski, C. R.

    1975-01-01

    The philosophy of the design of air-to-air missiles and hence of flight testing them for flutter differs from that of manned aircraft. Primary emphasis is put on analytical and laboratory evaluation of missile susceptibility to aeroelastic and aero-servo-elastic instabilities and uses flight testing for confirmation of the absence of such instabilities. Flight testing for flutter is accomplished by using specially instrumented programmed missiles, air or ground launched with a booster to reach the extreme flight conditions of tactical use, or by using guided missiles with telemetered performance data. The instrumentation and testing techniques are discussed along with the success of recent flight tests.

  12. Experimental and theoretical studies in nonlinear aeroelasticity

    NASA Astrophysics Data System (ADS)

    Attar, Peter Joseph

    delta wing configuration at various flow velocities. Flutter and limit cycle oscillation results are presented for both aeroelastic configurations. The theoretical flutter results correlate well with experiment for both the delta wing and flapping flag models. For the delta wing, the correlation between theoretical and experimental LCO magnitude results is fairly good for moderately large angles of attack (<4), with the theoretical model which uses a nonlinear structural theory consistently underpredicting the LCO magnitude. For this aeroelastic configuration the dominant nonlinearity appears to be structural. The flapping flag theoretical model also underpredicts the LCO magnitude. It also fails to model the LCO hysteresis which is measured experimentally (with an increase and then a decrease in flow velocity). For this configuration it is not clear as to whether a structural or aerodynamic nonlinearity is dominant. Also wind tunnel blockage effects, which are not modeled, may be important.

  13. Design of the flutter suppression system for DAST ARW-IR

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.; Abel, I.

    1983-01-01

    The design of the flutter suppression system for a remotely-piloted research vehicle is described. The modeling of the aeroelastic system, the methodology used to synthesized the control law, the analytical results used to evaluate the control law performance, and ground testing of the flutter suppression system onboard the aircraft are discussed. The major emphasis is on the use of optimal control techniques employed during the synthesis of the control law.

  14. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  15. Data Comparisons and Summary of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Wieseman, Carol D.; Chwalowski, Pawel

    2016-01-01

    This paper presents the computational results generated by participating teams of the second Aeroelastic Prediction Workshop and compare them with experimental data. Aeroelastic and rigid configurations of the Benchmark Supercritical Wing (BSCW) wind tunnel model served as the focus for the workshop. The comparison data sets include unforced ("steady") system responses, forced pitch oscillations and coupled fluid-structure responses. Integrated coefficients, frequency response functions, and flutter onset conditions are compared. The flow conditions studied were in the transonic range, including both attached and separated flow conditions. Some of the technical discussions that took place at the workshop are summarized.

  16. Probabilistic Aeroelastic Analysis of Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.

    2004-01-01

    A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.

  17. Comparison of analytical and wind-tunnel results for flutter and gust response of a transport wing with active controls

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Newsom, J. R.

    1982-01-01

    Two flutter suppression control laws wre designed and tested on a low speed aeroelastic model of a DC-10 derivative wing. Both control laws demontrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. In addition, one of the control laws was effective in reducing loads due to turbulence generated in the wind tunnel. The effect of variations in gain and phase on the closed-loop performance was measured and is compared with predictions. In general, both flutter and gust response predictions agree reasonably well with experimental data.

  18. Power extraction from aeroelastic limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Dunnmon, J. A.; Stanton, S. C.; Mann, B. P.; Dowell, E. H.

    2011-11-01

    Nonlinear limit cycle oscillations of an aeroelastic energy harvester are exploited for enhanced piezoelectric power generation from aerodynamic flows. Specifically, a flexible beam with piezoelectric laminates is excited by a uniform axial flow field in a manner analogous to a flapping flag such that the system delivers power to an electrical impedance load. Fluid-structure interaction is modeled by augmenting a system of nonlinear equations for an electroelastic beam with a discretized vortex-lattice potential flow model. Experimental results from a prototype aeroelastic energy harvester are also presented. Root mean square electrical power on the order of 2.5 mW was delivered below the flutter boundary of the test apparatus at a comparatively low wind speed of 27 m/s and a chord normalized limit cycle amplitude of 0.33. Moreover, subcritical limit cycles with chord normalized amplitudes of up to 0.46 were observed. Calculations indicate that the system tested here was able to access over 17% of the flow energy to which it was exposed. Methods for designing aeroelastic energy harvesters by exploiting nonlinear aeroelastic phenomena and potential improvements to existing relevant aerodynamic models are also discussed.

  19. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  20. Sensitivity Analysis of Wing Aeroelastic Responses

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian

    1995-01-01

    Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight

  1. Flutter, Postflutter, and Control of a Supersonic Wing Section

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2002-01-01

    A number of issues related to the flutter and postflutter of two-dimensional supersonic lifting surfaces are addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications of the incorporation of a control capability on both the flutter boundary and the postflutter behavior. To this end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a treatment of the problem enables one to get a better understanding of the various factors involved in the nonlinear aeroelastic problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general investigation of nonlinear aeroelastic phenomena of three-dimensional lifting surfaces.

  2. Physical Insights, Steady Aerodynamic Effects, and a Design Tool for Low-Pressure Turbine Flutter

    NASA Astrophysics Data System (ADS)

    Waite, Joshua Joseph

    The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, "is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence

  3. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  4. The design, analysis, and testing of a low-budget wind-tunnel flutter model with active aerodynamic controls

    NASA Technical Reports Server (NTRS)

    Bolding, R. M.; Stearman, R. O.

    1976-01-01

    A low budget flutter model incorporating active aerodynamic controls for flutter suppression studies was designed as both an educational and research tool to study the interfering lifting surface flutter phenomenon in the form of a swept wing-tail configuration. A flutter suppression mechanism was demonstrated on a simple semirigid three-degree-of-freedom flutter model of this configuration employing an active stabilator control, and was then verified analytically using a doublet lattice lifting surface code and the model's measured mass, mode shapes, and frequencies in a flutter analysis. Preliminary studies were significantly encouraging to extend the analysis to the larger degree of freedom AFFDL wing-tail flutter model where additional analytical flutter suppression studies indicated significant gains in flutter margins could be achieved. The analytical and experimental design of a flutter suppression system for the AFFDL model is presented along with the results of a preliminary passive flutter test.

  5. An Overview of Recent Developments in Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Edwards, John W.

    2004-01-01

    The motivation for Computational Aeroelasticity (CA) and the elements of one type of the analysis or simulation process are briefly reviewed. The need for streamlining and improving the overall process to reduce elapsed time and improve overall accuracy is discussed. Further effort is needed to establish the credibility of the methodology, obtain experience, and to incorporate the experience base to simplify the method for future use. Experience with the application of a variety of Computational Aeroelasticity programs is summarized for the transonic flutter of two wings, the AGARD 445.6 wing and a typical business jet wing. There is a compelling need for a broad range of additional flutter test cases for further comparisons. Some existing data sets that may offer CA challenges are presented.

  6. Application of an improved cell mapping method to bilinear stiffness aeroelastic systems

    NASA Astrophysics Data System (ADS)

    Ding, Q.; Cooper, J. E.; Leung, A. Y. T.

    2005-01-01

    A “mapping trajectory pursuit (MTP)” is introduced to improve the cell mapping techniques based on spatial Poincaré sections. Such an improvement enables the cell mapping method to determine the exact properties of all cells with less computer memory and computational time. For the purpose of prediction of the stability boundary as a function of initial conditions (domains of attraction), an initial condition region is defined besides the domain of interest. The proposed CM method is used to analyse the aeroelastic behaviour of an aeroelastic system with bilinear structural nonlinearity. Different types of motions including damped stable motion, limit cycle oscillation, complicated periodic motion, chaotic motion and divergent flutter are determined as a function of initial conditions (domains of attraction). The results compare well with that from stability analysis of the system. The bifurcation diagrams are also obtained using the method to reveal the influence of disturbances on the dynamical behaviour of the system over a broad range of air speed.

  7. Status of wing flutter

    NASA Technical Reports Server (NTRS)

    Kussner, H G

    1936-01-01

    This report presents a survey of previous theoretical and experimental investigations on wing flutter covering thirteen cases of flutter observed on airplanes. The direct cause of flutter is, in the majority of cases, attributable to (mass-) unbalanced ailerons. Under the conservative assumption that the flutter with the phase angle most favorable for excitation occurs only in two degrees of freedom, the lowest critical speed can be estimated from the data obtained on the oscillation bench. Corrective measures for increasing the critical speed and for definite avoidance of wing flutter, are discussed.

  8. Stability of Beams, Plates and Membranes due to Subsonic Aerodynamic Flows and Solar Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Gibbs, Samuel Chad, IV

    This dissertation explores the stability of beams, plates and membranes due to subsonic aerodynamic flows or solar radiation forces. Beams, plates and membranes are simple structures that may act as building blocks for more complex systems. In this dissertation we explore the stability of these simple structures so that one can predict instabilities in more complex structures. The theoretical models include both linear and nonlinear energy based models for the structural dynamics of the featureless rectangular structures. The structural models are coupled to a vortex lattice model for subsonic fluid flows or an optical reflection model for solar radiation forces. Combinations of these theoretical models are used to analyze the dynamics and stability of aeroelastic and solarelastic systems. The dissertation contains aeroelastic analysis of a cantilevered beam and a plate / membrane system with multiple boundary conditions. The dissertation includes analysis of the transition from flag-like to wing-like flutter for a cantilevered beam and experiments to quantify the post flutter fluid and structure response of the flapping flag. For the plate / membrane analysis, we show that the boundary conditions in the flow direction determine the type of instability for the system while the complete set of boundary conditions is required to accurately predict the flutter velocity and frequency. The dissertation also contains analysis of solarelastic stability of membranes for solar sail applications. For a fully restrained membrane we show that a flutter instability is possible, however the post flutter response amplitude is small. The dissertation also includes analysis of a membrane hanging in gravity. This systems is an analog to a spinning solar sail and is used to validate the structural dynamics of thin membranes on earth. A linear beam structural model is able to accurately capture the natural frequencies and mode shapes. Finally, the dissertation explores the stability

  9. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  10. Design of a candidate flutter suppression control law for DAST ARW-2

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1984-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQC (Linear Quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  11. Further investigations of the aeroelastic behavior of the AFW wind-tunnel model using transonic small disturbance theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1992-01-01

    The Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) code, developed at LaRC, is applied to the active flexible wing wind-tunnel model for prediction of transonic aeroelastic behavior. A semi-span computational model is used for evaluation of symmetric motions, and a full-span model is used for evaluation of antisymmetric motions, and a full-span model is used for evaluation of antisymmetric motions. Static aeroelastic solutions using CAP-TSD are computed. Dynamic deformations are presented as flutter boundaries in terms of Mach number and dynamic pressure. Flutter boundaries that take into account modal refinements, vorticity and entropy corrections, antisymmetric motion, and sensitivity to the modeling of the wing tip ballast stores are also presented with experimental flutter results.

  12. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.

  13. Developing, mechanizing and testing of a digital active flutter suppression system for a modified B-52 wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Matthew, J. R.

    1980-01-01

    A digital flutter suppression system was developed and mechanized for a significantly modified version of the 1/30-scale B-52E aeroelastic wind tunnel model. A model configuration was identified that produced symmetric and antisymmetric flutter modes that occur at 2873N/sq m (60 psf) dynamic pressure with violent onset. The flutter suppression system, using one trailing edge control surface and the accelerometers on each wing, extended the flutter dynamic pressure of the model beyond the design limit of 4788N/sq m (100 psf). The hardware and software required to implement the flutter suppression system were designed and mechanized using digital computers in a fail-operate configuration. The model equipped with the system was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center and results showed the flutter dynamic pressure of the model was extended beyond 4884N/sq m (102 psf).

  14. Aeroelasticity of Nonlinear Tail / Rudder Systems with Freeplay

    NASA Astrophysics Data System (ADS)

    Rishel, Evan

    This thesis details the development of a linear/nonlinear three degree of freedom aeroelastic system designed and manufactured at the University of Washington (UW). Describing function analysis was carried out in the frequency domain. Time domain simulations were carried out to account for all types of motion. Nonlinear aeroelastic behavior may lead to limit cycles which can be captured in the frequency domain using describing function approximation and numerically using Runga-Kutta integration. Linear and nonlinear aeroelastic tests were conducted in the UW 3x3 low-speed wind tunnel to determine the linear flutter speed and frequency of the system as well as its nonlinear behavior when freeplay is introduced. The test data is presented along with the results of the MATLAB-based simulations. The correlation between test and numerical results is very high.

  15. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  16. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    This paper describes the process of analysis, design, digital implementation and subsonic testing of an active controls flutter suppression system for a full span, free-to-roll wind-tunnel model of an advanced fighter concept. The design technique employed a frequency domain representation of the plant and used optimization techniques to generate a robust multi-input/multi-output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully demonstrated. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter suppression controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  17. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    The process is described of analysis, design, digital implementation, and subsonic testing of an active control flutter suppression system for a full span, free-to-roll wind tunnel model of an advanced fighter concept. The design technique uses a frequency domain representation of the plant and used optimization techniques to generate a robust multi input/multi output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully shown. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter damping controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  18. Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems

    NASA Technical Reports Server (NTRS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-01-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  19. Controlled aeroelastic response and airfoil shaping using adaptive materials and integrated systems

    NASA Astrophysics Data System (ADS)

    Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer

    1996-05-01

    This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the adaptive neural control of aeroelastic response (ANCAR) program; the actively controlled response of buffet affected tails (ACROBAT) program; and the Airfoil THUNDER Testing to ascertain charcteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant reductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. The ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using thin-layer composite-unimorph piezoelectric driver and sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.

  20. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    NASA Technical Reports Server (NTRS)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  1. Vibration and aeroelastic analysis of highly flexible HALE aircraft

    NASA Astrophysics Data System (ADS)

    Chang, Chong-Seok

    indeterminate. Displacement and rotation variables need to be introduced, but only at points to which bungee cords are attached. Third, because many HALE aircraft are propeller driven, the structural modeling was extended to include an engine/nacelle/propeller system using a two-degree-of-freedom model with pitch and yaw angles. This step was undertaken to predict a dynamic instability called "whirl flutter," which can be exhibited in such HALE aircraft. It can investigate how the nacelle whirling and wing motions affect each other. For simplicity, two fundamental assumptions are made regarding the propeller aerodynamics and inertia matrix of two-bladed propeller system. The propeller airloads are evaluated by the constant approximation which uses the averaged values for one revolution per blade. Periodic side forces and hub moments are evaluated based on how they affect the trim condition determined by the constant approximation. The next assumption is for certain HALE aircraft which can use a two-bladed propeller system. The inertia matrix appears as periodic in time in the governing equations. If the periodic inertia effect is negligible, then the inertia matrix can be replaced by that of equivalent three-bladed propeller system so that the stability analysis can obviate the need for Floquet theory. These new development have been fully integrated into the current version of NATASHA. Finally, a parametric study for representative HALE aircraft is presented to show how the current methodology can be utilized as a unified preliminary analysis tool for the vibration and aeroelastic analysis of highly flexible HALE aircraft.

  2. Atrial fibrillation or flutter

    MedlinePlus

    ... causes of atrial fibrillation include: Alcohol use (especially binge drinking) Coronary artery disease Heart attack or heart ... conditions that cause atrial fibrillation and flutter. Avoid binge drinking.

  3. In-flight gust monitoring and aeroelasticity studies

    NASA Astrophysics Data System (ADS)

    Alvarez-Salazar, Oscar Salvador

    accuracy of various aeroelastic modeling techniques for estimating the stability boundary of a flexible wing in flight (i.e., flutter).

  4. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  5. Three-dimensional time-marching aeroelastic analyses using an unstructured-grid Euler method

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Modifications to a three dimensional, implicit, upwind, unstructured-grid Euler code for aeroelastic analysis of complete aircraft configurations are described. The modifications involve the addition of the structural equations of motion for their simultaneous time integration with the governing flow equations. The paper presents a detailed description of the time marching aeroelastic procedure and presents comparisons with experimental data to provide an assessment of the capability. Flutter results are shown for an isolated 45 degree swept-back wing and a supersonic transport configuration with a fuselage, clipped delta wing, and two identical rearward-mounted nacelles. Comparisons between computed and experimental flutter characteristics show good agreement, giving confidence in the accuracy of the aeroelastic capability that was developed.

  6. Aeroelastic analysis and ground vibration survey of the NASA, Grumman American Yankee modified for spin testing

    NASA Technical Reports Server (NTRS)

    Kroeger, R. A.

    1977-01-01

    A complete ground vibration and aeroelastic analysis was made of a modified version of the Grumman American Yankee. The aircraft had been modified for four empennage configurations, a wing boom was added, a spin chute installed and provisions included for large masses in the wing tip to vary the lateral and directional inertia. Other minor changes were made which have much less influence on the flutter and vibrations. Neither static divergence nor aileron reversal was considered since the wing structure was not sufficiently changed to affect its static aeroelastic qualities. The aircraft was found to be free from flutter in all of the normal modes explored in the ground shake test. The analysis demonstrated freedom from flutter up to 214 miles per hour.

  7. A direct method for synthesizing low-order optimal feedback control laws with application to flutter suppression

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.; Abel, I.

    1980-01-01

    A direct method of synthesizing a low-order optimal feedback control law for a high order system is presented. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean square steady state responses and control inputs. The controller is shown to be equivalent to a partial state estimator. The method is applied to the problem of active flutter suppression. Numerical results are presented for a 20th order system representing an aeroelastic wind-tunnel wing model. Low-order controllers (fourth and sixth order) are compared with a full order (20th order) optimal controller and found to provide near optimal performance with adequate stability margins.

  8. An influence coefficient method for the application of the modal technique to wing flutter suppression of the DAST ARW-1 wing

    NASA Technical Reports Server (NTRS)

    Pines, S.

    1981-01-01

    The methods used to compute the mass, structural stiffness, and aerodynamic forces in the form of influence coefficient matrices as applied to a flutter analysis of the Drones for Aerodynamic and Structural Testing (DAST) Aeroelastic Research Wing. The DAST wing was chosen because wind tunnel flutter test data and zero speed vibration data of the modes and frequencies exist and are available for comparison. A derivation of the equations of motion that can be used to apply the modal method for flutter suppression is included. A comparison of the open loop flutter predictions with both wind tunnel data and other analytical methods is presented.

  9. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  10. Numerical study on the correlation of transonic single-degree-of-freedom flutter and buffet

    NASA Astrophysics Data System (ADS)

    Gao, ChuanQiang; Zhang, WeiWei; Liu, YiLang; Ye, ZhengYin; Jiang, YueWen

    2015-08-01

    Transonic single-degree-of-freedom (SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack (AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet (unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.

  11. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  12. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  13. NASTRAN flutter analysis of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1982-01-01

    An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs in NASTRAN was modified and applied to investigate the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) variable sweep. The two dimensional subsonic cascade unsteady aerodynamic theory was applied in a strip theory manner with appropriate modifications for the sweep effects. Each strip is associated with a chord selected normal to any spanwise reference curve such as the blade leading edge. The stability of three operating conditions of a 10-bladed propeller is analyzed. Each of these operating conditions is iterated once to determine the flutter boundary. A 5-bladed propeller is also analyzed at one operating condition to investigate stability. Analytical results obtained are in very good agreement with those from wind tunnel tests.

  14. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently

  15. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  16. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  17. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  18. Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    NASA Technical Reports Server (NTRS)

    Eick, Chris D.; Liu, Jong-Shang

    1998-01-01

    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.

  19. Application of Approximate Unsteady Aerodynamics for Flutter Analysis

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2010-01-01

    A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

  20. F/A-18 E/F flutter clearance model in the Langley TDT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An 18 percent aeroelastically-scaled, full span F/A-18 E/F model was tested during multiple wind-tunnel entries in the Langley Transonic Dynamics Tunnel. The primary purpose of these entries was to assist in clearing the flight vehicle design of flutter within its operating envelope. The wind-tunnel model was tested on a string and on a cable-mount system (as shown). All lifting surfaces were flutter cleared up to M=1.2 with the model string mounted. The model was then flutter cleared on the cable-mount system to assess the influence of rigid-body dynamics and fuselage flexibility on flutter. Several configuration parametric studies were also completed, including many external store configurations.

  1. F/A-18 E/F flutter clearance model in the Langley TDT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An 18 percent aeroelastically-scaled, full span F/A-18 E/F model was tested during multiple wind-tunnel entries in the Langley Transonic Dynamics Tunnel. The primary purpose of these entries was to assist in clearing the flight vehicle design of flutter within its operating envelope. The wind-tunnel model was tested on a string and on a cable- mount system The model is shown on the cable-mount system with Langley engineer, Stanley Cole, checking tension in one of the support cables. All lifting surfaces were flutter cleared up to M=1.2 with the model string mounted. The model was then flutter cleared on the cable- mount system to assess the influence of rigid-body dynamics and fuselage flexibility on flutter. Several configuration parametric studies were also completed, including many external store configurations.

  2. The use of the Regier number in the structural design with flutter constraints

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.; Doggett, Robert V., Jr.

    1994-01-01

    This preliminary investigation introduces the use of the Regier number as a flutter constraint criterion for aeroelastic structural optimization. Artificial neural network approximations are used to approximate the flutter criterion requirements as a function of the design Mach number and the parametric variables defining the aspect ratio, center of gravity, taper ratio, mass ratio, and pitch inertia of the wing. The presented approximations are simple enough to be used in the preliminary design stage without a well defined structural model. An example problem for a low-speed, high-aspect-ratio, light-aircraft wing is presented. The example problem is analyzed for the flutter Mach number using doublet lattice aerodynamics and the PK solution method. The use of the Regier number constraint criterion to optimize the example problem for minimum structural mass while maintaining a constant flutter Mach number is demonstrated.

  3. Numerical Simulation of Shock-stall Flutter of an Airfoil using the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Isogai, K.

    1993-08-01

    In order to confirm qualitatively that the experimentally observed, unusual flutter phenomenon for a high-aspect-ratio (non-tailored) forward swept wing model is indeed shock-stall flutter, the aeroelastic response calculation of a two-dimensional airfoil whose vibration characteristics are similar to those of the typical section of a forward swept wing, has been performed by solving the compressible Navier-Stokes equations. By examination of the flow pattern, pressure distribution and the behavior of the unsteady aerodynamic forces during the diverging oscillation of the airfoil, it is concluded that (i) this is a shock-stall flutter, in which the large-scale shock-induced flow separation plays a dominant role and (ii) there is a mechanism of energy input into the elastic system of the airfoil, leading to nearly a single-degree-of-freedom flutter.

  4. Flutter analysis of supersonic axial flow cascades using a high resolution Euler solver. Part 1: Formulation and validation

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Huff, Dennis L.; Swafford, Timothy W.

    1992-01-01

    This report presents, in two parts, a dynamic aeroelastic stability (flutter) analysis of a cascade of blades in supersonic axial flow. Each blade of the cascade is modeled as a typical section having pitching and plunging degrees of freedom. Aerodynamic forces are obtained from a time accurate, unsteady, two-dimensional cascade solver based on the Euler equations. The solver uses a time marching flux-difference splitting (FDS) scheme. Flutter stability is analyzed in the frequency domain. The unsteady force coefficients required in the analysis are obtained by harmonically oscillating (HO) the blades for a given flow condition, oscillation frequency, and interblade phase angle. The calculated time history of the forces is then Fourier decomposed to give the required unsteady force coefficients. An influence coefficient (IC) method and a pulse response (PR) method are also implemented to reduce the computational time for the calculation of the unsteady force coefficients for any phase angle and oscillation frequency. Part 1, this report, presents these analysis methods and their validation by comparison with results obtained from linear theory for a selected flat plate cascade geometry. A typical calculation for a rotor airfoil is also included to show the applicability of the present solver for airfoil configurations. The predicted unsteady aerodynamic forces for a selected flat plate cascade geometry and flow conditions correlated well with those obtained from linear theory for different interblade phase angles and oscillation frequencies. All the three methods of predicting unsteady force coefficients, namely, HO, IC, and PR, showed good correlations with each other. It was established that only a single calculation with four blade passages is required to calculate the aerodynamic forces for any phase angle for a cascade consisting of any number of blades, for any value of the oscillation frequency. Flutter results, including mistuning effects, for a cascade of

  5. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  6. An analytical technique for predicting the characteristics of a flexible wing equipped with an active flutter-suppression system and comparison with wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Abel, I.

    1979-01-01

    An analytical technique for predicting the performance of an active flutter-suppression system is presented. This technique is based on the use of an interpolating function to approximate the unsteady aerodynamics. The resulting equations are formulated in terms of linear, ordinary differential equations with constant coefficients. This technique is then applied to an aeroelastic model wing equipped with an active flutter-suppression system. Comparisons between wind-tunnel data and analysis are presented for the wing both with and without active flutter suppression. Results indicate that the wing flutter characteristics without flutter suppression can be predicted very well but that a more adequate model of wind-tunnel turbulence is required when the active flutter-suppression system is used.

  7. Panel Flutter and Sonic Fatigue Analysis for RLV

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Cheng, Guangfeng

    2001-01-01

    A methodology is presented for the flutter analysis of the seal of thermal protection system (TPS) panel of X-33 Advanced Technology Demonstrator test vehicle. The seal is simulated as a two-dimensional cantilevered panel with an elastic stopper, which is modeled as an equivalent spring. This cantilever beam-spring model under the aerodynamic pressure at supersonic speeds turns out to be an impact nonlinear dynamic system. The flutter analysis of the seal is thus carried out using, time domain numerical simulation with a displacement stability criterion. The flutter boundary of the seal is further verified with a family of three traditional and one nontraditional panel flutter models. The frequency domain method that applies eigenanalysis on the traditional panel flutter problem was used. The results showed that the critical dynamic pressure could be more than doubled with properly chosen material for the base stopper. The proposed methodology can be easily extended to three-dimensional panel seals with flow angularity.

  8. Higher-Order Spectral Analysis of F-18 Flight Flutter Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Dunn, Shane

    2005-01-01

    Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.

  9. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  10. Robust Flutter Margin Analysis that Incorporates Flight Data

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Martin J.

    1998-01-01

    An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.

  11. Comparison of Curvilinear Stiffeners and Tow Steered Composites for Aeroelastic Tailoring of Transports

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2016-01-01

    A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.

  12. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  13. The benchmark aeroelastic models program: Description and highlights of initial results

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Eckstrom, Clinton V.; Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Durham, Michael H.

    1991-01-01

    An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of rigid wing with a NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations.

  14. Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.

    1983-01-01

    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.

  15. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  16. Some experiences using wind-tunnel models in active control studies. [minimization of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Abel, I.; Ruhlin, C. L.

    1976-01-01

    A status report and review of wind tunnel model experimental techniques that have been developed to study and validate the use of active control technology for the minimization of aeroelastic response are presented. Modeling techniques, test procedures, and data analysis methods used in three model studies are described. The studies include flutter mode suppression on a delta-wing model, flutter mode suppression and ride quality control on a 1/30-size model of the B-52 CCV airplane, and an active lift distribution control system on a 1/22 size C-5A model.

  17. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  18. Performance of an angular flange aeroelastic wind energy converter

    SciTech Connect

    Ahmadi, G.

    1983-05-01

    ALL conventional wind turbines operate on the principles of turbomachinaries, with wind being made to flow over a set of rotating vanes. Recently, a new concept for wind energy conversion based on aeroelastic instability was introduced. It is well known that couplings between the vibration of an elastic structure and fluid stream may lead to aeroelastic instability. Energy then is transferred from the airstream into the elastic structure, which results in a destructive monotonic increase of the vibration amplitude of the structure. The failure of the Tacoma Narrows Bridge is one of the well-known examples of such a disaster. The use of an aeroelastic instability (or flutter) mechanism for constructing a wind energy converter was suggested. The theory for a torsional wind energy converter and the results of some model tests were also presented. Recently, some studies on similar types of wind energy converters using oscillating airfoils were reported. In the present study an angular flange H-section model of a torsional aeroelastic wind energy converter is constructed, and its performances under various conditions are investigated. The effects of the variations of the flange angle and the flange width on the performance of the model are studied. The weight of the pendulum is also varied, and its effects on the power coefficient of the model are investigated. It is observed that the efficiency of energy conversion decreases with an increase in wind speed. A method for possible improvement of the theoretical prediction is suggested and discussed.

  19. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  20. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  1. Flutter Research on Skin Panels

    NASA Technical Reports Server (NTRS)

    Kordes, Eldon E.; Tuovila, Weimer J.; Guy, Lawrence D.

    1960-01-01

    Representative experimental results are presented to show the current status of the panel flutter problem. Results are presented for unstiffened rectangular panels and for rectangular panels stiffened by corrugated backing. Flutter boundaries are established for all types of panels when considered on the basis of equivalent isotropic plates. The effects of Mach number, differential pressure, and aerodynamic heating on panel flutter are discussed. A flutter analysis of orthotropic panels is presented in the appendix.

  2. Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight

  3. Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Chwalowski, Pawel; Massey, Steven J.; Vatsa, Veer N.; Heeg, Jennifer; Wieseman, Carol D.; Mineck, Raymond E.

    2010-01-01

    This paper presents the static and dynamic computational aeroelastic (CAE) analyses of the Ares crew launch vehicle (CLV) during atmospheric ascent. The influence of launch vehicle flexibility on the static aerodynamic loading and integrated aerodynamic force and moment coefficients is discussed. The ultimate purpose of this analysis is to assess the aeroelastic stability of the launch vehicle along the ascent trajectory. A comparison of analysis results for several versions of the Ares CLV will be made. Flexible static and dynamic analyses based on rigid computational fluid dynamic (CFD) data are compared with a fully coupled aeroelastic time marching CFD analysis of the launch vehicle.

  4. Parametric Flutter Analysis of the TCA Configuration and Recommendation for FFM Design and Scaling

    NASA Technical Reports Server (NTRS)

    Baker, Myles; Lenkey, Peter

    1997-01-01

    The current HSR Aeroelasticity plan to design, build, and test a full span, free flying transonic flutter model in the TDT has many technical obstacles that must be overcome for a successful program. One technical obstacle is the determination of a suitable configuration and point in the sky to use in setting the scaling point for the ASE models program. Determining this configuration and point in the sky requires balancing several conflicting requirements, including model buildability, tunnel test safety, and the ability of the model to represent the flutter mechanisms of interest. As will be discussed in detail in subsequent sections, the current TCA design exhibits several flutter mechanisms of interest. It has been decided that the ASE models program will focus on the low frequency symmetric flutter mechanism, and will make no attempt to investigate high frequency flutter mechanisms. There are several reasons for this choice. First, it is believed that the high frequency flutter mechanisms are similar in nature to classical wing bending/torsion flutter, and therefore there is more confidence that this mechanism can be predicted using current techniques. The low frequency mode, on the other hand, is a highly coupled mechanism involving wing, body, tail, and engine motion which may be very difficult to predict. Second, the high frequency flutter modes result in very small weight penalties (several hundred pounds), while suppression of the low frequency mechanism inside the flight envelope causes thousands of pounds to be added to the structure. In order to successfully test the low frequency flutter mode of interest, a suitable starting configuration and point in the sky must be identified. The configuration and point in the sky must result in a wind tunnel model that (1) represents the low-frequency wing/body/engine/empennage flutter mechanisms that are unique to HSCT configurations, (2) flutters at an acceptably low frequency in the tunnel, (3) flutters at an

  5. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  6. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  7. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined

  8. Aeroelastic Analysis for Aeropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2002-01-01

    Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.

  9. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  10. Aerodynamics, aeroelasticity, and stability of hang gliders. Experimental results. [Ames 7- by 10-ft wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kroo, I. M.

    1981-01-01

    One-fifth-scale models of three basic ultralight glider designs were constructed to simulate the elastic properties of full scale gliders and were tested at Reynolds numbers close to full scale values. Twenty-four minor modifications were made to the basic configurations in order to evaluate the effects of twist, reflex, dihedral, and various stability enhancement devices. Longitudinal and lateral data were obtained at several speeds through an angle of attack range of -30 deg to +45 deg with sideslip angles of up to 20 deg. The importance of vertical center of gravity displacement is discussed. Lateral data indicate that effective dihedral is lost at low angles of attack for nearly all of the configurations tested. Drag data suggest that lift-dependent viscous drag is a large part of the glider's total drag as is expected for thin, cambered sections at these relatively low Reynolds numbers.

  11. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  12. The Effects of Nonlinear Damping on Post-flutter Behavior Using Geometrically Nonlinear Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Song, Pengchao

    Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software. The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.

  13. An experimental and analytical investigation of proprotor whirl flutter

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kohn, J. S.

    1977-01-01

    The results of an experimental parametric investigation of whirl flutter are presented for a model consisting of a windmilling propeller-rotor, or proprotor, having blades with offset flapping hinges mounted on a rigid pylon with flexibility in pitch and yaw. The investigation was motivated by the need to establish a large data base from which to assess the predictability of whirl flutter for a proprotor since some question has been raised as to whether flutter in the forward whirl mode could be predicted with confidence. To provide the necessary data base, the parametric study included variation in the pylon pitch and yaw stiffnesses, flapping hinge offset, and blade kinematic pitch-flap coupling over a large range of advance ratios. Cases of forward whirl flutter and of backward whirl flutter are documented. Measured whirl flutter characteristics were shown to be in good agreement with predictions from two different linear stability analyses which employed simple, two dimensional, quasi-steady aerodynamics for the blade loading. On the basis of these results, it appears that proprotor whirl flutter, both forward and backward, can be predicted.

  14. Hypersonic panel flutter in a rarefied atmosphere

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1993-01-01

    Panel flutter is a form of dynamic aeroelastic instability resulting from the interaction between motion of an aircraft structural panel and the aerodynamic loads exerted on that panel by air flowing past one of the faces. It differs from lifting surface flutter in the sense that it is not usually catastrophic, the panel's motion being limited by nonlinear membrane stresses produced by the transverse displacement. Above some critical airflow condition, the linear instability grows to a limit cycle . The present investigation studies panel flutter in an aerodynamic regime known as 'free molecule flow', wherein intermolecular collisions can be neglected and loads are caused by interactions between individual molecules and the bounding surface. After collision with the panel, molecules may be reflected specularly or reemitted in diffuse fashion. Two parameters characterize this process: the 'momentum accommodation coefficient', which is the fraction of the specularly reflected molecules; and the ratio between the panel temperature and that of the free airstream. This model is relevant to the case of hypersonic flight vehicles traveling at very high altitudes and especially for panels oriented parallel to the airstream or in the vehicle's lee. Under these conditions the aerodynamic shear stress turns out to be considerably larger than the surface pressures, and shear effects must be included in the model. This is accomplished by means of distributed longitudinal and bending loads. The former can cause the panel to buckle. In the example of a simply-supported panel, it turns out that the second mode of free vibration tends to dominate the flutter solution, which is carried out by a Galerkin analysis. Several parametric studies are presented. They include the effects of (1) temperature ratio; (2) momentum accommodation coefficient; (3) spring parameters, which are associated with how the panel is connected to adjacent structures; (4) a parameter which relates compressive

  15. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

  16. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.

  17. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

  18. Flutter of wings involving a locally distributed flexible control surface

    NASA Astrophysics Data System (ADS)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  19. Propeller Tip Flutter

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    The present report is limited to a case of tip flutter recognized by experience as being important. It is the case where outside interferences force vibrations upon the propeller. Such interferences may be set up by the engine, or they may be the result of an unsymmetrical field of flow.

  20. An analytical and experimental investigation of flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1992-01-01

    The objective of this research was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind-tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system which permitted translational and rotational degrees of freedom. Actuators, made of piezoelectric material were affixed to leaf springs on the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the closed-loop damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. A flutter suppression control law was designed, implemented on a digital control computer, and tested to conditions 20 percent above the passive flutter speed of the model. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully-placed actuating plates can be used effectively to control aeroelastic response.

  1. Aeroelastic behavior of twist-coupled HAWT blades

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.

    1998-12-31

    As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

  2. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  3. FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer

    2016-01-01

    This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.

  4. Aeroelastic Analysis of Modern Complex Wings

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  5. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Wendell, J. H.

    1982-09-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  6. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  7. Advanced Aeroelastic Technologies for Turbomachinery Application

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.

    2004-01-01

    A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented

  8. An analytical and experimental study to investigate flutter suppression via piezoelectric actuation. M.S. Thesis - George Washington Univ., 1991

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1991-01-01

    The objective was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. The validity of analytical modeling techniques for piezoelectric materials was also investigated. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid airfoil and a flexible mount system which permitted a translational and a rotational degree of freedom. It was designed such that flutter was encounted within the testing envelope of the wind tunnel. Actuators, made of piezoelectric material were affixed to leaf springs of the mount system. Each degree of freedom was controlled by a separate leaf spring. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully placed actuating plates can be used effectively to control aeroelastic response.

  9. Nonlinear Flutter Aspects of the Flexible HSCT Semispan Model

    NASA Technical Reports Server (NTRS)

    Hajj, Muhammad R.; Silva, Walter A.

    2003-01-01

    The nonlinear aspects that lead to the flutter of an High-Speed Civil Transport (HSCT) Flexible Semispan Model are analyzed. A hierarchy of spectral moments was used to determine the characteristics of the aerodynamic loading and structural strains and motions. The results show that the frequency of the bending motion of the wing varied significantly as the Mach number was increased between 0.90 and 0.97. Examination of the pressure coefficients in terms of mean value and fluctuations showed that the flow characteristics over the wing changed significantly around a Mach number of 0.97. A strong shock was identified near the trailing edge. Nonlinear analysis of the pressure fluctuations, under these conditions, showed nonlinear coupling involving low-frequency components at pressure locations where the mean value was at a local minimum. This shows that the aerodynamic forces acting on the model had nonlinearly coupled frequency components. The results presented here show how nonlinear analysis tools can be used to identify nonlinear aspects of the flutter phenomenon which are needed in the validation of nonlinear computational methodologies. Keywords: Nonlinear aeroelasticity, Flutter, Bispectrum.

  10. Shape sensitivity analysis of flutter response of a laminated wing

    NASA Technical Reports Server (NTRS)

    Bergen, Fred D.; Kapania, Rakesh K.

    1988-01-01

    A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.

  11. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  12. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  13. Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1989-01-01

    In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.

  14. Efficient Cfd/csd Coupling Methods for Aeroelastic Applications

    NASA Astrophysics Data System (ADS)

    Chen, Long; Xu, Tianhao; Xie, Jing

    2016-06-01

    A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.

  15. Experimental parametric studies of transonic T-tail flutter. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Sandford, M. C.

    1975-01-01

    Wind-tunnel tests of the T-tail of a wide-body jet airplane were made at Mach numbers up to 1.02. The model consisted of a 1/13-size scaled version of the T-tail, fuselage, and inboard wing of the airplane. Two interchangeable T-tails were tested, one with design stiffness for flutter-clearance studies and one with reduced stiffness for flutter-trend studies. Transonic antisymmetric-flutter boundaries were determined for the models with variations in: (1) fin-spar stiffness, (2) stabilizer dihedral angle (-5 deg and 0 deg), (3) wing and forward-fuselage shape, and (4) nose shape of the fin-stabilizer juncture. A transonic symmetric-flutter boundary and flutter trends were established for variations in stabilizer pitch stiffness. Photographs of the test configurations are shown.

  16. Adaptive flutter suppression, analysis and test

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.; Hwang, C.; Joshi, D. S.; Harvey, C. A.; Huttsell, L. T.; Farmer, M. G.

    1983-01-01

    Methods of adaptive control have been applied to suppress a potentially violent flutter condition of a half-span model of a lightweight figher aircraft. This marked the confluence of several technologies with active flutter suppression, digital control and adaptive control theory the primary contributors. The control algorithm was required to adapt both to slowly varying changes, corresponding to changes in the flight condition or fuel loading and to rapid changes, corresponding to a store release or the transition from a stable to an unstable flight condition. The development of the adaptive control methods was followed by a simulation and checkout of the complete system and a wind tunnel demonstration. As part of the test, a store was released from the model wing tip, transforming the model abruptly from a stable configuration to a violent flutter condition. The adaptive algorithm recognized the unstable nature of the resulting configuration and implemented a stabilizing control law in a fraction of a second. The algorithm was also shown to provide system stability over a range of wind tunnel Mach numbers and dynamic pressures.

  17. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  18. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    NASA Technical Reports Server (NTRS)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  19. Aeroelastic analysis of wings using the Euler equations with a deforming mesh

    NASA Technical Reports Server (NTRS)

    Robinson, Brian A.; Batina, John T.; Yang, Henry T. Y.

    1990-01-01

    Modifications to the CFL3D three dimensional unsteady Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. The modifications involve including a deforming mesh capability which can move the mesh to continuously conform to the instantaneous shape of the aeroelastically deforming wing, and including the structural equations of motion for their simultaneous time-integration with the governing flow equations. Calculations were performed using the Euler equations to verify the modifications to the code and as a first step toward aeroelastic analysis using the Navier-Stokes equations. Results are presented for the NACA 0012 airfoil and a 45 deg sweptback wing to demonstrate applications of CFL3D for generalized force computations and aeroelastic analysis. Comparisons are made with published Euler results for the NACA 0012 airfoil and with experimental flutter data for the 45 deg sweptback wing to assess the accuracy of the present capability. These comparisons show good agreement and, thus, the CFL3D code may be used with confidence for aeroelastic analysis of wings.

  20. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  1. Flutter Clearance of the F-18 High-angle-of-attack Research Vehicle with Experimental Wingtip Instrumentation Pods

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1989-01-01

    An F-18 aircraft was modified with wingtip instrumentation pods for use in NASA's high-angle-of-attack research program. Ground vibration and flight flutter testing were performed to clear an acceptable flight envelope for the aircraft. Flight test utilized atmospheric turbulence for structural excitation; the aircraft displayed no adverse aeroelastic trends within the envelope tested. The data presented in this report include mode shapes from the ground vibration and estimates of frequency and damping as a function of Mach number.

  2. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  3. Non-linear aeroelastic prediction for aircraft applications

    NASA Astrophysics Data System (ADS)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  4. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  5. Unsteady aerodynamic analyses for turbomachinery aeroelastic predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Barnett, M.; Ayer, T. C.

    1994-01-01

    Applications for unsteady aerodynamics analysis in this report are: (1) aeroelastic: blade flutter and forced vibration; (2) aeroacoustic: noise generation; (3) vibration and noise control; and (4) effects of unsteadiness on performance. This requires that the numerical simulations and analytical modeling be accurate and efficient and contain realistic operating conditions and arbitrary modes of unsteady excitation. The assumptions of this application contend that: (1) turbulence and transition can be modeled with the Reynolds averaged and using Navier-Stokes equations; (2) 'attached' flow with high Reynolds number will require thin-layer Navier-Stokes equations, or inviscid/viscid interaction analyses; (3) small-amplitude unsteady excitations will need nonlinear steady and linearized unsteady analyses; and (4) Re to infinity will concern inviscid flow. Several computer programs (LINFLO, CLT, UNSVIS, AND SFLOW-IVI) are utilized for these analyses. Results and computerized grid examples are shown. This report was given during NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.

  6. Full potential unsteady computations including aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Ide, Hiroshi

    1989-01-01

    A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.

  7. A methodology for aeroelastic constraint analysis in a conceptual design environment

    NASA Astrophysics Data System (ADS)

    de Baets, Peter Wilfried Gaston

    The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method

  8. An aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.; Smith, C.E.

    1983-11-01

    The flutter stability of a single Darrieus wind turbine blade spinning in still air is investigated. The blade is modeled as a thin, uniform beam pinned to the rotor shaft, with aerodynamic forces accounted for using strip theory. Eliminating the spatial dependence using cubic B-splines results in a system of algebraic characteristic equations from which the stability of linear motions of the blade at any rotation rate may be inferred. The two most dangerous flutter modes are characterized for a one-parameter family of blades, and the flutter mechanism is shown to be dominated by gyroscopic coupling between motions in the plane of the blade and normal to the plane of the blade.

  9. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  10. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  11. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  12. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  13. Aeroelasticity matters - Some reflections on two decades of testing in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    In 1955, work was started on the conversion of a subsonic wind tunnel to a 16-foot transonic tunnel with Freon-12 or air as the test medium. The new facility, designated the Transonic Dynamics Tunnel (TDT), became fully operational in 1960. A description is presented of aeroelastic testing and research performed in the TDT since 1960. It is pointed out that wind-tunnel tests of aeroelastic models require specialized experimental techniques seldom found in other types of wind-tunnel studies. Attention is given to model mount systems, launch vehicle models, aircraft models, aircraft buffet, gust response, stability derivative measurements, and subcritical testing techniques. Aspects of vehicle development testing are considered along with aeroelastic 'fixes', aeroelastic 'surprises', approaches for controlling aeroelastic effects, and unsteady pressure measurements.

  14. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  15. Aeroelastic airfoil smart spar

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Skott; Pastore, Christopher M.; Garfinkle, Moishe

    1993-01-01

    Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady aerodynamic forces during high speed flight, abrupt maneuvers, or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction 'smart' laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0, 17, 30, 45 and 60 deg fiber angle lay-ups. Symmetric fiber lay-ups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.

  16. A numerical study of flutter in a transonic fan

    SciTech Connect

    Isomura, K.; Giles, M.B.

    1998-07-01

    The bending mode flutter of a modern transonic fan has been studied using a quasi-three-dimensional viscous unsteady CFD code. The type of flutter in this research is that of a highly loaded blade with a tip relative Mach number just above unity, commonly referred to as transonic stall flutter. This type of flutter is often encountered in modern wide chord fans without a part span shroud. The CFD simulation uses an upwinding scheme with Roe`s third-order flux differencing, and Johnson and King`s turbulence model with the later modification due to Johnson and Coakley. A dynamic transition point model is developed using the e{double_prime} method and Schubauer and Klebanoff`s experimental data. The calculations of the flow in this fan reveal that the source of the flutter of 1H1 transonic fan is an oscillation of the passage shock, rather than a stall. As the blade loading increases, the passage shock moves forward. Just before the passage shock unstarts, the stability of the passage shock decreases, and a small blade vibration causes the shock to oscillate with a large amplitude between unstarted and started positions. The dominant component of the blade excitation force is due to the foot of the oscillating passage shock on the blade pressure surface.

  17. Enhanced aeroelastic energy harvesting with a beam stiffener

    NASA Astrophysics Data System (ADS)

    Zhao, Liya; Yang, Yaowen

    2015-03-01

    In this article, we propose an easy but quite effective method to significantly enhance the power generation capability of an aeroelastic energy harvester. The method is to attach a beam stiffener to the substrate of the harvester, which works as an electromechanical coupling magnifier. It is shown to be effective for all three considered types of harvesters based on galloping, vortex-induced vibration and flutter, leading to a superior performance over the conventional designs without the beam stiffener, with dozens of times the increase in power and an almost 100% increase in the power extraction efficiency yet with comparable or even smaller transverse displacement. Choice guidelines of optimal types of energy harvesters are also suggested based on the given wind situations where the electronic device is located.

  18. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  19. Aeroelastic Analysis of Modern Complex Wings Using ENSAERO and NASTRAN

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Manoj

    1995-01-01

    A process is presented by which static aeroelastic analysis is performed using Euler flow equations in conjunction with an advanced structural analysis tool, NASTRAN. The process deals with the interfacing of two separate codes in the fields of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The process is demonstrated successfully on an F/A-18 Stabilator (horizontal tail).

  20. Missile flutter experiment and data analysis using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Kaiping; Ye, Jiyuan; Zou, Jingxiang; Yang, Bingyuan; Yang, Hua

    2004-01-01

    A modal parameter identification method of impulse response function, based on a modulated Gaussian wavelet transform, is presented. The factors influencing the identification accuracy and the required conditions of using this parameter identification method are discussed. Numerical verification of the proposed method is presented for several two-degree-of-freedom examples. A wind tunnel flutter experiment on a wing model of missiles is introduced. The data set from the flutter test is analyzed by using the proposed wavelet transform method. The first two order modal parameters of the wing model are identified, and then the critical dynamic stress is predicted by using the flutter stability parameter method. Finally, the results are compared with the results of FFT analysis.

  1. Aeroelastic tailoring in wind-turbine blade applications

    SciTech Connect

    Veers, P.; Lobitz, D.; Bir, G.

    1998-04-01

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  2. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Astrophysics Data System (ADS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  3. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  4. An aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.; Smith, C.E.

    1981-01-01

    The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.

  5. A modal aeroelastic analysis scheme for turbomachinery blading. M.S. Thesis - Case Western Reserve Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1991-01-01

    An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.

  6. NACA0012 benchmark model experimental flutter results with unsteady pressure distributions

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  7. Chirality-dependent flutter of Typha blades in wind

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-07-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles.

  8. Chirality-dependent flutter of Typha blades in wind.

    PubMed

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  9. Chirality-dependent flutter of Typha blades in wind

    PubMed Central

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  10. Aeroelastic Deflection of NURBS Geometry

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1998-01-01

    The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).

  11. Time-marching transonic flutter solutions including angle-of-attack effects

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; Seidel, D. A.

    1982-01-01

    Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number.

  12. Application of two design methods for active flutter suppression and wind-tunnel test results

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.; Dunn, H. J.

    1980-01-01

    The synthesis, implementation, and wind tunnel test of two flutter suppression control laws for an aeroelastic model equipped with a trailing edge control surface are presented. One control law is based on the aerodynamic energy method, and the other is based on results of optimal control theory. Analytical methods used to design the control laws and evaluate their performance are described. At Mach 0.6, 0.8, and 0.9, increases in flutter dynamic pressure were obtained but the full 44 percent increase was not achieved. However at Mach 0.95, the 44 percent increase was achieved with both control laws. Experimental results indicate that the performance of the systems is not so effective as that predicted by analysis, and that wind tunnel turbulence plays an important role in both control law synthesis and demonstration of system performance.

  13. A method for obtaining practical flutter-suppression control laws using results of optimal control theory

    NASA Technical Reports Server (NTRS)

    Newson, J. R.

    1979-01-01

    The results of optimal control theory are used to synthesize a feedback filter. The feedback filter is used to force the output of the filtered frequency response to match that of a desired optimal frequency response over a finite frequency range. This matching is accomplished by employing a nonlinear programing algorithm to search for the coefficients of the feedback filter that minimize the error between the optimal frequency response and the filtered frequency response. The method is applied to the synthesis of an active flutter-suppression control law for an aeroelastic wind-tunnel model. It is shown that the resulting control law suppresses flutter over a wide range of subsonic Mach numbers. This is a promising method for synthesizing practical control laws using the results of optimal control theory.

  14. Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Bennett, Robert M.

    1991-01-01

    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station.

  15. Computational Aeroelasticity: Success, Progress, Challenge

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Liu, Danny D.; Huttsell, Lawrence J.

    2003-01-01

    The formal term Computational Aeroelasticity (CAE) has only been recently adopted to describe aeroelastic analysis methods coupling high-level computational fluid dynamics codes with structural dynamics techniques. However, the general field of aeroelastic computations has enjoyed a rich history of development and application since the first hand-calculations performed in the mid 1930 s. This paper portrays a much broader definition of Computational Aeroelasticity; one that encompasses all levels of aeroelastic computation from the simplest linear aerodynamic modeling to the highest levels of viscous unsteady aerodynamics, from the most basic linear beam structural models to state-of-the-art Finite Element Model (FEM) structural analysis. This paper is not written as a comprehensive history of CAE, but rather serves to review the development and application of aeroelastic analysis methods. It describes techniques and example applications that are viewed as relatively mature and accepted, the "successes" of CAE. Cases where CAE has been successfully applied to unique or emerging problems, but the resulting techniques have proven to be one-of-a-kind analyses or areas where the techniques have yet to evolve into a routinely applied methodology are covered as "progress" in CAE. Finally the true value of this paper is rooted in the description of problems where CAE falls short in its ability to provide relevant tools for industry, the so-called "challenges" to CAE.

  16. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohamed Y.; Al-Haik, Mohammad Y.; Hajj, Muhammad R.

    2015-07-01

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  17. Quiet High Speed Fan (QHSF) Flutter Calculations Using the TURBO Code

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Min, James B.; Mehmed, Oral

    2006-01-01

    A scale model of the NASA/Honeywell Engines Quiet High Speed Fan (QHSF) encountered flutter wind tunnel testing. This report documents aeroelastic calculations done for the QHSF scale model using the blade vibration capability of the TURBO code. Calculations at design speed were used to quantify the effect of numerical parameters on the aerodynamic damping predictions. This numerical study allowed the selection of appropriate values of these parameters, and also allowed an assessment of the variability in the calculated aerodynamic damping. Calculations were also done at 90 percent of design speed. The predicted trends in aerodynamic damping corresponded to those observed during testing.

  18. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    SciTech Connect

    Zakaria, Mohamed Y. Al-Haik, Mohammad Y.; Hajj, Muhammad R.

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  19. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  20. Investigation on transonic flutter active auppression with CFD-Based ROMs

    NASA Astrophysics Data System (ADS)

    Nie, XueYuan; Yang, GuoWei; Zhang, MingFeng

    2015-01-01

    The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems, however the efficiency is low because of high computational costs of the computational fluid dynamics (CFD) portion. Additionally, direct integrated CFD and computational structural dynamics (CSD) technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form. A reduced-order model (ROM) based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure. The closed-loop control systems designed by the sliding mode control (SMC) and linear quadratic Gaussian (LQG) control were constructed with ROM/CSD to suppress the AGARD 445.6 wing flutter. The detailed implementation of the two control approaches is presented, and the flutter suppression effectiveness is discussed and compared. The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.

  1. Flutter Analysis of the Thermal Protection Layer on the NASA HIAD

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2013-01-01

    A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.

  2. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  3. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    SciTech Connect

    Witteveen, Jeroen A.S. Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  4. Evaluation of an aeroelastic model technique for predicting airplane buffet loads

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1973-01-01

    A wind-tunnel technique which makes use of a dynamically scaled aeroelastic model to predict full-scale airplane buffet loads during buffet boundary penetration is evaluated. A 1/8-scale flutter model of a fighter airplane with remotely controllable variable-sweep wings and trimming surfaces was used for the evaluation. The model was flown on a cable-mount system which permitted high lift forces comparable to those in maneuvering flight. Bending moments and accelerations due to buffet were measured on the flutter model and compared with those measured on the full-scale airplane in an independent flight buffet research study. It is concluded that the technique can provide valuable information on airplane buffet load characteristics not available from any other source except flight test.

  5. Application of unsteady aeroelastic analysis techniques on the national aerospace plane

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Spain, Charles V.; Soistmann, David L.; Noll, Thomas E.

    1988-01-01

    A presentation provided at the Fourth National Aerospace Plane Technology Symposium held in Monterey, California, in February 1988 is discussed. The objective is to provide current results of ongoing investigations to develop a methodology for predicting the aerothermoelastic characteristics of NASP-type (hypersonic) flight vehicles. Several existing subsonic and supersonic unsteady aerodynamic codes applicable to the hypersonic class of flight vehicles that are generally available to the aerospace industry are described. These codes were evaluated by comparing calculated results with measured wind-tunnel aeroelastic data. The agreement was quite good in the subsonic speed range but showed mixed agreement in the supersonic range. In addition, a future endeavor to extend the aeroelastic analysis capability to hypersonic speeds is outlined. An investigation to identify the critical parameters affecting the aeroelastic characteristics of a hypersonic vehicle, to define and understand the various flutter mechanisms, and to develop trends for the important parameters using a simplified finite element model of the vehicle is summarized. This study showed the value of performing inexpensive and timely aeroelastic wind-tunnel tests to expand the experimental data base required for code validation using simple to complex models that are representative of the NASP configurations and root boundary conditions are discussed.

  6. Nonlinear aeroelastic analysis of high-aspect-ratio wings in low subsonic flow

    NASA Astrophysics Data System (ADS)

    Eskandary, K.; Dardel, M.; Pashaei, M. H.; Moosavi, A. K.

    2012-01-01

    In this study, aeroelastic characteristics of high-aspect-ratio wing models with structural nonlinearities in quasi-steady aerodynamics flows are investigated. The studied wing model is a cantilever wing with double bending and torsional vibrations and with large deflection ability in accordance with Hodges-Dowell wing model. This wing model is valid for long, straight and thin homogeneous isotropic beams. The aerodynamics model is based on quasi-steady aerodynamic which is valid for aerodynamic flows without wake, viscosity and compressibility effects. The effect of different parameters such as mass ratios and stiffness ratios on flutter and divergence velocities and limit cycle oscillation amplitudes are carefully studied.

  7. Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.

  8. Experimental and analytical transonic flutter characteristics of a geared-elevator configuration

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1980-01-01

    The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.

  9. State and development of flutter calculation

    NASA Technical Reports Server (NTRS)

    Teichmann, Alfred

    1951-01-01

    This report discusses the need for considering a wide variation in certain of the basic flutter parameters in conducting a flutter analysis. Conclusions are drawn stating that design charts or simple rules may be misleading. Due to inherent difficulties, dynamic model testing may also yield misleading results. The general flutter equations and various methods of solution are discussed. Of particular interest, curves are presented showing computational effort plotted against a number of degrees of freedom used in a flutter analysis.

  10. Evaluation and measurement of airplane flutter interference

    NASA Astrophysics Data System (ADS)

    Miyazawa, Hiroshi

    1989-12-01

    Aircraft flutter interference is picture disturbance in television reception caused by signals reflected off passing aircraft. Through indoor testing, the relationship between physical factors affecting aircraft flutter and its subjective evaluation was analyzed. The factors necessary for flutter measurement as well as their range of influence are discussed. A method that was developed for measuring the physical amount of flutter is described. The method was confirmed through tests made near an airport using prototype test equipment.

  11. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  12. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  13. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  14. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  15. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  16. 14 CFR 27.629 - Flutter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flutter. 27.629 Section 27.629 Aeronautics... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.629 Flutter. Each aerodynamic surface of the rotorcraft must be free from flutter under each appropriate speed and power...

  17. Effects of Inlet Distortion on Aeromechanical Stability of a Forward-Swept High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.

    2011-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Separately, a forward-swept high-speed fan was developed to address noise concerns of modern podded turbofans; however this fan encounters aeroelastic instability (flutter) as it approaches stall. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions, is modified and then applied in a computational study to preliminarily assess the effects of inlet distortion on aeroelastic stability of the fan. Computational engineering application and implementation issues are discussed, followed by an investigation into the aeroelastic behavior of the fan with clean and distorted inlets.

  18. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  19. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    NASA Astrophysics Data System (ADS)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  20. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    NASA Astrophysics Data System (ADS)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  1. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    NASA Astrophysics Data System (ADS)

    Sabri, Farhad

    circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and

  2. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  3. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  4. Innovative scaling laws for aeroelastic and aeroservoelastic problems in compressible flow

    NASA Astrophysics Data System (ADS)

    Presente, Eyal

    Active flutter suppression of a two dimensional wing section in subsonic flow is studied. The equations of motion of a typical cross section are presented in nondimensional form. A two degree of freedom problem, with pitch and plunge dynamics, combined with a trailing-edge control surface is considered. Aerodynamic loads are expressed in the time-domain using Roger's approximation. Augmented aerodynamic states are reconstructed using a Kalman filter, and linear optimal control is used to design a full-state feedback regulator for flutter suppression. Recent advances in the area of adaptive materials, smart structures, have led to the use of such materials as actuators for aeroservoelastic applications. The attractiveness of such materials consists of their potential to introduce continuous structural deformations of the lifting surface that can be exploited to manipulate the unsteady aerodynamic loads and prevent undesirable aeroelastic effects such as flutter. A general formulation of the aerodynamic loads, based on thin airfoil theory, and the deformation of a flat plate wing section are used to calculate the amount of power required to twist a wing along its span with piezoelectric patches. Composite materials enhance bend/twist coupling, which is used to modify the aerodynamic loads for the purpose of flutter suppression. Scaling laws of aeroservoelastic systems are addressed. Scaling parameters required for maintaining similarity between a full-scale system and a model are studied. An innovative two-pronged approach is used to obtain "similarity solutions" of the aeroservoelastic problem. Changes of structural and aerodynamic variables between a full scale configuration and its scaled models facilitate similarity between the systems. Two cases of scaled models are examined, a geometrically scaled model and an aeroelastically scaled one. Flutter suppression of a typical cross section employing a trailing edge control surface is compared with that of a typical

  5. Applications of Laplace transform methods to airfoil motion and stability calculations

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1979-01-01

    This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.

  6. Aeroelastic behavior of composite helicopter rotor blades with advanced geometry tips

    SciTech Connect

    Friedmann, P.P.; Yuan, K.A.

    1995-12-31

    A new structural and aeroelastic model capable of representing the aeroelastic stability and response of composite helicopter rotor blades with advanced geometry tips is presented. Where it is understood that advanced geometry tips are blade tips having sweep, anhedral and taper in the outboard 10% segment of the blade. The blade is modeled by beam finite elements. A single element is used to represent the swept tip. The nonlinear equations of motion are derived using the Hamilton`s principle and are based on moderate deflection theory. Thus, the nonlinearities are of the geometric type. The important structural blade attributes captured by the model are arbitrary cross-sectional shape, general anisotropic material behavior, transverse shear and out-of-plane warping. The aerodynamic loads are based on quasi-steady Greenberg theory with reverse flow effects, using an implicit formulation. The nonlinear aeroelastic response of the blade is obtained from a fully coupled propulsive trim/aeroelastic response analysis. Aeroelastic stability is obtained from linearizing the equations of motion about the steady state response of the blade and using Floquet theory. Numerical results for the aeroelastic stability and response of a hingeless composite blade with two cell type cross section are presented, together with vibratory hub shears and moments. The influence of ply orientation and tip sweep is clearly illustrated by the results.

  7. Aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.

    1982-01-01

    The stability of small oscillations of the troposkein-shaped blade used on Darrieus wind turbines is investigated. The blade is assumed to be attached to a perfectly rigid rotor shaft and spinning in still air. Linear equations of motion are derived which include the effects of inplane, out-of-plane, and torsional stiffness, mass and aerodynamic center offsets, and the aerodynamic wake. Results presented include the free-vibration characteristics of the rotating blade, stability of the blade rotating in air, and the effects of mass density, mass center offset, and stiffness parameters on the flutter rotation rates. All results are presented in dimensionless form, hence apply to a family of blades.

  8. Plans for Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Ballmann, Josef; Bhatia, Kumar; Blades, Eric; Boucke, Alexander; Chwalowski, Pawel; Dietz, Guido; Dowell, Earl; Florance, Jennifer P.; Hansen, Thorsten; Mani, Mori; Marvriplis, Dimitri; Perry, Boyd, III; Ritter, Markus; Schuster, David M.; Smith, Marilyn; Taylor, Paul; Whiting, Brent; Wieseman, Carol C.

    2011-01-01

    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencies

  9. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  10. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  11. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Chad

    2006-01-01

    This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.

  12. Including Aeroelastic Effects in the Calculation of X-33 Loads and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.

    1998-01-01

    Up until now, loads analyses of the X-33 RLV have been done at Marshall Space Flight Center (MSFC) using aerodynamic loads derived from CFD and wind tunnel models of a rigid vehicle. Control forces and moments are determined using a rigid vehicle trajectory analysis and the detailed control load distributions for achieving the desired control forces and moments, again on the rigid vehicle, are determined by Lockheed Martin Skunk Works. However, static aeroelastic effects upon the load distributions are not known. The static aeroelastic effects will generally redistribute external loads thereby affecting both the internal structural loads as well as the forces and moments generated by aerodynamic control surfaces. Therefore, predicted structural sizes as well as maneuvering requirements can be altered by consideration of static aeroelastic effects. The objective of the present work is the development of models and solutions for including static aeroelasticity in the calculation of X-33 loads and in the determination of stability and control derivatives.

  13. Exploratory Studies in Generalized Predictive Control for Active Aeroelastic Control of Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Juang, Jer-Nan; Bennett, Richard L.

    2000-01-01

    The Aeroelasticity Branch at NASA Langley Research Center has a long and substantive history of tiltrotor aeroelastic research. That research has included a broad range of experimental investigations in the Langley Transonic Dynamics Tunnel (TDT) using a variety of scale models and the development of essential analyses. Since 1994, the tiltrotor research program has been using a 1/5-scale, semispan aeroelastic model of the V-22 designed and built by Bell Helicopter Textron Inc. (BHTI) in 1981. That model has been refurbished to form a tiltrotor research testbed called the Wing and Rotor Aeroelastic Test System (WRATS) for use in the TDT. In collaboration with BHTI, studies under the current tiltrotor research program are focused on aeroelastic technology areas having the potential for enhancing the commercial and military viability of tiltrotor aircraft. Among the areas being addressed, considerable emphasis is being directed to the evaluation of modern adaptive multi-input multi- output (MIMO) control techniques for active stability augmentation and vibration control of tiltrotor aircraft. As part of this investigation, a predictive control technique known as Generalized Predictive Control (GPC) is being studied to assess its potential for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both helicopter and airplane modes of flight. This paper summarizes the exploratory numerical and experimental studies that were conducted as part of that investigation.

  14. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  15. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  16. Investigating Stall Flutter using a DS model-An application for HAWTs

    NASA Astrophysics Data System (ADS)

    Nichols, James; Attorni, Andrea; Haans, Wouter; Witcher, David

    2014-12-01

    As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17% is

  17. F-16 flutter model studies with external wing stores

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Bensinger, C. T.

    1977-01-01

    Results from transonic flutter model studies are presented. The flutter model was constructed to support the flutter prevention and clearance program from preliminary design through flight flutter tests. The model tests were conducted in the Langley transonic dynamics tunnel. The large full span free-flying model was shown to be an effective tool in defining airplane flutter characteristics by demonstrating freedom from flutter for most configurations and by defining optimum solutions for a few troublesome configurations.

  18. Optical measurements of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1991-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. The transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  19. Optical measurement of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1990-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  20. Proper orthogonal decomposition method for analysis of nonlinear panel flutter with thermal effects in supersonic flow

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Xu, Min; Dai, Honghua; Dowell, Earl H.

    2015-02-01

    The proper orthogonal decomposition (POD) method for analysis of nonlinear panel flutter subjected to supersonic flow is presented. Optimal POD modes are extracted from a chaotic Galerkin mode responses. The aeroelastic equations of motion are constructed using von Karman plate theory, first-order piston theory and quasi-steady thermal stress theory. A simply-supported plate with thermal loads from a uniformly distributed temperature is considered. Many types of panel behaviors, including stable flat, dynamically stable buckled, limit cycle oscillation, nonharmonic periodic motion, quasi-periodic motion and chaotic motion are observed. Our primary focus is on chaos and the route to chaos. It is found that a sudden transition from the buckled state to chaos occurs. Time history, phase portrait, Poincaré map, bifurcation diagram and Lyapunov exponent are employed to study chaos. The POD chaotic results obtained are compared with the traditional Galerkin solutions. It is shown that the POD method can obtain accurate chaotic solutions, using fewer modes and less computational effort than the Galerkin mode approach; additionally, the POD method converges faster in the analysis of chaotic transients. Effects of length-to-width ratios and thermal loads are presented. It is found that a smaller width for fixed length will produce more stable flutter response, while the thermal loads degrade the flutter boundary and result in a more complex evolution of dynamic motions. The numerical simulations show that the robustness of the POD modes depends on the dynamic pressure but not on temperature.

  1. Nonlinear flutter of curved panels under yawed supersonic flow using finite elements

    NASA Astrophysics Data System (ADS)

    Azzouz, Mohamed Salim

    2005-11-01

    In the extensive published literature on panel flutter, a large number of papers are dedicated to investigation of flat plates in the supersonic flow regime. Very few authors have extended their work to flutter of curved panels. The curved geometry generates a pre-flutter behavior, triggering a static deflection due to a static aerodynamic load (SAL) over the panel as well as dynamic characteristics unique to this geometry. The purpose of this dissertation is to provide new insights in the subject of flutter of curved panels. Finite element frequency and time domain methods are developed to predict the pre/post flutter responses and the flutter onset of curved panels under a yaw flow angle. The first-order shear deformation theory, the Marguerre plate theory, the von Karman large deflection theory, and the quasi-steady first-order piston theory appended with SAL are used in the formulation. The principle of virtual work is applied to develop the equations of motion of the fluttering system in structural node degrees of freedom. In the frequency domain method, the Newton-Raphson method is used to determine the panel static deflection under the SAL, and an eigen-value solution is employed for the determination of the stability boundary margins at different panel height-rises and yaw flow angles. Pre-flutter static deflection shape, flutter coalescence frequency, and damping rate of various cylindrical panels are thoroughly investigated. The main results revealed that the pre-flutter static response of cylindrical panels is fundamentally different from the one associated with flat plates. It is shown that curvature has a detrimental effect for 2-dimensional (2-D) curved panels, and is beneficial for 3-D components at an optimum height-rise. In the time domain method, the system equations of motion are transformed into modal coordinates, and solved by a fourth-order Runge-Kutta numerical scheme. Time history responses, phase plots, power spectrum density plots, and

  2. Computational study of stall flutter in linear cascades

    SciTech Connect

    Abdelrahim, A.; Sisto, F.; Thangam, S. . Dept. of Mechanical Engineering)

    1993-01-01

    Aeroelastic interaction in turbomachinery is of prime interest to operators, designers, and aeroelasticans. Operation at off-design conditions may promote blade stall; eventually the stall pattern will propagate around the blade annulus. The unsteady periodic nature of propagating stall will force blade vibration and blade flutter may occur if the stall propagation frequency is entrained by the blade natural frequency. In this work a computational scheme based on the vortex method is used to simulate the flow over a linear cascade of airfoils. The viscous effect is confined to a thin layer, which determines the separation points on the airfoil surfaces. The preliminary structural model is a two-dimensional characteristic section with a single degree of freedom in either bending or torsion. A study of the relationship between the stall propagation frequency and the blade natural frequency has been conducted. The study shows that entrainment, or frequency synchronization, occurs, resulting in pure torsional flutter over a certain interval of reduced frequency. A severe blade torsional amplitude (of order 20 deg) has been computed in the entrainment region, reaching its largest value in the center of the interval. However, in practice, compressor blades will not sustain this vibration and blade failure may occur before reaching such a large amplitude. Outside the entrainment interval the stall propagation is shown to be independent of the blade natural frequency. In addition, computational results show that there is no entrainment in the pure bending mode. Rather, de-entrainment occurs with similar flow conditions and similar stall frequencies, resulting in blade buffeting in pure bending.

  3. F-16 flutter model studies with external wing stores

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Bensinger, C. T.

    1977-01-01

    The flutter prevention and clearance task for the F-16 airplane is being accomplished in a combined analysis, wind-tunnel dynamic model test, and flight flutter test program. This paper presents highlight results from transonic flutter model studies. The flutter model was constructed to support the flutter prevention and clearance program from preliminary design through flight flutter tests. The model tests were conducted in NASA's Langley Transonic Dynamics Tunnel. The large full-span free-flying model is shown to be an effective tool in defining airplane flutter characteristics by demonstrating freedom from flutter for most configurations and by defining optimum solutions for a few troublesome configurations.

  4. Aeroelastic deployable wing simulation considering rotation hinge joint based on flexible multibody dynamics

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Makihara, Kanjuro

    2016-05-01

    Morphing wings have been developed by several organizations for a variety of applications including the changing of flight ability while in the air and reducing the amount of space required to store an aircraft. One such example of morphing wings is the deployable wing that is expected to be used for Mars exploration. When designing wings, aeroelastic simulation is important to prevent the occurrence of destructive phenomena while the wing is in use. Flutter and divergence are typical issues to be addressed. However, it has been difficult to simulate the aeroelastic motion of deployable wings because of the significant differences between these deployable wings and conventional designs. The most apparent difference is the kinematic constraints of deployment, typically a hinge joint. These constraints lead not only to deformation but also to rigid body rotation. This research provides a novel method of overcoming the difficulties associated with handling these kinematic constraints. The proposed method utilizes flexible multibody dynamics and absolute nodal coordinate formulation to describe the dynamic motion of a deployable wing. This paper presents the simulation of the rigid body rotation around the kinematic constraints as induced by the aeroelasticity. The practicality of the proposed method is confirmed.

  5. Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.

    2005-01-01

    The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.

  6. Transonic Flutter Investigation of Models of T-Tail of Blackburn NA-39 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, George W., Jr.; Farmer, Moses G.

    1959-01-01

    A transonic flutter investigation has been made of models of the T-tail of the Blackburn NA-39 airplane. The models were dynamically and elastically scaled from measured airplane data in accordance with criteria which include a flutter safety margin. The investigation was made in the Langley transonic blowdown tunnel and covered a Mach number range from 0.73 to 1.09 at simulated altitudes extending to below sea level. The results of the investigation indicated that, if differences between the measured model and scaled airplane properties are disregarded, the airplane with the normal value of stabilizer pitching stiffness should have a stiffness margin of safety of at least 32 percent at all Mach numbers and altitudes within the flight boundary. However, the airplane with the emergency value of stabilizer pitching stiffness would not have the required margin of safety from symmetrical flutter at Mach numbers greater than about 0.85 at low altitudes. First-order corrections for some differences between the measured model and scaled airplane properties indicated that the airplane with the normal value of stabilizer pitching stiffness would still have an adequate margin of safety from flutter and that the flutter safety margin for the airplane with the emergency value of stabilizer pitching stiffness would be changed from inadequate to adequate. However, the validity of the corrections is questionable.

  7. Comparison between computations and experimental data in unsteady three-dimensional transonic aerodynamics, including aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Guruswamy, P.; Goorjian, P. M.

    1982-01-01

    Comparisons were made of computed and experimental data in three-dimensional unsteady transonic aerodynamics, including aeroelastic applications. The computer code LTRAN3, which is based on small-disturbance aerodynamic theory, was used to obtain the aerodynamic data. A procedure based on the U-g method was developed to compute flutter boundaries by using the unsteady aerodynamic coefficients obtained from LTRAN3. The experimental data were obtained from available NASA publications. All the studies were conducted for thin, unswept, rectangular wings with circular-arc cross sections. Numerical and experimental steady and unsteady aerodynamic data were compared for a wing with an aspect ratio of 3 and a thickness ratio of 5% at Mach numbers of 0.7 and 0.9. Flutter data were compared for a wing with an aspect ratio of 5. Two thickness ratios, 6% at Mach numbers of 0.715, 0.851, and 0.913, and 4% at Mach number of 0.904, were considered. Based on the unsteady aerodynamic data obtained from LTRAN3, flutter boundaries were computed; they were compared with those obtained from experiments and the code NASTRAN, which uses linear aerodynamics.

  8. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    NASA Technical Reports Server (NTRS)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  9. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  10. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  11. Computational aeroelasticity study of horizontal axis wind turbines with coupled bending - torsion blade dynamics

    NASA Astrophysics Data System (ADS)

    Alexeev, Timur

    With the increasing size of wind turbines and the use of flexible and light materials in aerodynamic applications, aeroelastic tailoring for power generation and blade stability has become an important subject in the study of wind turbine dynamics. To this day, coupling of bending and torsion in wind turbine rotor blades has been studied primarily as an elastic mechanism due to a coupling laminate construction. In this report, inertial coupling of bending and torsion, due to offset of axis of elasticity and axis of center of mass, is investigated and numerical simulations are performed to test the validity of the constructed model using an in-house developed aeroelastic numerical tool. A computationally efficient aeroelastic numerical tool, based on Goldstein's helicoidal vortex model with a prescribed wake model and modal coupling of bending and torsion in the blades, is developed for 2-bladed horizontal axis wind turbines and a conceptual study is performed in order to argue the validity of the proposed formulation and numerical construction. The aeroelastic numerical tool, without bending-torsion coupling, was validated (Chattot 2007) using NREL Phase VI wind turbine data, which has become the baseline model in the wind turbine community. Due to novelty of the proposed inertial bending-torsion coupling in the aeroelastic model of the rotor and lack of field data, as well as, other numerical tools available for code to code comparison studies, a thorough numerical investigation of the proposed formulation is performed in order to validate the aeroelastic numerical tool Finally, formulations of geometrically nonlinear beams, elastically nonlinear plates and shells, and a piecewise linear, two degree of freedom, quasi steady, aerodynamic model are presented as an extension for nonlinear wind turbine aeroelastic simulations. Preliminary results of nonlinear beams, plates, shells, and 2 DOF NACA0012 aeroelastic model are presented.

  12. Whirl Flutter Studies for a SSTOL Transport Demonstrator

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Hoffman, Krishna

    2004-01-01

    A proposed new class of aircraft - the Advanced Theater Transport (ATT) will combine strategic range and high payload with 'Super-STOL' (short take-off and landing) capability. It is also proposed to modify a YC-15 into a technology demonstrator with a 20-deg tilt wing; four, eight-bladed propellers; cross-shafted gearboxes and V-22 engines. These constitute a unique combination of design features that potentially affect performance, loads and whirl-mode stability (whirl flutter). NASA Ames Research Center is working with Boeing and Hamilton Sundstrand on technology challenges presented by the concept; the purpose of NASA involvement is to establish requirements for the demonstrator and for early design guidance, with emphasis on whirl flutter. CAMRAD II is being used to study the effects of various design features on whirl flutter, with special attention to areas where such features differ from existing aircraft, notably tiltrotors. Although the stability margins appear to be more than adequate, the concept requires significantly different analytical methods, principally including far more blade modes, than typically used for tiltrotors.

  13. Friction damping of flutter in gas turbine engines

    SciTech Connect

    Sinha, A.

    1983-01-01

    This thesis investigates the feasibility of using friction dampers to control flutter in gas turbine engine rotor stages. First, the stabilizing effects of blade-to-ground dampers were studied on the basis of a single degree of freedom model of an isolated blade. To simulate aerodynamic instability, the viscous damping associated with each blade was taken to be negative. The following issues were addressed: the range of initial conditions over which the response is stable; the maximum negative damping that can be stabilized; the effect of external excitation; and the determination of optimum damper parameters. Secondly, the physical concepts and mathematical techniques required to analyze and understand the effects of friction dampers on aerodynamically unstable rotor stages were developed. A lumped parameter model was chosen for the rotor stage and the viscous damping associated with each blade is again taken to be negative. Results for 3, 4, and 5 bladed disks are discussed. Lastly, the influence of friction on the torsional blade flutter is examined, using Whitehead's model of incompressible fluid flow. On the basis of the results for 3, 6, 9, and 12 bladed disks, the use of friction dampers in controlling flutter appears promising.

  14. On curve veering and flutter of rotating blades

    NASA Technical Reports Server (NTRS)

    Afolabi, Dare; Mehmed, Oral

    1993-01-01

    The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.

  15. An experimental investigation of the flap-lag-torsion aeroelastic stability of a small-scale hingeless helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Sharpe, David L.

    1986-01-01

    A small scale, 1.92 m diam, torsionally soft, hingeless helicopter rotor was investigated in hover to determine isolated rotor stability characteristics. The two-bladed, untwisted rotor was tested on a rigid test stand at tip speeds up to 101 m/sec. The rotor mode of interest is the lightly damped lead-lag mode. The dimensionless lead-lag frequency of the mode is approximately 1.5 at the highest tip speed. The hub was designed to allow variation in precone, blade droop, pitch control stiffness, and blade pitch angle. Measurements of modal frequency and damping were obtained for several combinations of these hub parameters at several values of rotor speed. Steady blade bending moments were also measured. The lead-lag damping measurements were found to agree well with theoretical predictions for low values of blade pitch angle. The test data confirmed the predicted effects of precone, droop, and pitch control stiffness parameters on lead-lag damping. The correlation between theory and experiment was found to be poor for the mid-to-high range of pitch angles where the theory substantially overpredicted the experimental lead-lag damping. The poor correlation in the mid-to-high blade pitch angle range is attributed to low Reynolds number nonlinear aerodynamics effects not included in the theory. The experimental results also revealed an asymmetry in lead-lag damping between positive and negative thrust conditions.

  16. LED's and the "Fluttering Heart" Phenomenon.

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.

    1993-01-01

    Describes the nineteenth-century parlor trick entitled the Fluttering Heart phenomenon which uses a red heart on a bright blue background. Discusses theories concerning the apparent fluttering. Suggests doing the trick with a red light-emitting diode in a darkened room. (MVL)

  17. Development of a structural optimization capability for the aeroelastic tailoring of composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Venkatesan, C.; Yuan, K.

    1992-01-01

    This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.

  18. Geared-elevator flutter study. [wind tunnel tests of transonic flutter effects on control surfaces of supersonic transport tail assemblies, conducted in a NASA-Langley transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1976-01-01

    An experimental and analytical study was made of the transonic flutter characteristics of a supersonic transport tail assembly model having an all-movable, horizontal tail with a geared elevator. Two model configurations, namely, one with a gear-elevator (2.8 to 1.0 gear ratio) and one with locked-elevator (1.0 to 1.0 gear ratio), were flutter tested in the Langley transonic dynamics tunnel with an empennage cantilever-mounted on a sting. The geared-elevator configuration fluttered experimentally at about 20% higher dynamic pressures than the locked-elevator configuration. The experimental flutter dynamic pressure boundaries for both configurations were nearly flat over a Mach number range from 0.9 to 1.1. Flutter calculations (mathematical models) were made for the geared-elevator configuration using three subsonic lifting-surface methods. In one method, the elevator was treated as a discrete surface, and in the other two methods, the stabilizer and elevator were treated as a single warped-surface with the primary difference between these two methods being in the mathematical implementation used. A comparison of the experimental and analytical results shows that the discrete-elevator method predicted best the experimental flutter dynamic pressure level. However, the single warped-surface methods predicts more closely the experimental flutter frequencies and Mach number trends.

  19. A new aeroelastic model for composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  20. Static aeroelastic analysis and tailoring of missile control fins

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.; Dillenius, M. F. E.

    1989-01-01

    A concept for enhancing the design of control fins for supersonic tactical missiles is described. The concept makes use of aeroelastic tailoring to create fin designs (for given planforms) that limit the variations in hinge moments that can occur during maneuvers involving high load factors and high angles of attack. It combines supersonic nonlinear aerodynamic load calculations with finite-element structural modeling, static and dynamic structural analysis, and optimization. The problem definition is illustrated. The fin is at least partly made up of a composite material. The layup is fixed, and the orientations of the material principal axes are allowed to vary; these are the design variables. The objective is the magnitude of the difference between the chordwise location of the center of pressure and its desired location, calculated for a given flight condition. Three types of constraints can be imposed: upper bounds on static displacements for a given set of load conditions, lower bounds on specified natural frequencies, and upper bounds on the critical flutter damping parameter at a given set of flight speeds and altitudes. The idea is to seek designs that reduce variations in hinge moments that would otherwise occur. The block diagram describes the operation of the computer program that accomplishes these tasks. There is an option for a single analysis in addition to the optimization.

  1. A Proposed Role of Aeroelasticity in NASA's New Exploration Vision

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Moses, Robert W.; Scott, Robert C.; Templeton, Justin D.; Cheatwood, F. McNeil; Gnoffo, Peter A.; Buck, Greg M.

    2005-01-01

    On 14 January 2004, NASA received a mandate to return astronauts to the Moon, evolve a sustained presence there, then head out into the solar system to Mars and perhaps beyond. This new space exploration initiative directs NASA to develop human and robotic technologies that can deliver payloads larger than Apollo to the Moon, to Mars, and bring astronauts and samples safely back to Earth at costs much lower than Apollo. These challenges require creative aerospace systems. On proposed technology for safely delivering payloads to the surface of Mars and returning samples to Earth involves deployed flexible and inflatable decelerators for atmospheric entry. Because inflatable decelerators provide the entry vehicle more drag surface area at smaller mass than traditional ablative devices, this class of decelerators can potentially accomodate larger mass payloads. The flexibility of these lightweight aeroshells can pose both vehicle and aeroelastic stability problems if not properly designed for the expected flight regimes. Computational tools need to be developed for modelling the large and nonlinear deformations of these highly flexible structures. Unlike wind tunnel testing, an integrated and efficient aeroelastic analysis tool can explore the entire flight environment. This paper will provide some background on flexible deployable decelerators, survey the current state of technology and outline the proposed development of an aeroelastic analysis and capability.

  2. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Prazenica, Chad

    2005-01-01

    This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.

  3. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  4. The Influence of Feedback on the Aeroelastic Behavior of Tilt Proprotor Aircraft Including the Effects of Fuselage Motion

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Komatsuzaki, T.; Traybar, J. J.

    1979-01-01

    The influence of single loop feedbacks to improve the stability of the system are considered. Reduced order dynamic models are employed where appropriate to promote physical insight. The influence of fuselage freedom on the aeroelastic stability, and the influence of the airframe flexibility on the low frequency modes of motion relevant to the stability and control characteristics of the vehicle were examined.

  5. [Case of Fisher syndrome with ocular flutter].

    PubMed

    Nakayasu, Koki; Sakimoto, Tohru; Minami, Masayuki; Shigihara, Syuntaro; Ishikawa, Hiroshi

    2010-06-01

    We report a case of Fisher syndrome accompanied by ocular flutter. A 19-year-old man presented with diplopia and vertigo, associated with preceding symptoms of common cold. Since symmetric weakness of abduction in both eyes, truncal ataxia, diminution of tendon reflexes, and gaze nystagmus were noted, he was diagnosed as having Fisher syndrome. Ocular flutter also was noticed during horizontal gaze. Serum anti-GQ1b antibody and anti-GM1 antibody were detected. He was followed without therapy and the symptoms resolved. The accompanying ocular flutter may suggest that a central nervous system disorder may also be present in Fisher syndrome. PMID:20593660

  6. Aeroelastic characteristics of composite bearingless rotor blades

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  7. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  8. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  9. The application of digital computers to near-real-time processing of flutter test data

    NASA Technical Reports Server (NTRS)

    Hurley, S. R.

    1976-01-01

    Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described.

  10. Prediction of wing aeroelastic effects on aircraft life and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1987-01-01

    The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.

  11. Prediction of wing aeroelastic effects on aircraft lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1985-01-01

    The distribution of flight loads on an aircraft structure determines the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. Some estimate of the effect of aeroelasticity on stability and control characteristics, particularly lift and pitching moment, is required for use in aircraft simulation models for evaluation of flight characteristics. This presentation outlines a procedure to incorporate aeroelastic effects into lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to an aircraft with a very flexible transport-type research wing. The procedure described is generally applicable to all types of aircraft.

  12. Prediction of wing aeroelastic effects on aircraft lift and pitching moment characteristics

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1986-01-01

    The distribution of flight loads on an aircraft structure determine the lift and pitching moment characteristics of the aircraft. When the load distribution changes due to the aeroelastic response of the structure, the lift and pitching moment characteristics also change. An estimate of the effect of aeroelasticity on stability and control characteristics is often required for the development of aircraft simulation models of evaluation of flight characteristics. This presentation outlines a procedure for incorporating calculated linear aeroelastic effects into measured nonlinear lift and pitching moment data from wind tunnel tests. Results are presented which were obtained from applying this procedure to data for an aircraft with a very flexible transport type research wing. The procedure described is generally applicable to all types of aircraft.

  13. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    NASA Astrophysics Data System (ADS)

    Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.

    2014-06-01

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.

  14. State-space formulations for flutter analysis

    NASA Technical Reports Server (NTRS)

    Weiss, S. J.; Tseng, K.; Morino, L.

    1976-01-01

    Various methods are presented and assessed for approximating the aerodynamic forces so that the State Space formulation and off-the-imaginary axis analysis are retained. The advantages of retaining these features are considerable, not only in simplifying the flutter analysis, but especially for more advanced applications such as optimal design of active control in which the flutter is merely a constraint to the optimization problem.

  15. Numerical investigation of stall flutter

    SciTech Connect

    Ekaterinaris, J.A.; Platzer, M.F.

    1996-04-01

    Unsteady, separated, high Reynolds number flow over an airfoil undergoing oscillatory motion is investigated numerically. The compressible form of the Reynolds-averaged governing equations is solved using a high-order, upwind biased numerical scheme. The turbulent flow region is computed using a one-equation turbulence model. The computed results show that the key to the accurate prediction of the unsteady loads at stall flutter conditions is the modeling of the transitional flow region at the leading edge. A simplified criterion for the transition onset is used. The transitional flow region is computed with a modified form of the turbulence model. The computed solution, where the transitional flow region is included, shows that the small laminar/transitional separation bubble forming during the pitch-up motion has a decisive effect on the near-wall flow and the development of the unsteady loads. Detailed comparisons of computed fully turbulent and transitional flow solutions with experimental data are presented.

  16. Method for experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Gilyard, Glenn B.

    1989-01-01

    A method for flight flutter testing is proposed which enables one to determine the flutter dynamic pressure from flights flown far below the flutter dynamic pressure. The method is based on the identification of the coefficients of the equations of motion at low dynamic pressures, followed by the solution of these equations to compute the flutter dynamic pressure. The initial results of simulated data reported in the present work indicate that the method can accurately predict the flutter dynamic pressure, as described. If no insurmountable difficulties arise in the implementation of this method, it may significantly improve the procedures for flight flutter testing.

  17. [Typical atrial flutter : Diagnosis and therapy].

    PubMed

    Thomas, Dierk; Eckardt, Lars; Estner, Heidi L; Kuniss, Malte; Meyer, Christian; Neuberger, Hans-Ruprecht; Sommer, Philipp; Steven, Daniel; Voss, Frederik; Bonnemeier, Hendrik

    2016-03-01

    Typical, cavotricuspid-dependent atrial flutter is the most common atrial macroreentry tachycardia. The incidence of atrial flutter (typical and atypical forms) is age-dependent with 5/100,000 in patients less than 50 years and approximately 600/100,000 in subjects > 80 years of age. Concomitant heart failure or pulmonary disease further increases the risk of typical atrial flutter.Patients with atrial flutter may present with symptoms of palpitations, reduced exercise capacity, chest pain, or dyspnea. The risk of thromboembolism is probably similar to atrial fibrillation; therefore, the same antithrombotic prophylaxis is required in atrial flutter patients. Acutely symptomatic cases may be subjected to cardioversion or pharmacologic rate control to relieve symptoms. Catheter ablation of the cavotricuspid isthmus represents the primary choice in long-term therapy, associated with high procedural success (> 97 %) and low complication rates (0.5 %).This article represents the third part of a manuscript series designed to improve professional education in the field of cardiac electrophysiology. Mechanistic and clinical characteristics as well as management of isthmus-dependent atrial flutter are described in detail. Electrophysiological findings and catheter ablation of the arrhythmia are highlighted. PMID:26846223

  18. Fan Stall Flutter Flow Mechanism Studied

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2002-01-01

    Modern turbofan engines employ a highly loaded fan stage with transonic or low-supersonic velocities in the blade-tip region. The fan blades are often prone to flutter at off-design conditions. Flutter is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high-cycle fatigue blade failure. The origins of blade flutter are not fully understood yet. Experimental data that can be used to clarify the origins of blade flutter in modern transonic fan designs are very limited. The Transonic Flutter Cascade Facility at the NASA Glenn Research Center was developed to experimentally study the details of flow mechanisms associated with fan flutter. The cascade airfoils are instrumented to measure high-frequency unsteady flow variations in addition to the steady flow data normally recorded in cascade tests. The test program measures the variation in surface pressure in response to the oscillation of one or more of the cascade airfoils. However, during the initial phases of the program when all airfoils were in fixed positions, conditions were found where significant time variations in the pressures near the airfoil leading edges could be observed.

  19. Wing-Body Aeroelasticity on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup

    1996-01-01

    This article presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a high speed civil transport type wing-body configuration.

  20. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    NASA Astrophysics Data System (ADS)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  1. Improving Tiltrotor Whirl-Mode Stability with Rotor Design Variations

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Peyran, R. J; Johnson, Wayne; Aiken, Edwin W. (Technical Monitor)

    2000-01-01

    Further increases in tiltrotor speeds are limited by coupled wing/rotor whirl-mode aeroelastic instability. Increased power, thrust, and rotor efficiency are not enough: the whirl-mode stability boundary must also be improved. With current technology, very stiff, thick wings of limited aspect ratio are essential to meet the stability requirements, which severely limits cruise efficiency and maximum speed. Larger and more efficient tiltrotors will need longer and lighter wings, for which whirl-mode flutter is a serious design issue. Numerous approaches to improving the whirl-mode airspeed boundary have been investigated, including tailored stiffness wings, active stability augmentation, variable geometry rotors, highly swept tips, and at one extreme, folding rotors. The research reported herein began with the much simpler approach of adjusting the chordwise positions of the rotor blade aerodynamic center and center of gravity, effected by offsetting the airfoil quarter chord or structural mass with respect to the elastic axis. The research was recently extended to include variations in blade sweep, control system stiffness, and pitch-flap coupling (delta(sub 3)). As an introduction to the subject, and to establish a baseline against which to measure stability improvements, this report will first summarize results. The paper will then discuss more advanced studies of swept blades and control-system modifications.

  2. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  3. Transonic flight flutter tests of a control surface utilizing an impedance response technique

    NASA Technical Reports Server (NTRS)

    Mirowitz, L. I.

    1975-01-01

    Transonic flight flutter tests of the XF3H-1 Demon Airplane were conducted utilizing a frequency response technique in which the oscillating rudder provides the means of system excitation. These tests were conducted as a result of a rudder flutter incident in the transonic speed range. The technique employed is presented including a brief theoretical development of basic concepts. Test data obtained during the flight are included and the method of interpretation of these data is indicated. This method is based on an impedance matching technique. It is shown that an artificial stabilizing device, such as a damper, may be incorporated in the system for test purposes without complicating the interpretation of the test results of the normal configuration. Data are presented which define the margin of stability introduced to the originally unstable rudder by design changes which involve higher control system stiffness and external damper. It is concluded that this technique of flight flutter testing is a feasible means of obtaining flutter stability information in flight.

  4. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats

    2013-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.

  5. Technology Integration (Task 20) Aeroservoelastic Modeling and Design Studies. Part A; Evaluation of Aeroservoelastic Effects on Flutter and Dynamic Gust Response

    NASA Technical Reports Server (NTRS)

    Nagaraja, K. S.; Kraft, R. H.

    1999-01-01

    The HSCT Flight Controls Group has developed longitudinal control laws, utilizing PTC aeroelastic flexible models to minimize aeroservoelastic interaction effects, for a number of flight conditions. The control law design process resulted in a higher order controller and utilized a large number of sensors distributed along the body for minimizing the flexibility effects. Processes were developed to implement these higher order control laws for performing the dynamic gust loads and flutter analyses. The processes and its validation were documented in Reference 2, for selected flight condition. The analytical results for additional flight conditions are presented in this document for further validation.

  6. Stochastic nonlinear aeroelastic analysis of a supersonic lifting surface using an adaptive spectral method

    NASA Astrophysics Data System (ADS)

    Chassaing, J.-C.; Lucor, D.; Trégon, J.

    2012-01-01

    An adaptive stochastic spectral projection method is deployed for the uncertainty quantification in limit-cycle oscillations of an elastically mounted two-dimensional lifting surface in a supersonic flow field. Variabilities in the structural parameters are propagated in the aeroelastic system which accounts for nonlinear restoring force and moment by means of hardening cubic springs. The physical nonlinearities promote sharp and sudden flutter onset for small change of the reduced velocity. In a stochastic context, this behavior translates to steep solution gradients developing in the parametric space. A remedy is to expand the stochastic response of the airfoil on a piecewise generalized polynomial chaos basis. Accurate approximation andaffordable computational costs are obtained using sensitivity-based adaptivity for various types of supersonic stochastic responses depending on the selected values of the Mach number on the bifurcation map. Sensitivity analysis via Sobol' indices shows how the probability density function of the peak pitch amplitude responds to combined uncertainties: e.g. the elastic axis location, torsional stiffness and flap angle. We believe that this work demonstrates the capability and flexibility of the approach for more reliable predictions of realistic aeroelastic systems subject to a moderate number of uncertainties.

  7. Transonic and Supersonic Flutter Investigation of 1/2-Size Models of All-Movable Canard Surface of an Expendable Powered Target

    NASA Technical Reports Server (NTRS)

    Ruhlin, Charles L.; Tuovila, W. J.

    1961-01-01

    A transonic and a supersonic flutter investigation of 1/2-size models of the all-movable canard surface of an expendable powered target has been conducted in the Langley transonic blowdown tunnel and in the Langley 9- by 18-inch supersonic aeroelasticity tunnel, respectively. The transonic investigation covered a Mach number range from 0.7 to 1.3, and the supersonic investigation was made at Mach numbers 1.3, 2.O, and 2.55. The effects on the flutter characteristics of the models of different levels of stiffness and of free play in the pitch control linkage were examined. The semispan models, which were tested at an angle of attack of 0 deg, had pitch springs with the scaled design and 1/2 the scaled design pitch stiffness and total free play in pitch ranging from 0 to 1 deg. An additional model configuration which had a pitch spring 1/4 the scaled design pitch stiffness and no free play in pitch was included in the supersonic tests. All model configurations investigated were flutter free up to dynamic pressures 32 percent greater than those required for flight throughout the Mach number range. Several model configurations were tested to considerably higher dynamic pressures without obtaining flutter at both transonic and supersonic speeds.

  8. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery

    NASA Astrophysics Data System (ADS)

    Clark, Stephen Thomas

    This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock

  9. Parallel Nonlinear Aeroelastic Computation for Fighter Wings in the Transonic Region

    NASA Astrophysics Data System (ADS)

    Larsen, Bradley Robert

    In this dissertation, a parallel three-dimensional aeroelastic simulation is applied to current and next generation fighter aircraft wings. The computational model is a nonlinear fluid and structural mesh coupled using the Direct Eulerian-Langrangian method. This method attaches unique local coordinates to each node and connects the fluid mesh to the structure in such a way that a transformation preserved to the global coordinates. This allows the fluid and structure to be updated in the same time step and maintains spatial accuracy at their interface. The structural mesh is modeled using modified nonlinear von Karman finite elements and is discretized using the Galerkin finite element method. The fluid mesh also used the Galerkin finite element method to discretize the unsteady Euler equations. Computational results over a large range of Mach numbers and densities are presented for two candidate fighter wing models for transonic wing tunnel testing. The FX-35 is a trapezoidal wing based on the F-35A, and the F-Wing is a truncated delta wing similar to the F-16. Both wings exhibit a variety of flutter behaviors including strong bending-torsion flutter, limit-cycle oscillations, and essentially single degree-of-freedom responses.

  10. Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Schlichting, Alexander D.; Garcia, Ephrahim

    2013-04-01

    This paper presents experimental energy harvesting efficiency analysis of a piezoelectric device driven to limit cycle oscillations by an aeroelastic flutter instability. Wind tunnel testing of the flutter energy harvester was used to measure the power extracted through a matched resistive load as well as the variation in the device swept area over a range of wind speeds. The efficiency of this energy harvester was shown to be maximized at a wind speed of about 2.4 m/s, which corresponds to a limit cycle oscillation (LCO) frequency that matches the first natural frequency of the piezoelectric structure. At this wind speed, the overall system efficiency was 2.6%, which exceeds the peak efficiency of other comparably sized oscillator-based wind energy harvesters using either piezoelectric or electromagnetic transduction. Active synchronized switching techniques are proposed as a method to further increase the overall efficiency of this device by both boosting the electrical output and also reducing the swept area by introducing additional electrical energy dissipation. Real-time peak detection and switch control is the major technical challenge to implementing such active power electronics schemes in a practical system where the wind speed and the corresponding LCO frequency are not generally known or constant. A promising microcontroller (MCU) based peak detector is implemented and tested over a range of operating wind speeds.

  11. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  12. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  13. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  14. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  15. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  16. 14 CFR 29.629 - Flutter and divergence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flutter and divergence. 29.629 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.629 Flutter and divergence. Each aerodynamic surface of the rotorcraft must be free from flutter and divergence under...

  17. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  18. Flutter calculations in three degrees of freedom

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Garrick, I E

    1942-01-01

    The present paper is a continuation of the general study of flutter published in NACA reports nos. 496 and 685. The paper is mainly devoted to flutter in three degrees of freedom (bending, torsion, and aileron) for which a number of selected cases have been calculated and presented in graphical form. The results are analyzed and discussed with regard to the effects of structural damping, of fractional-span ailerons, and of mass-balancing. The analysis shows that more emphasis should be put on the effect of structural damping and less on mass-balancing. The conclusion is drawn that a definite minimum amount of structural damping, which is usually found to be present, is essential in the calculations for an adequate description of the flutter case. Theoretical flutter predictions are thus brought into closer agreement with the facts of experience. A brief discussion is included of a particular biplane that had experienced flutter at about 200 miles per hour. Some simplifications have been achieved in the method of calculation. (author)

  19. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  20. Subsonic/transonic stall flutter investigation of a rotating rig

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Fost, R. B.; Chi, R. M.; Beacher, B. F.

    1981-01-01

    Stall flutter is investigated by obtaining detailed quantitative steady and aerodynamic and aeromechanical measurements in a typical fan rotor. The experimental investigation is made with a 31.3 percent scale model of the Quiet Engine Program Fan C rotor system. Both subsonic/transonic (torsional mode) flutter and supersonic (flexural) flutter are investigated. Extensive steady and unsteady data on the blade deformations and aerodynamic properties surrounding the rotor are acquired while operating in both the steady and flutter modes. Analysis of this data shows that while there may be more than one traveling wave present during flutter, they are all forward traveling waves.